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Abstract 
Individuals differ in how they learn from experience. In Pavlovian conditioning paradigms, where 

cues predict reinforcer delivery at a different goal location, some animals—so-called sign-

trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In 

sign-trackers, model-free phasic dopaminergic reward prediction errors underlie learning, which 

renders stimuli ‘wanted’. Goal-trackers do not rely on dopamine for learning and are thought to 

use model-based learning. We demonstrate this double dissociation in 128 male humans using 

eye-tracking, pupillometry and fMRI informed by computational models of sign- and goal-tracking. 

We show that sign-trackers exhibit a neural reward prediction error signal that is not detectable in 

goal-trackers. Model-free value only guides gaze and pupil dilation in sign-trackers. Goal-trackers 

instead exhibit a stronger model-based neural state prediction error signal. This model-based 

construct determines gaze and pupil dilation more in goal-trackers. 

Main 
Learning from reinforcements involves multiple processes with distinct computational, neural and 

behavioral signatures. Consider a simple classical Pavlovian conditioning paradigm, where a cue 

(conditioned stimulus, CS) becomes predictive of a reward (unconditioned stimulus, US) by being 

repeatedly presented before the US. In so-called model-free reinforcement learning, learning occurs 

via reward prediction errors (RPE 1) which quantify the difference between the value of the US that 

actually arrives and a current prediction of that value made on the basis of the CS. Integration of the 

experienced RPEs allows the predictions made by the CS, called a ‘cached value’ to become accurate.  

An alternative way of learning involves building a model which has two components: a ‘transition 

structure’, which captures the probability that one stimulus is followed by another, and a ‘reward 

structure’, which captures the value associated with each particular stimulus. Learning the transition 

structure 2,3 can occur by integration of a different sort of so-called state prediction errors (SPE 4) 

which quantify the difference between the stimulus that actually occurs and the probability of this 

event that was estimated on the basis of the previous stimulus. This type of learning does not 

conflate transitions and rewards, and is hence more flexible when one of these changes. However, it 



is also computationally more costly to use models to make inferences because it requires the 

information from the transition and reward structures to be integrated on the fly 5. Model-free 

learning has been suggested to underlie habits and model-based learning goal-directed decision-

making 5–8. 

Individual differences in the balance of these learning processes determine how and what we learn 

from our experiences. In turn, these influence how we interpret and react to new experiences, and 

as such may influence the development of mental illness after adverse events or substance use 9. In 

rodent Pavlovian conditioning experiments with a discrete CS presented at a different location from 

the US, two broad categories of subjects can be differentiated: ‘sign-tracking’ animals, who approach 

the appetitive CS during conditioning and only subsequently go to the location of the US, and ‘goal-

tracking’ animals, who come to approach the location of the US rather than the CS when the latter is 

presented. Furthermore, sign-trackers, but not goal-trackers will work to obtain the CS after learning 

10.  

The behavioral differences between sign- and goal-trackers have a number of revealing neural 

correlates. Sign-trackers learn from reward prediction errors (RPEs) coded in the activity of 

dopamine neurons 1 and evident in the phasic release of dopamine in the nucleus accumbens 11. 

These RPE signals initially respond to the rewarding USs, but across learning, shift responding from 

the US towards the predicting CS. Indeed, sign-trackers depend on the dopaminergic signal to learn, 

as systemic dopamine blockade disables learning 10. That sign-trackers will work to obtain the CS 

after learning suggests that the dopaminergic RPE underlies a form of learning which attributes 

incentive salience to the CS to make it wanted and thus to turn it into a motivationally relevant 

stimulus 2,10,12–15. This is in line with model-free Pavlovian learning, where predictive value is cached 

and conflates stimulus identity and reward, rendering the CS ‘rewarding’ even though it itself lacks 

an affective consequence 16. Such a value allows the CS to directly elicit Pavlovian approach or 

avoidance responses 17. By contrast, for goal-trackers, phasic dopaminergic signals do not evolve 



with learning as would be expected from a RPE learning signal, and learning is insensitive to 

dopamine blockade. This hints at model-based rather than model-free learning 2,18. Put together, 

these results suggest a double dissociation, with sign-trackers being predisposed to dopaminergic 

model-free learning, and goal-trackers to non-dopaminergic model-based learning.  

While human sign- and goal-tracking have been investigated using eye-tracking 19, their neural 

substrates have not yet been examined. Moreover, while detailed animal results demonstrate the 

neural systems underlying learning in sign-trackers, theoretical predictions about the computational 

and neural mechanisms 4 underlying learning in goal-trackers have not been fully tested to date 20. 

We therefore administered a Pavlovian conditioning task during functional magnetic resonance 

imaging (fMRI) to 129 healthy human subjects. We hypothesized that the gaze direction during a 

specifically designed Pavlovian conditioning phase might parallel the behavioral responses seen in 

animals and allow us to separate humans into sign- and goal-trackers. We then examined the 

contribution of model-free and model-based learning to gaze and pupillary responses, to Pavlovian-

Instrumental-Transfer (PIT) behaviors and to blood-oxygen level dependent (BOLD) functional 

magnetic resonance imaging (fMRI) signals. We did not explicitly manipulate state learning in our 

present task. Instead, model-based learning accounts predict trial-related changes in uncertainty and 

state prediction errors, which we investigate here. We found convergent evidence for a double 

dissociation, with sign-trackers relying on model-free, and goal-trackers on model-based learning. 

Results 
Subjects performed a Pavlovian conditioning task, in which visual-auditory CSs were deterministically 

paired with monetary reinforcements (Fig. 1a): in each of 80 trials, one of five CSs, consisting of 

fractal-like pictures and tones, was presented for three seconds on one side of the screen. This was 

followed by a blank screen with two fixation crosses. Then, one out of five possible USs, consisting of 

pictures of coins indicating a monetary win or loss (-2, -1, 0, +1, +2 Euros), was presented on the 



other side of the screen. The conditioning task was the second part of a Pavlovian-instrumental 

transfer (PIT) task 21 consisting of four parts (Supplementary Fig. 1). Eye-tracking and fMRI recordings 

were obtained during Pavlovian conditioning.  

To identify individual differences between sign- and goal-trackers we examined gaze responses to CS 

presentation 19. Based on previous animal work 10,22, we studied a gaze index defined as the 

percentage fixation time on the CS minus on the US location, and regressed this gaze index on true 

CS value for each subject. Fig. 1b shows the distribution of regression coefficients. As sign-trackers 

approach appetitive CSs 10,15 and avoid aversive CSs 23, we defined sign-trackers as the upper tertile 

15 of subjects with a positive influence of CS value on the gaze index (yellow in Fig. 1b, Ns = 43). 

Conversely, we defined goal-trackers as those subjects whose gaze approached appetitive US 

locations 10,15 and avoided aversive US locations (blue in Fig. 1b, Ns = 43). With respect to the timing 

of gaze responses, early responses to CS presentation often reflect orienting responses driven by 

visual salience 22,24 that are insensitive to CS value or learning. We therefore identified sign- and 

goal-trackers by analyzing the gaze index in the last second of CS presentation. Alternative analytical 

approaches to defining the groups result in similar patterns (see Supplementary Information).  

To study signatures of sign-tracking, we examined how gaze was directed to the CS, the location of 

later US presentation, or the background, and how gaze was biased by CS value 10,19,22. To this end, 

we performed repeated measures ANOVA with factors location (CS, US, background), CS value (-2 to 

+2 Euros), and time from CS onset (seconds 1, 2, and 3). For post-hoc tests, we used two-tailed t-

tests of linear contrasts testing a linear effect or a linear interaction effect (contrast of linear fits; 

stronger increase in one condition than another) against zero. Moreover, we studied linear effects of 

trial number (trials 1-80; coefficients from linear regression analyses) using repeated measures 

ANOVA with the same factors. After initial orienting responses 22,24 insensitive to CS value (no 

evidence for the interaction CS value x location: F(8, 2267) = 0.464, p = .882, ηp
2 = 0, 90% CI [0 

0.0004]), an influence of CS value on gaze emerged. During the third second of CS presentation, a 



high CS value attracted gaze towards the CS (linear CS value: t2267 = 3.48, p < .001, b = 0.061, SE  = 

0.018, 95% CI = [0.027 0.096]; CS value x location x sec 1-3 of CS presentation: F(11, 1367) = 3.04, p < 

.001, ηp
2 = 0.004, 90% CI [0.001 0.007]), and away from the US location (t2267 = -1.78, p = .075, b = -

0.031, SE = 0.018, 95% CI [-0.066 0.003]) and background (t2267 = -1.70, p = .089, b = -0.030, SE = 

0.018, 95% CI [-0.065 0.005]; CS value x location: F(8,2267) = 4.458, p < .001, ηp
2 = 0.005, 90% 

CI [0.002 0.009]; c.f. Supplementary Figure 2; for exemplary trials see Supplementary Figure 3). This 

appeared to reflect learning as this CS value effect increased over trials for the CS location (t2675 = 

2.47, p = .014, b = 0.008, SE = 0.003, 95% CI [0.002 0.015]), decreased for the US location (trend: t2675 

= -1.77, p = .077, b = -0.006, SE = 0.003, 95% CI [-0.013 0.0006]), but there was no evidence for a 

change across trials for the background (t2675 = 0.70, p = .485, b = -0.002, SE = 0.003, 95% CI [-0.009 

0.004]; CS value x location x trial: F(8,2675) = 2.94, p = .003, ηp
2 = 0.003, 90% CI [0.0008 0.006]). We 

summarized this effect in the gaze index 10,22 (Fig. 1c), which we analyzed using non-parametric 

bootstrapping (1,000,000 case resamples and bias-corrected adjusted confidence intervals) with 

two-tailed statistical testing. The gaze index became increasingly biased towards the higher value CS 

(linear fit: pbootstrap < .05, b = 0.009, SE = 0.005, 95% CI = [0.001 0.022]), with the impact of value 

increasing over trials (interaction of linear fits: CS value x trial number, pbootstrap < .05, b = 0.0015, SE = 

0.0008, 95% CI = [0.00001 0.0032]).  

Hence, there appeared to be an eye-tracking signal in humans analogous to the behavioral sign-

tracking response in animals 19,22. We examined individual variation in this measure between sign- 

and goal-trackers. For this, we tested linear contrasts within each group (linear fits and interactions 

between linear fits indicating a stronger increase in one condition than another). The group of sign-

trackers fixated win-predictive CSs more than loss-predictive CSs (linear fit of CS value; pbootstrap < 

.001, b = 0.059, SE = 0.011, 99.9% CI = [0.039 0.129]; Fig. 1d-f), and fixated aversive CSs progressively 

2,3,17 less over time, instead increasingly fixating the US-location when anticipating aversive USs 

(linear fit of trial number for aversive CSs; pbootstrap < .001, b = −0.013, SE = 0.005, 99.9% CI = [−0.037 − 

0.001]; linear CS value x linear trial number: pbootstrap < .05, b = 0.003, SE = 0.002, 95% CI = [0.0003 



Inf]). Conversely, the group of goal-trackers fixated the US location more for appetitive than aversive 

USs and vice versa for the CS (linear fit of CS value; pbootstrap < .001, b = −0.036, SE = 0.004, 99.9% CI = 

[−0.053 −0.027]), and did so progressively over time.  

