
SIAM J. NUMER. ANAL. c© 2019 Society for Industrial and Applied Mathematics
Vol. 57, No. 6, pp. 2785–2811

PRIMAL DUAL MIXED FINITE ELEMENT METHODS FOR
INDEFINITE ADVECTION-DIFFUSION EQUATIONS∗

ERIK BURMAN† AND CUIYU HE†

Abstract. We consider primal dual mixed finite element methods for the advection-diffusion
equation. For the primal variable we use standard continuous finite element space and for the flux
we use the Raviart-Thomas space. We prove optimal a priori error estimates in the H1- and the
L2-norms for the primal variable in the low Péclet regime. In the high Péclet regime we also prove
optimal error estimates for the primal variable in the H(div) norm for smooth solutions. Numerically
we observe that the method eliminates the spurious oscillations close to interior layers that pollute
the solution of the standard Galerkin method when the local Péclet number is high. This method,
however, does produce spurious oscillations when outflow boundary layers are present in the solution.
In the last section we propose two simple strategies to remove such numerical artifacts caused by the
outflow boundary layer and validate them numerically.
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1. Introduction. Advection-diffusion problems have been extensively studied
in the last decades for their wide applications in the areas of weather forecasting,
oceanography, gas dynamics, and contaminant transportation in porous media, to
name a few. Many numerical methods for advection-diffusion equations have been
explored in the literature. The two main concerns when designing a numerical method
for advection-diffusion problems are robustness in the advection dominated limit and
satisfaction of local conservation. The standard Galerkin method, using globally con-
tinuous approximation, is known to fail on both points, and therefore much effort has
been devoted to the design of alternative formulations. Typically to make the method
stable in the limit of dominating advection some stabilizing operator is introduced to
provide sufficient control of fine scale fluctuations. The most well known stabilized
method is the streamline upwind Petrov–Galerkin method introduced by Brooks and
Hughes [7] and first analyzed by Johnson, Nävert, and Pitkäranta [37]. In order
to avoid disadvantages associated to the Petrov–Galerkin character, for instance re-
lated to time discretization, the discontinuous Galerkin method was introduced, first
in the context of hyperbolic transport [38, 26]. In this case the stabilizing mecha-
nism is due to the upwind flux, which controls the solution jump over element faces
and adds a dissipation proportional to this jump. In the context of finite element
methods using H1-conforming approximation several stabilized methods using sym-
metric stabilization have been proposed, for instance, the subgrid viscosity method by
Guermond [35], the orthogonal subscale method by Codina [27], and the continuous
interior penalty method, introduced by Douglas and Dupont [31] and analyzed by
Burman and Hansbo [14]. It is well known that for cases of both discontinuous and
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continuous approximation spaces a local conservative numerical flux can be defined. In
the continuous case, however, it must be reconstructed using postprocessing [36, 17].

In this work, to ensure local conservation of the computed flux we design a method
in the mixed setting: we approximate the primal variable in the standard conforming
finite element space and the flux in the Raviart–Thomas space. Recall that mixed
formulations for convection-diffusion equations were first introduced in [46], with an
analysis of the method in the diffusion dominated regime. More recently mixed meth-
ods with Galerkin least squares stabilization has been proposed in [42, 4]. Contrary
to these works our numerical scheme is based on a constrained minimization prob-
lem in which the difference between the flux variable and the flux evaluated using
the primal variable is minimized under the constraint of the conservation law. The
method is very robust and was initially introduced for the approximation of ill-posed
problems, such as the elliptic Cauchy problem; see [15]. Herein we consider well-posed
but possibly indefinite advection-diffusion equations. Compared to [15] we propose a
full analysis of the well-posed problem in both the diffusion dominated regime and the
advection dominated regime. This also bridges the gap between the analyses of [15]
and [16]. Through the latter reference the results herein may be extended to ill-posed
advection-diffusion equations and to the best of our knowledge represent the first ap-
proach for such problems with a local conservation property. The method is also a
close relative to the First order system least square (FOSLS) methods of [18, 19, 23],
which, however, do not have local conservation. Another difference compared to these
works is that we herein choose to represent the total flux, i.e., both diffusive and ad-
vective flux, using the flux variable, which appears to be natural when indefinite
problems are considered and the total flux has to be imposed on the boundary. If
a stabilization term is introduced for the multiplier, the present method becomes a
FOSLS type method with a different flux [15].

Finite element methods for indefinite, or noncoercive, elliptic problems with Neu-
mann boundary conditions were considered first in [20] and more recently in [21, 39, 9]
using finite volume and finite element methods. The method proposed herein is a
mixed variant of the primal dual stabilized finite element method introduced in [9, 12]
for the respective indefinite elliptic and hyperbolic problems, drawing on earlier ideas
on H−1-least square methods from [5]. Contrary to those works we herein consider
a formulation where the approximation spaces are chosen so that it is inf-sup stable.
Hence no stabilizing terms are required. Primal dual methods without stabilization
were proposed for the advection-diffusion problem in [22] and for second order PDE in
[3, 2], inspired by previous work on discontinuous Petrov–Galerkin methods [30, 29].
Similar ideas have recently been exploited successfully in the context of weak Galerkin
methods for elliptic problems on nondivergence form [48], Fokker–Planck equations
[47], and the ill-posed elliptic Cauchy problem in [49]. In [40] a method was introduced
which is reminiscent of the lowest order version of the method we propose herein. The
case of high Péclet number was, however, not considered in [40], so our analysis is
likely to be useful for the understanding of the method in [40] in this regime.

1.1. Main results. For the error analysis, in the low Péclet regime, we prove
optimal convergence orders for the L2- and H1- norms for the primal variable for all
polynomial orders. For the analysis we do not use coercivity, but only the stability
of the solution, showing the interest of the method for indefinite (or T-coercive [24])
problems. In the high Péclet regime we assume that the data of the adjoint operator
satisfies a certain positivity criterion, which is different from the classical one for
coercivity. We then prove an error estimate in negative norm and optimal order
convergence of the error in the streamline derivative of the primal variable measured
in the L2- norm for smooth solutions.
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Numerical results for both the diffusion and advection dominated problems are
presented. Optimal convergence is verified on smooth problems and on a problem with
reduced regularity due to a corner singularity. We note that for problems with an
internal layer only mild and localized oscillations are observed (see Figure 1). However,
for problems with underresolved outflow boundary layers the effect of the layer causes
global pollution of the solution (see Figure 3). In section 6 we propose two simple
strategies to improve the method in this case. More specifically, one method imposes
the boundary condition weakly, and the second approach introduces a weighting of
the stabilizer such that the oscillation is more “costly” closer to the inflow boundary.
This latter variant introduces a notion of upwind direction.

This paper is organized as follows. In section 2, the model problem is presented.
The numerical scheme is proposed, and its stability and continuity are analyzed in
section 3. In section 4, we prove the error estimation results for both problems with
either low or high Péclet numbers. Numerical results are presented in section 5. In
section 6 we propose two strategies to improve accuracy in the presence of under-
resolved outflow boundary layers. Numerical results are also presented to test their
effectiveness.

2. The model problem. Let Ω ∈ Rd, d ∈ {2, 3}, be a polygonal/polyhedral
domain with boundary ∂Ω and outward pointing unit normal n. We consider the
following advection-diffusion equation:

∇ · (βu−A∇u) + µu = f(2.1)

with the boundary conditions

u = g on ΓD and(2.2)

(βu−A∇u) · n = ψ on ΓN ,

where ΓD, ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅, and Γ̄D ∪ Γ̄N = ∂Ω. For simplicity, we assume
that ΓD 6= ∅. The data is given by f ∈ L2(Ω), g ∈ H

1
2 (ΓD), ψ ∈ H−

1
2 (ΓN ),

A ∈ Rd×d, µ ∈ R, and β ∈ [L∞(Ω)]d with β∞ := ‖β‖L∞(Ω). For the analysis in
the advection dominated case we will strengthen the assumptions on the parameters.
Furthermore, we assume that the matrix A is symmetric positive definite. With
the smallest eigenvalue λmin,A > 0 and the largest eigenvalue λmax,A, we assume
that λmax,A/λmin,A is bounded by a moderate constant. The analysis below also
holds in the case of variable A and µ that are piecewise differentiable on polyhedral
subdomains, provided adjustments are made for loss of regularity in the exact solution.

To write the equations on weak form we introduce the following function spaces:

Vg,D =
{
v ∈ H1(Ω) : v = g on ΓD

}
and V0,D =

{
v ∈ H1(Ω) : v = 0 on ΓD

}
.

