Pasea, L;
Chung, S-C;
Pujades-Rodriguez, M;
Shah, AD;
Alvarez-Madrazo, S;
Allan, V;
Teo, JT;
... Hemingway, H; + view all
(2019)
Bleeding in cardiac patients prescribed antithrombotic drugs: electronic health record phenotyping algorithms, incidence, trends and prognosis.
BMC Medicine
, 17
, Article 206. 10.1186/s12916-019-1438-y.
Preview |
Text
s12916-019-1438-y.pdf - Published Version Download (1MB) | Preview |
Abstract
BACKGROUND Clinical guidelines and public health authorities lack recommendations on scalable approaches to defining and monitoring the occurrence and severity of bleeding in populations prescribed antithrombotic therapy. Methods We examined linked primary care, hospital admission and death registry electronic health records (CALIBER 1998–2010, England) of patients with newly diagnosed atrial fibrillation, acute myocardial infarction, unstable angina or stable angina with the aim to develop algorithms for bleeding events. Using the developed bleeding phenotypes, Kaplan-Meier plots were used to estimate the incidence of bleeding events and we used Cox regression models to assess the prognosis for all-cause mortality, atherothrombotic events and further bleeding. RESULTS We present electronic health record phenotyping algorithms for bleeding based on bleeding diagnosis in primary or hospital care, symptoms, transfusion, surgical procedures and haemoglobin values. In validation of the phenotype, we estimated a positive predictive value of 0.88 (95% CI 0.64, 0.99) for hospitalised bleeding. Amongst 128,815 patients, 27,259 (21.2%) had at least 1 bleeding event, with 5-year risks of bleeding of 29.1%, 21.9%, 25.3% and 23.4% following diagnoses of atrial fibrillation, acute myocardial infarction, unstable angina and stable angina, respectively. Rates of hospitalised bleeding per 1000 patients more than doubled from 1.02 (95% CI 0.83, 1.22) in January 1998 to 2.68 (95% CI 2.49, 2.88) in December 2009 coinciding with the increased rates of antiplatelet and vitamin K antagonist prescribing. Patients with hospitalised bleeding and primary care bleeding, with or without markers of severity, were at increased risk of all-cause mortality and atherothrombotic events compared to those with no bleeding. For example, the hazard ratio for all-cause mortality was 1.98 (95% CI 1.86, 2.11) for primary care bleeding with markers of severity and 1.99 (95% CI 1.92, 2.05) for hospitalised bleeding without markers of severity, compared to patients with no bleeding. CONCLUSIONS Electronic health record bleeding phenotyping algorithms offer a scalable approach to monitoring bleeding in the population. Incidence of bleeding has doubled in incidence since 1998, affects one in four cardiovascular disease patients, and is associated with poor prognosis. Efforts are required to tackle this iatrogenic epidemic.
Type: | Article |
---|---|
Title: | Bleeding in cardiac patients prescribed antithrombotic drugs: electronic health record phenotyping algorithms, incidence, trends and prognosis |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s12916-019-1438-y |
Publisher version: | https://doi.org/10.1186/s12916-019-1438-y |
Language: | English |
Additional information: | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
Keywords: | Bleeding, Electronic health records, Phenotype, Antithrombotic therapy, Prognosis |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Population Science and Experimental Medicine UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics > Clinical Epidemiology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10086556 |
Archive Staff Only
View Item |