So far, the definition of goal-tracking is simply converse of the definition of sign-tracking and hence 

not an independent measure. We therefore looked for more specific signatures of model-based 

learning that should uniquely characterize goal-trackers. Gaze is known to reflect uncertainty about 

the consequences of a stimulus independently of value 25,26. We reasoned that this should reflect the 

learning of the model through SPEs, which are larger when there is more uncertainty about the 

predicted stimulus identity independently of its associated reward. Hence, this would predict that 

the attraction of gaze to the CS should simply reduce over the course of the experiment, and this 

should be more prominent amongst goal- than sign-trackers. The last second of CS presentation 

indeed revealed a strong effect of trial in addition to the above value effects. Gaze was strongly 

focused on the initially uncertain CS location early on, but continuously drifted away from the CS 

(linear trial effect: t410 = −8.62, p < .001, b = −0.008, SE = 0.001, 95% CI [-0.010  -0.007]) towards the 

US-location (t410 = 3.21, p = .001, b = 0.003, SE = 0.001, 95% CI [0.0012   0.0050]) and the background 

(t410 = 5.41, p < .001, b = 0.005, SE = 0.001, 95% CI [0.003 0.007]; trial x location: F(2,410) = 37.93, p < 

.001, ηp
2 = 0.013, 90% CI [0.008 0.018]). As a result, the gaze index was biased away from the CS 

towards the US-location (i.e., it decreased) with increasing trial number (pbootstrap < .001, b = −0.011, 

SE = 0.002, 99.9% CI = [−0.017 −0.003]; Fig 1c). 

To directly test whether this reflected the reduction in uncertainty over the course of training, we 

implemented computational models assuming gaze is controlled either by trial-by-trial uncertainty 

from a model-based learning system or by Pavlovian responses to model-free trial-by-trial CS value 

(c.f. Methods). We computed BIC values for both models for each subject, and performed a 

repeated measures ANOVA with factors model (model-free value versus model-based uncertainty) 

and group (sign- versus goal-trackers). We performed post-hoc tests using two-tailed t-tests of the 



difference in BIC-values between models with each group of sign- versus goal-trackers separately. 

We found that in goal-trackers, the gaze index was best explained by the uncertainty-based model 

(t84 = −3.28, p = .002, ∆BIC = −3.73, SE = 1.14, 95% CI = [-6.00 -1.47]; see Fig. 1g), suggesting state 

uncertainty drives gaze in goal-trackers. The evidence in sign-trackers’ gaze, to the contrary, was 

significantly shifted towards the value-based model (model x group: F(1, 84) = 6.87, p = .010, ηp
2 = 

0.038, 90% CI = [0.005 0.097]), but provided no statistical evidence supporting one model over the 

other (t84 = 0.43, p = .672, ∆BIC = 0.48, SE = 1.14, 95% CI = [-1.78 2.75]). Additional modeling, 

allowing for dual control where value-based (w = 0) and uncertainty-based (w = 1) learning systems 

within each subject are combined via a weighting parameter (w), suggested that goal-trackers relied 

strongly on uncertainty- or model-based control (wMean = 0.84, wSD = 0.18), whereas sign-trackers 

seem to use a mixture of value- and uncertainty-based systems (wMean = 0.48, wSD = 0.24; we tested 

the group-difference in the w parameter using two-tailed non-parametric bootstrapping: pbootstrap < 

.001, b = 0.36, SE = 0.05, 99.9% CI = [0.20 0.50]; Fig. 1h; c.f. Methods). Hence, examining changes in 

how individuals freely chose to gaze at a CS or a US allowed us to distinguish two groups of subjects 

which appear to rely on different computational mechanisms for learning.  

The pupil is known to dilate in response to uncertainty, proposedly reflecting noradrenergic arousal 

signals in nucleus coeruleus and associated sites 27. Moreover, the pupil dilates during learned 

anticipation of rewards relative to losses or neutral outcomes, putatively reflecting Pavlovian 

motivation or arousal signaled in noradrenaline and elicited by an anticipatory dopamine response 

28. As such, we expected to see a similar distinction between goal- and sign-trackers as we saw in 

gaze control. We focused on the last second before US onset to avoid luminance effects due to the 

stimuli, to avoid temporal transients, and because incentive salience is thought to peak just prior to 

US onset 29. We first asked whether pupil size was driven by uncertainty versus CS value and again 

found a double dissociation. To this end, we performed repeated measures ANOVA with factors trial 

number (3-8 versus 9-16), CS value (-2 to +2 Euros), time since CS onset (seconds 1 to 6), and group 



(sign- versus goal-trackers). Post-hoc tests for second six after CS onset were performed using t-

tests, testing effects in each group against zero. In these contrasts, a simple between-group t-test 

between sign- and goal-trackers provides evidence for an interaction (stronger increase in one group 

than another) because it is a contrast of linear fits. In goal-trackers, average pupil size decreased 

from the beginning to the end of conditioning, consistent with the decrease in uncertainty 

occasioned by learning (effect of trials [3-8 vs. 9-16]: t140 = −2.29, p = .023, b = −0.055, SE = 0.024, 

95% CI = [-0.102 -0.008]). No effect of trial number was observed in sign-trackers (t140 = 0.83, p = 

.405, b = 0.020, SE = 0.025, 95% CI = [-0.028 0.069]), with a significant group difference (F(1, 140) = 

4.84, p = .030, ηp
2 = 0.001, 90% CI = [0 0.003]; Fig. 2a+c). A different signature was visible in sign-

trackers’ pupil size. Here, the pupil was dilated by the expectation of wins compared to neutral 

outcomes or losses in the second half of the experiment (trials 9-16), reflecting a value-based pupil 

response (linear CS value effect: t1314 = 2.89, p = .004, b = 0.521, SE = 0.180, 95% CI = [0.167  0.874]). 

This linear CS value effect developed from the beginning to the end of conditioning (significant 

increase; t638 = 2.93, p = .004, b = 0.339, SE = 0.116, 95% CI = [0.112 0.566]) reflecting learning of CS 

value. In goal-trackers, this was not observed: there was no evidence that CS value influenced pupil 

size (trials 9-16: t1314 = -1.59, p = .112, b = -0.280, SE = 0.176, 95% CI = [-0.625  0.066]; group 

difference: t638 = 3.52, p < .001, b = 0.285, SE = 0.081, 95% CI = [0.126 0.444]). Pupil dilation in goal-

trackers hence appeared to reflect uncertainty 27, while it was driven by CS value in sign-trackers 28. 

We next asked whether these could again be mapped onto model-based and model-free learning by 

studying BIC values for each model, computed across all individual subjects for each group of sign- 

and goal-trackers. In goal-trackers, pupil dilation was best accounted for by model-based uncertainty 

(model-based uncertainty: BIC = 8023.6; model-free CS value: BIC = 8032.4; ∆BIC = 8.81; Fig. 2d) and 

explained the reduction in pupil size across trials seen in goal-trackers only (Fig. 2e). In sign-trackers, 

to the contrary, pupil dilation was best accounted by model-free CS value (model-based uncertainty: 

BIC = 7460.1; model-free CS value: BIC = 7457.1; ∆BIC = -2.93; Fig. 2d) and this model was able to 

capture the continuous increase of the CS value effect across trials seen in sign-trackers only (Fig. 2f). 



Hence there was again a double dissociation: pupil size reflected model-based uncertainty about 

upcoming states in goal-trackers, while it reflected model-free value in sign-trackers.  

We next attempted to validate the distinction between sign- and goal-trackers in measures 

independent from eye-tracking. At a behavioral level, we examined two independent predictions. 

First, CSs are thought to acquire incentive salience 12–14 in sign- but not in goal-trackers 10,15, and to 

elicit Pavlovian-instrumental transfer (PIT) only in sign-trackers 19. In PIT, appetitive CSs enhance and 

aversive CSs reduce instrumental approach 21. The behavioral paradigm employed here contained a 

PIT phase, in which Pavlovian CSs were presented in the background of the instrumental task; no 

outcomes were presented but subjects were instructed that outcomes would count towards their 

reimbursement (Supplementary Fig. 1). We computed the PIT effect for each individual subject as 

the linear fit of Pavlovian CS value on the number of button presses, and used non-parametric 

bootstrapping to test the directed hypothesis (one-tailed) that the PIT effect is stronger and more 

frequently individually significant (tested using individual t-tests) in sign- than in goal-trackers. We 

found that the PIT effect was stronger (pbootstrap < .05, b = 0.49, SE = 0.26, 95% CI = [0.09 Inf]; Fig. 

3a,b) and more frequently significant at an individual level (pbootstrap < .05, b = 15.8, SE = 8.3, 95% CI = 

[1.6 Inf]; Fig. 3a, inset) in sign-trackers than in goal-trackers, suggesting that the CS acquired 

incentive salience and elicited Pavlovian approach and avoidance behavior more in sign-trackers. 

Second, while sign- and goal-trackers learn differently, they should learn the Pavlovian values 

equally well.  Our paradigm also contained a phase in which subjects were forced to choose the 

better amongst pairs of CSs, and, as expected, sign- and goal-tracker performance was excellent and 

not statistically different (goal-trackers: 97.8% correct, SD = 9.2; sign-trackers: 95.2% correct, SD = 

14.0; group difference: pbootstrap > .1, b = 2.6, SE = 2.6, 95% CI = [-1.8 8.6]; see also Supplementary 

Information, Supplementary Figure 4). 

We finally turned to neuroimaging to more directly examine the nature of the learning signals in the 

two groups. Animal sign- but not goal-trackers have been shown to exhibit a temporal difference 



reward prediction error (RPE) response in NAc dopamine concentrations during Pavlovian 

conditioning 10. Such RPE signals in human ventral striatum can be measured with fMRI 30. We 

computed trial-by-trial temporal difference RPEs for CSs and USs using a simple reinforcement 

learning model (Supplementary Information). The temporal difference RPE regressor was used in a 

linear model with factor group (sign- versus goal-trackers) and covariate testing site to explain the 

NAc BOLD response. An ANOVA with the factor group was used to test the difference in the RPE 

signal between sign- and goal-trackers, and one-sample t-tests were used to test whether the RPE 

signal was larger than zero within each group separately. Family-wise error (FWE) correction was 

used to control the peak-voxel effect for multiple tests associated with multiple voxels within the a 

priori volume of interest [VOI] in the NAc. The RPE explained a significant amount of variance in the 

NAc BOLD response in sign-trackers (small volume corrected [SVC] in NAc VOI: t75 = 3.05, pFWE = .025, 

[12 6 -14]) but there was no evidence for such an effect in goal-trackers (t75 = 1.58, SVC pFWE = .398), 

with a significant group difference (F(1,75) = 10.88, SVC pFWE = .026, [12 6 -14], ηp
2 = 0.122, 90% CI = 

[0.031 0.242]; Fig. 4a-d). 

The RPE signal is evident in conditioning involving wins, but can be less clear for losses, which may 

even involve inverted RPE or salience signals 31. We therefore repeated analyses testing the RPE for 

wins (0€, +1€, +2€) and losses (0€, -1€, -2€) separately. For this analysis, we extracted the average 

appetitive or aversive RPE BOLD signal within the a prior NAc VOI for each subject, and performed 

one-sample t-tests of the hypotheses that the appetitive RPE signal in sign-trackers is larger than 

zero, and larger than in goal-trackers. Results for the appetitive RPE involving wins were in line with 

the overall findings, namely a NAc BOLD RPE response in sign-trackers (t38 = 2.15, p = .019, b = 0.087, 

SE = 0.040, 95% CI = [0.019 Inf]; Fig. 5a+e), but no NAc RPE response in goal-trackers (Fig. 5a+b, t38 = 

-0.04, p = .516, b = -0.002, SE = 0.042, 95% CI = [-0.072 Inf]; group difference: t76 = 1.53, p = .065, b = 

0.089, SE = 0.058, 95% CI = [-0.008 Inf]; Supplementary Fig. 5). The aversive RPE involving losses, 

however, did not elicit BOLD responses (p > .1; c.f. Supplementary Information). 



