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Abstract 13 

Understanding the function of a tissue requires knowing the spatial organization of its constituent 14 

cell types. In the cerebral cortex, single-cell RNA sequencing (scRNA-seq) has revealed the 15 

genome-wide expression patterns that define its many, closely related neuronal types, but cannot 16 

reveal their spatial arrangement. Here we introduce probabilistic cell typing by in situ sequencing 17 

(pciSeq), an approach that leverages prior scRNA-seq classification to identify cell types using 18 

multiplexed in situ RNA detection. We applied this method by mapping the inhibitory neurons of 19 

hippocampal area CA1, for which ground truth is available from extensive prior work identifying 20 

their laminar organization. Our method identified these closely-related classes in a spatial 21 

arrangement matching ground truth, and further identified multiple classes of isocortical pyramidal 22 

cell in a pattern matching their known organization. This method will allow identifying the spatial 23 

organization of fine cell types across the brain and other tissues.  24 
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Introduction 25 

Bodily tissues are composed of a myriad variety of cell types, which differ in their spatial 26 

organization, morphology, physiology, and gene expression. Different varieties of cell can be 27 

distinguished by differences in their transcriptomes, and spatially resolved transcriptomic methods 28 

raise the possibility of mapping cellular varieties at large scale 1. While transcriptional differences 29 

between some varieties are clear cut, others can be subtle. In the cerebral cortex, the genes 30 

expressed by neurons differ greatly from those expressed by multiple classes of glia 2–8, but there 31 

exists a remarkable diversity of finely-related neuronal subtypes, particularly among  inhibitory 32 

interneurons, whose transcriptomes may differ by only a few genes. Thus, while the diversity of 33 

cortical cells was known to classical neuroanatomists, accurately relating fine transcriptomic 34 

varieties to classically defined cortical neurons has proved challenging.  35 

To validate that spatial transcriptomic analyses can genuinely distinguish finely-related cell types, 36 

it is essential to work in a system where ground truth is available from prior work with other 37 

methods 9–11. The interneurons of hippocampal area CA1 provide a unique such opportunity: 38 

several decades of work using methods of anatomy, immunohistochemistry and electrophysiology 39 

have identified around 20 interneuron subtypes, which are arranged in a stereotyped spatial 40 

organization, differ in their computational function, and expression of marker genes 12–14. Analysis 41 

of CA1 interneuron classes by scRNA-seq yields clusters strikingly consistent with these 42 

classically-defined types 6. Mapping the spatial organization of CA1 interneurons is thus not only 43 

important to understand the brain’s memory circuits, but also provides a powerful way to validate 44 

spatial cell type mapping approaches for closely-related subtypes, using the spatio-molecular 45 

ground truth provided by this system.  46 
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 47 

Here we provide a spatial map of CA1 interneuron types, using a new approach to in situ cell 48 

typing based on in situ RNA expression profiling. While several approaches to multiplexed in situ 49 

RNA detection and cell type classification have been proposed 9,15–17, none have yet shown the 50 

ability to distinguish fine cortical cell types known from prior ground truth. Here we introduce 51 

probabilistic cell typing by in situ sequencing (pciSeq), a method with several advantages over 52 

other methods. Because it uses low-magnification (20x) imaging, it enables large regions to be 53 

analyzed quickly and with reasonable data sizes. Because our chemical methods have very low 54 

misdetection rates, our analysis methods can confidently identify cell classes from just a few 55 

detections of characteristic RNAs. Finally, because our cell calling algorithms yield probabilistic 56 

readouts, they are able to report the depth to which it is able to confidently classify cells. We show 57 

that this combination allows cell typing of closely-related neuronal classes, verified by the ground 58 

truth available from CA1’s laminar architecture.  59 

 60 

Results 61 

CA1 interneurons constitute around 20% of CA1 neurons and thus around 5% of CA1 cells. To 62 

rigorously test pciSeq, we focused on distinguishing fine subtypes within this 5% rather than the 63 

easier problem of finding major differences within the remaining 95%.   64 

The pciSeq method consists of three steps (Supplementary Figure S1). First, we select marker 65 

genes sufficient for identifying cell types, using previous scRNA-seq data. Second, we apply in 66 

situ sequencing to detect expression of these genes at cellular resolution in tissue sections. Third, 67 
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gene reads are assigned to cells, and cells to types using a probabilistic model derived from 68 

scRNA-seq clusters.  69 

Gene panel selection 70 

To select a gene panel, we developed an algorithm that searches for a subset of genes that can 71 

together identify scRNA-seq cells to their original clusters, after downsampling expression levels 72 

to match the lower efficiency of in situ data (see Methods). The gene panel was selected using a 73 

database of interneurons from mouse hippocampus 6 (Supplementary Figure S2) as well as 74 

isocortex 3, and the results were manually curated prior to final gene selection, excluding genes 75 

likely to be strongly expressed in all cell types even if at different levels, and favoring genes which 76 

have been used in classical immunohistochemistry (Supplementary Table S1, Supplementary 77 

Figure S3). Although our focus was on interneurons, we included some genes identifying CA1 78 

excitatory cells (e.g. Wfs1) as well as oligodendrocytes (Plp1). A further set of three genes were 79 

excluded after initial experiments, as their expression was widespread in neuropil and did not help 80 

identify cell types (Slc1a2, Vim, Map2). The final panel contained 99 genes.  81 

 82 

In situ sequencing 83 

To generate RNA expression profiles, we modified the in situ sequencing method described by Ke 84 

et al. 18 (Supplementary Figure S4). Padlock probes were designed for the selected genes, each 85 

containing two arms together matching a 40-basepair sequence on the cDNA; a 4-basepair 86 

barcode; an “anchor sequence” allowing all amplicons to be labelled simultaneously; and a 20-87 

basepair hybridization sequence for additional readouts. For weakly expressed genes, we designed 88 
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probes matching multiple target sequences along the mRNA length, which aided their detection 89 

without compromising detection of others (Supplementary Figure S5). In total we designed 755 90 

probes for 99 genes, but used only 161 barcodes out of 1024 (=45) possible combinations to allow 91 

error correction (for probe sequence and barcodes see Supplementary Table S2). 92 

  93 
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Figure 1. Detection of 99 genes in a mouse brain coronal section. A) Pseudocolor images showing barcode 
sequencing readout for a region corresponding to one cell. Top to bottom, base-specific fluorophores in the 
four cycles of sequencing by ligation, and for the fifth cycle of barcode specific hybridization. The white 
square shows a single RCP of barcode AGCG-H4. Scale bars: 5 µm. B) Gene-calling for this RCP. Left: 
pseudocolor representation of raw fluorescence intensities; Middle, intensity after crosstalk compensation; 
Right, best fit barcode (AGCG-H4, encoding the gene Cnr1). C) Distribution of 99 genes at different zoom 
levels. From top to bottom: a complete coronal mouse brain section; left hippocampus; the border of stratum 
radiatum and stratum lacunosum moleculare; finally, zoom-in to reads for the cell whose raw fluorescence 
is shown in panel (A). D) Code symbols for the 99 marker genes. E) Comparison of the distribution of five 
markers in the hippocampus as determined by pciSeq (left column) with the distribution shown in the Allen 
Mouse Brain Atlas (right column). Scale bars: 500 µm. 

 94 
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To apply the method in situ, mRNA is enzymatically converted to cDNA and then degraded. The 95 

padlock probe library is applied, and a ligase circularizes probes which are then rolling-circle 96 

amplified, generating sub-micron sized DNA molecules (rolling-circle products: RCPs), each 97 

carrying hundreds of copies of the probe’s barcode. The barcodes are identified with an 98 

epifluorescence microscope with 20x objective in five rounds of multi-color imaging (Figure 1A). 99 

Finally, RCPs for two genes which express strongly (Sst and Npy) are detected separately in a 6th 100 

round by hybridizing fluorescent probes to their target recognition sequences. Data are analyzed 101 

using a custom pipeline, including point-cloud registration to deal with chromatic aberration in the 102 

images, and compensation for optical or chemical crosstalk between bases in the sequencing 103 

readout (Figure 1B; Supplementary Figure S6, F and G and Methods). These improved 104 

chemical and analytic methods achieved a density of reads sufficient for fine cell type assignment. 105 

Our first experiments were performed targeting a subset of 84 genes on four coronal sections of 106 

mouse brain (10 µm fresh frozen). After verifying that detected expression patterns match in situ 107 

hybridization data from the Allen Mouse Brain Atlas 19, we continued with two further experiments 108 

using the full 99-gene panel, on two and eight coronal sections, respectively. All 14 sections were 109 

from one P25 male CD1 mouse and covered different parts of the dorsal hippocampus 110 

(Supplementary Figure S7).   Each section contained roughly 120,000 cells and in total 111 

15,424,317 reads passed quality control (Supplementary Table S3). We displayed each read with 112 

symbols whose colors grouped genes often expressed by similar cell types, and glyph distinguished 113 

genes within these color groups (Figure 1, C and D).  114 

Expression patterns were consistent with expectation at multiple levels of detail. Expression 115 

differed between regions (Figure 1C, top), for example with the inhibitory thalamic reticular 116 

nucleus dominated by inhibitory-associated genes (blue) and the CA1 pyramidal layer dominated 117 

https://drive.google.com/a/scilifelab.se/open?id=1AskDWJMYF2fwU09OCy59mPfEUzwxrHGQ8omtaRvFFvY
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by pyramidal-associated genes (green). Zooming in to the hippocampus (Figure 1C, 2nd row) 118 

revealed differences between cell layers and zooming further to single neurons (bottom two rows) 119 

showed genes grouped together in combinations expected from scRNA-seq. Expression patterns 120 

of genes present in the Allen Mouse Brain Atlas 19 matched at a corresponding coronal level 121 

(examples in Figure 1E). Read densities were consistent between experiments, even with different 122 

gene panels, further supporting the reliability of the technique (r = 0.93; Supplementary Figure 123 

S8A). We manually drew hippocampal CA1 regions (Supplementary Figure S9), and used 124 

pciSeq approach to identify the cell types of 27,338 CA1 neurons, from 28 hippocampi. Data files 125 

for all experiments are available at https://figshare.com/s/88a0fc8157aca0c6f0e8, and an online 126 

viewer showing reads and probabilistic cell type assignments is at http://insitu.cortexlab.net. 127 

 128 

https://figshare.com/s/88a0fc8157aca0c6f0e8
http://insitu.cortexlab.net/
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Figure 2. Cell type map of CA1 from an example experiment (experiment 4-3 right hemisphere). A) Reads are 
assigned to cells, and cells to classes using a probability model based on scRNA-seq data.  Top row: 
distribution and assignment of reads for fourteen example cells. Colored symbols indicate reads (color code as 
in Figure 1D). Grayscale background image indicates DAPI stain with watershed segmentation as dotted line.  
Straight lines join reads to the cell for which are assigned highest probability. Scale bars: 5 µm. Bottom row: 
pie charts showing probability distribution of each class for the same example cells. Colors indicate broad cell 
types; segments show probabilities for individual scRNA-seq clusters (named underneath). B) Spatial map of 
cell types across CA1. Cells are represented by pie charts, with radius proportional to square root of the 
number of reads assigned to the cell. Numbers identify the example cells in (A). C) Box-and-whisker 
representation of total read count per cell of each type (top) and average number of unique genes per cell of 
each type (bottom). Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers. D) 3d montage of cell calling results from all 14 sections processed. 

