2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD)

Authors/Task Force Members: Francesco Cosentino* (ESC Chairperson) (Sweden), Peter J. Grant*1 (EASD Co-Chairperson) (United Kingdom), Victor Aboyans (France), Cliff Bailey1 (United Kingdom), Antonio Ceriello1 (Spain), Victoria Delgado (Netherlands), Massimo Federici1 (Italy), Gerasimos Filippatos (Greece), Diederick Grobbee (Netherlands), Tina Hansen (Denmark), Heikki Huikuri (Finland), Isabelle Johansson (Sweden), Peter Jüni (Canada), Maddalena Lettino (Italy), Nikolaus Marx (Germany), Linda Mellbin (Sweden), Carl-Johan Östgren (Sweden), Bianca Rocca (Italy), Marco Roffi (Switzerland), Naveed Sattar1 (United Kingdom), Petar Seferovic (Serbia), Miguel Sousa-Uva (Portugal), Paul Valensi (France), David Wheeler1 (United Kingdom).

Document Reviewers: Massimo Francesco Piepoli (ESC Review Coordinator) (Italy), Kåre I. Birkeland1 (EASD Review Coordinator) (Norway), ...

The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website www.escardio.org/guidelines

Keywords: Guidelines - Diabetes mellitus – Impaired glucose tolerance – Cardiovascular diseases – Epidemiology - Risk factors - Prevention – Cardiovascular risk assessment – Patient management – Pharmacological treatment – Revascularization – Patient centred care
* Corresponding authors:
 Francesco Cosentino, Cardiology Unit Department of Medicine, Karolinska Institute and Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden. Tel: +46 8 517 72 245, E-mail: francesco.cosentino@ki.se
 Peter J. Grant, University of Leeds/Leeds Teaching Hospitals NHS Trust, Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, Leeds LS2 9JT, United Kingdom. Tel: +44 44 113 343 7721, E-mail: p.j.grant@leeds.ac.uk

Authors/Task Force Members’ affiliations: listed in the Appendix.

ESC Committee for Practice Guidelines (CPG) and National Cardiac Societies document reviewers: listed in the Appendix.

1 Representing the European Association for the Study of Diabetes (EASD)

ESC entities having participated in the development of this document:

Associations: Acute Cardiovascular Care Association (ACCA), Association of Cardiovascular Nursing & Allied Professions (ACNAP), European Association of Cardiovascular Imaging (EACVI), European Association of Preventive Cardiology (EAPC), European Association of Percutaneous Cardiovascular Interventions (EAPCI), European Heart Rhythm Association (EHRA), Heart Failure Association (HFA).

Councils: Council on Cardiovascular Primary Care, Council on Hypertension.

Working Groups: Aorta and Peripheral Vascular Diseases, Cardiovascular Surgery, Thrombosis.

The content of these European Society of Cardiology (ESC) and European Association for the Study of Diabetes (EASD) Guidelines has been published for personal and educational use only. No commercial use is authorized. No part of the ESC/EASD Guidelines may be translated or reproduced in any form without written permission from the ESC or EASD. Permission can be obtained upon submission of a written request to Oxford University Press, the publisher of the European Heart Journal and the party authorized to handle such permissions on behalf of the ESC (journals.permissions@oxfordjournals.org).

Disclaimer. The ESC/EASD Guidelines represent the views of the ESC and EASD and were produced after careful consideration of the scientific and medical knowledge and the evidence available at the time of their publication. The ESC and EASD are not responsible in the event of any contradiction, discrepancy and/or ambiguity between the ESC/EASD Guidelines and any other official recommendations or guidelines issued by the relevant public health authorities, in particular in relation to good use of healthcare or therapeutic strategies. Health professionals are encouraged to take the ESC/EASD Guidelines fully into account when exercising their clinical judgment, as well as in the determination and the implementation of preventive, diagnostic or therapeutic medical strategies; however, the ESC/EASD Guidelines do not override, in any way whatsoever, the individual responsibility of health professionals to make appropriate and accurate decisions in consideration of each patient’s health condition and in consultation with that patient and, where appropriate and/or necessary, the patient’s caregiver. Nor do the ESC/EASD Guidelines exempt health professionals from taking into full and careful consideration the relevant official updated recommendations or guidelines issued by the competent public health authorities, in order to manage each patient’s case in light of the scientifically accepted data pursuant to their respective ethical and professional obligations. It is also the health professional’s responsibility to verify the applicable rules and regulations relating to drugs and medical devices at the time of prescription.

© The European Society of Cardiology and the European Association for the Study of Diabetes 2019. All rights reserved. For permissions please email: journals.permissions@oxfordjournals.org.
Table of Contents

1. Preamble .. 9
2. Introduction .. 11
3. What is new in the 2019 version? .. 12
4. Diagnosis of diabetes and pre-diabetes ... 17
5. Cardiovascular risk assessment in patients with diabetes and pre-diabetes 19
 5.1. Diabetes, pre-diabetes, and cardiovascular risk .. 20
 5.2. Stratification of cardiovascular risk in individuals with diabetes 22
 5.3. Stratification of cardiovascular risk in individuals with pre-diabetes 23
 5.4. Clinical assessment of cardiovascular damage .. 23
 5.4.1. Biomarkers .. 23
 5.4.2. Electrocardiography ... 23
 5.4.3. Imaging techniques ... 24
 6.1. Lifestyle .. 28
 6.1.1. Diet .. 29
 6.1.1.1. Carbohydrate ... 29
 6.1.1.2. Fats .. 30
 6.1.1.3. Proteins .. 30
 6.1.1.4. Vegetables, legumes, fruits, and wholegrain cereals 30
 6.1.1.5. Alcohol consumption ... 30
 6.1.1.6. Coffee and tea ... 31
 6.1.1.7. Vitamin and macronutrients ... 31
 6.1.2. Physical activity .. 31
 6.1.3. Smoking ... 31
 6.2. Glucose .. 32
 6.2.1. Glycaemic targets ... 33
 6.2.1.1. Additional glucose targets ... 33
 6.2.2. Glucose-lowering agents ... 34
 6.2.3. Special considerations ... 34
 6.2.3.1. Hypoglycaemia ... 34
 6.2.3.2. Glucose monitoring ... 35
 6.3. Blood pressure .. 36
 6.3.1. Treatment targets ... 36
 6.3.2. Managing blood pressure lowering .. 37
 6.3.2.1. Effects of lifestyle intervention and weight loss 37
 6.3.2.2. Pharmacological treatments ... 38
 6.3.2.3. Blood-pressure changes with glucose-lowering treatments 38
 6.4. Lipids .. 40
 6.4.1. Lipid-lowering agents .. 40
 6.4.1.1. Statins ... 40
 6.4.1.2. Ezetimibe .. 41
 6.4.1.3. Proprotein convertase subtilisin/kexin type 9. .. 42
 6.4.1.4. Fibrates .. 42
 6.5. Platelets ... 44
 6.5.1. Aspirin ... 45
 6.5.1.1. Primary prevention .. 45
 6.5.1.2. Secondary prevention .. 46
 6.6. Multifactorial approaches .. 47
 6.6.1. Principles of multifactorial management .. 47
7. Management of coronary artery disease .. 50
 7.1. Medical treatment ... 50
 7.1.1. Effects of intensified glucose control ... 51
 7.1.1.1. UKPDS .. 51
 7.1.1.2. ACCORD, ADVANCE, and VADT ... 51
 7.1.1.3. DIGAMI 1 and 2 .. 52
 7.1.2. Glucose-lowering agents: new evidence from cardiovascular outcome trials 52
 7.1.2.1. Established oral glucose-lowering drugs .. 52
 7.1.2.2. Newer oral glucose-lowering drugs ... 54
CONFIDENTIAL

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

7.1.2.3. Implications of recent cardiovascular outcome trials .. 63
7.1.3. Specific cardiovascular therapies ... 66

7.1.3.1. Beta-blockers .. 66
7.1.3.2. Blockers of the renin-angiotensin-aldosterone system 67
7.1.3.3. Lipid-lowering drugs .. 67
7.1.3.4. Nitrates and calcium-channel blockers ... 67
7.1.3.5. Other anti-ischaemic drugs .. 67
7.1.3.6. Antiplatelet and antithrombotic drugs (see section 6.5) 68

7.2. Revascularization .. 71

7.2.1. Percutaneous coronary intervention versus coronary artery bypass graft surgery ? 71
7.2.2. Adjunctive pharmacotherapy .. 74

8. Heart failure and diabetes ... 77

8.1. Prognostic implications of diabetes mellitus in heart failure 78
8.2. Mechanisms of left ventricular dysfunction in diabetes mellitus 78
8.3. Phenotypes of left ventricular dysfunction in diabetes mellitus 79
8.4. Treatment of heart failure in diabetes mellitus ... 80
8.4.1. Renin–angiotensin–aldosterone system and a neprilysin inhibitors 80
8.4.2. Beta-blockers .. 80
8.4.3. Ivabradine .. 80
8.4.4. Digoxin .. 81
8.4.5. Diuretics ... 81
8.4.6. Device therapy and surgery ... 81
8.5. Effect of oral diabetes drugs on heart failure .. 81
8.5.1. Metformin .. 81
8.5.2. Sulphonylureas .. 81
8.5.3. Thiazolidinediones ... 82
8.5.4. Dipeptidyl peptidase-4 inhibitors .. 82
8.5.5. Glucagon-like peptide-1 receptor agonists ... 82
8.5.6. Sodium-glucose co-transporter 2 inhibitors (see also section 7.1.2) 82