RPE(-like) signals are found also in other brain regions such as ventral tegmental area/substantia 

nigra (VTA/SN), dorsal striatum (caudate and putamen), vmPFC, and amygdala, which can be 

dissociated from the NAc RPE signal in specifically designed tasks. Whether these signals are also 

selectively expressed in sign-trackers is currently unknown (for some evidence see 32). We tested 

whether the difference in RPE signals between sign- and goal-trackers is also present in these other 

brain regions. We performed repeated measures ANOVAs with factors VOI (VTA/SN, Caudate, 

Putamen, vmPFC, amygdala) and group (sign- versus goal-trackers). For post-hoc tests, we used one-

tailed t-tests to test the hypothesis that the RPE signal in each group was larger than zero. For our a 

priori analysis involving wins and losses, across these VOIs we found significant RPE responses in 

sign-trackers (t76 = 1.89, p = .031, b = 0.035, SE = 0.019, 95% CI = [0.004 Inf]), and these were 

stronger than in goal-trackers throughout (F(1,76) = 4.18, p = .044, ηp
2 = .01, 90% CI = [0.00 0.03]; 

RPE signal in goal-trackers: t76 = -1.00, p = .322, b = -0.019, SE = 0.019, 95% CI = [-0.049 Inf]). There 

was no evidence that the group-difference differed between VOIs (F(3,241) = 1.07, p = .363, ηp
2 = 

0.003, 90% CI = [0 0.023]), indicating no reliable difference across regions. The same pattern was 

also true for the analysis involving wins only, where again sign-trackers showed a RPE signal (t76 = 

2.38, p = .010, b = 0.080, SE = 0.034, 95% CI = [0.024 Inf]), which was stronger than in goal-trackers 

(F(1,76) = 5.40, p = .023, ηp
2 = 0.014, 90% CI = [0.001 0.039]), where goal-trackers showed no 

evidence for a RPE signal (t76 = -0.90, p = .369, b = -0.030, SE = 0.034, 95% CI = [-0.086 Inf]). We 

explored appetitive RPE signals in individual VOIs (Fig. 5a,c-f; Supplementary Figure 6). We found 

that appetitive RPE signals in sign-trackers were stronger than in goal-trackers in several VOIs (VTA: 

p = .038; vmPFC: p = .032; Putamen: p = .121; Caudate: p = .058; Amygdala: p = .004), and that only 

the effect in the Amygdala (p = .020), but not in the other VOIs (p > .1), survived correction for the 

multiple exploratory tests. However, these differences should be interpreted with caution given 

there was no evidence that VOIs differed. One problem with fMRI analyses of Pavlovian learning is 

that the correct learning rate is unknown and cannot be estimated easily from behavior 33. However, 

the differences between sign- and goal-trackers were consistent across a range of different values 



for the learning rate: in our a priori analysis of wins and losses, averaged across all VOIs the group-

difference was significant for learning rates 0.1 (p = .034), 0.2 (p = .039), 0.3 (p = .046), 0.4 (p = .048), 

0.5 (p = .0495), and 0.6 (p = .04998). A similar pattern was present when analysing wins only, but not 

when analysing losses only (see Supplementary Information; including Supplementary Fig. 7). 

While theoretical accounts and the results so far suggest that goal-trackers may rely on model-based 

learning 2,3, comparatively little data exists 20 on the learning processes and neurobiological 

mechanisms in goal-trackers. Our computational account of model-based learning incorporates 

incremental updates to state expectations through SPEs 4. Human fMRI results have previously 

shown SPEs to be represented in the intra-parietal sulcus and in lateral PFC 4. Hence, if goal-trackers 

learn through model-based mechanisms, we expect more prominent SPEs in these areas in them 

than in sign-trackers. We tested whether SPE signals were different from zero within each group 

using two-tailed t-tests. Moreover, we performed repeated measures ANOVA with factors VOI 

(intraparietal sulcus and lPFC) and group (sign- and goal-trackers). A post-hoc two-sample t-test was 

used to test whether the SPE BOLD signal differed between groups within the intraparietal sulcus. 

We found SPE signals in both intraparietal sulcus and lPFC (Fig. 6a), which were significant in both 

goal-trackers (t76 = 6.44, p < .001, b = 1.165, SE = 0.181, 95% CI = [0.804 1.53]) and sign-trackers (t76 = 

4.94, p < .001, b = 0.894, SE = 0.181, 95% CI = [0.534 1.25]; also see Supplementary Figure 8), 

consistent with the behavioral signatures showing a model-based component in both groups. 

However, in the intraparietal sulcus this SPE signal was stronger in goal- than in sign-trackers (t67 = 

2.12, p = .038, b = 0.564, SE = 0.266, 95% CI = [0.034 1.095]; interaction group x VOI: F(1, 76) = 5.34, 

p = .024, ηp
2 = 0.033, 90% CI = [0.002 0.092], Fig. 6a,b, Supplementary Fig. 9). As previous work 4 has 

also shown this area to relate to behavior, this difference may underlie goal-trackers’ stronger 

reliance on model-based Pavlovian learning in the current task. 

Finally, if it is true that the imaging and eye measures relate to the same learning processes, then 

the learning parameters estimated from the two modalities should not be too dissimilar. Keeping 



the difficulties in estimating learning rates in mind, we nevertheless found that the uncertainty-

based signal in goal-trackers yielded a state learning rate of hpupil = 0.19, which was well in line with 

the learning rate of hfMRI = 0.15 used for fMRI analyses. The value signal in sign-trackers yielded a 

learning rate for value of apupil = 0.06, which was comparable with the learning rate showing the 

strongest NAc RPE signal in model-based fMRI analyses (afMRI = 0.05; see Supplementary Fig. 7).  

Discussion 
In summary, we found a double dissociation between model-free and model-based Pavlovian 

learning systems in human sign- versus goal-trackers. As a key neurobiological finding, the model-

free RPE teaching signal in the (ventral) striatum was present in human sign-trackers, but was not 

detectable in goal-trackers, suggesting that, as in animals 10, only sign-trackers rely on model-free 

RPE signals 1,11 for learning. Model-free learning assigns value to the CS, which turns it into a 

motivationally relevant stimulus that elicits approach and avoidance responses in its own right. We 

here found that the value of the CS elicited approach and avoidance responses during conditioning, 

as measured in influences of CS value on gaze and pupil size during conditioning, and on Pavlovian-

instrumental transfer (PIT). Sign-trackers thus seem to rely on a model-free learning system that 

uses RPE signals to attribute incentive salience to the CS. In goal-trackers, to the contrary, gaze and 

pupil size related to model-based uncertainty. This was accompanied by a stronger model-based SPE 

signal in intraparietal sulcus. Goal-trackers also showed less PIT effects 17,34 suggesting that the CSs 

did not acquire the same motivational properties. Goal-trackers thus seem to rely on model-based 

reinforcement learning to predict the identity of upcoming US states from the CS. Of note, the 

neural distinction does not only show a dissociation of the (ventral) striatal versus (intra-) parietal 

brain regions for learning in sign- and goal-trackers, but also of the computational mechanisms 

driving learning in each. Furthermore, for learning success as assessed in a forced choice task, we did 

not find a difference between sign- and goal-trackers. Group differences, as in animals 10, may hence 

not reflect differences in learning ability, but rather indicate different mechanisms or systems 



underlying learning. Taken together, eye-tracking, pupillometry, behavioral PIT responses and fMRI 

consistently reveal a double dissociation between model-free RPE learning mediating incentive 

salience attribution in sign-trackers versus model-based SPE learning guiding uncertainty-based 

selection in goal-trackers. 

Strikingly, the RPE signal was not only present in the ventral striatum, but extended throughout a 

broad affective area including the dorsal striatum (Putamen, Caudate), VTA, Amygdala, and vmPFC in 

the signtrackers, while we found no evidence for RPE signals in these areas in the goal-trackers. Early 

theories (e.g. 35) had conceived of the RPE signal as a dopaminergic teaching signal with wide 

applicability to be broadcast throughout the brain. The fact that the RPE signal only behaves as a 

teaching signal in sign-trackers, and only seems to be broadcast widely in them, is consistent with 

such an account. Given the extensive literature on the relationship between RPEs and phasic 

dopaminergic signals 1,10,36, it is highly likely that the RPE signal in sign-trackers is dopaminergic.  

In model-free learning, the predictive value computed by iteratively adding up RPE signals is 

assigned directly to the CS. This assignment mechanism is thought to turn CSs into valuable and 

wanted stimuli that are attributed with incentive salience and elicit approach and avoidance 

responses 12–14. Aspects of this were visible in the impact of CS value on gaze, attention and through 

pupil dilation also arousal. While outcome-specific PIT may depend in part on model-based 

mechanisms, the current paradigm has previously been argued to capture mostly outcome-general 

effects 34. Hence, in sign-trackers the model-free learning algorithm based on RPEs seems to assign 

predictive value or incentive salience to the CS, turning it into a motivationally relevant – and 

wanted – stimulus that elicits responses 12–14 across multiple modalities including in visual attention, 

arousal, and approach/avoidance behavior. 

While all our learning measures indicated model-free learning in sign-trackers, model-based learning 

in goal-trackers was likewise consistently evident across all measures. As a key property, model-

based learning algorithms construct a model of the state transitions, where they estimate the 



probabilities for state transitions in a task. Such transition probabilities can be estimated via SPE in 

the intraparietal sulcus 4, which we found to be stronger in goal-trackers than in sign-trackers. This 

key novel finding provides evidence for theoretical predictions 2,3 whereby goal-trackers rely more 

on model-based reinforcement learning. Notice that our conditioning task did not experimentally 

manipulate state transitions, limiting our access to the process of model construction.  

Model-based learning relies on uncertainty to guide selective attention (i.e., associability) 37 and 

pupil dilation 27, and is thought to be more resistant to Pavlovian response biases compared to 

model-free control 17,34. These model-based signatures were present in goal-trackers. Increased 

associability associated with situations of model-based uncertainty may thus also attract visual 

attention to the CS to increase its perceptual, but also higher-level processing. These findings 

converge on the functioning of a model-based system in goal-trackers that learns predictions about 

upcoming US identity by selective processing of uncertain predictors.  

Taken together, these results demonstrate a double dissociation between model-free RPE learning 

mediating incentive salience attribution in sign-trackers versus model-based SPE learning guiding 

uncertainty-based selection in goal-trackers. Nevertheless, there are a number of limitations to our 

findings. First, we used a trace conditioning task with fixed interstimulus interval. The trace 

conditioning was employed to allow us to examine gaze unconstrained by stimuli being present. The 

fixed interval and deterministic aspects were employed to ensure the necessary predictability for the 

eye-tracking analyses. While we judged these design choices to be necessary, they are likely also 

responsible for the relatively weak nature of the RPE signals observed. Second, the RPE signal was 

specific for rewards, and was not identifiable for losses 31. Computational modeling, however, did 

not show differences between model-free learning responses in either gaze or pupil size in terms of 

either mechanisms or parameters for rewards versus losses, and defining sign- and goal-trackers 

based on appetitive trials did not reveal the same distinctions across modalities. Other approaches 

to define sign- and goal-trackers that were based on all trials, by replacing the gaze index with the 



probability to fixate the CS, and by using a computational model of gaze responses rather than a 

linear regression of CS value showed similar convergent effects across gaze, behavior and MRI 

measures. The failure to see such distinction when examining rewards only may relate to the 

reduction in statistical power (already low due to the deterministic trace conditioning paradigm) 

when removing half the trials with losses. However, it may also hint at hitherto poorly understood 

distinctions between learning from rewards and losses. The fact that RPE signals in sign-trackers 

were specific for appetitive win-associated trials is compatible with the known asymmetric encoding 

of RPEs in dopaminergic signals. Third, the study and the PIT task were part of a larger study 

examining learning in a population of individuals at risk of developing alcohol dependence, and our 

sample therefore consists of 18 year old males drawn from the general population. Since we only 

investigated male subjects, the results can only be generalized to males. Fourth, one limitation of 

our study is that visual input differs between sign- and goal-trackers (as their definition is based on 

gaze fixations). This implies that differences in visual input could bias the fMRI results. However, 

such biases are unlikely because (a) we analyze brain activity in regions known to encode prediction 

error signals and (b) because we study highly specific computational prediction error signals. 