(2.3)

Consider the weak form: find u ∈ Vg,D such that

a(u, v) = l(v) ∀ v ∈ V0,D(2.4)

with
a(u, v) := (µu, v)Ω + (A∇u− βu,∇v)Ω

and
l(v) := (f, v)Ω + 〈ψ, v〉ΓN

,
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where (·, ·)w and 〈·, ·〉Γ denote the L2 inner product on w ⊂ Rd and Γ ⊂ Rd−1,
respectively. When w coincides with the domain Ω the subscript is omitted below.
We will only assume that the problem satisfies the Babuska–Lax–Milgram theorem
[1], which, in the case of homogenous Dirichlet condition, implies the existence and
uniqueness and the following stability estimate:

‖u‖V ≤ α−1‖l‖V ′ ,

where ‖ · ‖V is the H1-norm, α is the constant of the inf-sup condition, and the dual
norm is defined by

‖l‖V ′ := sup
v∈V
‖v‖V =1

l(v).

The constant α is problem dependent, but for the sake of discussion we will here
assume that α = O(λmin,A). Observe that in the case of nonhomogeneous Dirichlet
condition we may write u = u0 + ug, where u0 ∈ V0,D is unknown and ug ∈ Vg,D is a
chosen lifting of the boundary data such that ‖ug‖V ≤ ‖g‖

H
1
2 (ΓD)

. In that case the

stability may be written as

‖u0‖V ≤ α−1‖lg‖V ′ ,(2.5)

where lg(v) = l(v)− a(ug, v). Clearly the form a satisfies the continuity

a(u, v) ≤ (|µ|+ λmax,A + β∞)︸ ︷︷ ︸
=:ca

‖u‖V ‖v‖V(2.6)

and 1 ≤ ca/α.

3. The mixed finite element framework.

3.1. Some preliminary results. Let {T }h be a family of conforming, quasi-
uniform triangulations of Ω consisting of shape regular simplexes T = {K}. The
diameter of a simplex K will be denoted by hK , and the family index h is the mesh
parameter defined as the largest diameter of all elements, i.e, h = max

K∈T
{hK}. We

denote by F the set of all faces in T , by FI the set of all interior faces in T , and by
FD and FN the sets of faces on the respective ΓD and ΓN . We assume that the mesh
is fitted to the boundary domains ΓD and ΓN so that these coincide with element
faces. For each F ∈ F denote by hF the diameter of F and by nF a unit vector
normal to F . When F is a boundary face, nF is fixed to be outer normal to ∂Ω.

Frequently, we will use the notation a . b meaning a ≤ Cb, where C is a non-
essential constant, independent of h. Significant properties of the hidden constant
will be highlighted.

We denote the standard H1-conforming finite element space of order k by

V kh :=
{
vh ∈ H1(Ω) : v|K ∈ Pk(K) ∀K ∈ T

}
,

where Pk(K) denotes the set of polynomials of degree less than or equal to k in
the simplex K. Let ih : C0(Ω̄) 7→ V kh be the nodal interpolation. The following
approximation estimate is satisfied by ih; see, e.g., [33]. For v ∈ Hς(Ω), ς ≥ 1, there
holds

‖v − ihv‖+ h‖∇(v − ihv)‖ . hs|v|Hk+1(Ω), k ≥ 1,(3.1)

where s = min(ς, k + 1) and ‖ · ‖ = ‖ · ‖L2(Ω).
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For the primal variable we introduce the following spaces:

V kg,D :=
{
vh ∈ V kh : vh = gh on ΓD

}
and V k0,D :=

{
vh ∈ V kh : vh = 0 on ΓD

}
,

where gh is the nodal interpolation of g (or if g has insufficient smoothness, some other
optimal approximation of g) on the trace of ΓD so that gh is piecewise polynomial of
order k with respect to FD.

For the flux variable we use the Raviart–Thomas space

RT l :=
{
qh ∈ H(div,Ω) : qh|K ∈ Pl(K)d ⊕ x(Pl(K) \ Pl−1(K)) ∀K ∈ T

}
with x ∈ Rd being the spatial variable, l ≥ 0, and P−1(K) ≡ ∅. We recall the
Raviart–Thomas interpolant Rh : Hϑ(div,Ω) 7→ RT l, where

Hϑ(div,Ω) :=
{
w ∈ [Hϑ(Ω)]d : ∇ ·w ∈ Hϑ(Ω)

}
,

and its approximation properties [33]. For q ∈ Hϑ(div,Ω), ϑ ≥ 1 and Rhq ∈ RT l,
there holds

‖q −Rhq‖+ h‖∇ · (q −Rhq)‖ . hr
(
|∇ · q|Hr−1(Ω) + |q|Hr(Ω)

)
. hr|q|Hr(Ω),(3.2)

where r = min(ϑ, l + 1).
We also introduce the L2-projection on the face F of some simplex K ∈ T ,

πF,l : L2(F ) 7→ Pl(F ),

such that for any φ ∈ L2(F )

〈φ− πF,l(φ), ph〉F = 0 ∀ ph ∈ Pl(F ).

Then by assuming that the Neumann data ψ is in L2(ΓN ) we define the discretized
Neumann boundary data by its L2-projection such that for each F ∈ FN we have
ψh|F := πF,l(ψ). With the satisfaction of the Neumann condition built in, we define

RT lψ,N = {qh ∈ RT l : qh · n = ψh on ΓN}

and
RT l0,N = {qh ∈ RT l : qh · n = 0 on ΓN}.

For the Lagrange multiplier variable, we introduce the space of functions in L2(Ω)
that are piecewise polynomial of order m in each element by

Xm
h := {xh ∈ L2(Ω) : xh|K ∈ Pm(K) ∀K ∈ T }.

We define the L2-projection πX,m : L2(Ω) 7→ Xm
h such that for any y ∈ L2(Ω)

(y − πX,m(y), xh) = 0 ∀xh ∈ Xm
h .

For functions in Xm
h we define the broken norms,

‖xh‖h :=

(∑
K∈T

‖xh‖2K

) 1
2

and ‖xh‖1,h :=
(
‖∇x‖2h + ‖h− 1

2 [[xh]]‖2FI∪FD

) 1
2

,(3.3)
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where ‖h−1/2xh‖2FI∪FD
:=

∑
F∈FI∪FD

h−1
F ‖xh‖2F and

[[xh]]|F (z) :=

{
lim
ε→0+

(xh(z − εnF )− xh(z + εnF )) for F ∈ FI ,
xh(z) for F ∈ FD ∪ FN .

Also recall the discrete Poincaré inequality [6]: there exists cP > 0 such that

‖xh‖ ≤ cP ‖xh‖1,h ∀xh ∈ Xm
h ,(3.4)

which guarantees that ‖ · ‖1,h is a norm.
Given a function xh ∈ Xm

h we define a reconstruction, ηh(xh) ∈ RT l0,N , of the
gradient of xh such that for all F ∈ FI ∪ FD,

〈ηh(xh) · nF , ph〉F =
〈
h−1
F [[xh]], ph

〉
F
∀ ph ∈ Pl(F ),(3.5)

and, if l ≥ 1, for all K ∈ T ,

(ηh(xh), qh)K = −(∇xh, qh)K ∀ qh ∈ [Pl−1(K)]d.(3.6)

We provide the stability of ηh with respect to the data in the following proposition.

Proposition 3.1. There exists a unique ηh ∈ RT l0,N such that (3.5)–(3.6) hold.
Moreover, ηh satisfies the following stability estimate:

‖ηh‖ ≤ Cds
(
‖πX,l−1∇xh‖2h + ‖h− 1

2πF,l([[xh]])‖2FI∪FD

) 1
2

,(3.7)

where Cds > 0 is a constant depending only on the element shape regularity.

Proof. We refer to [15] for the proof.

We will also frequently use the following inverse and trace inequalities:

‖∇v‖K . h−1‖v‖K ∀ v ∈ Pk(K)(3.8)

and

‖v‖∂K . h−
1
2 ‖v‖K + h

1
2 ‖∇v‖K ∀ v ∈ H1(K).(3.9)

For a proof of (3.8) we refer to Ciarlet [25], and for (3.9) see, e.g., Monk and Süli [44].