9. Arrhythmias: atrial fibrillation, ventricular arrhythmias, and sudden cardiac death 85

9.1. Atrial fibrillation ... 85
9.1.1. Diabetes and risk of stroke in atrial fibrillation ... 85
9.2. Ventricular arrhythmias and sudden cardiac death .. 86
9.2.1. Ventricular premature beats and paroxysmal ventricular tachycardia 86
9.2.2. Sustained ventricular arrhythmias ... 86
9.2.3. Sudden cardiac death in diabetes .. 86

10. Aortic and peripheral arterial diseases .. 88
10.1. Aortic disease ... 89
10.2. Lower extremity arterial disease ... 89
10.2.1. Epidemiology and natural history .. 89
10.2.2. Screening and diagnosis .. 90
10.2.3. Management of lower-extremity artery disease in diabetes 92
10.3. Carotid artery disease ... 93

11. Chronic kidney disease in diabetes .. 95
11.1. Management .. 96
11.1.1. Glycaemic control ... 96
11.1.2. New approaches to renoprotection .. 97

12. Patient-centred care .. 98
12.1. General aspects .. 98

13. ’What to do’ and ’what not to do’ messages from the guidelines 102
14. Appendix ... 110
15. References ... 110

Tables

Table 1 What is new? ... 12
Table 2 Diagnostic criteria for DM and pre-DM according to the 2006/2011 WHO and 2019 ADA 18
Table 3 CV risk categories in patients with DM ... 22
Table 4 Overview of RCTs .. 25
Table 5 Summary of treatment targets for managing patients with DM .. 48
Table 6 Patient characteristics of CV safety studies with glucose-lowering agents. 60
Table 7 HF phenotypes ... 79
Table 8. Assessment of the risk of amputation: the WIfI classification ... 86
Table 9 CKD classification by eGFR and albuminuria ... 91

Figures

Figure 1 HRs for vascular outcomes in people with versus without DM at baseline, based on analyses of 530 083 patients. Reproduced with permission. ... 21
Figure 2 HRs for CHD by clinically defined categories of baseline fasting blood glucose concentration. Reproduced with permission. ... 21
Figure 3 Treatment algorithm in patients with T2DM and ASCVD or high/very high CV risk [(a) drug naïve and (b) metformin treated]. ... 65
Figure 4 Recommendations for coronary revascularization. ... 76
Figure 5 Screening for LEAD in patients with DM. .. 90

Recommendations

Diagnosis of disorders of glucose metabolism .. 19
Use of laboratory, ECG, and imaging testing for CV risk assessment in asymptomatic patients with DM ... 27
Lifestyle modifications in DM and pre-DM .. 32
Glycaemic control in DM ... 35
Management of BP in patients with DM and pre-DM .. 38
Management of dyslipidaemia with lipid-lowering drugs ... 43
Antiplatelet therapy in primary prevention in DM .. 46
Glucose-lowering treatment in DM .. 66
Management of patients with DM and ACS or CCS ... 70
Coronary revascularization in patients with DM ... 74
Recommendations for the type of revascularization in patients with DM with stable CAD, suitable coronary anatomy for both procedures, and low predicted surgical mortality (see Figure 4) .. 75
Treatment of HF in patients with DM .. 82
T2DM treatment to reduce HF risk ... 83
Management of arrhythmias in patients with DM ... 87
Diagnosis and management of PAD in patients with DM ... 94
Prevention and management of CKD in patients with DM .. 97
Patient-centred care in DM ... 100
204 **Abbreviations and acronyms**

205 2hPG 2-hour plasma glucose
206 ABI ankle-brachial index
207 ABPM ambulatory blood pressure monitoring
208 ACCORD Action to Control Cardiovascular Risk in Diabetes
209 ACE Acarbose Cardiovascular Evaluation
210 ACEI angiotensin-converting enzyme inhibitor
211 ACS acute coronary syndrome
212 ADA American Diabetes Association
213 ADVANCE Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation
214 ADDITION Anglo-Danish-Dutch Study of Intensive Treatment In People with Screen Detected Diabetes in Primary Care
215 AF atrial fibrillation
216 ARB angiotensin receptor blocker
217 ART Arterial Revascularization Trial
218 ASCEND A Study of Cardiovascular Events In Diabetes
219 BARI 2D Bypass Angioplasty Revascularization Investigation 2 Diabetes
220 BEST Randomized Comparison of Coronary Artery Bypass Surgery and Everolimus-Eluting Stent Implantation in the Treatment of Patients with Multivessel Coronary Artery Disease
221 BMS bare-metal stent
222 BP blood pressure
223 CABG coronary artery bypass graft
224 CAC coronary artery calcium
225 CAD coronary artery disease
226 CANVAS Canagliflozin Cardiovascular Assessment Study
227 CARDia Coronary Artery Revascularization in Diabetes
228 CARMELINA Cardiovascular and Renal Microvascular Outcome Study With Linagliptin in Patients With Type 2 Diabetes Mellitus
229 CAROLINA Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes
230 CCS chronic coronary syndrome
231 CE cardiac event
232 CHA2DS2-VASc Congestive heart failure, Hypertension, Age ≥75 years (Doubled), Diabetes mellitus, Stroke or transient ischaemic attack (Doubled), Vascular disease, Age 65–74 years, Sex category
233 CHARISMA Clopidogrel for High Atherothrombotic Risk and Ischemic Stabilization, Management and Avoidance
234 CHARM Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity
235 CHD coronary heart disease
236 CI confidence interval
237 CKD chronic kidney disease
238 CLTI chronic limb-threatening ischaemia
239 COMPASS Cardiovascular Outcomes for People Using Anticoagulation Strategies
240 CREDENCE Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation
241 CREST Carotid Revascularization Endarterectomy versus Stenting Trial
242 CRT cardiac resynchronization therapy
243 CRT-D cardiac resynchronization therapy with an implantable defibrillator
244 CT computed tomography
245 CTCA computed tomography coronary angiography
246 CV cardiovascular
247 CVD cardiovascular disease
248 CVOT cardiovascular outcome trial
249 CVRF cardiovascular risk factor
250 DADDY Does coronary Atherosclerosis Deserve to be Diagnosed early In Diabetic patients?
251 DAPT dual antiplatelet therapy
2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