Nevertheless, we performed control analyses, controlling for gaze-dependent visual effects in the 

fMRI analyses. Our results remained stable in these control analyses, suggesting they are not driven 

by differences in visual input, but due to differences in prediction error signaling. 

Being able to measure sign- and goal-trackers in humans may be useful for investigating disorders 

such as drug addiction. Drug addiction is strongly tied to the dopamine system. This is thought to be 

sensitized by repeated drug consumption, leading to increasingly stronger incentive salience 

attribution to drug-predictive cues, which elicit drug craving and consumption 38. Sign-tracking 

animals are known to be more prone to develop addiction 2,39. In humans, drug consumption in 

alcohol dependent patients is closely linked to PIT and associated neural activation in the NAc 40,41. 

Human sign- and goal-tracking have so far not been studied in addiction but given that sign-tracking 

can be bred true, it suggests a potential link between familial risk, learning and addiction. 



Methods 
We confirm that our research complies with all relevant ethical regulations. Ethical approval for the 

study was obtained from the ethics committee of Charité-Universitätsmedizin Berlin (EA1/157/11) 

and Universitätsklinikum Dresden (EK228072012); procedures were in accordance with the 

declaration of Helsinki. Informed consent was obtained from all human participants. Participants 

received a monetary compensation of 10 Euros/hour for study participation plus a performance-

dependent compensation. The data were collected as a part of the LeAD study (www.lead-studie.de; 

clinical trial number: NCT01679145). 

Definition	of	sign-	and	goal-tracking	
To define sign- and goal-trackers, we computed a gaze direction index as the proportion fixation 

time on the CS minus the proportion fixation time on the US location during the third second of CS 

presentation, i.e., gaze index = p(CS) – p(US). A gaze index of 1 indicated 100% of fixation time was 

spent on the CS, a gaze index of -1 indicated 100% of fixation was spent on the US, a gaze index of 0 

indicated the same percentage of fixation times on CS and US, and intermediate values indicated 

intermediate fixation statistics. For each individual subject, we computed a linear regression of gaze 

index on the true value of the CS (i.e., -2, -1, 0, +1, +2 Euro). Subjects for whom gaze is attracted 

more to win-predictive than to loss-predictive CSs have a positive regression coefficient of CS value, 

and we defined the third of subjects with the most positive regression coefficients as sign-trackers 

(N = 43). Subjects for whom gaze is attracted towards the goal for expected wins more than for 

expected losses have a negative regression coefficient, and we defined goal-trackers as the third of 

subjects with the most negative regression coefficient (N = 43). 

Overview	of	computational	modeling	
Model-based valuation estimates the probabilities for arriving at each outcome state j (US) given the 

observation of a certain cue i (CS), which can be written as a matrix of transition probabilities: 𝑇",$ =

𝑝'𝑈𝑆$*𝐶𝑆",. Moreover, it estimates a ‘reward matrix’, which stores expected value V for each US 



outcome j: 𝑅$ = 𝐸/𝑉|𝑈𝑆$2. When a CS i is presented, the model-based system determines the 

expected value 𝑉"34  by considering all possible US outcomes, and by weighing their expected values 

by their transition probabilities. This can be formulated by multiplying the transition matrix with the 

reward matrix: 𝑉"34 = 𝑇" × 𝑅. Learning in the model-based system involves learning the transition 

matrix from the experience of state prediction errors (SPE), 𝛿789: . Initially, before learning, all five US 

outcome states in our task are equally likely, i.e., 𝑇",$ =
;
<
= 0.2. Subjects experience a state 

prediction error when they encounter a transition from a CS i to a US j in trial t, 𝛿789: = 1 − 𝑇",$7 . 

They use this to update the transition matrix, 𝑇",$7B; = 𝑇",$7 + 𝜂 × 𝛿789:. To keep the matrix normalized 

to total probabilities of one, transition probabilities for the other US 𝑗′ ≠ 𝑗 that have not been 

observed are reduced by 𝑇",$H7B; = 𝑇",$H7 × (1 − 𝜂). We assume that the reward matrix is known 

instantly and with certainty. We approximate uncertainty (Unc) in state predictions as 𝑈𝑛𝑐7 = 1 −

max
$
𝑇$7 . We repeated core analyses with a fully Bayesian model-based learner with explicit 

uncertainty computation, with comparable results. 

Model-free learning, to the contrary, conflates the transition matrix and the reward matrix and thus 

does not learn about the identity of US outcomes. Instead, it uses the experience of reward 

prediction errors (RPE), 𝛿7P9: = 𝑅7 − 𝑉",73Q, where 𝑅7  is the actually experienced reward value in trial 

t and 𝑉",73Q  is the current model-free state value for CS i in trial t, to update estimates of expected 

value directly: 𝑉",7B;3Q = 𝑉",73Q + 𝛼 × 𝛿7P9:. 

We assume that model-based learning influences gaze direction and pupil size based on trial-by-trial 

state uncertainty (Model Unc) and accordingly predict the dependent variable as 𝑦7TUV = 𝑖𝑛𝑡YZ[ +

𝑏YZ[ × 𝑈𝑛𝑐7, where 𝑦7TUV  of subject id for trial t is the predicted gaze direction index during the third 

second of CS presentation or the predicted pupil size in the last second before US presentation, 

𝑖𝑛𝑡YZ[  is a free intercept or baseline parameter capturing the expected value of the dependent 

variable after learning and complete state certainty, 𝑏YZ[  is a free parameter for the weight of 



model-based uncertainty, which we re-parameterize to 𝑏YZ[ = 𝑒^_`aH, and which measures the 

degree to which maximal uncertainty before learning biases the gaze index towards the CS relative 

to baseline. 

For model-free learning, we assume that trial-by-trial CS value (Model Val) influences gaze and pupil 

size via a Pavlovian response bias, and predict the observations 𝑦7TUV = 𝑖𝑛𝑡bcd + 𝑏bcd × 𝑉73Q, where 

𝑖𝑛𝑡bcd  is a free intercept or baseline parameter capturing the average gaze direction or pupil size, 

𝑏bcd is a free parameter measuring the weight of model-free value influencing gaze or pupil size, i.e., 

the Pavlovian response bias. 

For gaze direction and pupil size, we assume the likelihood for individual observations 𝑦7 is normally 

distributed 𝑝(𝑦7|𝑦7e , 𝜎) =
;

√hijk
𝑒𝑥𝑝[(𝑦7 − 𝑦7e )h (−2𝜎h)⁄ ], where 𝑦7 is the observed dependent 

variable per trial, 𝑦7e  is the prediction by the learning model, and 𝜎h is the residual variance. Note 

that the distribution of the gaze direction index deviates from normality. The likelihood for the gaze 

direction index 𝐺𝑎𝑧𝑒"U = s𝑦7"Ut7u;
v

 per subject id across T trials, is then 𝑝'𝐺𝑎𝑧𝑒"U*𝑦TUV ,𝜎"Uh , =

∏ 𝑝 x𝑦7"Uy𝑦7TUV , 𝜎"Uh z7 . For the pupil size 𝑃𝑢𝑝𝑖𝑙 = ~s𝑦7"Ut7u;
v
�
"Uu;

�
 of N subjects with each T trials, we 

pool the likelihood across all subjects: 𝑝(𝑃𝑢𝑝𝑖𝑙|𝑦�, 𝜎h) = ∏ ∏ 𝑝 x𝑦7"Uy𝑦7TUV , 𝜎hz7"U . 

We studied signals of model-free RPE and model-based SPE using fMRI. For the model-free RPE 

signal, we determined the trial-by-trial temporal difference RPE for CS and US onsets 1,11. Onset of 

the CS changes model-free value expectation from 0 (at trial onset) to the predictive value of the CS, 

𝑉",73Q, yielding a temporal difference RPE of 𝛿�8P9: = 𝑉",73Q. At US onset, value expectation changes 

from the predictive value of the CS, 𝑉",73Q, to the observed US value,  𝑅7 , i.e., 𝛿Y8P9: = 𝑅7 − 𝑉",73Q  1,11. 

We combined these two RPE regressors into a single regressor coding model-free temporal 

difference RPE. Moreover, we took the model-based trial-by-trial SPE signal 𝛿789: = 1 − 𝑇",$7  to 

modulate fMRI activity at the time of US onset. The RPE and the SPE regressors were each entered 



as a parametric modulator, either at the time of CS and US onset (RPE), or at the time of US onset 

(SPE). Each modulated onset regressors with onset durations equal to the 3 sec of stimulus 

presentation. 

The following sections provide more detailed information on the used methods. 

Paradigm	

The paradigm tested Pavlovian-instrumental transfer (PIT) 21,42 and consisted of four parts: (1) 

instrumental conditioning, (2) Pavlovian conditioning, (3) PIT, and (4) a forced choice task 

(Supplementary Fig. 1). Instrumental conditioning was conducted before and the forced choice task 

after the scanning session; Pavlovian conditioning and PIT were assessed during functional magnetic 

resonance imaging (fMRI). The task was programmed using Matlab 2011 (MATLAB version 7.12.0, 

2011; MathWorks, Natick, MA, USA) with the Psychophysics Toolbox Version 3 extension 43,44. It was 

presented on a computer screen (instrumental training, forced choice) and on a projector via a 

mirror system (Pavlovian conditioning, PIT). For a detailed description of the paradigm see 40,45. 

Instrumental	conditioning	

Subjects were instructed to collect or avoid shells by repeated button presses. To collect a shell, 

subjects had to move a red dot (Supplementary Fig. 1a) onto a shell by repeated button presses, and 

otherwise did not collect the shell. Each response moved the dot a fraction of the way towards the 

shell but this was not shown on screen. At least five button presses (two-second response window) 

were needed to collect a shell, which subjects were not informed about. Subjects received 

probabilistic feedback. On approach trials, a “good” shell was monetarily rewarded in 80% and 

punished 20% of trials if collected and vice versa if not collected. On non-approach trials, if a “bad” 

shell was collected, this was monetarily punished in 80% and rewarded in 20% of the trials, and vice 

versa if not collected. Participants learned to respond to three “good”, i.e. approach, and three 

“bad”, i.e. non-approach, shells through trial and error. Participants performed 60-120 instrumental 



training trials, depending on their performance: in order to ensure that all subjects were at 

comparable performance levels before advancing to the PIT part, a learning criterion was enforced 

(80% correct choices over 16 trials). 

Pavlovian	conditioning	

At the beginning of each trial, a compound CS consisting of fractal-like pictures and pure tones 

(henceforth referred to as ‘fractal CSs’) was presented for three seconds. This was followed by a 

delay of three seconds with two fixation crosses at the two potential CS locations (left and right; 

Supplementary Fig. 1b). Finally, the US was presented for three seconds at the position opposite to 

where the CS had been presented. 

 

The set of stimulus pairings consisted of two positive CSs paired with images of +2€ and +1€ coins, 

one neutral CS paired with 0€, and two negative CSs paired with -1€ and -2€ (coins with a 

superimposed red cross, see also Supplementary Fig. 1a). The identity of the fractal and the height of 

the tones deterministically predicted US value such that higher tones predicted higher/lower values, 

with the mapping counterbalanced across subjects. Moreover, there was an initial shaping period. 