3.2. The finite element method. The problem takes the form of finding the
critical point of a Lagrangian L : (vh, qh, xh) ∈ V kg,D ×RT lψ,N ×Xm

h 7→ R defined by

L[vh, qh, xh] :=
1

2
s[(vh, qh), (vh, qh)] + b(qh, vh, xh)− (f, xh).(3.10)

Here xh ∈ Xm
h is the Lagrange multiplier, s(·, ·) denotes the constitutive law on least

squares form, here the equation for the flux,

s[(u,p), (v, q)] := (βu−A∇u− p, βv −A∇v − q) ,(3.11)

and b(·, ·) is the linear form defining the partial differential equation, in our case the
conservation law,

b(q, v, x) := (∇ · q + µv, x).
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By computing the Euler–Lagrange equations of (3.10) we obtain the following
linear system: find (uh,ph, zh) ∈ V kg,D ×RT lψ,N ×Xm

h such that

s[(uh,ph), (vh, qh)] + b(qh, vh, zh) = 0,(3.12)

b(ph, uh, xh)− (f, xh) = 0(3.13)

for all (vh, qh, xh) ∈ V k0,D×RT l0,N×Xm
h . The system (3.12)–(3.13) is of the same form

as that proposed in [10, 13] but without adjoint stabilization. Therefore, to ensure
that the system is well-posed the spaces V kh ×RT l ×Xm

h must be carefully balanced.
Herein we will restrict the discussion to the equal order case k = l = m that is stable
without further stabilization. The arguments can be extended to other choices of
spaces provided suitable extra stabilizing terms are added (see [15] for details).

Observe that the s-operator in (3.11) connects the flux and the primal variables
and, more precisely, brings ph and βuh − A∇uh to be close. In the low Péclet
regime this introduces an effect similar to the penalty on the gradient of the primal
variable used in [9]. In the high Péclet regime, on the other hand, the stability of the
conservation form of the convective derivative is obtained by the strong control of the
conservation law obtained through (3.13) through an inf-sup argument.

Remark 3.1. The constrained-minimization problem introduces an auxiliary vari-
able, i.e., the Lagrange multiplier, which for stability reasons must be chosen as the
discontinuous counterpart of the discretization space for the primal variable (unless
stabilization is applied; see [15]). This results in a system with a substantially larger
number of degrees of freedom than that of the standard Galerkin, the classical mixed
method [32, 45], and the least square method [18]. Nevertheless, it is possible to
reduce the system used in the iterative solver to a positive definite symmetric matrix
where the Lagrange multiplier has been eliminated. This is achieved by iterating on
a least square formulation, the solution of which is not locally mass conservative but
has similar approximation properties. The number of degrees of freedom of the re-
duced system consists only of those of the primal and flux variables. For a detailed
discussion of this approach we refer to [15].

3.3. Approximation, inf-sup condition, and continuity. For the analysis
we introduce the following triple norms on H1(Ω)×H(div,Ω):

|||(v, q)|||−1 :=
(
s[(v, q), (v, q)] + ‖h(∇ · q + µv)‖2

) 1
2 ,(3.14)

|||(v, q)|||] := |||(v, q)|||−1 + ‖µv‖+ ‖h 1
2 q‖F + ‖q‖.(3.15)

To quantify the dependence of the physical parameters in the bounds below we intro-
duce the factor cu := β∞h + ‖A‖∞ + cP |µ|h. Here cP is the constant of inequality
(3.4).

Lemma 3.1 (approximation). For any v ∈ Hς(Ω) and q ∈ [Hϑ(Ω)]d the following
approximation property holds:

|||(v − ihv, q −Rhq)|||−1 ≤ |||(v − ihv, q −Rhq)|||] . cuh
s−1|v|Hs(Ω) + hr|q|Hr(Ω),

(3.16)

where s = min(ς, k + 1) and r = min(ϑ, l + 1).



2792 ERIK BURMAN AND CUIYU HE

Proof. Applying the triangle inequality and the approximation properties (3.1)
and (3.2) gives

|||(v − ihv, q −Rhq)|||−1 .
(
β∞h+ ‖A‖∞ + |µ|h2

)
hs−1|v|Hs(Ω) + hr|q|Hr(Ω).

(3.17)

To estimate the remaining terms note that the trace inequality (3.9) implies∥∥∥h1/2(q −Rhq)
∥∥∥
F
. ‖q −Rhq‖+ h‖∇(q −Rhq)‖,

which, combined with the approximation properties, gives

‖µ(v − ihv)‖+
∥∥∥h 1

2 (q −Rhq)
∥∥∥
F

+ ‖q −Rhq‖ . |µ|hs|v|Hs(Ω) + hr|q|Hr(Ω).(3.18)

(3.16) is then a direct consequence of (3.17) and (3.18). This completes the proof of
the lemma.

To facilitate the analysis we rewrite the system (3.12)–(3.13) in the following
compact form: find (uh,ph, zh) ∈ V kg,D ×RT lψ,N ×Xm

h such that

A[(uh,ph, zh), (vh, qh, xh)] = lh(xh) ∀ (vh, qh, xh) ∈ V k0,D×RT l0,N×Xm
h ,(3.19)

where

A[(uh,ph, zh), (vh, qh, xh)] = s[(uh,ph), (vh, qh)] + b(qh, vh, zh) + b(ph, uh, xh)

and
lh(xh) = (f, xh).

Note that for the exact solution, (u,p), there holds

A[(u,p, 0), (vh, qh, xh)] = lh(xh) ∀ (vh, qh, xh) ∈ V k0,D×RT l0,N×Xm
h .(3.20)

Proposition 3.2 (inf-sup condition). Let k = l = m in (3.19). Then there exists
αc > 0 such that, for all (vh, qh, xh) ∈ V k0,D ×RT k0,N ×Xk

h , there exists (ṽh, q̃h, x̃h) ∈
V k0,D ×RT k0,N ×Xk

h satisfying

αc
(
|||(vh, qh)|||2−1 + ‖xh‖21,h

)
≤ A[(vh, qh, xh), (ṽh, q̃h, x̃h)](3.21)

and

|||(ṽh, q̃h)|||−1 + ‖x̃h‖1,h . |||(vh, qh)|||−1 + ‖xh‖1,h.(3.22)

Proof. Define ηh = ηh(xh) ∈ RT k0,N by taking l = m = k in (3.5)–(3.6) and

ξh := h2(∇ · qh + µvh) ∈ Xk
h . We claim that, by choosing ṽh = vh ∈ V k0,D, q̃h =

qh + εηh ∈ RT k0,N and x̃h = −xh + ξh ∈ Xk
h , there holds (3.21) and (3.22), where ε is

to be determined later.
By the above definitions, we have

A[(vh, qh, xh), (vh, qh + εηh,−xh + ξh)]

(3.23)

= (βvh −A∇vh − qh,βvh −A∇vh − qh − εηh) + (∇ · (qh + εηh) + µvh, xh)

+ (∇ · qh + µvh,−xh + ξh)

= ‖βvh −A∇vh − qh‖2 + ‖h(∇ · qh + µvh)‖2

− ε(βvh −A∇vh − qh,ηh) + ε(∇ · ηh, xh).
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For the last term, it follows from integration by parts, (3.5), (3.6), and the facts that
ηh · n = 0 on ΓN , ∇xh|K ∈ Pk−1(K)d, and xh|F ∈ Pk(F ) that

(∇ · ηh, xh) =
∑
K∈T

(−(ηh,∇xh)K + 〈ηh · nK , xh〉∂K) = ‖∇xh‖2 +
∑

F∈FI∪FD

‖h− 1
2 [[xh]]‖2F ,

which, combined with (3.23), the Cauchy–Schwarz inequality, and (3.7), gives

A[(vh, qh, xh), (vh, qh + εηh,−xh + ξh)](3.24)

≥ ‖βvh −A∇vh − qh‖2 + ‖h(∇ · qh + µvh)‖2 − 1

4
‖βvh −A∇vh − qh‖2

− ε2‖ηh‖2+ε

(
‖∇xh‖2+

∑
F∈FI∪FD

‖h− 1
2 [[xh]]‖2F

)

≥ 3

4
‖βvh −A∇vh − qh‖2+‖h(∇ · qh + µvh)‖2+ε(1− εC2

ds)‖xh‖21,h.

(3.21) is then a direct result of (3.24) by choosing ε = 1
2C
−2
ds and αc = min( 3

4 ,
1
2ε).

To prove (3.22), first applying the triangle inequality gives

|||(ṽh, q̃h)|||−1+‖x̃h‖1,h ≤ |||(vh, qh)|||−1+‖xh‖1,h + |||(0, εηh)|||−1+‖ξh‖1,h.(3.25)

Then applying the trace and inverse inequalities and (3.7) yields

|||(0, εηh)|||−1 = ε (‖ηh‖+ ‖h∇ · ηh‖) . ‖ηh‖ . ‖xh‖1,h(3.26)

and

‖ξh‖1,h . h−1‖ξh‖ = ‖h(∇ · qh + µvh)‖ ≤ |||(vh, qh)|||−1.(3.27)

Finally, combining (3.25)–(3.27) results in (3.22). This completes the proof of the
proposition.