264 DBP diastolic blood pressure
265 DCCT Diabetes Control and Complications Trial
266 DECLARE-TIMI 58 Dapagliflozin Effect on Cardiovascular Events–Thrombolysis In Myocardial Infarction 58 trial
267 DES drug-eluting stent
268 DEVOTE Trial Comparing Cardiovascular Safety of Insulin Degludec versus Insulin Glargine in Patients with Type 2 Diabetes at High Risk of cardiovascular Events
272 DIAD Detection of Ischaemia in Asymptomatic Diabetics
273 DIGAMI Diabetes Mellitus Insulin-Glucose Infusion in Acute Myocardial Infarction
274 DiRECT Diabetes Remission Clinical Trial
275 DM diabetes mellitus
276 DPP4 dipeptidyl peptidase-4
277 DYNAMIT Do You Need to Assess Myocardial Ischemia in Type 2 Diabetes
278 EACTS European Association for Cardio-Thoracic Surgery
279 EAS European Atherosclerosis Society
280 EASD European Association for the Study of Diabetes
281 ECG electrocardiogram
282 EDIC Epidemiology of Diabetes Interventions and Complications
283 EET exercise electrocardiogram test
284 eGFR estimated glomerular filtration rate
285 ELIXA Evaluation of Lixisenatide in Acute Coronary Syndrome
286 EMPA-REG OUTCOME Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose
288 ESC European Society of Cardiology
289 EXCEL Evaluation of XIENCE versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization trial
291 EXAMINE Examination of Cardiovascular Outcomes with Alogliptin versus Standard Care
292 EXCEL Exenatide Study of Cardiovascular Event Lowering
294 FACTOR-64 Screening For Asymptomatic Obstructive Coronary Artery Disease Among High-Risk Diabetic Patients Using CT Angiography, Following Core 64
296 FIELD Fenofibrate Intervention and Event Lowering in Diabetes
297 FOURIER Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk
298 FREEDOM Future Revascularization Evaluation in Patients with Diabetes Mellitus
299 GAMI Glucose Abnormalities in Patients with Myocardial Infarction
302 GLP1-RA glucagon-like peptide-1 receptor agonist
303 Harmony Outcomes Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease
305 HAS-BLED Hypertension, Abnormal renal/liver function, Stroke, Bleeding history or predisposition, Labile international normalized ratio, Elderly (>65 years), Drugs/alcohol concomitantly
308 HbA1c haemoglobin A1c
309 HEART2D Hyperglycemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus
311 HDL-C high-density lipoprotein cholesterol
312 HF heart failure
313 HFmrEF heart failure with mid-range ejection fraction
314 HFpEF heart failure with preserved ejection fraction
315 HFrEF heart failure with reduced ejection fraction
316 HR hazard ratio
317 ICA invasive coronary angiography
318 ICD implantable cardioverter defibrillator
319 IFG impaired fasting glycaemia
320 IGT impaired glucose tolerance
321 IMPROVE-IT Improved Reduction of Outcomes: Vytorin Efficacy International Trial
322 J-DOIT3 Japan Diabetes Optimal Integrated Treatment Study for 3 Major Risk Factors of Cardiovascular Diseases
<table>
<thead>
<tr>
<th>Page</th>
<th>Key Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases</td>
<td>KDIGO</td>
<td>Kidney Disease: Improving Global Outcomes</td>
</tr>
<tr>
<td>324</td>
<td>LAD</td>
<td>left anterior descending coronary artery</td>
</tr>
<tr>
<td>325</td>
<td>LDL-C</td>
<td>low-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>326</td>
<td>LEAD</td>
<td>lower-extremity artery disease</td>
</tr>
<tr>
<td>327</td>
<td>LEADER</td>
<td>Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results</td>
</tr>
<tr>
<td>328</td>
<td>Look AHEAD</td>
<td>Action for Health in Diabetes</td>
</tr>
<tr>
<td>329</td>
<td>LV</td>
<td>left ventricular</td>
</tr>
<tr>
<td>330</td>
<td>LVEF</td>
<td>left ventricular ejection fraction</td>
</tr>
<tr>
<td>331</td>
<td>MACE</td>
<td>major adverse cardiovascular events</td>
</tr>
<tr>
<td>332</td>
<td>MACCE</td>
<td>major adverse cardiovascular and cerebrovascular events</td>
</tr>
<tr>
<td>333</td>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>334</td>
<td>MPI</td>
<td>radioisotope myocardial perfusion imaging</td>
</tr>
<tr>
<td>335</td>
<td>NAVIGATOR</td>
<td>Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research</td>
</tr>
<tr>
<td>336</td>
<td>NOAC</td>
<td>non-vitamin K antagonist oral anticoagulant</td>
</tr>
<tr>
<td>337</td>
<td>NT-proBNP</td>
<td>N-terminal pro-B-type natriuretic peptide</td>
</tr>
<tr>
<td>338</td>
<td>OGGT</td>
<td>oral glucose tolerance test</td>
</tr>
<tr>
<td>339</td>
<td>ORIGIN</td>
<td>Outcome Reduction With Initial Glargine Intervention</td>
</tr>
<tr>
<td>340</td>
<td>PAD</td>
<td>peripheral arterial disease</td>
</tr>
<tr>
<td>341</td>
<td>PCI</td>
<td>percutaneous coronary intervention</td>
</tr>
<tr>
<td>342</td>
<td>PEGASUS-TIMI 54</td>
<td>Prevention of Cardiovascular Events in Patients with Prior Heart Attack Using Ticagrelor Compared to Placebo on a Background of Aspirin in Patients with a Prior myocardial Infarction</td>
</tr>
<tr>
<td>343</td>
<td>PCSK9</td>
<td>proprotein convertase subtilisin/kexin type 9</td>
</tr>
<tr>
<td>344</td>
<td>PiNEER 6</td>
<td>A Trial Investigating the Cardiovascular Safety of Oral Semaglutide in Subjects With Type 2 Diabetes</td>
</tr>
<tr>
<td>345</td>
<td>PREDIMED</td>
<td>Prevención con Dieta Mediterránea</td>
</tr>
<tr>
<td>346</td>
<td>PROactive</td>
<td>PROspective pioglitAzone Clinical Trial In macroVascular Events</td>
</tr>
<tr>
<td>347</td>
<td>RAAS</td>
<td>renin-angiotensin-aldosterone system</td>
</tr>
<tr>
<td>348</td>
<td>RCT</td>
<td>randomized controlled trial</td>
</tr>
<tr>
<td>349</td>
<td>REDUCE-IT</td>
<td>Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial</td>
</tr>
<tr>
<td>350</td>
<td>REWIND</td>
<td>Researching Cardiovascular Events With a Weekly Incretin in Diabetes</td>
</tr>
<tr>
<td>351</td>
<td>SAVOR-TIMI 53</td>
<td>Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus–Thrombolysis In Myocardial Infarction 53</td>
</tr>
<tr>
<td>352</td>
<td>SBP</td>
<td>systolic blood pressure</td>
</tr>
<tr>
<td>353</td>
<td>SE</td>
<td>stress echocardiography</td>
</tr>
<tr>
<td>354</td>
<td>SGLT2</td>
<td>sodium-glucose co-transporter 2</td>
</tr>
<tr>
<td>355</td>
<td>SUSTAIN-6</td>
<td>Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide in Subjects with Type 2 Diabetes</td>
</tr>
<tr>
<td>356</td>
<td>SYNTAX</td>
<td>Synergy between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery</td>
</tr>
<tr>
<td>357</td>
<td>T1DM</td>
<td>type 1 diabetes mellitus</td>
</tr>
<tr>
<td>358</td>
<td>T2DM</td>
<td>type 2 diabetes mellitus</td>
</tr>
<tr>
<td>359</td>
<td>TECOS</td>
<td>Trial Evaluating Cardiovascular Outcomes with Sitagliptin</td>
</tr>
<tr>
<td>360</td>
<td>TOSCA.IT</td>
<td>Thiazolidinediones Or Sulfonylureas and Cardiovascular Accidents Intervention Trial</td>
</tr>
<tr>
<td>361</td>
<td>UKPDS</td>
<td>United Kingdom Prospective Diabetes Study</td>
</tr>
<tr>
<td>362</td>
<td>VADT</td>
<td>Veterans Affairs Diabetes Trial</td>
</tr>
<tr>
<td>363</td>
<td>VKA</td>
<td>vitamin K antagonist</td>
</tr>
<tr>
<td>364</td>
<td>VT</td>
<td>ventricular tachycardia</td>
</tr>
<tr>
<td>365</td>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>366</td>
<td>WIfI</td>
<td>Wound, Ischaemia, and foot Infection</td>
</tr>
</tbody>
</table>
1. Preamble

Guidelines summarize and evaluate available evidence with the aim of assisting health professionals in proposing the best management strategies for an individual patient with a given condition. Guidelines and their recommendations should facilitate decision making of health professionals in their daily practice. However, the final decisions concerning an individual patient must be made by the responsible health professional(s) in consultation with the patient and caregiver as appropriate.

A great number of guidelines have been issued in recent years by the European Society of Cardiology (ESC) and its partners such as the European Society for the Study of Diabetes (EASD), as well as by other societies and organisations. Because of their impact on clinical practice, quality criteria for the development of guidelines have been established in order to make all decisions transparent to the user. The recommendations for formulating and issuing ESC Guidelines can be found on the ESC website (http://www.escardio.org/Guidelines-Education/Clinical-Practice-Guidelines/Guidelines-development/Writing-ESC-Guidelines).

The ESC Guidelines represent the official position of the ESC on a given topic and are regularly updated.

The ESC carries out a number of registries which are essential to assess, diagnostic/therapeutic processes, use of resources and adherence to Guidelines. These registries aim at providing a better understanding of medical practice in Europe and around the world, based on data collected during routine clinical practice.

The guidelines are developed together with derivative educational material addressing the cultural and professional needs for cardiologists and allied professionals. Collecting high-quality observational data, at appropriate time interval following the release of ESC Guidelines, will help evaluate the level of implementation of the Guidelines, checking in priority the key end points defined with the ESC Guidelines and Education Committees and Task Force members in charge.

The Members of this Task Force were selected by the ESC and EASD, including representation from relevant ESC sub-specialty groups, in order to represent professionals involved with the medical care of patients with this pathology. Selected experts in the field from both societies undertook a comprehensive review of the published evidence for management of a given condition according to ESC Committee for Practice Guidelines (CPG) policy. A critical evaluation of diagnostic and therapeutic procedures was performed, including assessment of the risk–benefit ratio. The level of evidence and the strength of the recommendation of particular management options were weighed and graded according to predefined scales, as outlined in the tables below.
Levels of evidence

<table>
<thead>
<tr>
<th>Level of evidence A</th>
<th>Data derived from multiple randomized clinical trials or meta-analyses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of evidence B</td>
<td>Data derived from a single randomized clinical trial or large non-randomized studies.</td>
</tr>
<tr>
<td>Level of evidence C</td>
<td>Consensus of opinion of the experts and/or small studies, retrospective studies, registries.</td>
</tr>
</tbody>
</table>

The experts of the writing and reviewing panels provided declaration of interest forms for all relationships that might be perceived as real or potential sources of conflicts of interest. These forms were compiled into one file and can be found on the ESC website (http://www.escardio.org/guidelines). Any changes in declarations of interest that arise during the writing period were notified to the ESC and EASD Chairpersons and updated. The Task Force received its entire financial support from the ESC and EASD without any involvement from the healthcare industry.