First all Pavlovian CSs were presented in descending order (+2, +1, 0, -1, -2 €) and then in ascending 

order. 

 

Subjects were instructed to observe the CSs and USs and to memorize the pairings. All subjects 

completed 80 trials, in which each of the five different CSs was presented 16 times in a random 

(except for initial shaping) sequence with randomized (left versus right) stimulus locations. 

PIT	

Subjects then performed 90 trials of the instrumental task just as during training, but with fractal CSs 

tiling the background (Supplementary Fig. 1c). No outcomes were presented, but subjects were 

instructed that their choices still counted toward the monetary outcome. Each of the six 



instrumental shells (three shells for each of the two conditions: instrumental approach/non-

approach) was presented with each of the five Pavlovian CSs a total of three times (6 x 5 x 3 = 90 

trials), such that instrumental and Pavlovian approach/non-approach were orthogonalized. This was 

implemented to control for instrumental approach and non-approach tendencies during PIT (cf. 

17,21). 

 

There were also interleaved trials with drink-related stimuli (alcoholic drinks, water) tiling the 

background. Results for these will be reported separately. 

Forced-choice	task	

Finally, subjects chose one of two sequentially presented compound CSs (Supplementary Fig. 1d). 

They received 10% of the monetary US value associated with the chosen option and were fully 

instructed about this. Each of the 10 possible CS pairings was presented three times in an 

interleaved, randomized order, yielding a total of 30 trials. Within a trial, CSs were presented one at 

a time for two seconds each.  Slow responses led to a reminder requesting faster responses.  

 

Participants	

The two-centre study was conducted in Berlin and Dresden, Germany. We assessed 198 participants; 

all male and all with the same age of 18 years. The data were collected as a part of the LeAD study 

(www.lead-studie.de; clinical trial number: NCT01679145).  

 

Exclusion criteria were left-handedness, a history of any substance dependence or current substance 

use (assessed by breath and drug urine testing) except for nicotine dependence, other major 

psychiatric disorders (DSM-IV axis I; CIDI; 46) and neurologic disorders. 

 



Here, we report on a subsample of 144 subjects for which eye-tracking data was available during 

Pavlovian conditioning. These same subjects were tested on all tasks, i.e., we tested the same 

sample repeatedly. For each task and recording technique data for some subjects was missing for 

technical reasons (e.g., recording failures or early task abortion); for numbers of missings see below. 

 

The study was designed and sample size of 198 subjects was chosen to detect moderate differences 

(a priori Power analysis: 𝑑 = 0.4, 𝛼 = 0.05, 𝛽 = 0.80) in learning parameters or brain activity in 

healthy adults with high versus low risk alcohol consumption, using longitudinal follow-up over three 

years. For our cross-sectional analysis, valid eye-tracking data in the fMRI scanner was available for 

129 subjects. The statistical group identification (described in the manuscript) resulted in a final 

sample size of 43 subjects per sign-/goal-tracker group, which yielded a good power to detect 

medium differences in learning parameters or brain activity (𝑑 = 0.6, 𝛼 = 0.05, 𝛽 = 0.79). 

 

Randomization	

There were no experimental group allocations. Group definitions in the analyses were based  

on statistical tests described in the methods. Assignment of experimental stimuli (Pavlovian CSs; 

instrumental shells) to experimental (reinforcement) conditions, stimulus orderings and locations 

across trials were randomized. 

 

Blinding	

There were no experimental group allocations. Group definitions in the analyses were based on  

statistical tests described in the manuscript. 

 

Measurements	



Eye-tracking	

We recorded eye-position and pupil size during Pavlovian conditioning via an EyeLink 1000 eye-

tracker (SR Research; recording binocularly at 1000 Hz; in Dresden) and via an iViewX MRI-LR eye-

tracker (SMI; recording monocularly at 50 Hz; in Berlin), which were both used in the fMRI scanner 

via a mirror system mounted on the head coil. Calibration of the eye-tracker was performed inside 

the scanner before the start and after 40 trials of Pavlovian conditioning. At the beginning of each 

trial subjects were instructed to fixate a central fixation point. Failures to fixate lead to a reminder (a 

maximum of two times per calibration). 

fMRI	acquisition	

Functional imaging was performed on two Siemens Trio 3 Tesla MRI scanners with echo planar 

imaging (EPI) sequences (repetition time: 2410 ms; echo time: 25 ms; flip angle: 80°; field of view: 

192 x 192 mm2; voxel size: 3 x 3 x 2 mm3) comprising 42 slices approximately -25° to the 

bicommissural plane. For coregistration and normalization during preprocessing, a three-

dimensional magnetization-prepared rapid gradient echo image was acquired (repetition time: 1900 

ms; echo time: 5.25 ms; flip angle: 9°; field of view: 256 x 256 mm2; 192 sagittal slices; voxel size: 1 x 

1 x 1 mm3). Prior to functional scanning, a field map was collected to account for individual 

homogeneity differences of the magnetic field. 

 

Participants wore MR-compatible Siemens head-phones. Responses were made on a 1 x 4 current 

design MR-compatible response box button using the dominant index finger (instrumental response 

in training and transfer) or two buttons using the left and the right index finger (forced choice). 

 

Data	analyses	and	statistics	



Data were analyzed using Matlab 2013a (MATLAB version 8.1.0.604, 2013; MathWorks, Natick, MA, 

USA) and the R System for Statistical Computing 47. fMRI data were analyzed using Statistical 

Parametric Mapping 8 (SPM8; Wellcome Department of Imaging Neuroscience; 

http://www.fil.ion.ucl.ac.uk/spm/). 

 

For eye-tracking analyses we performed repeated measures ANOVA using the R-package afex 48. 

Contrasts were computed using the R-package emmeans 49. For fMRI analyses, at the second level 

we performed either one-sample Student t-tests or two-sample Welch t-tests (capturing situations 

of equal and of unequal variances) 50. For random effects analyses of behavioral responses, we 

performed Shapiro-Wilk tests to test the normal distribution assumption of t-tests. If violated, non-

parametric bootstrapping with 1,000,000 case resamples and bias-corrected adjusted (BCa) 

confidence intervals (90%, 95%, 99%, and 99.9%; R-package boot 51,52) was used instead. Statistical 

tests were two-tailed unless otherwise noted. Error bars in Figures represent repeated measures 

S.E.M. 53. Error bars for pupil analyses (Fig. 2e+f) are extracted via linear mixed effects models. Box-

and-whisker plots show the following statistics: center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range; points, outliers. For F-tests, as a measure of effect size 

we report the proportion of variance of the dependent variable accounted for by the levels of the 

factor (i.e., np
2), together with 95% confidence intervals (CI), as computed by the function ci.pvaf() 

from the R-package MBESS. 

 

Eye-tracking	analyses	-	gaze	

Preprocessing	

Data from the EyeLink 1000 system (right eye) were down-sampled to the 50 Hz that was available 

for the iViewX system. Given different sampling rates between testing sites we checked for 



differences in gaze index results (Fig. 1b-d, Supplementary Fig. 2a) but found no significant 

difference (p > .1).  We corrected for temporal-spatial drifts and distortions of the eye-tracking data 

for each subject and each calibration across trials. 15 subjects showed poor correction performance 

and were removed from analysis after visual inspection, yielding 129 subjects with valid eye-tracking 

data. We repeated some core analyses using uncorrected eye-tracking data, and found overall 

consistent results. 

 

No valid gaze data was recorded after the second calibration in three out of the 129 valid subjects (1 

sign-tracker, ST, 2 Controls).  In one (ST) subject, no eye-tracking data was available for the last 22 

trials.  Additionally, an average of 12.8% of the eye-tracking samples recorded during CS 

presentation (Median = 10.6%, SD across subjects = 10.0%) was missing or invalid, including gaze 

samples outside screen boundaries or during blinks as detected by the eye-tracker device. This 

yielded an average of 0.8% (Median = 0.0%, SD = 2.2%) trials with no valid gaze data overall, and for 

the third second of CS presentation an average (SD) of 3.5% (6.6%) trials with no valid gaze data. 

 

Valid gaze-samples were classified as being directed at one of three spatial regions of interest (ROIs): 

(i) the CS, (ii) the spatial location of later US presentation, and (iii) the rest of the screen reflecting 

the background.  Note that for each second of CS presentation, the percentage of samples within 

each ROI (pROI) also reflects the cumulative gaze times, i.e., dwell times, for these ROIs, 

proportionally corrected for missing/invalid data. 

Percentage	fixation	times	

CS onset is known to trigger initial orienting responses 22,54 that do not differ between ST and GT 24. 

Later on, gaze exhibits Pavlovian conditioned responses to CS value, visible in enhanced fixations on 

appetitive compared to neutral or aversive cues 22,54–56 (for early responses see 57). Moreover, 

uncertainty is known to attract attention to the CS 37, which decreases across learning. To identify 



Pavlovian conditioned responses in gaze, we estimated how the influence of Pavlovian (CS) value 

(+2, +1, 0, -1, -2 €) on percentage fixation times on the CS, the US-location, and the background 

differed between the three seconds of CS presentation via repeated measures ANOVA.  Moreover, 

we tested how attention changed across learning by performing random effects linear regression 

analyses, regressing percentage fixation times on trial number (mean-centered). Regression 

coefficients were analyzed via repeated measures ANOVA to test how trial effects differed between 

the CS, the US location, and the background (factor location), between CS value levels (+2, +1, 0, -1, -

2 €), and between the three seconds of CS presentation. We followed up on significant interactions 

using post-hoc contrasts. Moreover, based on the results from these analyses we tested the 

interaction CS value x trial number x location for the third second of CS presentation. We used 

planned contrasts to test linear CS value effects (-2, -1, 0, +1, +2 €). Last, we tested a contrast coding 

whether an increase in CS value effects across trials on the CS was stronger than that on the US. 

Gaze	index	

To assess sign- and goal-tracking, we computed a gaze index measuring the difference in the 

probabilities of approaching (here fixating) the CS minus the US-location. The aim was to parallel the 

approach employed in animal research to measure relative approach to a CS and US 10. The gaze 

index was 1 if the entire time was spent on the CS; -1 if the entire time was spent looking at the US; 

0 if there was no preference for either CS or US-location; and it had some intermediate value if gaze 

was distributed between the CS, the US location, or the background. For example, for values of p(CS) 

= 0.7, p(US) = 0.2, and p(BG) = 0.1, the gaze index would be p(CS) - p(US) = 0.7 - 0.2 = 0.5. 

 

We investigated learning by testing whether the gaze index decreased across trials, whether it 

increased with increasing CS value, and whether the observed CS value effect got stronger across 

trials (interaction CS value x trial number per stimulus; 19,22,37,55). 

Definition	of	ST	and	GT	based	on	gaze	index	



To define ST versus GT we computed the influence of CS value on the gaze index during the third 

(i.e., last) second of CS presentation per subject. ST were defined as the third with the most positive 

regression coefficients (N = 43) and GT as the third with the most negative (N = 43). We tested 

whether the frequency of ST versus GT differed between testing sites (Berlin / Dresden) using a chi-

squared test. 

 

We tested effects of CS value on the gaze index, and whether CS value effects got stronger across 

trials (one-tailed test for ST 19). Moreover, for sign-trackers we separately tested the effect of trial 

number for trials involving wins versus losses. Fig. 1d+f visualize how influences of CS value 

developed over time in ST versus GT. 