Proposition 3.3 (existence and uniqueness). The linear system defined by (3.19)
admits a unique solution (uh,ph, zh) ∈ V kg,D ×RT kψ,N ×Xk

h .

Proof. In order to prove the invertibility of the square linear system it is equivalent
to prove the uniqueness. Assume that there exist two sets of solutions, (u1,h,p1,h, z1,h)

and (u2,h,p2,h, z2,h), both in V kg,D×RT kψ,N×Xk
h . We then have that for all (vn, qh, xh)

in the space of V k0,D ×RT k0,N ×Xk
h there holds

A[(u1,h − u2,h,p1,h − p2,h, z1,h − z2,h), (vh, qh, xh)] = 0.

By Proposition 3.2, the following must be true:

‖(u1,h − u2,h,p1,h − p2,h)‖−1 + ‖z1,h − z2,h‖1,h = 0,

which immediately implies

z1,h = z2,h and ∇ · (β(u1,h − u2,h)−A∇(u1,h − u2,h)) + µ(u1,h − u2,h) = 0.

Since (2.1)–(2.2) admits a unique trivial solution for zero datum we conclude that
u1,h = u2,h and, hence, p1,h = p2,h. This completes the proof of the proposition.
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We end this section by proving the continuity of the bilinear form. Define

H0,N (div,Ω) = {q ∈ H(div,Ω), q · n = 0 on ΓN}

and
Hψ,N (div,Ω) = {q ∈ H(div,Ω), q · n = ψ on ΓN}.

Proposition 3.4 (continuity). For all (v, q) ∈ H1(Ω)×H0,N (div,Ω) and for all
(vh, qh, xh) ∈ V kh ×RT l ×Xm

h there holds

A[(v, q, 0), (vh, qh, xh)] ≤ |||(v, q)|||] (|||(vh, qh)|||−1 + ‖xh‖1,h).(3.28)

Proof. The inequality (3.28) follows by first using the Cauchy–Schwarz inequality
in the symmetric part of the formulation,

s[(v, q), (vh, qh)] . s[(v, q), (v, q)]
1
2 s[(vh, q), (vh, q)]

1
2 .

For the remaining term we use the divergence formula elementwise to obtain

(∇ · q + µv, xh) =
∑
K∈T

−(q,∇xh)K +
∑

F∈FI∪FD

〈q · nF , [[xh]]〉F + (µv, xh).

(3.28) then follows by applying the Cauchy–Schwarz inequality and (3.4). This com-
pletes the proof of the proposition.

4. Error estimation. In this section we will prove optimal error estimates
for smooth solutions, both in the diffusion dominated and the advection dominated
regimes. When the diffusion dominates we prove optimal error estimates in both the
H1- and L2-norms under very mild stability assumptions on the continuous problem.
In this analysis constants may blow up as the Péclet number becomes large.

For dominating advection we need to make an assumption on the problem data
to prove an error estimate in the H−1-norm. This is then used to prove an estimate
that is optimal for the error in the divergence of the flux, computed using the primal
variable. In this case this corresponds to the convective derivative on conservation
form. However, we cannot improve on the order for the L2-error as for typical residual
based stabilized finite element methods. In this part constants remain bounded as
the Péclet number becomes large.

4.1. Error estimate for the residual. First we prove the optimal convergence
result for the residual, i.e., the optimal convergence for the triple norm (3.14). This
estimate will then be of use in both the high and low Péclet regimes.

Lemma 4.1 (estimate of residual). Assume that (u,p) is the solution to (2.4) with
u ∈ Hς∩Vg,D(Ω), p ∈ [Hϑ(Ω)]d∩Hψ,N (div,Ω) and that (uh,ph, zh) ∈ V kg,D×RT kψ,N×
Xk
h is the solution of (3.19). Then there holds

|||(u− uh,p− ph)|||−1 + ‖zh‖1,h . cuh
s−1|u|Hs(Ω) + hr|p|Hr(Ω),(4.1)

where s = min(ς, k + 1) = and r = min(ϑ, k + 1).

Proof. Firstly, applying the triangle inequality gives

|||(u− uh,p− ph)|||−1 ≤ |||(u− ihu,p−Rhp)|||−1 + |||(uh − ihu,ph −Rhp)|||−1.
(4.2)
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Note that uh − ihu ∈ V k0,D and ph − Rhp ∈ RT k0,N . Then by Proposition 3.2 there

exists (vh, qh, wh) ∈ V k0,D ×RT k0,N ×Xk
h such that

|||(uh − ihu,ph −Rhp)|||2−1 + ‖zh‖21,h
. A[(uh−ihu,ph−Rhp, zh)), (vh, qh, wh)] = A[(u− ihu,p−Rhp, 0), (vh, qh, wh)]

. |||(u− ihu,p−Rhp)|||] (|||(uh − ihu,ph −Rhp)|||−1 + ‖zh‖1,h) .

The last equality and inequality follows from (3.19), (3.20), and Proposition 3.4.
Therefore, we immediately have that

|||(uh − ihu,ph −Rhp)|||−1 . |||(u− ihu,p−Rhp)|||]

which, combining with (3.16) and (4.2), implies (4.1). This completes the proof of
the lemma.

Observe that the hidden constant in (4.1) has no inverse powers of the diffusivity.
Hence, recalling the definition of cu, we have the following corollary.

Corollary 4.1. Under the same assumptions as in Lemma 4.1, if ‖A‖∞ << h,
β∞ = O(1), |µ| = O(1), s = r = k + 1, there holds

|||(u− uh,p− ph)|||−1 + ‖zh‖1,h . hk+1|u|Hk+1(Ω) + hk+1|p|Hk+1(Ω)(4.3)

with hidden constant O(1).

4.2. Error estimates in the diffusion dominated regime. In this subsection
we provide results for the error estimation in the diffusion dominated regime, i.e.,

β∞
λmin,A

is of order 1, where λmin,A is the smallest eigenvalue of A.

Proposition 4.1 (H1-norm estimate). Assume that (u,p) is the solution to (2.4),
u ∈ Hς(Ω) ∩ Vg,D(Ω), ς > 1, and p ∈ [Hϑ(Ω)]d ∩ Hψ,N (div,Ω), ϑ > 0, and that
(uh,ph, zh) ∈ V kg,D × RT kψ,N ×Xk

h is the solution of (3.19). Then the following esti-
mate holds:

‖u− uh‖V . α−1
(
(ca + cu)hs−1|u|Hs(Ω) + hr

(
|p|Hr(Ω) + |ψ|Hr−1/2(ΓN )

))
,(4.4)

where s = min(ς, k + 1) and r = min(ϑ, k + 1).

Remark 4.1. Using the assumption α = O(λmin,A) we see that the constant in
the above estimate satisfies

α−1(ca + cu) ∼ λ−1
min,A(|µ|+ λmax,A + β∞).

Since the expression of the right-hand side blows up as λmin,A goes to zero, the above
estimation is valid only for the diffusion dominated problem.

Proof. To avoid using coercivity arguments, our starting point for the error analy-
sis below is the stability estimate (2.5). Let e = u− uh. We note that e is a solution
to (2.4) with the right-hand side linear operator being r(v) := l(v)− a(uh, v), i.e.,

a(e, v) = r(v).

Now apply the decomposition e = e0 + eg such that eg|ΓD
= e|ΓD

and ‖eg‖V .
‖e‖H1/2(ΓD). It then follows from (2.5) that

‖e0‖V ≤ α−1 sup
v∈V

r(v)− a(eg, v)

‖v‖V
≤ α−1(‖r‖V ′ + ca‖eg‖V ).



2796 ERIK BURMAN AND CUIYU HE

Hence
‖e‖V ≤ ‖e0‖V + ‖eg‖V ≤ α−1(‖r‖V ′ + ca‖eg‖V ) + ‖eg‖V .

For the term ‖eg‖V , by definition and a standard trace inequality, we have

‖eg‖V ≤ C‖u− ihu‖
H

1
2 (ΓD)

≤ C‖u− ihu‖V ≤ Chs−1|u|Hs(Ω).(4.5)

To prove the bound on ‖r‖V ′ we recall that

‖r‖V ′ = sup
v∈V

v=0 on ΓD

a(u− uh, v)

‖v‖V
.