The ESC CPG supervises and coordinates the preparation of new Guidelines. The Committee is also responsible for the endorsement process of these Guidelines. The ESC Guidelines undergo extensive review by the CPG and external experts. After appropriate revisions the Guidelines are approved by all the experts involved in the Task Force. The finalized document is approved by the CPG and EASD for publication in the European Heart Journal and Diabetologia. The Guidelines were developed after careful consideration of the scientific and medical knowledge and the evidence available at the time of their dating.

The task of developing ESC/EASD Guidelines also includes the creation of educational tools and implementation programmes for the recommendations including condensed pocket
Health professionals are encouraged to take the ESC/EASD Guidelines fully into account when exercising their clinical judgment, as well as in the determination and the implementation of preventive, diagnostic or therapeutic medical strategies. However, the ESC/EASD Guidelines do not override in any way whatsoever the individual responsibility of health professionals to make appropriate and accurate decisions in consideration of each patient's health condition and in consultation with that patient or the patient's caregiver where appropriate and/or necessary. It is also the health professional's responsibility to verify the rules and regulations applicable in each country to drugs and devices at the time of prescription.

2. Introduction

This is the third set of guidelines produced by the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD), designed to provide guidance on the management and prevention of cardiovascular (CV) disease (CVD) in subjects with, and at risk of developing, diabetes mellitus (DM). The last guidelines on this subject were published in the European Heart Journal in 2013. The interval between preparing the previous guidelines and the current document has been relatively short, but it has been a period in which we have seen an unprecedented increase in the evidence base available for practicing healthcare professionals to refer to in their daily consultations. This has been characterized by the presentation and publication of a number of CV safety trials for type 2 DM (T2DM) treatments, the results of which, to the casual observer, must seem both exciting and bewildering. Exciting, because while all the recent studies have reported CV safety, several have also reported, for the first time, clear evidence of CV benefit. Bewildering, because these trials continue to be dogged by various side-effects that dull the clarity of decision-making. It is one of our aims to guide the reader through this important dataset.

In other ways, and on a global scale, little has changed. The prevalence of DM worldwide continues to increase, rising to 10% of the population in previously underdeveloped countries such as China and India, which are now embracing western lifestyles. In 2017, approximately 60 million adult Europeans were thought to have T2DM – half undiagnosed – and the effects of this condition on the CV health of the individual and their offspring create further public
These massive numbers led to the prediction that more than 600 million individuals would develop T2DM worldwide by 2045, with around the same number developing pre-DM.¹ These figures pose serious questions to developing economies, where the very individuals who support economic growth are those most likely to develop T2DM and to die of premature CVD. Awareness of specific issues associated with age at onset, sex and race – particularly the effects of T2DM in women (including epigenetics and in utero influences on non-communicable diseases) – remains of major importance, although there is still much work to be done. Finally, the effects of advancing age and comorbidities indicate the need to manage risk in an individualized manner, empowering the patient to take a major role in the management of his or her condition.

The emphasis in these guidelines is to provide information on the current state of the art in how to prevent and manage the effects of DM on the heart and vasculature. Our aim has been to focus mostly on the new information made available in the past 5–6 years, and to develop a shorter concise document to this end. The need for more detailed analysis of specific issues discussed in the present guidelines may be met by referring to the plethora of specialist guidelines from organizations such as the ESC and the American Diabetes Association (ADA).

It has been a privilege for us to have been trusted with the opportunity to guide the development of these guidelines and to work alongside acknowledged experts in this field. We want to extend our thanks to all members of the Task Force who gave freely of their time and expertise, to the referees who contributed a great deal to the final manuscript, and to the ESC and EASD committees that oversaw this project. Finally, we express our thanks to the guidelines team at the European Heart House, in particular Veronica Dean, Laetitia Flouret, and Nathalie Cameron, for their support in making this process run smoothly.

Francesco Cosentino and Peter J. Grant

3. What is new in the 2019 version?

<table>
<thead>
<tr>
<th>Table 1 What is new?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in recommendations</td>
</tr>
<tr>
<td>2013</td>
</tr>
<tr>
<td>BP targets</td>
</tr>
</tbody>
</table>

BP target < 140/85 mmHg for all

- Individualized BP targets
 - SBP to 130 mmHg and, if well tolerated, < 130 mmHg, but not < 120 mmHg
 - In older people (> 65 years) target SBP to a range of 130–139 mmHg
 - DBP to < 80 mmHg but not < 70 mmHg

- On-treatment SBP to < 130 mmHg for patients at high risk of cerebrovascular events or diabetic kidney disease

Lipid targets

- In DM at high CV risk, an LDL-C target of < 2.5 mmol/L (< 100 mg/dL)

- In DM at very high CV risk, an LDL-C target of < 1.8 mmol/L (< 70 mg/dL)

- In patients with T2DM at moderate CV risk, an LDL-C target of < 2.5 mmol/L (< 100 mg/dL)

- In patients with T2DM at high CV risk, an LDL-C target of < 1.8 mmol/L (< 70 mg/dL)

- In patients with T2DM at very high CV risk, an LDL-C target of < 1.4 mmol/L (< 55 mg/dL)

Antiplatelet therapy

- Aspirin for primary prevention is not recommended in DM at low CVD risk

- Aspirin (< 75–100 mg/day) for primary prevention may be considered in patients with DM at very high/high risk in the absence of clear contraindications

- Aspirin for primary prevention is not recommended in patients with DM at moderate CV risk

Glucose-lowering treatment

- Metformin should be considered as first-line therapy in patients with DM

- Metformin should be considered in overweight patients with T2DM without CVD and at moderate CV risk

Revascularization

- DES rather than BMS in DM

 - Same techniques in patients with and without DM (see 2018 ESC/EACTS myocardial revascularization guidelines)

- PCI may be considered as an alternative to CABG in patients with DM and less complex CAD (SYNTAX score ≤ 22)

 - One- or two-vessel CAD, no proximal LAD
 - CABG
 - PCI

 - One- or two-vessel CAD, proximal LAD
 - CABG
 - PCI

 - Three-vessel CAD, low complexity
 - CABG
 - PCI

 - Left main CAD, low complexity
 - CABG
 - PCI

 - Three-vessel CAD, intermediate or high complexity
 - CABG
 - PCI
Management of arrhythmias

Oral anticoagulation in AF (paroxysmal or persistent)

<table>
<thead>
<tr>
<th>VKAs or NOACs (e.g. dabigatran, rivaroxaban, apixaban)</th>
<th>Prefer NOACs (e.g. dabigatran, rivaroxaban, apixaban, or edoxaban)</th>
</tr>
</thead>
</table>

2019 new recommendations

CV risk assessment

- Resting ECG in patients with DM with hypertension or suspected CVD
- Carotid or femoral ultrasound for plaque detection as CV risk modifier
- Screening for CAD with coronary CT angiography and functional imaging
- CAC scoring as risk modifier
- ABI as risk modifier
- Carotid ultrasound intima-media thickness for CV risk is not recommended

Prevention of CVD

- Lifestyle intervention to delay/prevent conversion from pre-DM to T2DM

Glycaemic control

- Use of self-monitoring of blood glucose to facilitate optimal glycaemic control in T2DM
- Hypoglycaemia should be avoided

BP management

- Lifestyle changes encouraged in hypertension
- RAAS blockers rather than beta-blockers/diuretics for BP control in pre-DM
- Initiate pharmacological treatment with the combination of a RAAS blocker with a calcium-channel blocker or thiazide/thiazide-like diuretic
- Home BP self-monitoring encouraged in patients with DM
- 24-h ABPM for BP assessment, and adjustment of antihypertensive treatment

Dyslipidaemia

<table>
<thead>
<tr>
<th>CABG recommended in complex CAD (SYNTAX score >22)</th>
<th>CABG</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left main CAD, intermediate complexity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High complexity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotid ultrasound intima-media thickness for CV risk is not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In patients at very high-risk, with persistent high LDL-C despite treatment with maximum tolerated statin dose in combination with ezetimibe or in patients with intolerance to statins, a PCSK9 inhibitor is recommended.

Statins may be considered in asymptomatic patients with T1DM beyond the age of 30 years.

Statins are not recommended in women of childbearing potential.

Antiplatelet and antithrombotic drugs

Concomitant use of a proton pump inhibitor is recommended in patients receiving aspirin monotherapy, DAPT, or oral anticoagulant monotherapy who are at high risk of gastrointestinal bleeding.

Prolongation of DAPT beyond 12 months should be considered for up to 3 years in patients with DM at very high risk who have tolerated DAPT without major bleeding complications.

Glucose-lowering treatment

Empagliflozin, canagliflozin, or dapagliflozin is recommended in patients with T2DM and CVD or at very high/high CV risk to reduce CV events.

Empagliflozin is recommended in patients with T2DM and CVD to reduce the risk of death.

Liraglutide, semaglutide or dulaglutide in patients with DM and CVD or very high/high CV risk to reduce CV events.