 129 

Probabilistic cell typing 130 

A fundamental challenge for in situ cell typing is assigning genes to cells, as boundaries between 131 

cells are difficult to obtain in 2D imaging. We counterstained all sections with DAPI to reveal 132 

nuclei; standard watershed segmentation yielded boundaries containing many, but not all the genes 133 

belonging to them (Figure 2A). To solve this problem, we developed a Bayesian algorithm which 134 

leverages scRNA-seq data to simultaneously estimate the probability of assigning each read to 135 

each cell, and each cell to each class.(Figure 2A, straight lines; Supplementary Figure S10). 136 

Note that the algorithm does not take into account a cell’s laminar location, allowing this to be 137 

used later for independent validation.  138 

The algorithm mapped CA1 cells to 70 fine classes (previously defined by scRNA-seq clustering, 139 

and including pyramidal cells and some non-neurons), however laminar ground truth from 140 

previous work is usually only available for a coarser level of classification. Therefore, validating 141 

the results of pciSeq against anatomical ground truth data required that the fine cell classes be 142 

merged into coarser “superclasses” (Supplementary Table 4). These include 16 interneuron 143 

classes: 3 types of interneuron-selective cell; 2 types of Cck cell; 2 types of neurogliaform (NGF) 144 
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cell; 2 types of GABAergic projection cell; 3 types of parvalbumin cell and 4 types of somatostatin 145 

cell (Supplementary Tables S4 and S5). 146 

To represent the results on a spatial map, we displayed each cell’s class assignments by a pie-chart, 147 

of size proportional to total gene count, with the angle of each slice indicating the probability of 148 

assignment to a fine transcriptomic class, and slices color-coded according to their superclass 149 

assignments (Figure 2B; see also Supplementary Figure S11; for all cell type maps, see 150 

Supplementary appendix; online viewer at http://insitu.cortexlab.net). Although our panel was 151 

aimed at distinguishing interneurons, we also obtained confident distinction of two types of 152 

pyramidal cell inside and outside of CA1. Non-neuronal cells however could not be distinguished 153 

from each other, as our panel did not contain genes to separate them; indeed, many non-neurons 154 

had no gene reads at all, and were therefore assigned as unclassified. The average number of gene 155 

reads per cell was over 20 for most targeted cell types, and the number of unique genes detected 156 

per cell was in the range 5 to 10 (Figure 2C). The probabilistic algorithm allows diagnostics 157 

showing which genes provided evidence for calling as one type over another (Supplementary 158 

Figure S12). 159 

 160 

Validation of cell typing 161 

The algorithm’s cell type assignments conformed closely to known combinatorial patterns of gene 162 

expression in CA1 interneuron subtypes. Across all experiments, the patterns of both classical and 163 

novel interneuron markers were consistent with scRNA-seq results, as well as the known biology 164 

of CA1 interneurons (Supplementary Discussion; Supplementary Figure S13). Moreover, the 165 

http://insitu.cortexlab.net/
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cell type composition was consistent between the left and right hemispheres (Supplementary 166 

Figure S8B). 167 

 168 

  169 

Figure 3. Fraction of each cell class found in each CA1 layer. Circles indicate means of a single experiment 
with gray level representing number of cells of that class in the experiment; colored lines denote grand 
mean over all 28 hippocampi. In each plot, the 5 x-axis positions represent layers: stratum oriens (so), 
stratum pyramidale (sp), stratum radiatum (sr), border of strata radiatum and lacunosum-moleculare 
(sr/slm), stratum lacunosum-moleculare (slm). MGE: medial ganglionic eminence. CGE: caudal ganglionic 
eminence. 

 170 

We validated pciSeq, as well as the scRNA-seq classification it relies on, by verifying that cell 171 

classes it identifies are found in appropriate layers. The layers in which cell types were identified 172 

were consistent with known ground truth (Supplementary Discussion; Figure 3). This close 173 

correspondence with independent studies verifies that the method can accurately identify 174 
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biological cell types, across a wide dynamic range of cell abundances, ranging from very rare 175 

subtypes (Sst/Nos1 and IS2) to types with thousands per section (PC CA1) (Supplementary Table 176 

S5, Supplementary Figure S8).  177 

As a further validation of the cell calling, we performed an analysis of error rates in simulated data. 178 

To do so, we replaced the actual read distributions with simulations subsampled from cells in the 179 

scRNA-seq database, for which cell type information is therefore available down to the finest 180 

details (see Methods). This analysis showed that with the current detection efficiency and false 181 

positive rate, cells could be reliably assigned to fine inhibitory classes comprising as little as ~0.5% 182 

of all cells in the tissue (Supplementary Figure S15). 183 

To evaluate the minimal number of genes needed for the pciSeq algorithm to correctly classify 184 

cells, we also compared the relative accuracy of cell classification at different gene panel sizes 185 

(Supplementary Figure S19). The analysis showed the importance of having relevant genes 186 

rather than having high numbers of genes. When genes were added in optimal order, coarse cell 187 

types were classified from the top 50 genes similarly to how they were classified by the full panel; 188 

for identification of fine cell types, around 70 genes were needed. When genes were added in a 189 

random order, however, performance increased more slowly, reaching equivalent performance 190 

only when the whole panel was included. Thus, accurate classification of fine cell types can be 191 

obtained with modest-size gene panels, but only if they are chosen carefully.  192 

 193 

Application of the method in the isocortex 194 
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To verify that the method can also work in structures for which it was not directly optimized, we 195 

applied the same method to map neurons of the isocortex. Although not specifically designed to 196 

distinguish isocortical excitatory and inhibitory cell types, the panel nevertheless contained several 197 

genes that distinguish them.  198 

We took cell type definitions from the scRNA-seq data published by Zeisel at al. 8, using all 199 

neuronal types that the authors annotated to be present in those cortical regions found in the coronal 200 

section analyzed (isocortex; cingulate/retrosplenial; and piriform). We mapped 11 000 cells 201 

distributed across 15 excitatory and 10 inhibitory classes (Supplementary Figure S16). As in 202 

CA1, the frequencies of different neuronal types ranged from a handful for the rare ones, to 203 

thousands for the most frequent, and was similar in the two hemispheres (Supplementary Figure 204 

S16B). Although ground-truth information on the laminar organization of inhibitory classes is not 205 

available as it is in CA1, we were able to recapitulate the laminar organization of excitatory cells 206 

in isocortex, as well as between distinct cortical regions in the section (Supplementary Figure 207 

S16, C and E).  208 

Conclusions 209 

We have presented pciSeq, a method for probabilistic cell typing based on in situ sequencing data. 210 

We validated the method by mapping interneurons in hippocampal area CA1, a group of closely 211 

related neuronal types that together comprise approximately 5% of the cells in this region. We 212 

found that the method was able to confidently classify fine subtypes representing as little as 0.5% 213 

of the total cells in the region. Furthermore, assigning these fine transcriptomic classes to 18 214 

biological superclasses for which laminar ground truth was available, we confirmed that the spatial 215 

assignments made by pciSeq were accurate. 216 
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There exist multiple methods for multiplexed in situ RNA detection and cell calling 9,15–17,20, each 217 

of which presents various advantages and disadvantages. At a computational level, our method’s 218 

key advantages are its probabilistic assignment of cells to classes, which indicates the confidence 219 

and depth with which the cells can be classified, and its probabilistic assignment of reads to cells, 220 

avoiding problems of uncertain segmentation. At the chemical level, our method’s key advantage 221 

is its low false-positive gene detection rate. This low false-positive rate means that even one or 222 

two reads of an RNA can provide strong evidence for a cell to belong to a particular class. Thus, 223 

while the method has higher false-negative rates than FISH-based approaches, classification of 224 

cell types can still confidently be performed by designing a panel of genes that are expressed 225 

strongly enough to ensure enough reads of each. The lower read density of the current method 226 

provides a complementary advantage over FISH-based methods: it allows 20x imaging to be 227 

performed, offering substantial speed up and reduction in data size compared to 60x-100x imaging 228 

for single-molecule FISH 16,17,21 , and allowing entire mouse brain sections to be processed. 229 

The pciSeq method requires that scRNA-seq data be available for the cell system of interest, and 230 

that cluster analysis has been run on this data. These scRNA-seq clusters are used to design the 231 

gene panel, and the algorithm’s output is a probabilistic assignment of each in situ cell to these 232 

scRNA-seq clusters. Although our primary test of the method was to a very well understood cell 233 

system with laminar ground truth, this is not necessary to apply the method, only to validate it: 234 

pciSeq does not require the scRNA-seq varieties to have been identified with known cell types. 235 

Indeed, using the same gene panel that we selected from a clustering of CA1 inhibitory neurons, 236 

pciSeq was able to correctly map isocortical and piriform excitatory cells to clusters taken from an 237 

independent whole-nervous-system dataset 8. Thus, the method should be applicable to any tissue 238 

where scRNA-seq data is available. Large-scale scRNA-seq projects are now underway for the 239 
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whole body, and the data required to design panels and apply this method to all tissues will soon 240 

be available. The pciSeq approach requires only low-magnification imaging, and so may be 241 

applied high throughput, raising the possibility of body-wide spatial cell type maps in the near 242 

future.  243 

 244 

Methods 245 

Gene selection 246 

We chose the gene panel for in situ sequencing using an automated algorithm based on scRNA-247 

seq data. The algorithm was run on data from CA1 2,6  and isocortex 3, restricting in both cases to 248 

GABAergic neurons, our cell type of primary interest. The final panel was selected by manual 249 

merging and curation of the automatically generated lists. During this manual stage, we excluded 250 

genes that were expressed in all classes (even if at different mean levels), and also added some 251 

genes used in classical immunohistochemical analysis of CA1 inhibitory cells. These latter genes 252 

were not essential for accurate cell typing: the algorithm performed comparably well when they 253 

were excluded from analysis (Supplementary Figure S17), and furthermore the same gene 254 

accurately identified isocortical pyramidal cells (Supplementary Figure S16), for which no 255 

genes were manually selected. 256 

The algorithm starts by clustering the scRNAseq data, for which we used a probabilistic algorithm 257 

called ProMMT 6. Other clustering algorithms could be used also, however for optimal functioning 258 

of the pciSeq cell typing algorithm it is recommended to use algorithms for which within-cluster 259 

distributions of gene expression are not strongly bimodal, so can be reasonably modeled by a 260 
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negative binomial distribution. This results in a cluster assignment 𝑘𝑘𝑐𝑐 for each cell 𝑐𝑐, from which 261 

one can compute the mean expression 𝜇𝜇𝑔𝑔,𝑘𝑘 for each gene 𝑔𝑔 and cluster 𝑘𝑘.  We then clustered mean 262 

vectors 𝛍𝛍𝑘𝑘 hierarchically, yielding a representation of each cluster 𝑘𝑘 as a leaf of a binary tree. 263 