Then by integration by parts, (3.13), and Cauchy–Schwarz inequality, we have

a(u− uh, v) = l(v)− a(uh, v)

(4.6)

= (f, v) + 〈ψ, v〉ΓN
− (A∇uh − βuh,∇v)− (µuh, v)

= (f −∇ · ph − µuh, v) + 〈ψ + ph · n, v〉ΓN
− (ph − βuh +A∇uh,∇v)

= (f−∇ · ph−µuh, v−πX,0v)+(p− ph − β(u− uh) +A∇(u− uh),∇v)

+ 〈ψ − ψh, v − πF,0v〉ΓN

. |||(p− ph, u− uh)|||−1‖∇v‖+ ‖h 1
2 (ψ − ψh)‖ΓN

‖∇v‖

which, combined with (4.5), (4.1), and the following observation (see, e.g., Lemma
5.2 of [34]), ∥∥∥h 1

2 (ψ − ψh)
∥∥∥

ΓN

. hr|ψ|Hr−1/2(ΓN ),

gives (4.4). This completes the proof of the proposition.

In the remaining part of this subsection we will focus on the convergence of the
L2-norm error in the primal variable. For simplicity we here restrict the discussion
to the case of a convex polygonal domain Ω, smooth solutions (s = k + 1, r = k in
Lemma 4.1), and homogeneous Dirichlet condition. We first prove the convergence
result for the L2-norm of the Lagrange multiplier.

Proposition 4.2. Assume that Ω is convex polygonal, u ∈ H1
0 (Ω) ∩ Hk+1(Ω),

and p ∈ [Hk(Ω)]d. Let zh be the Lagrange multiplier of the system (3.19). We have
the following error estimate:

‖zh‖ . hk+1
(
|u|Hk+1(Ω) + |p|Hk(Ω)

)
.(4.7)

Proof. Let φ be the solution such that

∇ · (βφ−A∇φ) + µφ = zh

with boundary condition φ = 0 on ∂Ω. Then by the well-posedness assumption on
(2.1) and the assumption on Ω we have the following stability result:

‖φ‖H2(Ω) . ‖zh‖.(4.8)

Let q = βφ−A∇φ. By adding and subtracting suitable interpolates we have

‖zh‖2 = (zh,∇ · (q −Rhq) + µ(φ− ihφ)) + (zh,∇ ·Rhq + µihφ).(4.9)
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For the first term in (4.9) using the elementwise divergence theorem, the facts that

〈zh, (q −Rhq) · nK〉F = 0 ∀K ∈ T , ∀F ⊂ ∂K

and that

‖q −Rhq‖ . h‖φ‖H2(Ω) . h‖zh‖ and ‖φ− ihφ‖ . h2‖φ‖H2(Ω) . h2‖zh‖,

and (3.4) gives

(zh,∇ · (q −Rhq) + µ(φ− ihφ)) . h(1 + |µ|h)‖zh‖1,h‖zh‖.(4.10)

For the second term in (4.9) we first apply (3.12) with qh = Rh(q) ∈ RT k and
vh = ihϕ ∈ V k0,D with ΓN = ∅; then applying the Cauchy–Schwarz inequality, (3.1),
and (3.2), we have that

(zh,∇ ·Rhq + µihφ) = − (βuh −A∇uh − ph,βihφ−A∇(ihφ)−Rhq)

(4.11)

. ‖βuh −A∇uh − ph‖ (β∞‖φ− ihφ‖+ ‖A‖∞‖∇(φ− ihφ)‖+ ‖q −Rhq‖)

. ‖(βuh −A∇uh − ph)‖
(
β∞h

2 + ‖A‖∞h+ h
)
‖φ‖H2(Ω)

. h‖(βuh −A∇uh − ph)‖‖zh‖.

(4.7) is then a direct consequence of (4.10), (4.11), and (4.1). This completes the
proof of the proposition.

We now proceed to prove the error estimation of the primal variable in the L2-
norm. To estimate the error of the primal variable in the L2-norm we require that
the adjoint problem is well-posed and satisfies a shift theorem for the H2-norm.

Assumption 4.1. Consider the adjoint problem for (2.1). For each ψ ∈ L2(Ω),
we assume that the data is such that the following adjoint problem admits a unique
solution, using Fredholm’s alternative,

−∇ ·A∇ϕ− β · ∇ϕ+ µϕ = ψ in Ω(4.12)

with ϕ|∂Ω = 0. Furthermore, the following regularity result holds true:

‖ϕ‖H2(Ω) . ‖ψ‖.(4.13)

Proposition 4.3. Let u ∈ Hk+1(Ω) ∩H1
0 (Ω), p ∈ [Hk(Ω)]d, and (uh,ph, zh) be

the solution of (3.12)–(3.13). Under Assumption 4.1 we have

‖u− uh‖ . hk+1
(
|u|Hk+1(Ω) + |p|Hk(Ω)

)
.(4.14)

Proof. Let ϕ be the solution of the dual problem (4.12) with the right-hand side
being e := u − uh. Then by integration by parts and the assumption that ϕ = 0 on
∂Ω, we have

‖e‖2 = (f, ϕ) + (uh,∇ ·A∇ϕ+ β · ∇ϕ− µϕ)

= (f −∇ · ph − µuh, ϕ) + (βuh −A∇uh − ph,∇ϕ).
(4.15)

The first term can be estimated by applying (3.13) and the Cauchy–Schwarz
inequality:

(f −∇ · ph − µuh, ϕ) = (f −∇ · ph − µuh, ϕ− πX,kϕ)(4.16)

. h|||(u− uh,p− ph)|||−1‖ϕ‖H2(Ω).
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To estimate the second term we apply (3.12) with qh = Rh(∇ϕ) ∈ RT k and the fact
that ∇ · (Rh(∇ϕ)) = πX,k4ϕ:

(βuh −A∇uh − ph,∇ϕ)(4.17)

= −(zh,∇ · (Rh(∇ϕ))) + (βuh −A∇uh − ph, (∇ϕ−Rh(∇ϕ)))

. ‖zh‖‖πX,k4ϕ‖+ h‖βuh −A∇uh − ph‖‖ϕ‖H2(Ω)

. (‖zh‖+ h‖βuh −A∇uh − ph‖) ‖ϕ‖H2(Ω).

Combing (4.15)–(4.17) and (4.13) gives

‖e‖ . h|||(u− uh,p− ph)|||−1 + ‖zh‖.(4.18)

(4.14) is then a direct consequence of (4.18), (4.1), and (4.7). This completes the
proof of the proposition.

Remark 4.2. Note that the hidden constants in (4.8) and (4.13) blow up in the
advection dominated regime. Therefore the above L2-analysis is relevant only in the
low Péclet regime.

Remark 4.3 (the role of zh). The multiplier variable zh encodes all information
necessary for the a posteriori error estimation. We will show this in the case of
homogeneous Dirichlet conditions, i.e., g = 0 and ΓN = ∅. Note that, in this case,
from (4.6) there holds (neglecting for simplicity the dependence of α)

‖u− uh‖H1(Ω) . |||(u− uh,p− ph)|||−1 . ‖ph − βuh +A∇uh‖+ h‖f − πX,mf‖.

From (3.12) we deduce that

‖ph − βuh +A∇uh‖2 = −(∇ · ph + µuh, zh) = −(f, zh).(4.19)

Combing the above two inequalities gives

‖u− uh‖H1(Ω) . |(f, zh)|1/2 + h‖f − πX,mf‖.(4.20)

This shows that the error only depends on the stability of the continuous problem,
the right-hand side data, and zh.

4.3. Error estimates in the advection dominated regime. In this section,
we consider error estimates in the advection dominated regime. We consider estimates
for smooth solutions s = r = k + 1 in Lemma 4.1 and ‖A‖∞ << h, β∞ = O(1),
|µ| = O(1), so that Corollary 4.1 holds.

For the stability we make the following assumption on the data that ensures
stability of the adjoint equation independent of the diffusivity; see [28].

Assumption 4.2. We assume that the the domain Ω is convex, that the diffusivity
A is a scalar, and β∞ = O(1). Let I denote the identity matrix and∇Sβ := 1/2(∇β+
(∇β)T ), i.e., the symmetric part of ∇β. Then assume that µI − (∇Sβ − 1/2∇ · βI)
is symmetric positive definite, and denote by Λmin its smallest eigenvalue. Moreover
we assume that β · n = 0 on ∂Ω.

We now prove the following inverse inequality regarding the H−1(Ω) norm.

Lemma 4.2. For any vh ∈ V kh the following inverse inequality holds:

‖vh‖ . h−1‖vh‖H−1(Ω).(4.21)
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Proof. Let E ∈ H1
0 (Ω) be the weak solution to

−4E + E = vh in Ω.

Then by the definition and duality inequality we have

‖E‖H1(Ω) = sup
w∈H1

0 (Ω)
‖w‖H1(Ω)=1

((∇E,∇w) + (E,w))

= sup
w∈H1

0 (Ω)
‖w‖H1(Ω)=1

(−4E + E,w) = ‖vh‖H−1(Ω).
(4.22)

By integration by parts we also have

‖vh‖2 = (vh,−4E + E) = (vh, E) + (∇vh,∇E) ≤ ‖vh‖H1(Ω)‖E‖H1(Ω),

which, combined with (4.22) and the inverse inequality, gives (4.21). This completes
the proof of the lemma.