Liraglutide is recommended in patients with T2DM and CVD or at very high/high CV risk to reduce the risk of death.

Saxagliflozin is not recommended in patients with T2DM and a high risk of HF.

Revascularization

Same revascularization techniques in patients with and without DM.

Treatment of HF in DM

Device therapy with an ICD, CRT, or CRT-D.

Sacubitril/valsartan instead of ACEIs in HFrEF and DM remaining symptomatic despite treatment with ACEIs, beta-blockers, and mineralocorticoid receptor antagonists.

CABG in HFrEF and DM and two- or three-vessel CAD.

Ivabradine in patients with HF and DM in sinus rhythm and with a resting heart rate ≥70 beats per minute if symptomatic despite full HF treatment.

Aliskiren (direct renin inhibitor) in HFrEF and DM is not recommended.

DM treatment to reduce HF risk

SGLT2 inhibitor (empagliflozin, canagliflozin, and dapagliflozin) to lower risk of HF hospitalization if eGFR >30 mL/min/1.73 m².

Metformin in patients with DM and HF if eGFR >30 mL/min/1.73 m².

GLP1-RAs and DPP4 inhibitors sitagliptin and linagliptin have a neutral effect on risk of HF.
| Insulin treatment in HF
| DPP4 inhibitor saxagliptin in HF is not recommended
| Thiazolidinediones (pioglitazone, rosiglitazone) in HF is not recommended

Management of arrhythmias
- Attempts to diagnose structural heart disease in patients with DM with frequent premature ventricular contractions
- Hypoglycaemia should be avoided as it can trigger arrhythmias

Diagnosis and management of PAD
- Low-dose rivaroxaban 2.5 mg twice daily plus aspirin 100 mg once daily in patients with DM and symptomatic LEAD

Management of CKD
- SGLT2 inhibitors to reduce progression of diabetic kidney disease

2019 revised concepts

Risk assessment in DM and pre-DM
- Classification of CV risk (moderate to very high risk) adapted from the 2016 ESC Guidelines on CVD prevention in clinical practice to the DM setting (see section 5.2)

Lifestyle
- Moderate alcohol intake should not be promoted as a means to protect against CVD

BP control
- Detailed recommendations for individualized BP targets are now provided

Glucose-lowering treatment (a paradigm shift after recent CVOTs)
- For the first time we have evidence from several CVOTs that indicate CV benefits from the use of SGLT2 inhibitors and GLP1-RAs in patients with CVD or at very high/high CV risk

Revascularization
- The recommendations have been extended following the addition of several RCTs, and the choice between CABG and PCI depends on the complexity of the CAD

HF
- Treatment recommendations have been updated following positive results from CVOTs

PAD
New evidence on diagnostic methods and management

CKD

A CKD classification by eGFR and albuminuria is presented to stratify severity of disease and guide treatment.

<table>
<thead>
<tr>
<th>New evidence on diagnostic methods and management</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKD</td>
</tr>
<tr>
<td>A CKD classification by eGFR and albuminuria is presented to stratify severity of disease and guide treatment.</td>
</tr>
</tbody>
</table>

| 504 | ABPM = ambulatory blood pressure monitoring; ACEI = angiotensin-converting enzyme inhibitor; AF = atrial fibrillation; |
| 505 | BMS = bare-metal stent; BP = blood pressure; CABG = coronary artery bypass graft; CAC = coronary artery calcium; CAD = coronary artery disease; CKD = chronic kidney disease; CRT = cardiac resynchronization therapy; CRT-D = cardiac resynchronization therapy with an implantable defibrillator; CT = computed tomography; CV = cardiovascular; CVD = cardiovascular disease; CVOT = cardiovascular outcome trial; DAPT = dual antiplatelet therapy; DBP = diastolic blood pressure; DES = drug-eluting stent; DM = diabetes mellitus; DPP4 = dipeptidyl peptidase-4; EACTS = European Association for Cardio-Thoracic Surgery; ECG = electrocardiogram; eGFR = estimated glomerular filtration rate; ESC = European Society of Cardiology; GLP1-RA = glucagon-like peptide-1 receptor agonist; HF = heart failure; HFrEF = heart failure with reduced ejection fraction; ICD = implantable cardioverter defibrillator; LAD = left anterior descending coronary artery; LDL-C = low-density lipoprotein cholesterol; LEAD = lower-extremity artery disease; NOAC = non-vitamin K antagonist oral anticoagulant; PCI = percutaneous coronary intervention; PCSK9 = proprotein convertase subtilisin/kexin type 9; RAAS = renin-angiotensin-aldosterone system; RCT = randomized controlled trial; SBP = systolic blood pressure; SGLT2 = sodium-glucose co-transporter-2; SYNTAX = Synergy between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus; VKA = vitamin K antagonist. |

4. Diagnosis of diabetes and pre-diabetes

Key messages

- DM should be investigated using fasting plasma glucose (FPG) or haemoglobin A1c (HbA1c).
- An oral glucose tolerance test (OGTT) is necessary to diagnose impaired glucose tolerance (IGT).
- Individuals with established CVD should be screened using HbA1c and/or fasting glucose; an OGTT can be carried out if FPG and HbA1c are inconclusive.

The classification of DM and pre-DM (impaired fasting glycaemia [IFG] and IGT) is based on recommendations from the World Health Organization (WHO) and the ADA. IFG and IGT, referred to as pre-DM, reflect the natural history of progression from normoglycaemia to T2DM. It is common for such individuals to oscillate between different glycaemic states, and this needs to be considered when investigations are being carried out. Different methods may be used as a diagnostic test for DM and pre-DM (Table 2).
Table 2 Diagnostic criteria for DM and pre-DM according to the 2006/2011 WHO and 2019 ADA

<table>
<thead>
<tr>
<th>Diagnosis/measurement</th>
<th>WHO 2006(^3)/2011(^4)</th>
<th>ADA 2019(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c</td>
<td>Can be used</td>
<td>Recommended</td>
</tr>
<tr>
<td></td>
<td>If measured, ≥6.5% (48 mmol/mol)</td>
<td>≥6.5% (48 mmol/mol)</td>
</tr>
<tr>
<td></td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>FPG</td>
<td>≥7.0 mmol/L (126 mg/dL)</td>
<td>≥7.0 mmol/L (126 mg/dL)</td>
</tr>
<tr>
<td>or 2hPG</td>
<td>≥11.1 mmol/L (≥200 mg/dL)</td>
<td>≥11.1 mmol/L (≥200 mg/dL)</td>
</tr>
<tr>
<td>RPG</td>
<td>Symptoms plus ≥11.1 mmol/L (≥200 mg/dL)</td>
<td>Symptoms plus ≥11.1 mmol/L (≥200 mg/dL)</td>
</tr>
<tr>
<td>IGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPG</td>
<td><7.0 mmol/L (<126 mg/dL)</td>
<td><7.0 mmol/L (<126 mg/dL)</td>
</tr>
<tr>
<td>2hPG</td>
<td>≥7.8 to <11.1 mmol/L (≥140 to 200 mg/dL)</td>
<td>≥7.8 to <11.0 mmol/L (≥140 to 199 mg/dL)</td>
</tr>
<tr>
<td>IFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPG</td>
<td>6.1 to 6.9 mmol/L (110 to 125 mg/dL)</td>
<td>5.6 to 6.9 mmol/L (100 to 125 mg/dL)</td>
</tr>
<tr>
<td>2hPG</td>
<td><7.8 mmol/L (<140 mg/dL)</td>
<td><7.8 mmol/L (<140 mg/dL)</td>
</tr>
</tbody>
</table>

WHO = World Health Organization; ADA = American Diabetes Association; DM = diabetes mellitus; FPG = fasting plasma glucose; 2hPG = 2-hour plasma glucose; IFG = impaired fasting glycaemia; IGT = impaired glucose tolerance; HbA1c = haemoglobin A1c; RPG = random plasma glucose.

Although the WHO and ADA diagnostic criteria are clear, there are practical considerations when choosing a method to diagnose DM. In accordance with other ESC guidelines accepting non-fasting lipids in risk scoring, most patients can have DM assessment by HbA1c at any time of day. However, there are limitations with HbA1c to be considered, such as interference as a result of haemoglobin variants, anaemia, and availability in different parts of the world. It is recommended that diagnosis of DM is based on HbA1c or FPG, and on OGTT if still in doubt. Repeat testing is advisable to confirm the diagnosis. In patients with CVD, the
methods employed for the diagnosis of DM and pre-DM are essentially the same: glucose
testing with HbA1c and/or FPG first, and if inconclusive, an OGTT,6-8 which is the only
means of diagnosing IGT. The high prevalence of glucose abnormalities in this setting is well-
established. In the Glucose Abnormalities in Patients with Myocardial Infarction (GAMI)
study, OGTTs revealed that two-thirds of patients without DM had newly detected DM or
pre-DM.9 The Euro Heart Survey on Diabetes and the Heart10 and EUROASPIRE IV11
demonstrated that an OGTT may diagnose a greater proportion of patients with CVD as
having glucose abnormalities than does FPG or HbA1c. Similar findings are reported in
patients admitted for coronary angiography.12 In acute coronary syndromes (ACS), the OGTT
should not be performed earlier than 4–5 days, to minimize false-positive results.13, 14

<table>
<thead>
<tr>
<th>Diagnosis of disorders of glucose metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>It is recommended that screening for potential T2DM in patients with CVD is initiated with HbA1c and FPG, and that an OGTT is added if HbA1c and FPG are inconclusive.13-18</td>
</tr>
<tr>
<td>It is recommended that an OGTT is used for diagnosing IGT.2,4, 16-22</td>
</tr>
<tr>
<td>It is recommended that the diagnosis of DM is based on HbA1c and/or FPG, or on an OGTT if still in doubt.1,4, 9, 10,16-22</td>
</tr>
</tbody>
</table>

CVD = cardiovascular disease; DM = diabetes mellitus; FPG = fasting plasma glucose; HbA1c = haemoglobin A1c; IGT = impaired glucose tolerance; OGTT = oral glucose tolerance test; T2DM = type 2 diabetes mellitus.

