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Abstract:  Fast and reliable quantification of cone photoreceptors is a bottleneck in the 
clinical utilization of adaptive optics scanning light ophthalmoscope (AOSLO) systems for 
the study, diagnosis, and prognosis of retinal diseases. To-date, manual grading has been the 
sole reliable source of AOSLO quantification, as no automatic method has been reliably 
utilized for cone detection in real-world low-quality images of diseased retina. We present a 
novel deep learning based approach that combines information from both the confocal and 
non-confocal split detector AOSLO modalities to detect cones in subjects with 
achromatopsia. Our dual-mode deep learning based approach outperforms the state-of-the-art 
automated techniques and is on a par with human grading. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

The ability to quantify the photoreceptor mosaic geometry is useful for the study, diagnosis, 
and prognosis of diseases that affect photoreceptors such as achromatopsia (ACHM), age-
related macular degeneration, retinitis pigmentosa (RP)/Usher syndrome, Stargardt disease, 
choroideremia, and blue-cone monochromacy [1, 2], or for evaluating subclinical 
photoreceptor disruption from head trauma [3]. Adaptive optics (AO) ophthalmoscopes reveal 
the photoreceptor mosaic in the living human retina [4–12], and have been used to study its 
geometry in healthy [4, 13–19] and pathologic [3, 20–26] eyes. 
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AOSLO imaging is already being used to select candidates for and predict the 
effectiveness of gene therapy [32, 49] for conditions such as ACHM, a retinal condition 
characterized by a lack of cone function resulting in color blindness, photophobia, nystagmus, 
and severely reduced visual acuity [50]. Unfortunately, quantification of cone photoreceptors 
in ACHM AOSLO images is especially challenging, even for human graders [34]. In confocal 
AOSLO images of healthy eyes, cones appear as bright spots in the image, whereas in ACHM 
they appear as dark spots [51]. As the rods appear to waveguide normally, it is sometimes 
possible to indirectly infer the presence of a cone when seeing a dark spot circumscribed by a 
ring of reflective rods, however this becomes challenging in images closer to the central 
fovea, where rod numerosity declines. Non-confocal split detector AOSLO imaging reveals 
remnant cone inner segment structures in areas that lack reflectivity in confocal AOSLO [29, 
52] (Figs. 1(a) and 1(b)), showing potential for predicting therapeutic outcomes [32, 49], and 
thus making automated detection of these cone structures desirable. Even though visualization 
of cones is possible with this imaging modality, there is often uncertainty in identifying cone 
locations due to the relatively poor contrast seen in typical images such as that shown in Fig. 
1(c). It has been recently suggested that combining multiple modalities could improve the 
reliability/accuracy/other for cone identification [32], and it has been shown that multiple 
AOSLO modalities could improve performance in other image processing tasks such as 
mosaicking [53]. As seen in Fig. 1(d), simultaneously captured confocal AOSLO images can 
help resolve some ambiguities seen in the matching split detector image, even with cones 
lacking intensity in ACHM subjects. 

As with other computer vision tasks, automated analyses of AOSLO images with deep 
learning convolutional neural networks (CNNs) that learn features directly from training data 
are expected to outperform classic machine learning based techniques. CNNs have been 
utilized in numerous ophthalmic image processing applications [46, 54–63]. In our previous 
work [46], we developed the first CNN based AOSLO image analysis method for detecting 
cones, demonstrating superiority to existing state-of-the-art techniques. Here, we expand on 
this work by combining the complimentary confocal and non-confocal AOSLO information 
to improve performance in low contrast images of diseased retinas. 

The organization of the paper is as follows. We first introduce a novel dual-modality deep 
learning AOSLO segmentation paradigm for identification of cones. We then demonstrate 
that our method that incorporates dual-mode information from confocal and split detector 
AOSLO images outperforms a comparable deep learning method that only uses a single 
AOSLO imaging modality. Finally, we show that the dual-mode deep learning based method 
outperforms the state-of-the-art automated techniques and is on a par with human grading. 

2. Methods 

Our proposed algorithm for identification of cones, shown in Fig. 2, is comprised of a training 
and a testing phase. In the training phase, a set of reflectance confocal and split detector 
AOSLO image pairs was broken into small patches. A subset of all patches was classified 
(labeled) as cone and non-cone, based on manual markings. These labeled patches were used 
to train a CNN classifier, which was then utilized to generate probability maps from all 
overlapping patches in the images, which in turn allowed optimization of the parameters used 
for detecting cones. The trained CNN was then used to detect cones in previously unseen 
image pairs without known labels. 
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