Assumption 4.2 allows us to show that theH1-seminorm of the solution is bounded
uniformly in the diffusion coefficient.

Lemma 4.3. Let φ ∈ H1
0 (Ω) be the solution to (4.12) with the right-hand side

ψ ∈ H1
0 (Ω). Then under the Assumption 4.2 the following stability result holds:

Λmin‖∇φ‖ ≤ ‖∇ψ‖.(4.23)

Proof. By the definition and integration by parts we have

(ψ,−4φ) = (µ∇φ,∇φ) + (β · ∇φ,4φ) + (A4φ,4φ)

Using the relation of [11, equation (3.6)] we have for the second term of the right-hand
side

(β · ∇φ,4φ) =

((
1

2
∇ · βI −∇Sβ

)
∇φ,∇φ

)
.(4.24)

Combining similar terms we then have

((
µI −

(
∇Sβ −

1

2
∇ · βI

))
∇φ,∇φ

)
+ (A4φ,4φ) = (ψ,−4φ) = (∇ψ,∇φ),

(4.25)

and, therefore,

Λmin‖∇φ‖ ≤ ‖∇ψ‖(4.26)

and, as a byproduct, ∥∥∥A1/2D2φ
∥∥∥ .

∥∥∥A1/24φ
∥∥∥ ≤ Λ

−1/2
min ‖∇ψ‖.

This completes the proof of the lemma.
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Proposition 4.4. Let u and uh be the solutions of (2.4) and (3.19), respectively.
Then under Assumption 4.2 we have the following estimate:

‖u− uh‖H−1(Ω) ≤ CPΛ−1
min|||(u− uh,p− ph)|||−1,(4.27)

where CP is the constant of the Poincaré inequality∑
K

‖h−1
K (φ− πX,0φ)‖2K ≤ C2

P ‖∇φ‖2.

Proof. By definition we have

‖u− uh‖H−1(Ω) = sup
w∈H1

0 (Ω)
‖w‖H1(Ω)=1

(u− uh, w).

Let ϕ ∈ H1
0 (Ω) be the solution of (4.12) with the right-hand side an arbitrary function

ψ ∈ H1
0 (Ω) with ‖ψ‖H1(Ω) = 1. Applying the integration by parts, (3.13), and the

Cauchy–Schwarz inequality gives

(u− uh, ψ) = (u− uh,−β · ∇ϕ−A4ϕ+ µϕ)

= (µ(u− uh) +∇ · (p− ph), ϕ)− (β(u− uh)−A∇(u− uh)− (p− ph),∇ϕ)

= (µ(u− uh)+∇ · (p− ph), ϕ− πX,0ϕ)− (β(u− uh)−A∇(u− uh)− (p− ph),∇ϕ)

≤ (CP ‖h(µ(u− uh) +∇ · (p− ph))‖+‖β(u− uh)−A∇(u− uh)−(p− ph)‖) ‖∇ϕ‖
≤ CP |||(u− uh,p− ph)|||−1‖∇ϕ‖ ≤ CPΛ−1

min|||(u− uh,p− ph)|||−1,

where in the last inequality we also applied the stability result of Lemma 4.3. This
completes the proof of the proposition, since the bound is valid for arbitrary ψ ∈
H1

0 (Ω) with ‖ψ‖H1(Ω) = 1.

Corollary 4.2 (negative norm, a posteriori, and a priori bounds). Under the
same hypothesis as Proposition 4.4 the following a posteriori and a priori error esti-
mates hold:

‖u− uh‖H−1(Ω) ≤ CPΛ−1
min(‖h(f − µuh −∇ · ph)‖+ ‖βuh −A∇uh − ph‖)

. CPΛ−1
min(hk+1|u|Hk+1(Ω) + hk+1|p|Hk+1(Ω)).

(4.28)

Proof. The proof is immediate using Proposition 4.4 and Corollary 4.1.

We are now ready to prove the main result.

Theorem 4.1. Let u ∈ Hk+1(Ω) ∩ H1
0 (Ω), p ∈ [Hk+1(Ω)]d, and (uh,ph, zh) be

the solution of (3.12)–(3.13). Assume that ‖A‖∞ . h2. Then under Assumption 4.2
we have the following error estimates:

‖u− uh‖+ ‖∇ · (p− ph)‖ . hk
(
|u|Hk+1(Ω) + |p|Hk+1(Ω)

)
(4.29)

and

‖∇ · (β(u− uh))‖ . hk
(
|u|Hk+1(Ω) + |p|Hk+1(Ω)

)
.(4.30)

Here the hidden constants are bounded in the limit as A→ 0.
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Proof. Applying the triangle inequality, (4.21), and Corollary 4.2 gives

‖u− uh‖ ≤ ‖u− ihu‖+ h−1‖uh − ihu‖H−1(Ω)

. hk+1|u|Hk+1(Ω) + h−1‖u− uh‖H−1(Ω) + h−1‖u− ihu‖H−1(Ω)

. hk+1|u|Hk+1(Ω) + h−1‖u− uh‖H−1(Ω) + h−1‖u− ihu‖

. hk
(
|u|Hk+1(Ω) + |p|Hk+1(Ω)

)
.

(4.31)

Applying the triangle inequality, (4.31), and (4.1) gives

‖∇ · (p− ph)‖ ≤ ‖∇ · (p− ph) + µ(u− uh)‖+ ‖µ(u− uh)‖
. h−1|||(u− uh,p− ph)|||−1 + ‖µ(u− uh)‖
. hk

(
|u|Hk+1(Ω) + |p|Hk+1(Ω)

)
.

(4.32)

(4.29) is then a direct result of (4.31) and (4.32).
To prove (4.30) we first apply the triangle inequality,

‖∇ · (β(u− uh))‖ ≤ ‖∇ · (β(u− ihu))‖+ ‖∇ · (β(uh − ihu))‖.(4.33)

The first term in (4.33) can be easily estimated using (3.1). For the second term in
(4.33) applying the triangle and inverse inequalities gives

‖∇ · (β(uh − ihu))‖ ≤ h−1‖β(uh − ihu)− (Rhp− ph)−A∇(uh − ihu)‖
+ h−2‖A‖∞ (‖(uh − u)‖+ ‖(ihu− u)‖)
+ ‖∇ · (p− ph)‖+ ‖∇ · (p−Rhp)‖.

(4.34)

By the triangle inequality, Corollary 4.1, and (3.17) we have

h−1‖β(uh − ihu)−(Rhp− ph)−A∇(uh − ihu)‖ . hk(|u|Hk+1(Ω) + |p|Hk+1(Ω)).

(4.35)

By the assumption ‖A‖∞ . h2, (3.1), (3.2), and (4.29), the remaining terms in (4.34)
can be estimated as follows:

h−2‖A‖∞ (‖(uh − u)‖+ ‖(ihu− u)‖) + ‖∇ · (p− ph)‖+ ‖∇ · (p−Rhp)‖
. hk

(
|u|Hk+1(Ω) + |p|Hk+1(Ω) + |∇ · p|Hk(Ω)

)
.

(4.36)

Finally, (4.30) is a direct consequence of (4.33)–(4.36). This completes the proof of
the lemma.

Remark 4.4. It is possible to prove Theorem 4.1 under the standard coercivity
assumption for advection-diffusion problems, but not Proposition 4.4. Also note that
we need the diffusivity to be O(h2) to ensure that the high Péclet result holds. This
is a stronger assumption than usual for convection-diffusion equations, but a similar
condition was introduced in the analysis of the FOSLS method in [23].

Remark 4.5. Observe that the results in the above section are both suboptimal
compared to approximation (except (4.30)) and somewhat academic due to the strong
assumptions on the velocity field. The interest of the results resides in the fact that
the bounds of Proposition 4.4 and Corollary 4.2 appear to use the stability of the
continuous problem and the stability of the numerical method in an optimal way. Since
the estimate on the residuals is optimal, it is difficult to see how to improve on the
estimate. In the numerical section below, we explore the performance of the method
on a less restrictive set of physical parameters. The error bounds in Corollary 4.2 and
(4.30) are similar to the corresponding results for classical stabilized methods.
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5. Numerical experiments. In this section we present results for numerical
experiments in both the diffusion dominated and convection dominated regimes. The
numerical results are produced using the FEniCS software [41].