To automatically select genes for in situ analysis, we used a combinatorial search algorithm, that 264 

optimized a score function over possible gene sets 𝔾𝔾. Given a set of genes 𝔾𝔾, we reassigned each 265 

cell 𝑐𝑐 to a cluster 𝑘𝑘𝑐𝑐; 𝔾𝔾
′  using only the genes in 𝔾𝔾, using the ProMMT algorithm’s probability 266 

model. To account for the lower efficiency of in situ sequencing, we divided the means 𝜇𝜇𝑔𝑔,𝑘𝑘 by a 267 

factor of 50 and on each iteration resampled the expression levels of each cell according to a 268 

Poisson distribution with this mean. We then computed a score 𝑆𝑆[𝔾𝔾] as the mean similarity of the 269 

new cluster assignments 𝑘𝑘𝑐𝑐; 𝔾𝔾
′  to the original clusters 𝑘𝑘𝑐𝑐 , with cluster similarity defined by the 270 

depth of the last common ancestral node of the two clusters on the binary classification tree.  271 

The search was performed using a greedy algorithm, initializing 𝔾𝔾 as an empty set. On each 272 

iteration, the algorithm computes the score increment 𝑆𝑆[𝔾𝔾 ∪ 𝑔𝑔] − 𝑠𝑠[𝔾𝔾] that would be obtained by 273 

adding each gene 𝑔𝑔 not currently in 𝔾𝔾, and then adding the best gene. After this, it computes for 274 

each gene 𝑔𝑔 currently in 𝔾𝔾, a “gene value” 𝑠𝑠[𝔾𝔾] − 𝑆𝑆[𝔾𝔾 ∖ 𝑔𝑔], which measures how much the score 275 

would decrease if this gene was removed from the panel. Note that the value of any gene will 276 

decrease as the gene set grows larger, since genes will contain redundant information. If the value 277 

of any gene is negative on a given iteration, the gene with the most negative value was removed 278 

from 𝔾𝔾. (A negative score means that retaining this gene in the set does more harm than good, 279 

which is possible since the Poisson resampling means genes whose expression provides no 280 

information will only contribute noise). The algorithm was run for 100 iterations.  281 
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After performing our mapping experiments, we re-evaluated the contribution of all genes to cell 282 

typing post hoc. We found that performance was improved by discarding Vsnl1, and was made no 283 

worse by discarding a further six (Supplementary Figure S18). We conclude that detecting more 284 

genes would not have been helpful, as genes whose expression is close to equal between classes 285 

only add noise to the classification problem.  286 

 287 

Padlock probe design 288 

Except for Sst and Npy, each padlock probe contained a 40 nucleotide (nt) recognition site, a 4nt 289 

barcode, a 20nt hybridization site, and a 20nt anchor sequence (with the latter being the same for 290 

all probes). The 4nt DNA barcode and the four possibilities for the hybridization site together 291 

define a length 5 barcode allowing each probe to be identified in five imaging rounds. The set of 292 

barcodes used were designed such that every pair differed in at least two positions. When 293 

multiple probes were used against a single gene, they typically all had the same gene-specific 294 

barcode sequence. However, for technical validation, three genes (Cxlc14, Reln, Htr3a) were 295 

equipped with multiple barcodes (allowed to have only one-base difference), and in few other 296 

cases where previously ordered oligos were reused (Calb2, Cdh13, Pde1a, Plcxd2, Rorb had two 297 

barcodes).  298 

Probes were designed with an in-house Python software package which utilizes ClustalW and 299 

BLAST+ and supports parallel computing. Mouse transcriptome sequences were downloaded 300 

from NCBI RefSeq database, using gene name as search criterion. For genes with multiple 301 

isoforms, a multiple sequence alignment by ClustalW was first performed to find consensus 302 

regions, and any region shorter than 40nt was discarded. All the remaining target sequences were 303 



19 
 

cut into 40nt sequence fragments, and only fragments with melting temperature between 65°C and 304 

75°C were kept. Candidate fragments were then aligned against the mouse whole transcriptome, 305 

only considering the same strand polarity, using BLAST+ to test specificity. In addition to itself, 306 

if a fragment matched to another transcript or non-coding RNA with more than 50% coverage, 307 

80% homology, and the coverage spanned the center 10nt, it was considered unspecific and 308 

discarded. All remaining candidates being at least 20nt apart along a transcript were considered 309 

final target candidates.  310 

All target candidates were then converted into padlock probe sequences by cutting the target into 311 

two halves of 20nt each and by inserting a backbone sequence which contains a 20nt hybridization 312 

sequence, a 20nt anchor sequence, a 4nt barcode, a 5nt stabilizer sequence for sequencing-by-313 

ligation (SBL) and a 6nt linker sequence. When designing Sst and Npy padlock probes, the 20nt 314 

anchor sequence in the backbone was omitted. Finally, probe sequences were selected manually 315 

from padlock probe candidates, taking into consideration the number of probes needed for a gene 316 

in relation to its expected expression level, and the distribution of target sequences along the 317 

transcript. All padlock probe sequences are shown in Supplementary Table S2. Probes were 318 

ordered as ultramer oligos from Integrated DNA Technologies (IDT) with 5’-phophorylation 319 

modification. Detection-, anchor- and SBL oligos, as well as oligos for detection of Sst and Npy 320 

were also ordered from IDT with fluorophores conjugated (sequence and fluorophore modification 321 

in Supplementary Table S2).  322 

 323 

Mouse sample preparation 324 
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We used fresh frozen brain tissue from a CD1 male mouse, aged postnatal day 25. The brain was 325 

sliced into 10 µm coronal sections on cryostat (Leica) and were collected onto SuperFrost Plus 326 

(VWR) slides. The slides were kept at -80°C until use. All experimental procedures performed 327 

followed the guidelines and recommendations of local animal protection legislation and were 328 

approved by the local committee for ethical experiments on laboratory animals (Stockholms Norra 329 

Djurförsöksetiska nämnd, Sweden) under file N282/14. 330 

 331 

In situ rolling circle products (RCP) generation  332 

Slides were taken out from -80°C and thawed at room temperature for 10 minutes. The sections 333 

were pre-fixed for 5 minutes in fresh 4% (w/v) paraformaldehyde (Sigma) in DEPC (Sigma)-334 

treated PBS at room temperature, followed by one wash in DEPC-PBS-T (DEPC-treated PBS 335 

containing 0.05% Tween-20 (Sigma)). The tissue sections were then permeabilized with 0.1 M 336 

HCl (Sigma) for 5 minutes at room temperature, followed by two washes in DEPC-PBS-T. An 337 

ethanol (VWR) series of 70% (v/v), 85% (v/v) and ethanol absolute, 2 minutes each at room 338 

temperature, was performed to remove fat and further permeabilize tissue. The sections were let 339 

dry in air and SecureSeal hybridization chambers (Grace Bio-Labs) were mounted onto slides.  340 

Reverse transcription mix was added to the sections after a brief wash in PBS-T to rehydrate slides. 341 

The mix contained 0.5 mM dNTP mix (Thermo), 5 µM random decamer (IDT), 0.2 µg/µL BSA 342 

(NEB), 1 U/µL RIBOPROTECT RNase Inhibitor (Blirt) and 20 U/µL TranscriptMe reverse 343 

transcriptase (Blirt) in 1x reverse transcription buffer (Blirt). Slides were stored in a humid 344 

chamber and the reaction last overnight at 37°C. The mix was removed and fresh 4% (w/v) 345 

paraformaldehyde in DEPC-PBS was added to the sections without any wash in between. This 346 
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post-fixation step aimed to cross-link newly synthesized cDNA to the cellular matrix and was 347 

carried out at room temperature for 30 minutes, followed by two washes in DEPC-PBS-T. 348 

RNaseH digestion and padlock probing were performed in a single reaction mix. The mix 349 

contained 0.05 M KCl (Sigma), 20% formamide (Sigma), 20 nM of each padlock probe (638 350 

probes for 84-gene panel, 755 probes for 99-gene panel), 0.2 µg/µL BSA, 0.5 U/µL Ampligase 351 

(epicenter) and 0.4 U/µL RNase H (Blirt) in 1x Ampligase buffer (epicenter). The sections were 352 

first incubated at 37°C for 30 min for RNaseH digestion and moved to 45°C for 60 minutes for 353 

stringent hybridization and optimal Ampligase activity. The sections were washed twice in DEPC-354 

PBS-T. 355 

For rolling circle amplification, the sections were incubated in a mix containing 5% glycerol 356 

(Sigma), 250 µM dNTP mix, 0.2 µg/µL BSA, 1 U/µL Phi29 polymerase (Thermo Fisher 357 

Scientific) and 1x Phi29 buffer (Thermo Fisher Scientific) for overnight at room temperature, 358 

followed by three washes in DEPC-PBS-T. 359 

 360 

RCP labeling 361 

A Lab Vision Autostainer 360 (AH Diagnostics) was used for SBL and detection oligo 362 

hybridization reactions. Reaction chambers were removed and tissue sections dehydrated by taking 363 

the slides through an ethanol series. The reaction area was lined out by ImmEdge Hydrophobic 364 

Barrier PAP Pen (Vector Labs). The slides were mounted in the autostainer, and a program carried 365 

out the following steps at room temperature: 1) wash once in DEPC-PBS-T and air-blow to remove 366 

residual reagent, 2) add anchor stain reaction mix with 2x SSC, 20% formamide and 0.1 µM 367 
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AlexaFluor 750-labeled anchor oligo and incubate for 15 minutes, 3) wash three times in DEPC-368 

PBS-T and air-blow, 4) add SBL mix with 1 mM ATP (Thermo Fisher Scientific), four different 369 

base-interrogating oligos (0.1-0.3 µM each), 0.5 μg/ml DAPI (VWR), 0.2 µg/µL BSA and 0.1 370 

U/µL T4 DNA ligase (Blirt) and 1x T4 ligation buffer (Blirt) and incubate for 60 minutes, 5) wash 371 

three times in DEPC-PBS-T. The autostainer was kept in a dark room and the reaction mixes were 372 

prepared and loaded at the beginning of each run. To prepare for imaging, small amount of 373 

SlowFade Gold antifade mountant (Life Technologies) was added onto the sections and coverslips 374 

were mounted.  375 

For subsequent cycles, a UNG-treatment step with 0.02 U/µL UNG (Thermo Fisher Scientific) 376 

and 0.2 µg/µL BSA in 1x UNG buffer (Thermo Fisher Scientific) for 15 minutes followed by three 377 

washes with 60% formamide were performed before step 1) in the autostainer program. All 378 

staining cycles were identical except for that the base-interrogating oligos were changed for each 379 

reaction cycle. Moreover, in reaction cycle 5, no ligation was required. Instead, following UNG 380 

treatment and formamide wash, a mix with 2x SSC, 20% formamide, four hybridization oligos 381 