Class of recommendation.

Level of evidence.

Gaps in evidence

- Measuring glycaemia at 1 h instead of at 2 h during an OGTT for the diagnosis of pre-DM and DM needs validation.
- Further work needs to be carried out to establish the effects of sex, ethnicity, and age on diagnostic criteria.
- Direct comparison of the predictive abilities of HbA1c- versus OGTT-derived measures for hard outcomes in people with CVD.

5. Cardiovascular risk assessment in patients with diabetes and pre-diabetes

Key messages
Routine assessment of microalbuminuria should be carried out to identify patients at risk of developing renal dysfunction and/or CVD.

A resting electrocardiogram (ECG) is indicated in patients with DM and hypertension or if CVD is suspected.

Other tests, such as transthoracic echocardiography, coronary artery calcium (CAC) score, and ankle-brachial index (ABI), may be considered to test for structural heart disease or as risk modifiers in those at moderate or high risk of CVD.

Routine assessment of novel biomarkers is not recommended for CV risk stratification.

5.1. Diabetes, pre-diabetes, and cardiovascular risk

The Emerging Risk Factor Collaboration, a meta-analysis of 102 prospective studies, showed that DM in general (data on DM type were unavailable) confers a twofold excess risk of vascular outcomes (coronary heart disease, ischaemic stroke, vascular deaths), independent of other risk factors (Figure 1). The excess relative risk of vascular events with DM was greater in women and younger ages. Both relative and absolute risk levels will be higher in those with long-standing DM and microvascular complications, including renal disease or proteinuria. The Swedish National Diabetes Register has provided important insights into the prevalence of CVD and CV death in both type 1 DM (T1DM) and T2DM. In T1DM, 27,195 subjects were stratified by age and sex. Early onset at 1–10 years of age was associated with a hazard ratio (HR) of 7.38 for CV mortality, 30.95 for acute myocardial infarction (MI), and 12.9 for heart failure (HF). The corresponding figures for T1DM onset between 26 and 30 years were 3.64, 5.77, and 5.07, respectively. Development of T1DM between 1 and 10 years of age resulted in loss of 17.7 years of life in women and 14.2 years in men. In T2DM, a huge cohort of 435,369 patients was matched with controls and followed for 4.6 years. CVD mortality was 17.15/1000 patient-years in T2DM and 12.86/1000 patient-years in controls. In this cohort, age at DM diagnosis, glycaemic control, and renal complications were the major determinants of outcome. Although T2DM is far more common than T1DM, these results confirm the loss of years of life in both populations, which is particularly severe in the young in general and perhaps in young-onset female individuals with T1DM, emphasizing the need for intensive risk-factor management in these groups.
this document we will be referring mostly to DM; this can be taken as relating to both types of DM unless otherwise specified.

Figure 1

HRs for vascular outcomes in people with versus without DM at baseline, based on analyses of 530 083 patients. Reproduced with permission.²³

HRs were adjusted for age, smoking status, body mass index, and SBP, and – where appropriate – stratified by sex and trial arm. The 208 CHD outcomes that contributed to the grand total could not contribute to the subtotals of coronary death or non-fatal MI because there were fewer than 11 cases of these coronary disease subtypes in some studies. CHD = coronary heart disease; CI = confidence interval; DM = diabetes mellitus; HR = hazard ratio; MI = myocardial infarction; SBP = systolic blood pressure.

*Includes fatal and non-fatal events.

The elevated risk of CAD starts at glucose levels below the cut-off point for DM (≤7 mmol/L), and increases with increasing glucose levels (Figure 2).

Figure 2

HRs for CHD by clinically defined categories of baseline fasting blood glucose concentration. Reproduced with permission.²³
Analyses were based on 279,290 participants (14,814 cases). HRs were adjusted as described in Figure 1. The HR in those with FPG 5.60–6.99 mmol/L was 1.12 (95% CI 1.06–1.18). CHD = coronary heart disease; CI = confidence interval; FPG = fasting plasma glucose; HR = hazard ratio.

*Reference group.

5.2. Stratification of cardiovascular risk in individuals with diabetes

As outlined in the 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice,27 individuals with DM and CVD, or DM with target organ damage, such as proteinuria or kidney failure (estimated glomerular filtration rate [eGFR] <30 mL/min/1.73 m²), are at very high risk (10-year risk of CVD death >10%). Patients with DM with three or more major risk factors or with a DM duration of >20 years are also at very high risk.

Furthermore, as indicated in section 5.1, T1DM at the age of 40 years with early onset (i.e. 1–10 years of age) and particularly female individuals, are at very high CV risk.24 Most others with DM are high risk (10-year risk of CVD death 5–10%), with the exception of young patients (<35 years) with T1DM of short duration (<10 years) and patients with T2DM aged <50 years with a DM duration of <10 years and without major risk factors, who are at moderate risk. The classification of risk level applied in these guidelines is presented in Table 3. When DM is present, female sex is not protective against premature CVD, as seen in the general population.28,29

<table>
<thead>
<tr>
<th>Table 3</th>
<th>CV risk categories in patients with DMa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high risk</td>
<td>Patients with DM and established CVD or other target organ damageb or three or more major risk factors or early onset T1DM of long duration (>20 years)</td>
</tr>
<tr>
<td>High risk</td>
<td>Patients with DM duration ≥10 years without target organ damage plus any other additional risk factor</td>
</tr>
<tr>
<td>Moderate risk</td>
<td>Young patients (T1DM <35 years; T2DM <50 years) with DM duration <10 years, without other risk factors</td>
</tr>
</tbody>
</table>

CV = cardiovascular; CVD = cardiovascular disease; DM = diabetes mellitus; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus.

aModified from the 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice.27

bProteinuria, renal impairment, left ventricular hypertrophy, retinopathy
5.3. Stratification of cardiovascular risk in individuals with pre-diabetes

Individuals without CVD who have pre-DM are not necessarily at elevated CV risk, but warrant risk scoring for CVD in the same way as the general population.

5.4. Clinical assessment of cardiovascular damage

5.4.1. Biomarkers

The addition of circulating biomarkers for CV risk assessment has limited clinical value. In DM without known CVD, measurement of C-reactive protein or fibrinogen (inflammatory markers) provides minor incremental value to current risk assessment. High-sensitive cardiac troponin T (hsTnT) estimated 10-year CV mortality for individuals with undetectable (<3 ng/L), low detectable (3–14 ng/L), and increased (≥14 ng/L) levels as 4%, 18%, and 39%, respectively. However, the addition of hsTnT to conventional risk factors has not shown incremental discriminative power in this group. In individuals with T1DM, elevated hsTnT was an independent predictor of renal decline and CV events. The prognostic value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in an unselected cohort of people with DM (including known CVD) showed that patients with low levels of NT-proBNP (<125 pg/mL) have an excellent short-term prognosis. The value of NT-proBNP in identifying patients with DM who will benefit from intensified control of CV risk factors was demonstrated in a small randomized controlled trial (RCT). The presence of albuminuria (30–299 mg/day) is associated with increased risk of CVD and chronic kidney disease (CKD) in T1DM and T2DM. Measurement of albuminuria may predict kidney dysfunction and warrant renoprotective interventions.