Example 5.1 (diffusion problem with singularity). In this example we test a
pure diffusion problem, i.e., ε = 1, β = 0, and µ = 0, on the L-shaped domain
Ω = (−1, 1)2 \ (−1,−1)2. We consider the problem with solution being

u(r, θ) = r2/3 sin(2θ/3), θ ∈ [0, 3π/2]

in polar coordinates. It is well known that the solution satisfies

−4u = 0 in Ω

and belongs to H5/3−ε(Ω) for ε > 0 with the singularity located at the reentrant
corner, i.e., (0, 0). The numerical scheme takes the pure Dirichlet boundary condition.

The magnitude of errors and their corresponding convergence rates are presented
in Table 1. For this pure diffusion problem, where the solution has a singularity and
limited smoothness, we observe optimal convergence for both the primal and flux
variables. The flux variable is a superior approximation of the fluxes, but only by a
factor two.

Example 5.2 (indefinite problem). In this example we consider the indefinite
problem used in [21, 9]; the parameters are chosen such that A is the identity matrix,
µ = 0, and

β = (−100(x+ y),−100(y − x))

with the domain Ω = [0, 1]2. The problem is set to satisfy the homogeneous Dirichlet
boundary condition and has ‖u‖ = 1. It is easy to check that ∇ · β = −200 which
makes the problem highly noncoercive with a medium high Péclet number. The
optimal convergence rates are verified in Table 2 and Table 3 for orders k = 1 and
k = 2, respectively.

Example 5.3 (pure convection problem with internal layer). In this example we
consider a pure convection problem with an internal layer. See [33, section 5.2.3]. The
solution has the following representation:

u(x, y) = exp(−σρ(x, y)arccos

(
y + 1

ρ(x, y)

)
arctan

(
ρ(x, y)− 1.5

δ

)
,(5.1)

where σ = 0.1, ρ(x, y) =
√
x2 + (y + 1)2. It is easy to verify that

∇ · β = 0, β · ∇u+ σu = 0

Table 1
Errors and convergence rates for Example 5.1 with k = 1.

h ‖u− uh‖ Rate ‖u− uh‖H1(Ω) Rate ‖p− ph‖ Rate

1/16 3.025E-3 1.35 7.790E-2 0.65 4.110E-2 0.67
1/32 1.189E-3 1.35 4.949E-2 0.65 2.589E-2 0.67
1/64 4.689E-4 1.34 3.315E-2 0.66 1.631E-2 0.67
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Table 2
Errors and convergence rates for Example 5.2 with k = 1.

h ‖u− uh‖ Rate ‖u− u‖H1(Ω) Rate ‖p− ph‖ Rate

1/16 9.469E-3 1.79 4.631E-1 1.01 8.281E-1 1.86
1/32 2.736E-3 1.90 2.295E-1 1.00 2.274E-1 1.92
1/64 7.317E-4 1.96 1.143E-1 1.00 6.025E-2 1.96
1/128 1.876E-4 1.99 5.708E-2 1.00 1.546E-2 1.99

h ‖∇ · (p− ph)‖ Rate ‖zh‖ Rate
1/16 1.513E-0 2.00 3.494E-3 2.42
1/32 3.789E-1 2.00 6.524E-4 2.02
1/64 9.478E-2 2.00 1.599E-4 1.99
1/128 2.369E-2 2.00 4.036E-5 1.99

Table 3
Errors and convergence rates for Example 5.2 with k = 2.

h ‖u− uh‖ Rate ‖u− u‖H1(Ω) Rate ‖p− ph‖ Rate

1/16 1.585E-4 3.19 1.597E-2 2.00 1.796E-2 3.19
1/32 1.733E-5 3.15 3.986E-3 2.00 1.969E-3 3.15
1/64 1.958E-6 3.05 9.965E-4 2.00 2.220E-4 3.06
1/128 2.358E-7 3.01 2.491E-4 2.00 2.671E-5 3.01

h ‖∇ · (p− ph)‖ Rate ‖zh‖ Rate
1/16 4.141E-2 3.00 7.311E-5 3.32
1/32 5.181E-3 3.00 7.283E-6 3.12
1/64 6.478E-4 3.00 8.352E-7 3.03
1/128 8.098E-5 3.00 1.018E-7 3.00

Table 4
Errors and convergence rates for Example 5.3 with δ = 1 and k = 1.

h ‖u− uh‖ Rate ‖u− u‖H1(Ω) Rate ‖p− ph‖ Rate

1/32 6.021E-5 2.04 8.591E-3 1.00 6.939E-5 2.03
1/64 1.475E-5 2.03 4.281E-3 1.00 1.711E-5 2.02
1/128 3.638E-6 2.02 2.135E-3 1.00 4.235E-6 2.01

h ‖∇ · (p− ph)‖ Rate ‖∇ · (β(u− uh))‖ Rate ‖zh‖ Rate
1/32 6.021E-6 2.04 5.343E-3 1.00 1.084E-7 2.99
1/64 1.475E-6 2.03 2.669E-3 1.00 1.360E-8 3.00
1/128 3.638E-7 2.02 1.333E-3 1.00 1.703E-9 3.00

for β = 1
ρ(x,y) (y+ 1,−x) and that the inflow boundary, Γ− = {x ∈ ∂Ω,β(x) ·n < 0},

is x = 0 and y = 1. The solution possesses an internal layer when δ is small. The
finite element scheme we use for this problem is to find u ∈ V kg,Γ− , p ∈ RT k, and

zh ∈ Xk
h such that (3.12) and (3.13) hold.

We first test the case when δ = 1 to test the performance of our method on
smooth problems (see performance results in Table 4). We further test the case when
δ = 0.01 in which case the solution has a sharp internal layer (see performance results
in Table 5).

To test the robustness of our method for the pure convection problem, in Figure 1
we show the numerical solutions with k = 1 and δ = 0.001 on structured meshes with
various mesh sizes. We observe that, even for the highly sharp internal layer problem
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Table 5
Errors and convergence rates for Example 5.3 with δ = 0.01.

h ‖u− uh‖ Rate ‖u− u‖H1(Ω) Rate ‖p− ph‖ Rate

1/128 2.616E-2 1.17 3.801E-0 0.64 2.615E-2 1.17
1/256 9.421E-3 1.47 2.012E-0 0.91 9.421E-3 1.47
1/512 2.515E-3 1.91 8.461E-1 1.25 2.515E-3 1.91

h ‖∇ · (p− ph)‖ Rate ‖∇ · (β(u− uh))‖ Rate ‖zh‖ Rate
1/128 2.616E-3 1.17 3.435E-1 0.36 1.375E-6 2.25
1/256 9.421E-4 1.47 2.362E-1 0.54 2.367E-7 2.54
1/512 2.515E-4 1.91 1.423E-1 0.73 3.200E-8 2.89

(a) k = 1

h ‖u− uh‖ Rate ‖u− u‖H1(Ω) Rate ‖p− ph‖ Rate

1/128 4.470E-3 1.77 1.123E-0 1.25 4.470E-3 1.77
1/256 8.402E-4 2.41 3.103E-1 1.86 8.402E-4 2.41
1/512 8.442E-5 3.31 5.018E-2 2.63 8.441E-5 3.32

h ‖∇ · (p− ph)‖ Rate ‖∇ · (β(u− uh))‖ Rate ‖zh‖ Rate
1/128 4.470E-4 1.77 6.839E-2 1.06 8.267E-8 2.91
1/256 8.402E-5 2.41 2.610E-3 1.39 7.847E-9 3.39
1/512 8.442E-6 3.32 7.817E-3 1.74 5.088E-10 3.94

(b) k = 2

Fig. 1. Various numerical solutions for Example 5.3 with δ = 0.001.

on relatively coarse meshes, the numerical solutions show no signs of global spurious
oscillations. When the mesh size does not resolve the layer only mild and localized
oscillations present around the internal layer.

Example 5.4 (boundary layer). In this example we consider the boundary layer
problem [43]
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Table 6
Errors and convergence performance for Example 5.4 with ε = 1.

h ‖u− uh‖ Rate ‖u− uh‖H1(Ω) Rate ‖p− ph‖ Rate

1/32 5.084E-4 1.99 4.240E-2 0.99 1.213E-3 2.00
1/64 1.273E-4 2.00 2.123E-2 1.00 3.035E-4 2.00
1/128 3.184E-5 2.00 1.062E-2 1.00 7.592E-5 2.00

(a) k = 1

h ‖u− uh‖ Rate ‖u− uh‖H1(Ω) Rate ‖p− ph‖ Rate

1/32 5.129E-6 3.00 1.231E-3 2.00 3.602E-5 2.58
1/64 6.415E-7 3.00 3.081E-4 2.00 6.166E-6 2.55
1/128 8.021E-8 3.00 7.705E-5 2.00 1.071E-6 2.52

(b) k = 2

−ε4u+ 2
∂u

∂x
+
∂u

∂y
= f

on the domain Ω = [0, 1]2, where the true solution has the following representation:

u = (1− exp(−(1− x)/ε)) ∗ (1− exp(−(1− y)/ε)) ∗ cos(π(x+ y))

and ε ∈ R. The solution has a O(ε) boundary layer along the right top sides of the
domain, and the value of ε determines the strength of the boundary layer.