(H1-H4) 0.1 µM each, 0.1 µM AlexaFluor 750-labeled anchor oligo and 0.5 μg/ml DAPI was used 382 

in step 2), incubated for 30 minutes, and the program finished after step 3). For reaction cycle 6, 383 

detection of Sst and Npy, again no ligation was required. Similar to cycle 5, a mix with 2x SSC, 384 

20% formamide, Sst and Npy sandwich probes 0.1 µM each, two corresponding labeled oligos 0.1 385 

µM each, 0.1 µM AlexaFluor 750-labeled anchor oligo and 0.5 μg/ml DAPI was added to the 386 

sections, followed by 30 minutes incubation. 387 

 388 

Microscopy 389 
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After each round of labeling, all slides from an experiment were mounted onto an epifluorescence 390 

microscope AxioImager.Z2 (Zeiss) equipped with multi-slide stage and mercury short-arc lamp 391 

(HXP R 120 W/45 C VIS). First, only DAPI images were acquired using a 2.5x/0.075 objective in 392 

order to define tissue regions and to record coordinates outlining each tissue. After switching to a 393 

20x/0.8 objective, images were acquired in 6 channels using Zeiss filter set 49 for DAPI, Chroma 394 

filter set 49020 for AF488 (base T), Chroma filter set SP102v2 for Cy3 (base G), Chroma filter set 395 

SP103v2 for TexasRed (base C), Chroma filter set SP104v2 for Cy5 (base A) and Chroma filter 396 

set 49007 for AlexaFluor 750 (anchor oligo). The images were taken using a 16-bit camera 397 

(C11440-22CU, Hamamatsu) and each field of view image is 2048 x 2048 pixels. The resolution 398 

is determined by the camera pixel size and magnification, therefore 0.33 µm in our setup.  At each 399 

tile (field of view), the image software ZEN (Zeiss) first performed automatic focusing based on 400 

DAPI channel, and stacks of 7 z layers were acquired for each channel; as we used widefield 401 

imaging followed by software focus stacking (rather than 3d confocal microscopy), this axial 402 

resolution sufficed to obtain good 2d images. An RCP has an estimated diameter of 0.5-1 µm, so 403 

the sampling frequency is slightly below Nyquist limit. However, due to optical point spread, there 404 

is no risk of RCPs not being detected.  10% tile overlap was used to guide stitching in the analysis 405 

step. Imaging data was saved in ZEN’s native czi format, which can be read by Bio-Formats 406 

(https://www.openmicroscopy.org/bio-formats/). In the next round of imaging, the slides were 407 

inserted into the same position in the stage as in the previous cycles and the sections were located 408 

by retrieving saved coordinates for each slide. 409 

 410 

Data analysis 411 
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Data was analyzed with a suite of custom software for image processing, gene calling, and cell 412 

calling. All code was written in MATLAB, and is freely available at 413 

https://github.com/kdharris101/iss.  414 

In situ sequencing occurs in 5 rounds, each of which involves chemical processing followed by 415 

multispectral imaging of the tissue sample. Because the tissue sample is generally too large for a 416 

single camera image, imaging occurs in overlapping tiles. In each tile, a stack of 7 images covering 417 

10 µm in depth were taken for each color, and flattened into 2D using an extended depth of focus 418 

algorithm 22. The data therefore consists of a set of images 419 

𝐼𝐼𝑅𝑅,𝐶𝐶,𝑇𝑇(𝐱𝐱) 420 

Here 𝐼𝐼 gives the pixel intensity for sequencing round 𝑅𝑅 , color channel 𝐶𝐶 , tile 𝑇𝑇 , and pixel 421 

coordinates 𝐱𝐱 within this tile. On each round, we have six images: a DAPI image; an anchor image 422 

that detects every sequenced RCP; and four images to detect individual bases in a position defined 423 

for that round. The processing pipeline to identify detected genes comprises several steps: initial 424 

registration; spot detection and fine registration; crosstalk compensation; and gene calling. These 425 

analyses proceed without ever “stitching” all the tiles into a single large image; this approach 426 

allows processing of very large datasets on computers with limited memory, and also easily allows 427 

non-rigid alignments. Prior to the pipeline, all RCP images are filtered with a disk-shaped top-hat 428 

filter with radius 3 pixels (corresponding to 1 µm, the expected RCP size) and all DAPI images 429 

are filtered with a disk-shaped top-hat filter with radius of 24 pixels (8 µm, the expected nuclear 430 

size). 431 

 432 

https://github.com/kdharris101/iss
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Initial registration 433 

Image registration proceeds in two steps. In the first step, we align the anchor channel images for 434 

all rounds, and compute the offsets between neighboring tiles. This initial step therefore defines a 435 

global coordinate system for the entire tissue sample, by computing the information that would be 436 

required to stitch the tiles together (although we never in fact create this global image array). In 437 

this initial step, non-linear registration is important, for example because the specimen might not 438 

lie flat under the microscope. The degree of nonlinear warping is small within a tile, but can amass 439 

to several pixels’ shift across the entire (1cm) image, which would compromise the sequencing 440 

protocol if not properly accounted for. To solve this problem, we allow the shifts, scales, and 441 

rotations of each tile to the global coordinate system to differ, allowing nonlinearities at the global 442 

level. 443 

Because we use a square tiling strategy, each tile may have up to four “neighbors”: other tiles with 444 

which it has a region of substantial overlap. We denote the set of neighboring tile pairs as 𝔑𝔑 . As 445 

the same tile configuration is used for each round, the neighbor relationships between tiles will not 446 

vary across rounds, even if a single RCP spot may occupy different tiles on different rounds.  447 

We first align all tiles using the anchor channel on a “reference round” 𝑅𝑅𝑅𝑅  (2 for the current 448 

analyses), which we refer to as the “reference image” for each tile. To align the reference images, 449 

we loop over all pairs of neighboring tiles, and compute an offset, using phase correlation to 450 

register the overlapping regions of the top hat-filtered reference images of these two tiles. The 451 

result is a shift vector 𝚫𝚫𝑇𝑇1,𝑇𝑇2 for every pair of neighboring tiles 𝑇𝑇1 and 𝑇𝑇2, that specifies the x and 452 

y offsets of tile 𝑇𝑇2 relative to tile 𝑇𝑇1.  453 
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We next define single global coordinate system by finding the coordinate origin 𝐗𝐗𝑇𝑇 for each tile 454 

𝑇𝑇. Note however that this problem is overdetermined as there are more neighbor pairs than there 455 

are tiles. We therefore compute the offsets by minimizing the loss function 23,24 . 456 

𝐿𝐿 = � �𝐗𝐗𝑇𝑇1 − 𝐗𝐗𝑇𝑇2 − 𝚫𝚫𝑇𝑇1,𝑇𝑇2�
2

(𝑇𝑇1,𝑇𝑇2)∈𝔑𝔑

  457 

Differentiating this loss function with respect to 𝐗𝐗𝑇𝑇 yields a set of simultaneous linear equations, 458 

whose solution yields the origins of each tile on the reference round. 459 

The results of this step suffice to define a global coordinate system, but do not provide pixel-level 460 

alignment of images from multiple color channels on multiple rounds, due to the occurrence of 461 

chromatic aberration and small rotational or non-rigid shifts. The latter will be dealt with in the 462 

next step, through point-cloud registration. 463 

 464 

Spot detection and fine registration 465 

The second processing step detects spots in all images, performs fine alignment of color channels 466 

and sequencing rounds, and computes for each spot a position in global coordinates and an 467 

intensity vector summarizing that spot’s detected fluorescence in each round and channel.  468 

The most intricate part of this step is fine image registration. Even though the same tile layout is 469 

used for all sequencing rounds, the precise positions of the tiles may differ due to slight shifts in 470 

the placement and rotation of the sample. Thus, a single spot might be found on different tiles in 471 

different sequencing rounds. Furthermore, due to chromatic aberration a spot may be in slightly 472 
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different positions (although not different tiles) in different color channels. Because most spots are 473 

only a few pixels in size, even a one-pixel registration error can compromise accurate reads.  474 

Spots first are detected in the reference images (anchor channel, reference round). For each tile, 475 

spots are detected as local maxima of the top hat-filtered image exceeding a fixed detection 476 

threshold. A global coordinate is defined for each of these spots using the initial registration 477 

described above. In regions where tiles overlap, duplicate spots are rejected by keeping only spots 478 

which are closer in global coordinates to the center of their original tile than to any other. 479 

Next, spot positions are detected in images from all sequencing rounds, and all color channels. 480 

These are used to align each round and color channel to the anchor round reference channel, using 481 

point-cloud registration. Specifically, we fit an affine transformation from each reference image, 482 

to the images of the corresponding tile for all rounds and color channels, using the iterative-closest 483 

point (ICP) algorithm with matches further than 3 pixels away excluded. These affine 484 

transformations can include shifts, scalings, rotations and shears, but we did not find it necessary 485 

to introduce nonlinear warping transformations within tiles (Supplementary Figure S6E; 486 

nonlinear transformations can still occur globally by variation of the affine transformation across 487 

tiles). As the ICP algorithm is highly sensitive to local maxima, it is initialized from a shift 488 

transformation computed by phase correlation of anchor channel images. When spots are located 489 

on neighboring tiles on different rounds, the corresponding images are again registered with ICP. 490 

Finally, an intensity vector is computed for each spot, by reading the intensity from the aligned 491 

coordinate of each top hat-filtered image. Although the point-cloud registration yields subpixel 492 

alignment we did not apply subpixel interpolation to the images, instead filtering with a radius 1 493 

disk filter to allow images to be detected after subpixel shifts. 494 



28 
 

 495 

Crosstalk compensation and gene-calling 496 

The last step associating spots to genes consists of transforming the intensity vectors to gene 497 

identities.  498 

An important consideration in this stage is that crosstalk can occur between color channels. Some 499 

crosstalk may occur due to optical bleedthrough; additional crosstalk can occur due to chemical 500 

cross-reactivity of probes. The precise degree of crosstalk can vary between sequencing rounds, 501 

but tends to be constant within a round. It is therefore possible to largely compensate for this 502 

crosstalk by learning the precise amount of crosstalk between each pair of color channels on each 503 

round. 504 

To estimate the crosstalk present on a given round 𝑟𝑟, we first collect a set of 4-dimensional vectors 505 

𝐯𝐯𝑠𝑠,𝑟𝑟 containing the intensity in each color channel of all well-isolated spots 𝑠𝑠. Only well-isolated 506 

spots are used to ensure that crosstalk estimation is not affected by spatial overlap of spots 507 

corresponding to different genes; a spot is defined as well-isolated if the reference image intensity 508 

averaged over an annular region (2-7 pixel radius) around the spot is less than a threshold value 509 

(60 for current analyses, applied to 16-bit images after top-hat filtering). Crosstalk is then 510 

estimated by running a scaled k-means algorithm 25 on these vectors, which finds a set of four 511 

vectors 𝐜𝐜𝑏𝑏,𝑟𝑟 (𝑏𝑏 refers to one of the four base possibilities in round 𝑟𝑟), such that the error function 512 