Model-based	influences	on	gaze	

Learning in the model-based system involves learning the transition between CSs and USs. Cues for 

which predictions were more uncertain were hypothesized to be attended more to support optimal 

processing and learning 37. Specifically, we formulated a state transition matrix T(CS,US) of transition 

probabilities, where each element in the matrix holds the current estimate for the probability of 

transitioning from state CS to US. At the beginning of learning, the probability to observe one of the 

five different outcomes after seeing a certain CS is T0(CS,US) = 1/5 as all USs are equally likely. In 

each conditioning trial t, the model-based system computes a state prediction error (SPE):  

 

𝛿789: = 1 − 𝑇7(𝐶𝑆, 𝑈𝑆)            (1) 

 

and updates the probability T(CS,US) of the observed transition via: 

 

𝑇7B;(𝐶𝑆, 𝑈𝑆) = 𝑇7(𝐶𝑆, 𝑈𝑆) + 𝜂 ∙ 𝛿789:          (2) 

 



where the free parameter h is a learning rate. For the other USs not observed in the current trial 

(i.e., all US' except for the observed US), the estimated probabilities are updated to keep probability 

distributions normalized using the equation 𝑇7B;(𝐶𝑆, 𝑈𝑆′) = 𝑇7(𝐶𝑆, 𝑈𝑆′) ∙ (1 − 𝜂). 

 

We approximate uncertainty (U) in state predictions in this experience-based model-based system 

via the distance of the highest state transition probability conditional on the visited CS “cs” from 

certainty, that is 𝑈 = 1 −max[𝑇(𝐶𝑆 = 𝑐𝑠, 𝑈𝑆)]. We assumed that predictive uncertainty directly 

increases attention towards the predictive CS, and hence increase CS-related eye fixations. We 

therefore modeled the trial-by-trial gaze index via: 

 

Model MB:   GazeIndex7 = 𝑐 +	𝛽Y
�c�� ∙ 𝑈7(𝑠)  ,      (3) 

 

where the GazeIndext was computed during the third second of CS presentation in trial t, c is a free 

constant baseline parameter capturing preference for CS- over US-related fixations after learning 

and complete state certainty (e.g. capturing effects of visual salience 58), Ut(s) is the trial-by-trial CS-

related uncertainty, and 𝛽Y
�c��  is a free parameter for the degree to which maximal uncertainty 

during the first trial biases the gaze index towards the CS relative to baseline. Here, we multiplied 

the 𝛽Y
�c��  parameter by the maximal uncertainty in the first trial, i.e., 0.8, to standardize the 

uncertainty-based weight to reflect the effect of maximal uncertainty in our experimental design. 

Model-free	influences	on	gaze	

In model-free learning, the value of CSs was learned from experience via errors in predicting the US 

outcome value. A simple model-free reinforcement learning (RL) model computes a reward 

prediction error (RPE): 

 

𝛿7P9: = 𝑅7 − 𝑉7(𝑠)  ,            (4) 



 

and updates the expected CS value Vt(s) via: 

 

𝑉7B;(𝑠) = 𝑉7(𝑠) + 𝛼 ∙ 𝛿7P9:   ,           (5) 

 

where Vt(s) is the value of a certain CS s in trial t, Rt is the value of the US, and 𝛼 is a free learning 

rate parameter. We assumed that the trial-by-trial value estimate Vt(s) exerts a Pavlovian response 

bias on gaze direction, and we hence modeled the influence of model-free learning on trial-by-trial 

gaze index in the model “Value” via: 

 

Model MF:   GazeIndex7 = 𝑐 +	𝛽b
�c�� ∙ 𝑉7(𝑠)  ,      (6) 

 

where 𝛽b
�c��  is a free parameter controlling the weight of the model-free Pavlovian response bias 

from CS value. Positive values of the 𝛽b
�c��  weight parameter indicate a sign-tracking response 

whereas negative weight values indicate goal-tracking. 

Dual	model-free	and	model-based	influences	on	gaze	

Last, we constructed a model assuming dual learning systems for model-free value (𝜔 = 0) and for 

model-based uncertainty (𝜔 = 1) are combined via a weighting parameter 𝜔 to guide attention: 

 

Model MF + MB:  GazeIndex7 = 𝑐 +	𝛽�c�� ∙ x[1 − 𝜔] ∙ 𝑉7(𝑠) + 𝜔 ∙ 𝑈�7(𝑠)z  .  (7) 

 

In the present task, uncertainty was constrained between 0.8 and 0, whereas CS value ranged 

between -2 and +2. Direct comparison of uncertainty and CS value is therefore difficult. For a 

comparison via the weighting parameter, we therefore normalized the uncertainty variable to span 

the same range as CS value by computing 𝑈�7(𝑠) = (𝑈7(𝑠) − 0.4) ∙
h
�.�

 . Note, that it is therefore 



difficult to interpret the absolute size of the weighting parameter 𝜔, but that it is useful to analyze 

differences in parameter estimates between groups. 

Parameter	estimation	and	model	comparison	

To perform model comparison, we estimated free model parameters using maximum likelihood 

estimation (MLE) for each individual subject, assuming Gaussian residuals. Bounded parameters 

were transformed to an unbounded scale for fitting: learning rate parameters for learning from 

reward prediction errors or state prediction errors as well as the weighting parameter 𝜔 were bound 

to values between 0 and 1 via the logistic transform 𝛼 = ;
;B���(�c)

; the uncertainty-based weight bU 

was bound to positive values via an exponential transform 𝛽Y = 0.8 ∙ exp(𝑏Y). Optimization was 

performed using the nlm function in the R-package stats 47. We compared models for each subject 

by computing the difference in BIC values. We tested whether BIC values differed between sign- and 

goal-trackers via repeated measures ANOVA. We used contrasts to test our hypotheses of (i) a 

stronger value effect in sign-trackers, i.e., stronger evidence for the model assuming conditioned 

responses to CS value 13,16,17, and (ii) a stronger model-based 2,3 uncertainty response in goal-

trackers. 

 

To increase stability in the estimation of noisy model parameters, we followed up MLE via fixed 

effects maximum a posteriori (MAP) estimation. We assumed weakly informative independent 

Gaussian priors with mean zero (except for the learning rate parameters, where we assumed a mean 

prior learning rate of 𝜇¡ = 0.3, i.e., 𝜇c = log(0.3/0.7)), and a standard deviation of 𝜈 = 5. 

 

Eye-tracking	analyses	of	pupil	dilation	

Pupil size data for valid fixation samples was z-standardized for each subject. For each subject and 

calibration (trials 1-8 and trials 9-16) we corrected for average baseline pupil size during one second 



before CS presentation. We removed data from the first two trials per CS to prevent potential biases 

arising from the fixed order of stimulus presentation in these trials. We analyzed pupil size via 

repeated measures ANOVA with factors trials (3-8 vs. 9-16), CS value (-2 to +2 €), and time within 

trial (six seconds from CS onset to US onset). We hypothesized that pupil size during the last second 

of US anticipation should decrease from the beginning to the end of conditioning, reflecting 

decreasing uncertainty with learning 27. Moreover, we expected pupil size to increase for expected 

wins compared to expected losses or neutral outcomes 28, and we coded planned contrasts for linear 

CS value effects. This CS value effect should increase across trials and we tested interactions of linear 

CS value with trials (3-8 vs. 9-16). To minimize influences from luminance, we tested effects nested 

within the last second before US presentation. We tested whether effects of CS value and of trials 

differed between sign- and goal-trackers. Contrasts tested effects separately for sign- versus goal-

trackers and for trials 3-9 versus 9-16. In a first overall approach, we studied effects in all six seconds 

from CS onset to US onset. We thus tested whether effects of CS value and of trials changed as a 

function of linear time within trials (seconds 1-6 after CS presentation; i.e., interaction trials x time, 

and interaction CS value x trials x time). Next, we focussed analysis on the last second before US 

onset, where the signal is least confounded by luminance-related influences from CS presentation. 

Estimated contrasts and standard errors were extracted from the ANOVA for visualization. 

 

To visualize effects of trials and of CS value, we moreover performed random effect linear regression 

analyses on data before US onset, regressing pupil size on CS value separately for trials 3-8 versus 

trials 9-16 for time bins of 100 ms each. For each time bin and experimental half, we excluded outlier 

subjects with CS value effects deviating more than six standard deviations from the mean, yielding a 

total of two excluded data points. We performed repeated measures ANOVAs on the estimated 

regression coefficients for (a) the intercept and (b) the linear CS value effect, with factors time bin, 

trials (3-8 versus 9-16), and group (sign- versus goal-trackers). We then performed exploratory tests 

nested within each time bin (a) of the trial effect (3-8 versus 9-16) additionally nested within sign- 



versus goal-trackers, and (b) of the difference between sign- and goal-trackers in the CS value effect, 

nested within trials (3-8 versus 9-16). 

Pupil	analyses:	Computational	modeling	

We fitted computational learning models to the trial-by-trial pupil data. To this end, we extracted 

average pupil size per trial for the last second before US presentation, where influences from 

luminance should be minimal. We tested two different computational models. 

 

First, we used the model-free reinforcement learning model (see Equations (4) and (5)) to obtain the 

trial-by-trial value of the CS, Vt(s), which was assumed to modulate pupil size via a weight parameter 

𝛽b
¨©¨"d  via: 

 

pupil7 = 𝑐 +	𝛽b
¨©¨"d ∙ 𝑉7(𝑠)  .           (8) 

 

Second, we used the model for model-based state learning (see Equations (1) and (2)) to obtain the 

trial-by-trial state uncertainty, Ut(s), which was assumed to modulate pupil size via a weight 

parameter 𝛽Y
¨©¨"d  via: 

 

pupil7 = 𝑐 +	𝛽Y
¨©¨"d ∙ 𝑈7(𝑠)  .           (9) 

 

Again, c is a constant, here capturing pupil size independent of learning. As for modeling of gaze 

direction, we again performed maximum a posteriori (MAP) estimation of the learning rate 

parameter 𝛼, the regression coefficient parameter 𝛽¨©¨"d, and the residual variance 𝜎. For 

parameter estimation, the learning rate parameter was again transformed to a bounded scale 

between 0 and 1 with the sigmoid transform 𝛼 = 1/(1 + exp(−𝑎)). Moreover, we constrained the 

uncertainty-based weight to theoretically expected positive values using an exponential transform 



𝛽Y
¨©¨"d = exp(𝑏Y

¨©¨"d). We used weakly informative Gaussian priors with a prior mean for the 

learning rate of 𝜇¡ = 0.3 (i.e., 𝜇¡ = log(0.3/0.7)), a prior mean for the regression parameter of 

𝜇¬H = 0, and prior standard deviations of 𝜈 = 5. Due to the large noise in pupil size, we obtained 

fixed effect maximum a posteriori (MAP) estimates for sign-trackers and goal-trackers via Newton-

type minimization with the function nlm from the stats-package in the R System for Statistical 

Computing. To test both models against each other, we computed BIC values, and computed the 

difference in BIC between models for sign- and goal-trackers separately. 

 

For visualization of trial-by-trial effects of CS value, we aimed to maximize sensitivity within trials. To 

this end, we removed between-trial variance in the intercept by subtracting the average pupil size 

per trial and per CS. Moreover, to normalize CS value effects and remove trends in average pupil size 

across trials we performed z-transformation across the five different levels of CS value for each trial 

separately. Linear mixed effects models were used to estimate the effect of CS value in sign- and in 

goal-trackers for each trial. Moreover, the computational value model was re-fitted to this 

normalized data for visualizing model predictions. The results from these analyses are shown in 

Figure 2f. 

 

Behavioral	analyses	

Forced	choice	task		

Data for the forced choice task was available for 39 GT subjects and for 42 ST subjects.  Successful 

Pavlovian learning was assessed via the percentage of correct choices in the forced choice task.  We 

tested for a group-difference in percentage correct choices.  

