UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Quantum-classical generative models for machine learning

Benedetti, Marcello; (2019) Quantum-classical generative models for machine learning. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Benedetti_phd_thesis_ecopy.pdf]
Benedetti_phd_thesis_ecopy.pdf - Accepted Version

Download (11MB) | Preview


The combination of quantum and classical computational resources towards more effective algorithms is one of the most promising research directions in computer science. In such a hybrid framework, existing quantum computers can be used to their fullest extent and for practical applications. Generative modeling is one of the applications that could benefit the most, either by speeding up the underlying sampling methods or by unlocking more general models. In this work, we design a number of hybrid generative models and validate them on real hardware and datasets. The quantum-assisted Boltzmann machine is trained to generate realistic artificial images on quantum annealers. Several challenges in state-of-the-art annealers shall be overcome before one can assess their actual performance. We attack some of the most pressing challenges such as the sparse qubit-to-qubit connectivity, the unknown effective-temperature, and the noise on the control parameters. In order to handle datasets of realistic size and complexity, we include latent variables and obtain a more general model called the quantum-assisted Helmholtz machine. In the context of gate-based computers, the quantum circuit Born machine is trained to encode a target probability distribution in the wavefunction of a set of qubits. We implement this model on a trapped ion computer using low-depth circuits and native gates. We use the generative modeling performance on the canonical Bars-and-Stripes dataset to design a benchmark for hybrid systems. It is reasonable to expect that quantum data, i.e., datasets of wavefunctions, will become available in the future. We derive a quantum generative adversarial network that works with quantum data. Here, two circuits are optimized in tandem: one tries to generate suitable quantum states, the other tries to distinguish between target and generated states.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Quantum-classical generative models for machine learning
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
Keywords: quantum computing, quantum machine learning, hybrid quantum-classical systems, noisy intermediate-scale quantum technology
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
URI: https://discovery.ucl.ac.uk/id/eprint/10086495
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item