∑ min
𝜆𝜆𝑠𝑠,𝑏𝑏(𝑠𝑠)

�𝐯𝐯𝑠𝑠,𝑟𝑟 − 𝜆𝜆𝑠𝑠𝐜𝐜𝑏𝑏(𝑠𝑠),𝑟𝑟�
2

𝑠𝑠  is minimized; in other words, it finds for each round 𝑟𝑟 the four intensity 513 

vectors 𝐜𝐜𝑏𝑏,𝑟𝑟 such that each well-isolated spot on round 𝑟𝑟 is close to a scaled version of one of them. 514 
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Finally, we associate each spot with a gene using the codebook defined by the probe barcodes. For 515 

each probe 𝑝𝑝 with barcode 𝑏𝑏1
𝑝𝑝, … 𝑏𝑏5

𝑝𝑝, we concatenate the corresponding crosstalk vectors into a 20-516 

dimensional vector �𝐜𝐜𝑏𝑏1,1
𝑝𝑝 , 𝐜𝐜𝑏𝑏2,2

𝑝𝑝 , 𝐜𝐜𝑏𝑏3,3
𝑝𝑝 , 𝐜𝐜𝑏𝑏4,4

𝑝𝑝 , 𝐜𝐜𝑏𝑏5,5
𝑝𝑝 �. Each spot is called as belonging to the probe for 517 

which this vector is best matches the spot’s 20-dimensional intensity vector, as measured by 518 

normalized dot-product (i.e. the cosine angle between the measured intensity vector and crosstalk-519 

compensated code vector). Spots whose cosine angles fall below a threshold value are taken to 520 

represent misreads (for example due to background fluorescence) and discarded. The threshold 521 

value (0.9 for the current analyses) was chosen manually as a value below which reads appeared 522 

not matching the known genomic composition of CA1 interneurons established by prior scRNA-523 

seq; 63% of reads passed the threshold in current experiments.   524 

 525 

Cell calling 526 

To assign cells to classes, we used a probabilistic approach. We start with a model that predicts 527 

the probability of any configuration of RNA detection spots, given the class of every cell. We then 528 

use Bayes’ theorem to estimate the probability for each cell to belong to each class, given the 529 

observed RNA spot configuration. To do this, we must also estimate the probability distributions 530 

of other “hidden variables”, such as the cell responsible for each RNA detection, and the detection 531 

efficiency of each gene. The current algorithm however does not estimate the mean expression 532 

level of each gene in each cell class; instead it relies on these means being defined by previous 533 

analysis of scRNA-seq data, where higher efficiency and larger cell counts lead to more accurate 534 

estimates of these parameters. 535 

 536 
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Notation and preliminaries 537 

Cellular RNA counts can be accurately modelled by a negative binomial distribution 26,27. The 538 

negative binomial is a better model of RNA counts than the simpler Poisson distribution, as it has 539 

a larger variance, that matches measured fluctuations in gene expression. We parametrize the 540 

negative binomial distribution by its mean 𝜇𝜇 and a dispersion parameter 𝑟𝑟 for which a value of 𝑟𝑟 =541 

2  fits CA1 neurons well (Ref. 6, Supplementary Figure S2). Note that parameterizing the 542 

negative binomial by its mean is different to the usual parameterization in terms of success 543 

probability. In terms of these parameters, the probability distribution is: 544 

𝑁𝑁𝑁𝑁(𝑘𝑘; 𝑟𝑟, 𝜇𝜇) =  �
𝑘𝑘 + 𝑟𝑟 − 1

𝑘𝑘 � �
𝜇𝜇

𝜇𝜇 + 𝑟𝑟�
𝑘𝑘
�

𝑟𝑟
𝜇𝜇 + 𝑟𝑟�

𝑟𝑟
 545 

The notation �𝑛𝑛𝑟𝑟� denotes combinations: �𝑛𝑛𝑟𝑟� = 𝑛𝑛!
𝑟𝑟!(𝑛𝑛−𝑟𝑟)!

. 546 

Our algorithm will take advantage of the fact that a negative binomial distribution can be defined 547 

as a Poisson distribution whose mean is itself random following a gamma distribution. We 548 

parametrize the gamma distribution by a shape 𝑟𝑟 and rate 𝛽𝛽, with probability density function: 549 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥; 𝑟𝑟,𝛽𝛽) =
𝛽𝛽𝑟𝑟

Γ(𝑟𝑟) 𝑥𝑥
𝑟𝑟−1𝑒𝑒−𝛽𝛽𝛽𝛽 550 

Recall that if 𝑥𝑥~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥; 𝑟𝑟,𝛽𝛽)  then 𝐸𝐸(𝑥𝑥) = 𝑟𝑟/𝛽𝛽 , 𝐸𝐸(log 𝑥𝑥) = 𝜓𝜓(𝑟𝑟) − log(𝛽𝛽)  where 𝜓𝜓(𝑟𝑟)  is 551 

the digamma function, and Λ𝑥𝑥~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝑥𝑥; 𝑟𝑟, 𝛽𝛽
Λ
�, for any Λ > 0. The relationship between the 552 

gamma, Poisson, and negative binomial distributions is as follows: if 𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑛𝑛(𝜆𝜆)  and 553 

𝜆𝜆~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟, 𝑟𝑟/𝜇𝜇), then 𝑥𝑥~𝑁𝑁𝑁𝑁(𝑟𝑟, 𝜇𝜇). 554 
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We will represent the results of an in situ sequencing experiment via the location 𝐱𝐱𝑠𝑠 and decoded 555 

gene 𝑔𝑔𝑠𝑠 of each detected RNA spot 𝑠𝑠. We represent the cell of origin of an RNA spot 𝑠𝑠 as 𝑐𝑐(𝑠𝑠), 556 

and define an indicator variable 𝑧𝑧𝑠𝑠,𝑐𝑐 to be 1 if spot 𝑠𝑠 arose from cell 𝑐𝑐 and 0 otherwise: 𝑧𝑧𝑠𝑠,𝑠𝑠(𝑐𝑐) = 1. 557 

Similarly, we denote by 𝑘𝑘(𝑐𝑐) the cell class of cell c, and define an indicator variable 𝜁𝜁𝑐𝑐,𝑘𝑘 to be 1 if 558 

cell 𝑐𝑐 belongs to class 𝑘𝑘 and 0 otherwise: 𝜁𝜁𝑐𝑐,𝑘𝑘(𝑐𝑐) = 1.  Note that ∑ 𝑧𝑧𝑠𝑠,𝑐𝑐𝑐𝑐 = 1 for all 𝑠𝑠, and ∑ 𝜁𝜁𝑐𝑐,𝑘𝑘𝑘𝑘 =559 

1 for all 𝑐𝑐 . The letters 𝑧𝑧 and 𝜁𝜁  written without subscripts refer to the entire matrices of these 560 

indicator variables.  561 

 562 

Assigning spots to cells 563 

Most RNAs are detected within somas, the cytoplasm near cell nuclei, but many are also located 564 

more distal from the soma. Assigning RNA spots to their cells of origin is therefore a non-trivial 565 

problem. We do this using a probabilistic framework, allowing for the fact that a spot’s location 566 

does not identify its parent cell with complete certainty.  567 

We detect cell nuclei using DAPI staining, and the DAPI image is segmented to reveal an 568 

approximately circular region outlining each cell. In our model, spots inside this region are highly 569 

likely (but still not absolutely certain) to arise from the cell; and the probability of a spot arising 570 

from the cell decays progressively with distance from the DAPI region.  571 

To formalize this mathematically, denote the centroid of cell 𝑐𝑐’s DAPI region as 𝐱𝐱𝑐𝑐 , and an 572 

indicator function 𝐼𝐼𝑐𝑐(𝐱𝐱) to be 1 if point 𝐱𝐱 lies within the DAPI region. We define a function 573 

measuring the distance from a point 𝐱𝐱 to a cell 𝑐𝑐 as: 574 
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𝐷𝐷𝑐𝑐(𝐱𝐱) =
|𝐱𝐱 − 𝐱𝐱𝑐𝑐|2

2�̅�𝑟2
+ log(2𝜋𝜋�̅�𝑟2) − 𝑏𝑏𝐼𝐼𝑐𝑐(𝐱𝐱) 575 

Here 𝑟𝑟0 is the mean radius of the DAPI region over all cells. Note that the first two terms define 576 

the negative log of a normalized Gaussian density of radius 𝑟𝑟0. The third term produces a bias 577 

toward identifying a point inside the DAPI region with its cell of origin, with the parameter 𝑏𝑏 578 

taking the value 3 for our current analyses; this value was chosen manually after inspecting the 579 

assignment of gene reads to cells (as in Figure 2A), to confirm that reads both inside and outside 580 

the DAPI regions matched the choices that a human operator with knowledge of this cell system 581 

would make. 582 

Later calculations will require a measure of each cell’s normalized area: 583 

𝐴𝐴𝑐𝑐 = ∫ 𝑒𝑒−𝐷𝐷𝑐𝑐(𝐱𝐱)𝑑𝑑𝐱𝐱  584 

If 𝑏𝑏 were equal to 0, 𝐴𝐴𝑐𝑐 would be 1 for all cells, due to the normalization of the log-density 𝐷𝐷𝑐𝑐. 585 

Numerical computation of the integral would be time-consuming due to the large number of cells 586 

present, and we therefore use an approximation assuming each cell is circular. If cell 𝑐𝑐  is 587 

approximately circular with radius 𝑟𝑟𝑐𝑐, a simple integration shows that 588 

𝐴𝐴𝑐𝑐 ≈ 𝑒𝑒𝑏𝑏 + 𝑒𝑒−𝑟𝑟𝑐𝑐2/2�̅�𝑟2(1 − 𝑒𝑒𝑏𝑏) 589 

Not all spots can be identified with cells; RNAs located in cellular processes are so far from somata 590 

it is impossible to identify the soma of origin; and others arise from technical misreads. To account 591 

for these, we add an additional source of spots corresponding to a uniform density 𝜌𝜌0, which equals 592 