Instrumental	conditioning	



Data on instrumental conditioning was available for all 43 ST and 43 GT.  We measured overall 

learning speed as the number of trials needed until reaching the learning criterion (with a minimum 

of 60 and a maximum of 120 learning trials), and tested learning speed in ST versus GT.  Moreover, 

to measure initial learning we extracted the first twenty trials. To measure asymptotic learning, we 

extracted the last twenty trials. For these, we computed the difference in the response rates 

between instrumental conditions (collect versus leave) for each subject, and tested the effect in ST 

versus GT. 

PIT	

Data on the PIT task was available for all 43 ST, and for 41 GT.  We calculated individual PIT effects 

by regressing the number of button presses on the five different Pavlovian values, and tested 

whether PIT effects were larger than zero for individual subjects via t-tests.  We tested the strength 

of the PIT effect in ST and in GT, and performed one-tailed tests of the a priori hypothesis 19 that PIT 

effects are stronger and more frequently individually significant in ST compared to GT. 

 

fMRI	analyses	

Preprocessing	

fMRI recordings were preprocessed using Nipype 59. First, correction for differences in slice time 

acquisition to the middle slice was performed. Voxel-displacement maps were estimated based on 

acquired field maps. All images were realigned to correct for head motion, distortion and their 

interaction. After co-registration of the individual structural T1 images to the individual mean EPI, 

the structural image was spatially normalized with a resampling resolution of 2 x 2 x 2 mm3 and the 

normalization parameters were applied to all EPI images. Finally, images were spatially smoothed 

with a Gaussian kernel of 8 mm full width at half maximum. Prior to statistical analysis, data were 

high-pass filtered with a cut-off of 128 sec. 



Pavlovian	conditioning:	Value	learning	

We performed model-based fMRI analyses via 1st- and 2nd-level analyses in SPM. We used the 

model-free reinforcement learning (RL) model (see Equations (4) and (5)) to compute the trial-by-

trial value of the CS Vt. Based on the RL model, we determined the trial-by-trial temporal difference 

reward prediction error (RPE) for CS and US onsets. Onset of the CS changes value expectation from 

zero (at trial onset) to the predictive value of the CS, Vt(s), yielding a temporal difference RPE of 

𝑅𝑃𝐸�8 = 𝑉7(𝑠) − 0. At US onset, value expectation changes from the predictive value of the CS, 

Vt(s), to the observed US value, Rt, i.e., 𝑅𝑃𝐸Y8 = 𝑅7 − 𝑉7(𝑠). 

 

The learning rate parameter 𝛼 was set to 0.05 based on an exploratory analysis in a related sample 

with the same task setup (unpublished data). This value maximized the signal strength in the NAc. 

Repeating these analyses with the current sample confirmed the same pattern for the learning rate 

(section “Varying model-free learning rates” below), but also indicated good robustness wrt. the 

precise choice. The small value also corresponded to parameter estimates obtained from the pupil 

size data, which for the sign-trackers yielded a learning rate of 𝛼 = 0.06. 

 

In the first-level SPM model, we included the onsets of CSs as well as USs with their stimulus 

durations of three seconds within one onset regressor. Stimulus onsets were parametrically 

modulated by the trial-by-trial temporal difference reward PE. Additional nuisance regressors 

captured variance specific to US onsets, the calibration after trial 40, fixation reminders, and 

realignment parameters with derivatives 60. Regressors were convolved with the canonical 

haemodynamic response function (HRF). 

 

Animal results suggest a fixed timing and duration of the midbrain dopamine responses 10. We 

therefore focused analysis on the main RPE regressor, but controlled for possible individual variance 

in the onset and duration of the blood oxygenation level dependent (BOLD) response in the current 



paradigm, by including temporal and dispersion derivatives of the HRF as nuisance regressors.  

Control analyses confirmed that there were no significant differences in the delay or the duration of 

the RPE response in the NAc between ST and GT groups. 

 

Individual subjects' parameter estimates for the reward PE parametric modulator were taken to the 

second level. Valid fMRI recordings during Pavlovian conditioning were available for 39 ST and 39 GT. 

A two-sample t-test was performed comparing the RPE effect between ST and GT, with testing site 

as a control covariate of no interest. Differences between ST and GT in BOLD responses were tested 

via an F-test. The RPE signal in sign- and goal-trackers was tested via nested contrasts with 78 (n 

subjects) – 3 (parameters used for the mean signals in ST and GT and for the covariate site) = 75 

degrees of freedom. For visualization (Fig. 4a), we computed a contrast coding the a priori 

hypothesis 10 of a stronger reward PE response in ST compared to GT. Visualization threshold was 

𝑝©Z[®®�[7�U < .005, 𝑘 = 0.  Statistical testing was performed in an a priori defined volume of 

interest (VOI) in the bilateral nucleus accumbens (NAc) 10: we chose a previously validated bilateral 

ventral striatal VOI a priori  from the IBASPM 71 atlas; we derived this from the Wake Forest 

University (WFU) PickAtlas software (www.fmri.wfubmc.edu/software/PickAtlas). Reward prediction 

errors in learning tasks akin to ours have been reported in this very VOI on numerous previous 

occasions (e.g., 61–64 and many others). In addition, this a priori VOI overlaps substantially with a VOI 

shown in a published meta-analysis to exhibit strong RPE signals 65: 78% of our a priori VOI were 

inside the VOI from the meta-analysis. Moreover, we performed a meta-analysis at neurosynth.org 

of the term “prediction error”. This showed significant prediction-error related activity in 82% of our 

a priori VOI. Hence it appears beyond doubt given the current state of the scientific literature that 

our a priori VOI can be validly used to test for RPE signals. We used family-wise error (FWE) 

correction within the VOI to control for multiple comparisons. 

Analyses	of	appetitive	trials	



While a wealth of evidence supports positively coded appetitive reward prediction errors in striatal 

dopamine activity, the coding of aversive reward prediction errors remains less clear. Some evidence 

suggests aversive RPE may be coded inversely, that is, as a signed prediction error or salience signal 

31. To exclude potential confounds or noise from aversive RPE signals, we repeated the RPE analysis 

focusing only on win-predictive and neutral CSs (0, +1, +2 €). We coded the onsets of win-predictive 

and neutral CSs in one onset regressor, while the onsets of loss-predictive CSs were modeled as a 

separate onset regressor. The win- and neutral-predictive CSs were parametrically modulated by 

trial-by-trial temporal difference appetitive reward prediction errors. An additional control regressor 

modulated the loss-predictive onset regressor parametrically by the prediction errors for loss trials. 

Analyses focused on the prediction error modulator for trials involving wins and neutral outcomes. 

We extracted the average of the RPE response from the bilateral NAc VOI and performed one-tailed 

t-tests for a positive RPE signal in each group, and a one-tailed t-test of the a priori hypothesis 10 that 

the RPE learning signal was stronger in sign- than in goal-trackers. 

Prediction-error	correlates	outside	the	ventral	striatum	

Prediction error-like signals are also observed in other regions of the brain reward system, and 

whether these signals are selectively present in sign-trackers is unknown. Dopaminergic neurons in 

the ventral tegmental area (VTA 1) are known to project not only to the NAc, but also to dorsal 

striatum (Putamen, Caudate), Amygdala, and ventromedial prefrontal cortex (vmPFC) and may drive 

fMRI BOLD correlates of RPE signals in these areas 66.  Sign-trackers do show increased CS-related 

activity in a range of different regions of the brain reward system 32, but whether these resemble 

reward prediction errors, is unclear.  Here, we tested for RPE-like signals in several a priori volumes 

of interest (VOIs) thought to carry RPE-like BOLD responses, including the Putamen, Caudate, VTA, 

Amygdala and vmPFC. VOIs were taken from 67. Results are reported for the average RPE signal in 

these VOIs. We first perform a priori tests using ANOVA with factors group (ST/GT) and VOI. We do 

so for our a prior analysis involving gains and losses, and in addition for the analysis of gains only. 



Moreover, we perform exploratory tests for each group of sign- and goal-trackers (one-tailed test of 

a signal larger than zero), and we perform one-tailed statistical tests of the hypothesis 32 that the 

RPE-like signals are stronger in sign- than goal-trackers, which we also correct for multiple 

exploratory tests. Moreover, we visualize results from voxel-vise analyses based on an uncorrected 

thresholds of 𝑝©Z[. < .005, 𝑘 = 40, 𝑝©Z[. < .01, 𝑘 = 40 (all VOIs), and 𝑝©Z[. < .05, 𝑘 = 40 (VTA). 

 

Explorative analyses moreover tested for prediction error-like signals at a whole brain level. We 

performed voxel-based analysis with FWE correction, as well as cluster-based analysis with clusters 

defined based on a threshold of 𝑝 < .005. 

Pavlovian	conditioning:	State	learning	

The learning of model-based state transitions relies on state prediction errors (SPE; see section 

“Model-based influences on gaze”), which are known to be coded in the intraparietal sulcus (IPS) 

and in the lateral prefrontal cortex (latPFC) 4. To estimate a neural SPE signal, we used the trial-by-

trial state prediction error (see Equation (1)) as a predictor in the fMRI analyses. We adapted the 

first-level SPM model reported above by removing the RPE from the model, and instead including a 

parametric modulator with the trial-by-trial mean-centred SPE at the US onset time. Parameter 

estimates for the SPE regressor were examined at the second level. First, we tested whether SPE 

predicted BOLD responses for sign- and goal-trackers combined in the IPS and the latPFC via voxel-

vise analysis with FWE correction in the a priori VOIs, and by extracting the average signal for each 

VOI. The IPS VOI was obtained by summation of hIP1, hIP2 and hIP3 68 from the probabilistic brain 

atlas (Jülich-Düsseldorf cytoarchitectonic atlas) using the Anatomy Toolbox 69. The lateral PFC VOI 

was extracted from the WFU PickAtlas software. Based on our a priori hypothesis of stronger model-

based control in goal- than sign-trackers 2,3 we tested whether the SPE signal was stronger in goal- 

than in sign-trackers and whether there was an interaction of group x VOI using repeated measures 

ANOVA on the extracted mean signal per VOI. We followed up on a significant interaction using one-



tailed 2,3 random effects two-sample Welch's t-tests. Moreover, we visualize voxel-based results for 

the group-difference based on an uncorrected thresholds of 𝑝©Z[. < .005, 𝑘 = 40 and 𝑝©Z[. <

.01, 𝑘 = 40. 

 

Alternative	classification	of	sign-	and	goal-trackers	

Using	computational	modeling	to	define	sign-	and	goal-trackers	

To obtain a second, computational, definition of sign- and goal-trackers, we constructed a 

computational model assuming that uncertainty and a Pavlovian model-free conditioned response 

bias would add up to direct attention (model Unc + Value): 

 

GazeIndex7 = 𝑐 +	𝛽Y
�c�� ∙ 𝑈7 + 𝛽b

�c�� ∙ 𝑉7(𝑠7)  .        (10) 

 

Note that this is effectively the same model as equation (7). It is parametrized differently in terms of 

two weights 𝛽 rather than a trade-off parameter 𝜔 to allow a more direct measure of model-free 

and model-based contributions to gaze control. We estimated model parameters for this model for 

each individual subject. As before, we performed maximum a posteriori (MAP) estimation, using 

weakly informative independent Gaussian priors with prior means of zero (𝜇 = 0; except for the 

learning rate parameters, for which we assumed a prior mean of 𝜇¡ = 0.3, i.e., 𝜇c = log(0.3/0.7)) 

and standard deviations of 𝜈 = 5 . Based on the estimated parameters, we used the weight of the 

model-free Pavlovian conditioned response bias 𝛽b
�c��  per subject to classify individuals as sign- or 

goal-trackers. The third of subjects (n = 43) with the most positive weight parameter were classified 

as sign-trackers, whereas the third of subjects (n = 43) with the most negative weight parameter 

were classified as goal-tackers. 