We first test the value ε = 1 in which case the solution is smooth. The magnitude
of the errors and their corresponding convergence rates are listed in Table 6 for the
first and second orders, i.e., k = 1 and k = 2. For both orders we observe optimal
convergence of the errors for the primal variable in both the L2- and H1- norms.
For the flux variable we observe the optimal rate for the linear order and a slightly
suboptimal rate for the second order, compared to interpolation. Nevertheless the
flux variable provides an approximation of the flux that is more accurate than that
using the primal variable by two orders of magnitude. Note that the convergence
orders observed are in all cases consistent with the theoretical results.

We now test optimal convergence rate by letting ε = 0.01 (see performance results
in Table 7). For both the first and second orders, the method produces the optimal
convergence rate for the streamline derivative. For the flux variable we observe the
optimal convergence for both orders 1 and 2. For the primal variable we observe the
optimal convergence rates both in the L2- and H1- norms.

To test the robustness of our method, we compute with ε = 0.002 in which case the
boundary layer is extremely sharp. The numerics, however, produce global spurious
oscillations when the layer is not resolved. We also compared our method with the
FOSLS method in [18, 19]. The results by FOSLS also produce global oscillations
while our method shows slightly better performance.

In Figure 2 we compare the convergence performance between FOSLS and the
primal dual method in the linear case when ε = 0.01. We observe that both meth-
ods yield optimal convergence results for the primal variable. However, for the
flux variable the primal dual variable converges one order faster than the FOSLS
method.

6. Outflow boundary layers. From numerics we have seen that the current
method does not handle outflow boundary well because of its lack of upstream mecha-
nism. In this section we propose two simple modifications of the method based on the
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Table 7
Errors and convergence rates for Example 5.4 with ε = 0.01.

h ‖u− uh‖ Rate ‖u− u‖
H1(Ω)

Rate ‖p− ph‖ Rate

1/32 9.393E-2 1.42 6.2560E-0 0.97 2.066E-1 1.42

1/64 3.502E-2 1.79 3.1999E-0 1.00 7.724E-2 1.79

1/128 1.010E-2 1.94 1.5916E-0 1.00 2.233E-2 1.94

1/256 2.633E-3 1.98 7.9304E-1 1.00 5.823E-3 1.98

h ‖∇ · (p− ph)‖ Rate ‖β · ∇(u− uh)‖ Rate ‖zh‖ Rate

1/32 8.988E-1 1.55 9.916E-0 0.97 1.267E-3 1.71

1/64 3.072E-1 1.85 5.055E-0 1.01 3.850E-4 1.92

1/128 8.518E-2 1.96 2.508E-0 1.00 1.019E-4 1.98

1/256 2.190E-2 1.99 1.248E-0 1.00 2.586E-5 1.99

(a) k = 1

h ‖u− uh‖ Rate ‖u− u‖
H1(Ω)

Rate ‖p− ph‖ Rate

1/32 1.704E-2 2.78 1.836E-0 1.67 3.708E-2 2.83

1/64 2.475E-3 3.28 5.768E-1 1.88 5.223E-3 3.39

1/128 2.544E-4 3.26 1.569E-1 1.96 4.979E-4 3.38

1/256 2.659E-5 3.10 4.024E-2 1.99 4.762E-5 3.13

h ‖∇ · (p− ph)‖ Rate ‖β · ∇(u− uh)‖ Rate ‖zh‖ Rate

1/32 2.242E-1 2.45 2.909E-0 1.69 1.756E-4 2.95

1/64 4.103E-2 2.82 9.076E-1 1.88 2.274E-5 3.51

1/128 5.814E-3 2.95 2.463E-1 1.96 1.993E-6 3.60

1/256 7.521E-4 2.99 6.311E-2 1.99 1.634E-7 3.38

(b) k = 2

current setting that aim to remove the global spurious oscillation. More specifically,
one method imposes the boundary condition weakly, whereas the other takes the ap-
proach of weighting the stabilizer such that the oscillation is more “costly” closer to
the inflow boundary and, hence, introduces a notion of upwind direction.

6.1. Weakly imposed boundary conditions. In this approach we weakly
impose the Dirichlet boundary conditions, giving different weight to the inflow and
outflow boundary. The idea is similar to [23] for the FOSLS method. The modified
weak formulation is to find (uh,ph, zh) ∈ V kh ×RT k ×Xk

h such that

A1[(uh,ph, zh), (vh, qh, xh)] = lh(xh) ∀ (vh, qh, xh) ∈ V kh ×RT k×Xk
h ,(6.1)

where

A1[(uh,ph, zh), (vh, qh, xh)] = b(qh, vh, zh) + b(ph, uh, xh) + s[(uh,ph), (vh, qh)]

+
〈
(h[β · n]2− + γε2/h)u, v

〉
∂Ω

and
lh(xh) = (f, xh) +

〈
(h[β · n]2− + γε2/h)g, v

〉
∂Ω
.

In the above formulation [β · n]− = min(0, β · n) and ε = min(λA), i.e., the smallest
eigenvalue of A. The dimensionless parameter γ is free and can be varied to determine
when the Dirichlet condition should come into effect; if set too large the spurious be-
havior will appear in the transition regime from dominating convection to dominating
diffusion.
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Fig. 2. Comparison between primal dual method and least square Method.

Remark 6.1. Note that in the above method the Dirichlet boundary condition is
enforced weakly everywhere. Alternatively one may impose the Dirichlet condition
strongly on the inflow boundary. The outcome is similar.

We test the method on a commonly used benchmark problem with both an in-
ternal and outflow boundary layers [8].

Example 6.1. Let u be the solution that satisfies

∇ · (βu− ε∇u) = 0 on Ω,

u = 1 on ΓL,

u = 0 on ∂Ω \ ΓL,

where Ω = [0, 1]2, β = (1,−0.5), and ΓL is the left boundary of the square, i.e., x = 0.
ε is the diffusion coefficient, and in our test we choose ε = 0.001 in which case the
internal and boundary layers are very sharp.

In Figure 3 we compare the results between the original method (see figures on
the top) and the method of (6.1) (see figures at the bottom). We observe that the
weak boundary condition method results in an accurate solution in the bulk, with
unresolved layers, that are resolved as the mesh-size is small enough, whereas the
approximation with strongly imposed conditions has a globally large error.

6.2. Weighted stabilization method. In this subsection we explore how a
notion of upwinding can be introduced in the present framework. We propose to
introduce a nondimensional weight function in the stabilizing term s. The motivation
here is to change the stabilization making oscillations more “costly” closer to the inflow
boundary; this way a notion of flow direction is introduced, mimicking the upwind



2808 ERIK BURMAN AND CUIYU HE

(a) (b) (c)

Fig. 3. Numerical performance of the weak boundary method for Example 6.1.

behavior of classical stabilized methods. More precisely, we consider η : Ω→ R such
that

η > 0 and β · (∇η) < 0.(6.2)

Defining eβ = |β|−1β, we could choose, e.g.,

η = 3− eβ · (x, y)

for Example 5.4, and, for Example 6.1,

η = 2− eβ · (x, y).

It is easy to check that (6.2) holds for both problems. We then introduce ηp, for some
p > 0 to be specified, as a weight in s. Note that the power p is introduced to modify
the decay of η along the characteristic.

The finite element setting is then to find (uh,ph, zh) ∈ V kg,D × RT k × Xk
h such

that

A2[(uh,ph, zh), (vh, qh, xh)] = lh(xh) ∀ (vh, qh, xh) ∈ V k×RT k×Xk
h ,(6.3)

where

A2[(uh,ph, zh), (vh, qh, xh)] = sη[(uh,ph), (vh, qh)] + b(ph, uh, xh) + b(qh, vh, zh),

sη[(uh,ph), (vh, qh)] = (ηp(p+A∇u− βu), (q +A∇v − βv))

and
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(a) (b) (c)

Fig. 4. Numerical performance of the weighted stabilization method.

lh(xh) = (f, xh).

Figure 4 shows the numerical solutions solved by (6.3) on the same meshes as in
Figure 3. We observe that the global spurious oscillation has been eliminated even
for very coarse mesh. Local oscillations along the outflow boundary appear when the
layer is not fully resolved.

Acknowledgments. The authors wish to thank the reviewers for constructive
remarks that helped improve the manuscript.
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