10−5 misreads/pixel for current analyses:  593 

𝐷𝐷0(𝐱𝐱) = − log 𝜌𝜌0 594 
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Including this misread density allows the algorithm to automatically discard any rare gene 595 

misreads that nevertheless passed the cosine distance threshold (for example due to off-target 596 

probe binding). The value of 10−5 was chosen based on visual estimates of the number of reads 597 

seen not matching transcriptomic classes established by scRNA-seq: approximately 1 misread 598 

every 20 cells. 599 

 600 

Probability model 601 

The number of counts of a gene 𝑔𝑔 in a cell 𝑐𝑐 can be modelled as 𝑥𝑥𝑔𝑔𝑐𝑐~𝑁𝑁𝑁𝑁�𝑟𝑟, 𝜇𝜇𝑔𝑔,𝑘𝑘(𝑐𝑐)�, where 𝑘𝑘(𝑐𝑐) 602 

represents the cell class to which cell 𝑐𝑐 belongs, 𝜇𝜇𝑔𝑔,𝑘𝑘 represents the mean RNA count of gene 𝑔𝑔 in 603 

cell class 𝑘𝑘, and 𝑟𝑟 is a parameter, for which the value of 2 provides a good fit 6. Note that in this 604 

manuscript we parameterize the negative binomial by 𝑟𝑟 and its mean 𝜇𝜇, rather than the probability 605 

parameter 𝑝𝑝 = 𝜇𝜇/(𝑟𝑟 + 𝜇𝜇).  606 

For our current purposes, however, a model for each cell’s RNA counts is not sufficient: we need 607 

a probability distribution for not just the number of spots, but also their locations. This kind of 608 

probability distribution is known as a spatial point process 28.  609 

The best-characterized spatial point process is the (inhomogeneous) Poisson process. A Poisson 610 

process is parametrized by an intensity function  𝜆𝜆(𝐱𝐱), which measures the density of points 611 

expected to be found at every location 𝐱𝐱. Given an intensity function, the Poisson process assigns 612 

a spot configuration {𝐱𝐱𝑠𝑠: 𝑠𝑠 = 1 … 𝑆𝑆} the log probability density: 613 

𝑙𝑙𝑃𝑃𝑔𝑔 𝑃𝑃(𝒙𝒙𝑠𝑠|𝜆𝜆) = −∫ 𝜆𝜆(𝒙𝒙)𝑑𝑑𝒙𝒙 + �𝑙𝑙𝑃𝑃𝑔𝑔 𝜆𝜆(𝒙𝒙𝑠𝑠)
𝑠𝑠

 614 
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A key property of the Poisson process is that the total number of points in any region of space 615 

follows a Poisson distribution, with mean equal to the integral of the intensity function in this 616 

region. Thus, a Poisson process is not itself sufficient to model negative-binomial RNA counts.  617 

To model the number and spatial locations of the RNA spots produced by a given cell, we take 618 

advantage of the fact that a negative binomial distribution arises when the mean of a Poisson 619 

distribution is itself random, following a gamma distribution. Specifically, if 𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑛𝑛(𝜆𝜆) and 620 

𝜆𝜆~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟, 𝑟𝑟/𝜇𝜇), then 𝑥𝑥~𝑁𝑁𝑁𝑁(𝑟𝑟, 𝜇𝜇). 621 

We model the distribution of RNA spots of gene 𝑔𝑔 arising from cell 𝑐𝑐 as a Poisson process with 622 

intensity function 623 

𝜆𝜆𝑔𝑔,𝑐𝑐(𝒙𝒙) = 𝜇𝜇𝑔𝑔,𝑘𝑘(𝑐𝑐)𝑒𝑒−𝐷𝐷𝑐𝑐(𝒙𝒙)𝛾𝛾𝑔𝑔,𝑐𝑐𝜂𝜂𝑔𝑔  624 

Here, 𝑘𝑘(𝑐𝑐) represents the class of cell 𝑐𝑐; 𝜇𝜇𝑔𝑔,𝑘𝑘 represents the mean expression level of gene 𝑔𝑔 in 625 

cell class 𝑘𝑘 as determined by scRNA-seq; 𝐷𝐷𝑐𝑐(𝐱𝐱) is the function measuring the distance of point 𝑥𝑥 626 

from cell 𝑐𝑐 (see above); and 𝛾𝛾𝑔𝑔,𝑐𝑐  represents a gamma-distributed scale factor for each cell and 627 

gene, representing fluctuations in gene expression levels that cause the total expression level to 628 

follow a negative binomial rather than Poisson distribution. In our model,  𝛾𝛾𝑔𝑔,𝑐𝑐~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟, 1), 629 

where the shape parameter r takes the value 2 to ensure the negative binomial distribution has 630 

correct dispersion. Finally, 𝜂𝜂𝑔𝑔 represents the efficiency of in situ sequencing of gene 𝑔𝑔 relative to 631 

single-cell sequencing. Because we do not know the efficiencies a priori, we also model the 632 

efficiency of each gene probabilistically: 𝜂𝜂𝑔𝑔~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟, 𝜂𝜂0), where the expected efficiency 𝜂𝜂0 633 

takes the value 0.2 for current analyses, and we use a shape parameter 𝑟𝑟 = 20 . This prior 634 

distribution allowed the efficiency of each gene to be estimated for each experiment, allowing the 635 
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algorithm to account for gene-specific technical fluctuations in efficiency. The mean value of 0.2 636 

was chosen based on previous estimates of the efficiency of this method, but is “uninformative”: 637 

the large prior variance 𝑟𝑟 = 20 ensures that the effect of this prior mean is quickly overridden by 638 

data. 639 

To write the formula for the full probability distribution, we use the “indicator variables” 𝑧𝑧𝑠𝑠,𝑐𝑐 640 

which is 1 if spot 𝑠𝑠 arose from cell 𝑐𝑐 and 0 otherwise; and 𝜁𝜁𝑐𝑐,𝑘𝑘 which is 1 if cell 𝑐𝑐 belongs to class 641 

𝑘𝑘 (i.e. if 𝑘𝑘 = 𝑘𝑘(𝑐𝑐)) and 0 otherwise. We define 𝜋𝜋𝑘𝑘 is the prior probability of a cell to belong in 642 

class 𝑘𝑘 (Supplementary Table S4). Then we have 643 

log𝑃𝑃(𝐱𝐱,𝑔𝑔, 𝑧𝑧, 𝜁𝜁, 𝛾𝛾, 𝜂𝜂) =  −� 𝜁𝜁𝑐𝑐,𝑘𝑘∫ 𝜇𝜇𝑔𝑔,𝑘𝑘𝑒𝑒−𝐷𝐷𝑐𝑐(𝐱𝐱)𝛾𝛾𝑐𝑐,𝑔𝑔𝜂𝜂𝑔𝑔𝑑𝑑𝐱𝐱 
𝑔𝑔,𝑐𝑐,𝑘𝑘

+ �𝑧𝑧𝑠𝑠,𝑐𝑐𝜁𝜁𝑐𝑐,𝑘𝑘 log�𝜇𝜇𝑔𝑔,𝑘𝑘𝑒𝑒−𝐷𝐷𝑐𝑐(𝐱𝐱𝑠𝑠)𝛾𝛾𝑐𝑐,𝑔𝑔𝑠𝑠𝜂𝜂𝑔𝑔�
𝑠𝑠,𝑐𝑐,𝑘𝑘

 644 

+� log𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝛾𝛾𝑔𝑔,𝑐𝑐�𝑟𝑟, 𝑟𝑟�
𝑔𝑔,𝑐𝑐

+ � log𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝜂𝜂𝑔𝑔�𝑟𝑟, 𝑟𝑟/𝜂𝜂0�
𝑔𝑔

+ �𝜁𝜁𝑐𝑐,𝑘𝑘 log𝜋𝜋𝑘𝑘
𝑐𝑐,𝑘𝑘

 645 

Defining 𝐴𝐴𝑐𝑐 =  ∫ 𝑒𝑒−𝐷𝐷𝑐𝑐(𝐱𝐱)𝑑𝑑𝐱𝐱 , this simplifies to  646 

log𝑃𝑃(𝐱𝐱,𝑔𝑔, 𝑧𝑧, 𝜁𝜁, 𝛾𝛾, 𝜂𝜂)647 

=  −� 𝜁𝜁𝑐𝑐,𝑘𝑘𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝛾𝛾𝑐𝑐,𝑔𝑔𝜂𝜂𝑔𝑔 
𝑔𝑔,𝑐𝑐,𝑘𝑘

648 

+ �𝑧𝑧𝑠𝑠,𝑐𝑐 �−𝐷𝐷𝑐𝑐(𝐱𝐱𝑠𝑠) + log 𝛾𝛾𝑐𝑐,𝑔𝑔𝑠𝑠 + log 𝜂𝜂𝑔𝑔𝑠𝑠 + �ζc,klog𝜇𝜇𝑔𝑔𝑠𝑠,𝑘𝑘
k

�
𝑠𝑠,𝑐𝑐

 649 

+� log𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝛾𝛾𝑔𝑔,𝑐𝑐�𝑟𝑟, 𝑟𝑟�
𝑔𝑔,𝑐𝑐

+ � log𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝜂𝜂𝑔𝑔�𝑟𝑟𝜂𝜂 , 𝑟𝑟𝜂𝜂/𝜂𝜂0�
𝑔𝑔

+ �𝜁𝜁𝑐𝑐,𝑘𝑘 log𝜋𝜋𝑘𝑘
𝑐𝑐,𝑘𝑘

(1) 650 

 651 
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Variational Bayes approximation 652 

We would like to obtain the posterior distribution of the cell classes given the data: 𝑃𝑃𝑟𝑟𝑃𝑃𝑏𝑏(𝜁𝜁|𝐱𝐱,𝑔𝑔). 653 

Direct application of Bayes’ theorem is analytically intractable, and we therefore employ the 654 

mean-field variational Bayes approximation, a common method in Bayesian analysis that is 655 

conceptually similar to the Expectation-Maximization algorithm of classical statistics 29. In this 656 

approach, we approximate the posterior distribution of the unobserved variables by a product 657 

𝑃𝑃𝑟𝑟𝑃𝑃𝑏𝑏(𝑧𝑧, 𝜁𝜁, 𝛾𝛾, 𝜂𝜂|𝐱𝐱,𝑔𝑔) ≈ 𝑞𝑞(𝜁𝜁, 𝛾𝛾)𝑞𝑞(𝑧𝑧)𝑞𝑞(𝜂𝜂) , and alternate estimating the three functions 𝑞𝑞   while 658 

holding the others fixed. On each step, log 𝑞𝑞  is estimated as the expectation of the log total 659 

probability over the other unobserved variables, plus a normalizing constant 46.  660 

We group the variables 𝜁𝜁 and 𝛾𝛾 together as the appropriate values of 𝛾𝛾𝑐𝑐,𝑔𝑔 for a cell 𝑐𝑐 will depend 661 

on the class of that cell. To compute 𝑞𝑞1(𝜁𝜁, 𝛾𝛾) we first see that 662 

𝐸𝐸𝑧𝑧,𝜂𝜂 log𝑃𝑃(𝐱𝐱,𝑔𝑔, 𝑧𝑧, 𝜁𝜁, 𝛾𝛾, 𝜂𝜂) = −� 𝜁𝜁𝑐𝑐,𝑘𝑘𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝛾𝛾𝑐𝑐,𝑔𝑔𝜂𝜂𝑔𝑔��� 
𝑔𝑔,𝑐𝑐,𝑘𝑘

+ �𝑧𝑧𝑠𝑠,𝑐𝑐���� �log 𝛾𝛾𝑐𝑐,𝑔𝑔𝑠𝑠 + �ζc,klog𝜇𝜇𝑔𝑔𝑠𝑠,𝑘𝑘
k

�
𝑠𝑠,𝑐𝑐

 663 

+�𝑙𝑙𝑃𝑃𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝛾𝛾𝑔𝑔,𝑐𝑐�𝑟𝑟, 𝑟𝑟�
𝑔𝑔,𝑐𝑐