 



We repeated some key analyses with this computational definition of sign- and goal-trackers to test 

the stability of our findings. Specifically, we tested the hypothesis that model-based uncertainty 

guides gaze more strongly in goal- than sign-trackers by testing whether the weight parameter of 

model-based uncertainty on gaze direction 𝛽Y
�c��  was larger in goal-trackers than in sign-trackers via 

a two-sample Welch's t-test. Moreover, we repeated the analyses testing for a larger PIT effect in 

sign-trackers. For the neural analyses, we tested whether sign-trackers showed a RPE signal 

averaged across all tested VOIs and whether it was stronger than in goal-trackers. Likewise, for the 

neural state prediction error, we tested whether the difference between sign- and goal-trackers 

differed between VOIs (IPS and lateral PFC), whether the SPE signal was stronger in sign- than goal-

trackers in IPS, and whether each group showed a SPE signal different from zero. We used one-tailed 

tests based on the hypothesis of stronger model-free control in sign-trackers and stronger model-

based control in goal-trackers 2,3. 

 

Bayesian	model	of	model-based	learning	and	uncertainty	

In our model for model-based learning, we used a simple approximation as a measure of 

uncertainty. We repeated these simple analyses with a slightly more complex Bayesian model of 

model-based learning, which computes uncertainty explicitly for each single trial. In this model, 

given a certain CS i has been presented in trial t, we use a Dirichlet distribution to model the 

probabilities 𝑇"7  for transitioning to one of the j = 1, .., J possible outcome states: 𝑝'𝑇"7*𝐶𝑆"7, 𝛽"7, =

;
4(¬±

²)
∏ '𝑇",$7 ,

¬±,³
² �;´

$u; , where evidence for each US j given CS i is 𝛽",$7 = γ",$7 + 𝜂, where γ",$7  is the 

number of observed transitions from CS i to US j throughout the experiment up to trial t, and 𝜂 are 

the number of prior observations. In this model of state learning, we computed trial-by-trial 

uncertainty as the variance of the most likely outcome in the Dirichlet distribution. Trial-by-trial 

prediction errors were computed by taking one minus the expected value of the observed outcome, 

𝛿789: = 1 − 𝐸/𝑇",$7 2. 



 

Data availability 
Data sharing will be based on a) the acceptance by the study team that a valid and timely scientific 

question, based on a written protocol, has been posed by those seeking to access the data; b) that 

the role of the original study team will be fully acknowledged. Please contact the corresponding 

author via email to request access to the data. Safeguarding of ethical standards will be ensured by 

submission of a study amendment to the Charité and Dresden ethics committees. Data access for 

questions of scientific integrity may additionally be regulated via the funder.  

Figures 1 to 6 and Supplementary Figures 2 to 12 have associated source data. 

Code availability 
The corresponding author can be contacted with requests for the code. Experimental code is freely 

available upon request to the corresponding author. Analysis code will be provided with data access.  
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Figure Legends 

Figure 1. Assessing sign- and goal-trackers via eye-tracking. (a) Pavlovian conditioning paradigm. 

Conditioned stimuli (CSs) were deterministically followed by positive or negative outcomes (USs). (b-

f) Gaze data in the third second of CS presentation. (b) The gaze index captured the tendency to 

fixate the CS rather than the US. Individual regression coefficients between the gaze index and CS 

value were broadly distributed around zero. Positive and negative thirds of this distribution were 

identified as sign- and goal-trackers, respectively. (c) The gaze index was higher for CSs predicting 

wins than losses (pbootstrap < .05, b = 0.009, SDsubjects = 0.057, SE = 0.005, 95% CI = [0.001 0.022], n = 

129 subjects), but decreased across trials overall (pbootstrap < .001, b = −0.011, SDsubjects = 0.024, SE = 

0.002, 99.9% CI = [−0.017 −0.003], n = 129 subjects). The CS value effect on the gaze index increased 

across trials (pbootstrap < .05, b = 0.0015, SDsubjects = 0.0091, SE = 0.0008, 95% CI = [0.00001 0.0032], n = 

129 subjects; green vs. magenta lines separate over time). (d) Evolution of gaze index for sign-

trackers (left) and goal-trackers (right). (e) Gaze index as a function of CS value. (f) Percentage 

fixation time on the CS (upper panels), the background (middle panels) and the US location (bottom 

panels) for CSs predicting wins (green points) and losses (magenta diamonds) across trials in sign-

trackers (left panels) and goal-trackers (right panels). (g) Difference in BIC values between 

computational models of gaze control in sign- and goal-trackers. Positive values indicate support for 



model Uncertainty (Unc), which assumes model-based uncertainty controls gaze. Negative values 

indicate support for model Value (Val), which assumes CS value from a model-free reinforcement 

learner controls gaze via Pavlovian conditioned responses. For outlier-analyses see Supplementary 

Information. (h) The computational model parameter ω determines weighting between gaze control 

by model-free value (ω = 0) versus by model-based uncertainty (ω = 1). Displayed are distributions of 

the estimated weighting parameter for sign- and goal-trackers. (c-f) Error bars are SEM. 

 

 
Figure 2. Pupil dilation during Pavlovian conditioning in sign-trackers (ST) and goal-trackers (GT). 

(a+b) Pupil size between CS and US presentation (seconds 3-6 after CS onset) at the beginning (trials 

3-8) and end (trials 9-16) of learning for goal- and sign-trackers. (a) Average pupil size during US 

anticipation decreases across learning in goal-trackers (t140 = −2.29, p = .023, b = −0.055, SE = 0.024, 

95% CI = [-0.102 -0.008]) but there was no evidence for a change in sign-trackers (t140 = 0.83, p = 

.405, b = 0.020, SE = 0.025, 95% CI = [-0.028 0.069]; group-difference: F(1, 140) = 4.84, p = .030, ηp
2 = 

0.001, 90% CI = [0 0.003]). (b) Sign-trackers show a CS value effect on pupil size (linear regression 

coefficient) after learning (ST: t1314 = 2.89, p = .004, b = 0.521, SE = 0.180, 95% CI = [0.167 0.874], n = 

43 subjects), but there is no evidence for the same effect in goal-trackers (GT: t1314 = -1.59, p = .112, 

b = -0.280, SE = 0.176, 95% CI = [-0.625  0.066], n = 43 subjects, ST vs. GT: t638 = 3.52, p < .001, b = 

0.285, SE = 0.081, 95% CI = [0.126 0.444], n = 86 subjects). (a+b) Stars (*) indicate time points in 

which the difference is significant (p < .05 from nested tests). (c-f) assess luminance-independent 

pupil size during seconds 5 to 6. (c) Average pupil size decreases from beginning to end of learning in 

goal-trackers (left panel; GT: t140 = −2.29, p = .023, b = −0.055, SE = 0.024, 95% CI = [-0.102 -0.008], n 

= 43 subjects), but there is no corresponding evidence in sign-trackers (ST: t140 = 0.83, p = .405, b = 

0.020, SE = 0.025, 95% CI = [-0.028 0.069], n = 43 subjects; GT vs. ST: F(1, 140) = 4.84, p = .030, ηp
2 = 



0.001, 90% CI = [0 0.003], n = 86 subjects). Sign-trackers show a CS value effect on pupil size after 

learning (right panel; ST: t1314 = 2.89, p = .004, b = 0.521, SE = 0.180, 95% CI = [0.167 0.874], n = 43 

subjects), but the same effect is not significant in goal-trackers (GT: t1314 = -1.59, p = .112, b = -0.280, 

SE = 0.176, 95% CI = [-0.625  0.066], n = 43 subjects, ST vs. GT: t638 = 3.52, p < .001, b = 0.285, SE = 

0.081, 95% CI = [0.126 0.444], n = 86 subjects). (d) Difference in BIC values between computational 

models of pupil dilation in goal- and sign-trackers. Positive values indicate support for model 

Uncertainty (Unc), which assumes pupil dilation reflects model-based uncertainty. Negative values 

indicate support for model Value (Val), which assumes pupil dilation reflects learned value from a 

reinforcement learning model. (e) Average pupil size per trial (points) and pupil size predicted by 

model Uncertainty (lines) for sign- and goal-trackers. (f) CS value effect on normalized pupil size per 

trial (points) and CS value effect predicted by model Value (lines) for sign- and goal-trackers. (a-c,e,f) 

Error bars/bands are SEM. 

 

 
Figure 3. Pavlovian-instrumental transfer (PIT) in sign-trackers (ST) versus goal-trackers (GT). (a) 

PIT: Instrumental approach increased with the value of Pavlovian CSs in sign-trackers more than in 

goal-trackers (pbootstrap < .05, b = 0.49, SE = 0.26, 95% CI = [0.09 Inf], n = 84 subjects). (Inset a1) PIT 

was individually significant in a higher percentage of sign-trackers than goal-trackers (pbootstrap < .05, b 

= 15.8, SE = 8.3, 95% CI = [1.6 Inf], n = 84 subjects). Error bars are SEM. (b) Distributions of individual 

PIT effects. 

 



 
Figure 4. Nucleus accumbens (NAc) BOLD response in sign-trackers (ST) versus goal-trackers (GT). 

(a) Pavlovian conditioning: A temporal difference reward prediction error (RPE) explains right NAc 

BOLD response in sign-trackers better than in goal-trackers (red, unmasked; a priori volume of 

interest, VOI, marked in yellow; F(1,75) = 10.88, SVC pFWE = .026, [12 6 -14], ηp
2 = 0.122, 90% CI = 

[0.031 0.242], n = 78 subjects). (b) RPE signal at the peak response difference in NAc. (c) RPE signal in 

sign-trackers (red, unmasked; t75 = 3.05, SVC pFWE = .025). (d) RPE signal in goal-trackers. (a+c+d) 

Threshold: p < .005, k = 0. 

 



 
Figure 5. Neural appetitive RPE signals in sign-trackers (ST) versus goal-trackers (GT). (a) The 

appetitive model-free reward prediction error explains BOLD responses in sign-trackers but not in 

goal-trackers. Average reward prediction error BOLD response for each volume of interest in sign-

trackers (yellow) and goal-trackers (blue). Nucleus accumbens, NAc; ventral tegmental area, VTA; 

ventromedial prefrontal cortex, vmPFC. Error bars are SEM. (b-f) Voxel-vise results in goal-trackers 

(b) (see glass brain, inset, p < .01, k = 0) and in sign-trackers (c-f) in NAc (e), vmPFC (c), Putamen (d), 

Caudate (d), Amygdala (d), and VTA (f). ST > 0: orange, p < .005; red, p < .01; pink, p < .05; k = 40. 

 

 



 
Figure 6. Neural state prediction error learning signals in sign-trackers (ST) versus goal-trackers 

(GT). (a) Trial-by-trial state prediction error (SPE) predicts BOLD response in intraparietal sulcus (IPS) 

and lateral prefrontal cortex (lPFC) in goal-trackers (t76 = 6.44, p < .001, b = 1.165, SE = 0.181, 95% CI 

= [0.804 1.53], n = 78 subjects) and sign-trackers (t76 = 4.94, p < .001, b = 0.894, SE = 0.181, 95% CI = 

[0.534 1.25], n = 78 subjects), with a stronger response in goal- than sign-trackers in IPS (t67 = 2.12, p 

= .038, b = 0.564, SE = 0.266, 95% CI = [0.034 1.095], n = 78 subjects). (b) Voxel-vise results for the 

contrast of a stronger SPE signal in goal- than in sign-trackers (see glass brain, inset, p < .01, k = 0). 

GT > ST: cyan, p < .005; blue, p < .01; k = 40. 

 