5.4.2. Electrocardiography

A resting ECG may detect silent MI in 4% of individuals with DM, which has been associated with increased risk of CVD and all-cause mortality in men but not women. Additionally, prolonged corrected QT interval is associated with increased CV mortality in T1DM, whereas increasing resting heart rate is associated with risk of CVD in T1DM and T2DM. Low heart rate variability (a marker of diabetic CV autonomic neuropathy) has been associated with an increased risk of fatal and non-fatal CAD. In prospective cohorts, 20–40% of patients with DM presented silent ST-segment depression during exercise ECG. The sensitivity and specificity of exercise ECG to diagnose significant CAD in
asymptomatic DM were 47% and 81%, respectively.49 The combination of exercise ECG and an imaging technique provides incremental diagnostic and prognostic value in DM.50-52

5.4.3. Imaging techniques

Echocardiography is the first choice to evaluate structural and functional abnormalities associated with DM. Increased left ventricular (LV) mass, diastolic dysfunction, and impaired LV deformation have been reported in asymptomatic DM, and are associated with worse prognosis.53-56 A cluster analysis from two large cohorts of asymptomatic patients with DM showed that those with the lowest LV mass, smallest left atrium, and lowest LV filling pressures (determined by E/e*) had fewer CV hospitalization or death events compared with those with advanced LV systolic and diastolic dysfunction or greater LV mass.53, 57 CV magnetic resonance and tissue characterization techniques have shown that patients with DM without CAD have diffuse myocardial fibrosis as the mechanism of LV systolic and diastolic dysfunction.55, 58, 59 However, the value of these advanced imaging techniques in routine practice has not yet been demonstrated.

Screening for asymptomatic CAD in DM remains controversial. With computed tomography (CT), non-invasive estimation of the atherosclerotic burden (based on the CAC score) and identification of atherosclerotic plaques causing significant coronary stenosis (CT coronary angiography) can be performed. The presence of plaques on carotid ultrasound has been associated with increased CV events in subjects with DM.60-62 In addition, patients with DM have a higher prevalence of coronary artery calcification compared with age- and sex-matched subjects without DM.63 While a CAC score of 0 is associated with favourable prognosis in asymptomatic subjects with DM, each increment in CAC score (from 1–99 to 100–399 and ≥400) is associated with a 25–33% higher relative risk of mortality.63 Importantly, CAC is not always associated with ischaemia. Stress testing with myocardial perfusion imaging or stress echocardiography permits detection of silent myocardial ischaemia. Observational studies and RCTs report the prevalence of silent myocardial ischaemia in asymptomatic DM as approximately 22%.47, 48, 64 RCTs evaluating the impact of routine screening for CAD in asymptomatic DM and no history of CAD showed no differences in cardiac death and unstable angina at follow-up in those who underwent stress testing or CT coronary angiography compared with current recommendations.47, 64-68 A meta-analysis of five RCTs (Table 4) with 3299 asymptomatic subjects with DM showed that non-
invasive imaging for CAD did not significantly reduce event rates of non-fatal MI (relative risk 0.65; $P = 0.062$) and hospitalization for HF (relative risk 0.61; $P = 0.1$).

<table>
<thead>
<tr>
<th>Study/author</th>
<th>Faglia et al69</th>
<th>DIAD68</th>
<th>DYNAMIT64</th>
<th>FACTOR-6467</th>
<th>DADDY-D70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>141 (+1)a</td>
<td>1123</td>
<td>615</td>
<td>899</td>
<td>520</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>T2DM 45–76 years ≥2 other CVRFs</td>
<td>T2DM 50–75 years ≥2 other CVRFs</td>
<td>T2DM 50–75 years ≥2 other CVRFs</td>
<td>T1DM or T2DM aged ≥50 years/♀ aged ≥55 years, DM for ≥3 years ≥ aged ≥40 years/♀ aged ≥45 years, DM for ≥5 years</td>
<td>T2DM 50–75 years CV risk ≥10%</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>60.1</td>
<td>60.8</td>
<td>63.9</td>
<td>61.5</td>
<td>61.9</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>55.6</td>
<td>53.5</td>
<td>54.5</td>
<td>52.2</td>
<td>80.0</td>
</tr>
<tr>
<td>Screening test</td>
<td>EET and SE</td>
<td>MPI</td>
<td>EET or MPI</td>
<td>CTCA and CAC score</td>
<td>EET</td>
</tr>
<tr>
<td>Positive screening test (%)</td>
<td>21.1</td>
<td>5.9 moderate or large defects</td>
<td>21.5 positive or uncertain</td>
<td>11.9 moderate; 10.7 severe</td>
<td>7.6</td>
</tr>
<tr>
<td>Treatment strategy</td>
<td>ICA and cardiac follow-up if</td>
<td>At the referring</td>
<td>According to the</td>
<td>Recommendation based on stenosis</td>
<td>ICA if EET positive</td>
</tr>
</tbody>
</table>

a
Main results of screening

<table>
<thead>
<tr>
<th></th>
<th>Significant of major and all CEs</th>
<th>Non-significant of major CEs</th>
<th>Non-significant of MI; no effect on combined CEs</th>
<th>Non-significant of combined CEs</th>
<th>Non-significant of major CEs, but significant in those aged >60 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean follow-up (years)</td>
<td>4.5</td>
<td>4.8</td>
<td>3.5</td>
<td>4.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Annual rate of major CEs (%)</td>
<td>1.9</td>
<td>0.6</td>
<td>1.0</td>
<td>0.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Reproduced/adapted with permission. ♂ = men; ♀ = women; CAC = coronary artery calcium; CE = cardiac event (major CE = cardiac death or MI); CTCA = computed tomography coronary angiography; CV = cardiovascular; CVRF = cardiovascular risk factor; DADDY-D = Does coronary Atherosclerosis Deserve to be Diagnosed early in Diabetic patients?; DIAD = Detection of Ischaemia in Asymptomatic Diabetics; DYNAMIT = Do You Need to Assess Myocardial Ischaemia in Type 2 Diabetes; DM = diabetes mellitus; EET = exercise electrocardiogram test; FACTOR-64 = Screening For Asymptomatic Obstructive Coronary Artery Disease Among High-Risk Diabetic Patients Using CT Angiography, Following Core 64; ICA = invasive coronary angiography; MI = myocardial infarction; MPI = radionuclide myocardial perfusion imaging; RCT = randomized controlled trial; SE = stress echocardiography; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus.

*One patient excluded for early non-cardiac death was reincluded.

The Detection of Ischaemia in Asymptomatic Diabetics (DIAD) study showed no difference in the prevalence of silent ischaemia between men and women (24% vs. 17%, respectively), and a significantly lower event rate for non-fatal MI and cardiac death in women compared with men (1.7% vs. 3.8%, respectively; \(P = 0.047 \)). The low event rates in RCTs and the disparities in the management of screening results (invasive coronary angiography and revascularization were not performed systematically) may explain the lack of benefit of the screening strategy. Accordingly, routine screening of CAD in asymptomatic DM is not
715 recommended. However, stress testing or CT coronary angiography may be indicated in
716 very high-risk asymptomatic individuals (with peripheral artery disease [PAD], high CAC
717 score, proteinuria, or renal failure). Carotid intima-media thickness has been associated with CAD. In DM, carotid intima-
718 media thickness has not shown incremental value over the CAC score to predict CAD or CV
719 events. In contrast, detection of carotid plaque has shown incremental value over carotid
720 intima-media thickness to detect CAD in asymptomatic DM. Additionally, echoluent
721 plaque and plaque thickness are independent predictors of CVD events (CAD, ischaemic
722 stroke, PAD). ABI is associated with an increased risk of all-cause and CV mortality in DM
723 and non-DM (see further details in section 10).

<table>
<thead>
<tr>
<th>Use of laboratory, ECG, and imaging testing for CV risk assessment in asymptomatic patients with DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>Routine assessment of microalbuminuria is indicated to identify patients at risk of developing renal dysfunction or at high risk of future CVD.</td>
</tr>
<tr>
<td>A resting ECG is indicated in patients with DM diagnosed with hypertension or with suspected CVD.</td>
</tr>
<tr>
<td>Assessment of carotid and/or femoral plaque burden with arterial ultrasonography should be considered as a risk modifier in asymptomatic patients with DM.</td>
</tr>
<tr>
<td>CAC score with CT may be considered as a risk modifier in the CV risk assessment of asymptomatic patients with DM at moderate risk.</td>
</tr>
<tr>
<td>CTCA or functional imaging (radionuclide myocardial perfusion imaging, stress cardiac magnetic resonance imaging, or exercise or pharmacological stress echocardiography) may be considered in asymptomatic patients with DM for screening of CAD.</td>
</tr>
<tr>
<td>ABI may be considered as a risk modifier in CV risk assessment.</td>
</tr>
<tr>
<td>Detection of atherosclerotic plaque of carotid or femoral arteries by CT or magnetic resonance imaging may be considered as a risk modifier in patients with DM at moderate or high risk CV.</td>
</tr>
<tr>
<td>Carotid ultrasound intima-media thickness screening for CV risk assessment is not recommended.</td>
</tr>
<tr>
<td>Routine assessment of circulating biomarkers is not recommended for CV risk stratification.</td>
</tr>
</tbody>
</table>
Risk scores developed for the general population are not recommended for CV risk assessment in patients with DM.

ABI = ankle-brachial index; CAC = coronary artery calcium; CAD = coronary artery disease; CT = computed tomography; CTCA = computed tomography coronary angiography; CV = cardiovascular; CVD = cardiovascular disease; DM = diabetes mellitus; ECG = electrocardiogram.

aClass of recommendation.
bLevel of evidence.
cSee Table 3.