+ �𝜁𝜁𝑐𝑐,𝑘𝑘 log𝜋𝜋𝑘𝑘
𝑐𝑐,𝑘𝑘

+ 𝑐𝑐𝑃𝑃𝑛𝑛𝑠𝑠𝑐𝑐  664 

Here are overbar represents the expectation of a unobserved variable with respect to its current 𝑞𝑞 665 

distribution, and 𝑐𝑐𝑃𝑃𝑛𝑛𝑠𝑠𝑐𝑐 collects terms that do not depend on 𝜁𝜁  or 𝛾𝛾. Writing 𝑁𝑁𝑐𝑐,𝑔𝑔  for the total 666 

number of spots of gene 𝑔𝑔  assigned to cell 𝑐𝑐 , i.e. 𝑁𝑁𝑐𝑐,𝑔𝑔 = ∑ 𝑧𝑧𝑠𝑠,𝑐𝑐𝑠𝑠:𝑔𝑔𝑠𝑠=𝑔𝑔 , and remembering that 667 

∑ 𝜁𝜁𝑐𝑐,𝑘𝑘𝑘𝑘 = 1 for all 𝑐𝑐, we can switch the sum over spots in the second term to a sum over genes: 668 

log 𝑞𝑞(𝜁𝜁, 𝛾𝛾) = � 𝜁𝜁𝑐𝑐,𝑘𝑘�−𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝛾𝛾𝑐𝑐,𝑔𝑔𝜂𝜂𝑔𝑔��� + 𝑁𝑁𝑔𝑔,𝑐𝑐����� log�𝛾𝛾𝑐𝑐,𝑔𝑔𝜇𝜇𝑔𝑔,𝑘𝑘� + log𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝛾𝛾𝑔𝑔,𝑐𝑐�𝑟𝑟, 𝑟𝑟��
𝑔𝑔,𝑐𝑐,𝑘𝑘

 669 
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+ �𝜁𝜁𝑐𝑐,𝑘𝑘 log𝜋𝜋𝑘𝑘
𝑐𝑐,𝑘𝑘

+ 𝑐𝑐𝑃𝑃𝑛𝑛𝑠𝑠𝑐𝑐  670 

We next factorize this joint probability distribution 𝑞𝑞1(𝜁𝜁, 𝛾𝛾) as a marginal and a conditional: 671 

𝑞𝑞(𝜁𝜁, 𝛾𝛾) = 𝑞𝑞(𝜁𝜁)𝑞𝑞(𝛾𝛾|𝜁𝜁) . To obtain 𝑞𝑞(𝜁𝜁)  we could integrate ∫ 𝑞𝑞(𝛾𝛾|𝜁𝜁)𝑑𝑑𝛾𝛾 , and normalize to a 672 

probability distribution. In practice, however, this is unnecessary. We can see by inspection that 673 

for any 𝑔𝑔 and 𝑐𝑐, the summand of the top term is the log probability of a gamma-Poisson mixture, 674 

which defines a negative binomial when integrated over 𝛾𝛾𝑔𝑔,𝑐𝑐. We therefore have: 675 

log 𝑞𝑞(𝜁𝜁) = � 𝜁𝜁𝑐𝑐,𝑘𝑘�log𝑁𝑁𝑁𝑁�𝑁𝑁𝑔𝑔,𝑐𝑐�����; 𝑟𝑟, 𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝜂𝜂𝑔𝑔���� + log𝜋𝜋𝑘𝑘�
𝑔𝑔,𝑐𝑐,𝑘𝑘

 676 

Rewriting this in terms of the class assignment variables 𝑘𝑘(𝑐𝑐) we have: 677 

𝑞𝑞(𝑘𝑘(𝑐𝑐) = 𝑘𝑘) ∝ 𝜋𝜋𝑘𝑘�𝑁𝑁𝑁𝑁�𝑁𝑁𝑔𝑔,𝑐𝑐�����; 𝑟𝑟, 𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝜂𝜂𝑔𝑔����
𝑔𝑔

(2) 678 

For each cell 𝑐𝑐, the estimated class probabilities are thus those obtained observing 𝑁𝑁𝑔𝑔,𝑐𝑐����� of copies 679 

of each gene 𝑔𝑔  (i.e. the expected number assigned to the cell given the current distribution of spot 680 

assignments), under a negative binomial distribution of mean 𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝜂𝜂𝑔𝑔��� (i.e. the scRNA-seq means 681 

scaled by the current estimate of in situ efficiency and cell area). 682 

To specify the conditional distribution 𝑞𝑞(𝛾𝛾|𝜁𝜁) , we must obtain for each cell 𝑐𝑐 and gene 𝑔𝑔  a 683 

probability distribution for 𝛾𝛾𝑐𝑐,𝑔𝑔 conditional on each possible cluster assignment 𝑘𝑘(𝑐𝑐) for that cell. 684 

Some manipulation shows that 685 

𝑞𝑞 �𝛾𝛾𝑔𝑔,𝑐𝑐�𝑘𝑘(𝑐𝑐)� = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝛾𝛾𝑔𝑔,𝑐𝑐; 𝑟𝑟 +  𝑁𝑁𝑔𝑔,𝑐𝑐�����, 𝑟𝑟 + 𝜇𝜇𝑔𝑔,𝑘𝑘(𝑐𝑐)𝐴𝐴𝑐𝑐𝜂𝜂𝑔𝑔���� (3) 686 
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Thus, for each possible class assignment 𝑘𝑘(𝑐𝑐), the scale factor 𝛾𝛾𝑔𝑔,𝑐𝑐 follows a gamma distribution, 687 

whose mean approaches 𝑁𝑁𝑔𝑔,𝑐𝑐�����/�𝜇𝜇𝑔𝑔,𝑘𝑘(𝑐𝑐)𝐴𝐴𝑐𝑐𝜂𝜂𝑔𝑔����, i.e. the ratio between the number of reads of each 688 

gene assigned to that cell, to the number predicted from scRNA-seq counts, cell area, and estimated 689 

efficiency. 690 

We now turn to the estimated distribution for the spot assignments, 𝑞𝑞(𝑧𝑧). From equation (1) we 691 

see that: 692 

𝐸𝐸𝜁𝜁,𝛾𝛾,𝜂𝜂 log𝑃𝑃(𝐱𝐱,𝑔𝑔, 𝑧𝑧, 𝜁𝜁, 𝛾𝛾, 𝜂𝜂) = �𝑧𝑧𝑠𝑠,𝑐𝑐 �−𝐷𝐷𝑐𝑐(𝐱𝐱𝑠𝑠) + �ζc,k����log𝜇𝜇𝑔𝑔𝑠𝑠,𝑘𝑘
𝑘𝑘

+ log 𝛾𝛾𝑔𝑔,𝑐𝑐����������
𝑠𝑠,𝑐𝑐

+ 𝑐𝑐𝑃𝑃𝑛𝑛𝑠𝑠𝑐𝑐 693 

Rewriting this in terms of the assignment variables 𝑐𝑐(𝑠𝑠) we have: 694 

𝑞𝑞(𝑐𝑐(𝑠𝑠) = 𝑐𝑐) ∝ exp �−𝐷𝐷𝑐𝑐(𝐱𝐱𝒔𝒔) + log 𝛾𝛾𝑔𝑔,𝑐𝑐��������� + �ζc,k����log𝜇𝜇𝑔𝑔𝑠𝑠,𝑘𝑘
𝑘𝑘

� (4) 695 

The expectation ζc,k����  is simply the probability 𝑞𝑞(𝑘𝑘(𝑐𝑐) = 𝑘𝑘) , and we can compute log 𝛾𝛾𝑔𝑔,𝑐𝑐��������� =696 

∑ 𝑞𝑞(𝑘𝑘 𝑘𝑘(𝑐𝑐) = 𝑘𝑘)𝐸𝐸𝑞𝑞�𝛾𝛾𝑔𝑔,𝑐𝑐|𝑘𝑘(𝑐𝑐)��log 𝛾𝛾𝑔𝑔,𝑐𝑐�  by plugging the parameters from equation (3) into the 697 

formula for the expected log of a gamma variate. This shows that the probability of assigning a 698 

spot to a given cell will be large when the spot is close to the cell and the likely class assignments 699 

of that cell have high expression of the gene.  700 

Finally, we must compute 𝑞𝑞(𝜂𝜂), the distribution of in situ efficiency parameters for each gene. 701 

From equation (1) we see that: 702 

𝐸𝐸𝜁𝜁,𝛾𝛾,𝑧𝑧 log𝑃𝑃(𝐱𝐱,𝑔𝑔, 𝑧𝑧, 𝜁𝜁, 𝛾𝛾, 𝜂𝜂) = −� 𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝛾𝛾𝑐𝑐,𝑔𝑔�����𝜂𝜂𝑔𝑔 
𝑔𝑔,𝑐𝑐,𝑘𝑘

+ � log 𝜂𝜂𝑔𝑔𝑠𝑠
s

+ � log𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝜂𝜂𝑔𝑔�𝑟𝑟𝜂𝜂 , 𝑟𝑟𝜂𝜂/𝜂𝜂0�
𝑔𝑔

 703 
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We therefore have 𝑞𝑞(𝜂𝜂) = ∏ 𝑞𝑞�𝜂𝜂𝑔𝑔�𝑔𝑔 , and a quick calculation shows that: 704 

𝑞𝑞�𝜂𝜂𝑔𝑔� = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝑟𝑟𝜂𝜂 + 𝑁𝑁𝑔𝑔, 𝑟𝑟𝜂𝜂/𝜂𝜂0 + �𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝛾𝛾𝑐𝑐,𝑔𝑔�����
𝑐𝑐,𝑘𝑘

� (5) 705 

Thus, the efficiency factor for gene 𝑔𝑔  follows a gamma distribution whose mean approaches 706 

𝑁𝑁𝑔𝑔/∑ 𝜇𝜇𝑔𝑔,𝑘𝑘𝐴𝐴𝑐𝑐𝛾𝛾𝑐𝑐,𝑔𝑔�����𝑐𝑐,𝑘𝑘 , the ratio of the total number of reads of that gene to the summed predictions 707 

of each cells scRNA-seq, area, and scale factor. 708 

 709 

Regularizing the model of gene expression 710 

Although Bayesian approaches provide optimal answers when the underlying probability models 711 

are accurate, they can be highly sensitive to errors that are not captured by the probability model. 712 

For example, if expression of gene 𝑔𝑔 in cell type 𝑘𝑘  were modelled by a negative binomial 713 

distribution with mean 0, detecting a single copy of gene 𝑔𝑔 would make it impossible for the cell 714 

to be classified as class 𝑘𝑘, even if expression of all other genes matched class 𝑘𝑘 perfectly. To model 715 

the fact that such detections might occur through technical errors, we therefore take the mean 716 

expression parameter 𝜇𝜇𝑔𝑔,𝑘𝑘 to be the value obtained by scRNA-seq plus a regularization parameter 717 

𝜈𝜈, set to 10−3 in the current analyses. Experimenting with different values of this parameter we 718 

found its exact value had little effect provided it was non-zero, and therefore took an extremely 719 

low value of 10−3 reads/cell. 720 

The present method does not aim to classify all cell types, and only genes targeting neurons have 721 

been included in the probe set. Consequently, many cells detected by DAPI have zero or few 722 
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detected RNAs. To account for these cells, we have included an additional cell class “Zero”, with 723 

𝜇𝜇𝑔𝑔,0 = 𝜈𝜈 for all 𝑔𝑔. 724 

 725 

Optimizing for speed 726 

In principle, the algorithm allows computing the probability of every RNA spot to belong to every 727 

cell. This would be computationally very slow; furthermore, most of these potential matches are 728 

impossible as the cells are simply too far away from the spots. We therefore restrict the search for 729 

the parent cell of each spot to only its three closest neighbors 730 

 731 

Algorithm summary 732 

The algorithm is summarized in the following pseudocode: 733 

% Initialize variables: 734 

Compute regularized mean expression 𝜇𝜇𝑔𝑔,𝑘𝑘 from scRNA-seq data including “zero” class  735 

Compute distance parameters 𝐷𝐷𝑐𝑐(𝒙𝒙𝑠𝑠) for three closest neighbors and misread density 736 

Compute normalized area of each cell 𝐴𝐴𝑐𝑐 737 

Initialize gene scale factors 𝜂𝜂𝑔𝑔 to have mean 0.2 738 

Initialize cell scale factors 𝛾𝛾𝑐𝑐,𝑔𝑔|𝑘𝑘  to have mean 1 739 

Assign each spot to closest neighbor with probability 1 740 
 741 
% main loop 742 
Repeat until convergence:  743 

  Compute expected RNA count in each cell 𝑁𝑁𝑔𝑔,𝑐𝑐����� 744 

  Compute cell class probabilities using equation 2 745 
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  Compute gamma distribution parameters for scale factors 𝛾𝛾𝑐𝑐,𝑔𝑔|𝑘𝑘  using equation 3 746 

  Compute gamma distribution parameters for in situ efficiencies 𝜂𝜂𝑔𝑔 using equation 5 747 

  Compute spot assignment probabilities using equation 4 748 

   749 

The algorithm is determined to have converged when the spot assignments have stopped changing. 750 

Specifically, for every spot we compute the amount its assignment probabilities 𝑧𝑧𝑠𝑠,𝑐𝑐���� have changed 751 

since the last iteration, using the 𝑙𝑙∞ norm: max
𝑐𝑐
�𝑧𝑧𝑠𝑠,𝑐𝑐���� − 𝑧𝑧𝑠𝑠,𝑐𝑐,𝑂𝑂𝑂𝑂𝐷𝐷����������. When the mean value of this across 752 

cells is lower than a tolerance threshold (0.02 for present analyses), the loop terminates. 753 

 754 

Simulations 755 

To estimate the accuracy of cell calling, and how this depends on the depth of classification 756 

required and the error rates of gene detection, we performed a simulation analysis.  757 

To make the simulation, we discarded all information from the in situ dataset except the modal 758 

assigned class of each cell 𝑘𝑘�(𝑐𝑐), and each cell’s segmented DAPI outline. We then simulated a 759 

dataset where each cell 𝑐𝑐 was known a priori to be of class 𝑘𝑘�(𝑐𝑐). To do so, for each cell 𝑐𝑐 we 760 

picked a random cell from the scRNA-seq database of class 𝑘𝑘�(𝑐𝑐). This random sampling captured 761 

the biological cell-to-cell variability of gene expression without any assumptions about its 762 

distribution, and therefore allowed us to test whether the assumed negative binomial distribution 763 

was suitable to model this variability parametrically. To model false-positive errors (misreads) in 764 

the in situ method we replaced a fraction 𝛽𝛽 of the reads with randomly-chosen genes (the miscall 765 

rate 𝛽𝛽 therefore ranges between 0 and 1); to model false-negative errors (inefficiency), we kept 766 
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only a fraction 𝛼𝛼𝜂𝜂𝑔𝑔 of the reads of gene 𝑔𝑔, where 𝜂𝜂𝑔𝑔 is the gene efficiency parameter estimated as 767 

described above, and the relative inefficiency rate 𝛼𝛼 controls the rate of false-negative errors, 𝛼𝛼 =768 

1 indicating the same as in our results; 𝛼𝛼 ≤ 1 indicating less efficiency, and 𝛼𝛼 ≥ 1 indicating 769 

more efficiency than we obtained with the current sequencing chemistry. The reads were arranged 770 

spatially according to a Gaussian distribution of width equal to the cell’s width, which allowed 771 

them to be located also outside the DAPI boundary.  772 

The performance of the algorithm was estimated for four different levels of required cell-type 773 

distinction, focusing only on inhibitory cell classes. For each level, we merged cell types according 774 

to the hierarchical classification scheme defined in Ref 6. For example, at level 2, cells from both 775 

MGE-NGF subclasses Cacna2d1.Lhx6.Reln and Cacna2d1.Lhx6.Vwa5a are merged into a single 776 

class Cacna2d1.Lhx6, while cells from the CGE-NGF classes Cacna2d1.Ndnf.Cxcl14 and 777 

Cacna2d1.Ndnf.Rgs10 would be merged into a single class Cacna2d1.Ndnf; at level 1, all four fine 778 

types would be merged into a NGF superclass Cacna2d1. To assess the fineness of these 779 

distinctions, we computed the mean fraction of cells each class comprised. Because interneurons 780 

themselves only comprise 5% of the full population, these classes are very small: even at level 1, 781 

each interneuron subtype comprises on average 1.24% of all cells; while at level 3 they comprise 782 

on average 0.3% of all cells.  783 

We assessed the quality of assignments the algorithm made by computing the median posterior 784 

probability assigned over cells simulated from an actual source class, to be assigned to each 785 

possible predicted class.  This data was displayed as a matrix (Supplementary Figure S15A), for 786 

each division level. At division level 1, performance was nearly perfect; at lower division levels 787 

however, there emerged a probability that some cells would be classified with high probability as 788 
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belonging to related types. For example, at level 3, the algorithm was unable to accurately identify 789 

the fine subtypes of inhibitory-selective interneurons (Calb2 classes). 790 

To quantify the performance of the algorithm, we computed the mean probability that a cell is 791 

assigned to the correct interneuron class, as the weighted mean of the diagonal elements in these 792 

matrices. At level 1, where each class comprised on average 1.24% of total cells, the correct class 793 

probability was 87%; at level 2 (class size 0.65% of cells) gave accuracy of 72%, while levels 3 794 

and 4 (class sizes ~0.3% of cells) gave 53% and 51% accuracy. We conclude that at current 795 

efficiency levels the method gives excellent performance when required to distinguish cells to a 796 

level of subclasses comprising ~0.6% of the full population, but is less efficient at distinguishing 797 

yet finer subdivisions. However, even at the finest cell type level (level 4), the accuracy (51%) is 798 

150 times better than chance level (0.3%). 799 

To estimate the effects of different error rates, we recomputed the accuracy statistic as a function 800 

of the miscall rate and relative inefficiency parameters. We found that accuracy dropped rapidly 801 

with miscall rate. For example, a miscall rate of 30% led to an accuracy drop from 72% to 58% at 802 

subdivision level 2. Our simulations also showed that improved performance would be obtained 803 

with greater efficiency than currently possible: with relative efficiency of 2, accuracy increased 804 

from 72% to 83% at level 2. We conclude that improvements in the efficiency of gene detection 805 

would likely further boost cell calling performance.  806 

Data availability 807 

Analysis files are available at https://figshare.com/s/88a0fc8157aca0c6f0e8, and an interactive 808 

online viewer is at http://insitu.cortexlab.net.  809 

https://figshare.com/s/88a0fc8157aca0c6f0e8
http://insitu.cortexlab.net/
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 810 

Code availability 811 

Code for ProMMT algorithm in gene selection is available at https://github.com/cortex-812 

lab/Transcriptomics . Code for probe design is available at 813 

https://github.com/Moldia/multi_padlock_design. MATLAB Code for image analysis and cell typing is 814 

available at https://github.com/kdharris101/iss. A Python version of the cell-calling algorithm, 815 

designed to work with StarFISH data standards, is available at https://github.com/acycliq/cell_call. All 816 

custom code is freely accessible. 817 
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Supplementary Discussion 
 

Correspondence of identified cell classes with previously-established ground truth 

 

Cell type assignments conformed closely to known combinatorial patterns of gene expression in CA1 
interneuron subtypes. The identification of Sst+ cells as O/LM or hippocamposeptal correlated with 
further expression of Reln or Npy 1,2 (examples: Figure 2A, cells 1,2). Identification of Pvalb cells as axo-
axonic, basket or bistratified correlated with further expression of Pthlh, Satb1/Tac1, or Sst/Npy 1,3,4 (Cells 
3-5). Identification of neurogliaform (NGF) cells as caudal ganglionic eminence (CGE)-derived or medial 
ganglionic eminence  (MGE)-derived/Ivy correlated with further expression of Ndnf/Kit/Cxcl14 or 
Lhx6/Nos1 5–8 (Cells, 7,8). Identification of projection GABA neurons as trilaminar or radiatum-
retrohippocampal correlated with expression of Chrm2 or Ndnf/Reln 2,9 (Cells 8,9). Cck cells were 
identified as two subtypes correlated with expression of Cxcl14, with both expressing Cnr1 and further 
subdivided by Vip expression 6,10,11 (Cells 10-11). Finally, interneuron-selective (IS) cells were divided 
into three classes correlated with the combinatorial expression of Calb2 and Vip 12,13 (Cells 12-14). 

The layer distribution of identified cell types were consistent with ground truth established by previous 
work.  Amongst Sst+ neurons, O-Bi, O/LM or hippocamposeptal were preferentially located in stratum 
oriens (so), while bistratified cells could also be found in stratum pyramidale (sp) 14,15 (Sst/Nos1 cells 
were too rare to be reliably localized; Supplementary Figure S14). Pvalb+ basket cells were found in sp 
and less often so, while rarer Pvalb+ axo-axonic cells were found in the pyramidal layer 16. Amongst 
neurogliaform (NGF) cells, those identified as having developmental origin in the medial ganglionic 
eminence (MGE), including Ivy cells, were found throughout all layers, while those having origins in 
caudal ganglionic eminence (CGE) were found in stratum lacunosum-moleculare (slm) 7,8. The two 
classes identified with long-range projecting GABAergic neurons were found in the expected layers: 
trilaminar cells primarily in so 2,17,18, and radiatum retrohippocampal at the border of stratum radiatum 
(sr) and slm 2,9,19,20. Cck interneurons were divided into two primary classes, with the Cxcl14+ class 
located primarily in sr, close to the slm border, and the Cxcl14- class in all layers, as previously predicted 
6. Amongst interneuron-selective subtypes, cells identified as IS1 were found in all layers as expected 13, 
while IS3 cells were located primarily in sp and sr, but very rare in slm 10 (IS2 cells were too rare for 
reliable quantification of their laminar distribution). 
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