Gaps in evidence

- The prognostic value of advanced imaging techniques, such as strain imaging or CV magnetic resonance with tissue characterization, needs validation in prospective cohorts.
- Asymptomatic subjects with significant atherosclerosis burden (i.e. CAC score >400) may be referred for functional imaging or CT coronary angiography; however, identification of the presence of significant coronary artery stenoses has not been shown to be better than aggressive medical treatment for CV risk factors.
- Sex-specific differences in the diagnosis of CAD require further investigation.
- The uptake of CV risk assessment in different ethnic groups requires evaluation.

6.1. Lifestyle

Key messages

- Lifestyle changes are key to prevent DM and its CV complications.
- Reduced calorie intake is recommended to lower excessive body weight in DM.
- A Mediterranean diet supplemented with olive oil and/or nuts reduces the incidence of major CV events.
- Moderate-to-vigorous physical activity of ≥150 min/week is recommended for the prevention and control of DM.

American and European guidelines advocate lifestyle changes as a first measure for the prevention and management of DM. Even modest weight loss delays progression from pre-DM to T2DM. A recent meta-analysis of 63 studies (n = 17 272, mean age 49.7
years), showed that each additional kilogram loss was associated with a 43% lower odds of T2DM. The relatively small Finnish Diabetes Prevention Study and the Da Qing Diabetes Prevention Study have both shown that lifestyle intervention in IGT significantly reduces the development of T2DM, with a reduction in vascular complications in the Chinese cohort. The 30-year results from the Da Qing study are further strengthening this conclusion. Results from the long-term follow-up of the Diabetes Prevention Program support the view that lifestyle intervention or metformin significantly reduces DM development over 15 years.

In established DM, lower calorie intake causes a fall in HbA1c and improves quality of life. Maintaining weight loss for 5 years is associated with sustained improvements in HbA1c and lipid levels. For many obese patients with DM, weight loss of >5% is needed to improve glycaemic control, lipid levels, and blood pressure (BP). One-year results from the Action for Health in Diabetes (Look AHEAD) trial, investigating the effects of weight loss on glycaemia and prevention of CVD events in DM, showed that an average 8.6% weight loss was associated with a significant reduction in HbA1c and CV risk factors. Although these benefits were sustained for 4 years, there was no difference in CV events between groups.

The Diabetes Remission Clinical Trial (DiRECT), an open-label, cluster-randomized trial, assigned practices to provide either a weight-management programme (intervention) or best-practice care by guidelines (control). The results show that at 12 months, almost half of the participants achieved remission to a non-diabetic state and were off glucose-lowering drugs. Sustained remissions at 24 months for over one-third of people with T2DM have been confirmed recently.

Bariatric surgery causes long-term weight loss and reduces DM and risk factor elevations, with effects that are superior to lifestyle and intensive medical management alone.

6.1.1. Diet

Nutrient distribution should be based on an individualized assessment of current eating patterns, preferences, and metabolic goals. In the Prevención con Dieta Mediterránea (PREDIMED) study, among people at high CV risk (49% had DM), a Mediterranean diet supplemented with olive oil or nuts reduced the incidence of major CV events.

6.1.1.1. Carbohydrate
The role of low-carbohydrate diets in DM remains unclear. A recent meta-analysis based on 10 RCTs comprising 1376 individuals has shown that the glucose-lowering effects of low- and high-carbohydrate diets are similar at 1 year or later and have no significant effect on weight or low-density lipoprotein cholesterol (LDL-C) levels.

6.1.1.2. Fats

The ideal amount of dietary fat for individuals with DM is controversial. Several RCTs including patients with DM have reported that a Mediterranean-style eating pattern, rich in polyunsaturated and monounsaturated fats, can improve both glycaemic control and blood lipids. Supplements with n-3 fatty acids have not been shown to improve glycaemic control in individuals with DM, and RCTs do not support recommending n-3 supplements for the primary or secondary prevention of CVD. The Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial (REDUCE-IT), using a higher dose of n3-fatty acids (4 g/day) in patients with persistent elevated triglycerides and either established CVD or DM and at least one other CVD risk factor, showed a significant reduction of the primary endpoint of major adverse CV events (MACE). Patients with DM should follow guidelines for the general population for the recommended intakes of saturated fat, dietary cholesterol, and trans-fat. In general, trans-fats should be avoided.

6.1.1.3. Proteins

Adjusting daily protein intake is not indicated in DM unless kidney disease is present, at which point less protein is recommended.

6.1.1.4. Vegetables, legumes, fruits, and wholegrain cereals

Vegetables, legumes, fruits, and wholegrain cereals should be part of a healthy diet.

6.1.1.5. Alcohol consumption

A recent meta-analysis indicated that whilst low levels of alcohol (up to 100 g/week) were associated with a lower risk of MI, there were no clear thresholds below which lower alcohol consumption stopped being associated with a lower disease risk for other CV outcomes such as hypertension, stroke, and HF. Moderate alcohol intake should not be promoted as a means to protect against CVD.
6.1.1.6. Coffee and tea

Consumption of more than four cups of coffee per day was associated with a lower risk of CVD in Finnish patients with DM. An exception should be made for coffee brewed by boiling ground coffee, which increases cholesterol levels. In a meta-analysis of 18 observational studies, increasing coffee or tea consumption appeared to reduce the risk of DM.

6.1.1.7. Vitamin and macronutrients

Vitamin or micronutrient supplementation to reduce the risk of DM or CVD in DM is not recommended.

6.1.2. Physical activity

Physical activity delays conversion of IGT to T2DM and improves glycaemic control and CVD complications. Aerobic and resistance training improve insulin action, glycaemic control, lipid levels, and BP. RCTs support the need for exercise reinforcement by healthcare workers, and structured aerobic exercise or resistance exercise reduced HbA1c by about 0.6% in DM. Clinical trials in adults with DM have provided evidence for the HbA1c-lowering value of resistance training, and for an additive benefit of combined aerobic and resistance exercise. Patients with pre-DM and DM should do two sessions per week of resistance exercise; pregnant women with DM should engage in regular moderate physical activity. Encouragement to increase activity by any level yields benefits – even an extra 1000 steps of walking per day would be advantageous and may be a good starting point for many patients.

6.1.3. Smoking

Smoking increases the risk of DM, CVD, and premature death, and should be avoided, including passive smoking. If advice, encouragement, and motivation are insufficient, then drug therapies should be considered early, including nicotine replacement therapy, followed by bupropion or varenicline. Electronic cigarettes (e-cigarettes) are an emerging smoking cessation aid worldwide; however, consensus regarding their efficacy and safety has yet to be reached. Smoking cessation programmes have low efficacy at 12 months.
Lifestyle modifications in DM and pre-DM

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class<sup>a</sup></th>
<th>Level<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking cessation guided by structured advice is recommended in all individuals with DM and pre-DM<sup>27, 117</sup></td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Lifestyle intervention is recommended to delay or prevent the conversion of pre-DM states, such as IGT, to T2DM<sup>85, 86</sup></td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Reduced calorie intake is recommended for lowering excessive body weight in pre-DM and DM<sup>≥ 82, 83, 89, 90</sup></td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Moderate-to-vigorous physical activity, notably a combination of aerobic and resistance exercise, for ≥150 min/week is recommended for the prevention and control of DM, unless contraindicated, such as when there are severe comorbidities or a limited life expectancy<sup>d</sup><sup>110</sup>, 119,111-113</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>A Mediterranean diet, rich in polyunsaturated and monounsaturated fats, should be considered to reduce CV events<sup>96, 97</sup></td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>Vitamin or micronutrient supplementation to reduce the risk of DM or CVD in DM is not recommended<sup>79, 120</sup></td>
<td>III</td>
<td>B</td>
</tr>
</tbody>
</table>

CV = cardiovascular; CVD = cardiovascular disease; DM = diabetes mellitus; IGT = impaired glucose tolerance; T2DM = type 2 diabetes mellitus.

^aClass of recommendation.

^bLevel of evidence.

^dA commonly stated goal for obese patients with DM is to lose around 5% of baseline weight.

^eIt is recommended that all individuals reduce the amount of sedentary time by breaking up periods of sedentary activity with moderate-to-vigorous physical activity in bouts of 10 minutes or more (broadly equivalent to 1000 steps).

Gaps in evidence

- Adherence to lifestyle changes.
- Ethnicity and diet.
- Effects of lifestyle measures on clinical outcomes.
- Lifestyle advice in different stages of life, e.g. frail and elderly patients.
- Tailored exercise interventions in different ethnic groups and patient categories.

6.2. Glucose

Key messages

- Glucose control to target a near-normal HbA1c (<7.0% or <53 mmol/mol) will decrease microvascular complications in DM.
• Tighter glucose control initiated early in the course of DM in younger individuals leads to a reduction in CV outcomes over a 20-year time-scale.

• Less rigorous targets should be considered in elderly patients on a personalized basis and in those with severe comorbidities or advanced CVD.

6.2.1. Glycaemic targets

A meta-analysis of three major studies – Action to Control Cardiovascular Risk in Diabetes (ACCORD), Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE), and Veterans Affairs Diabetes Trial (VADT) – suggested that in T2DM, an HbA1c reduction of around 1% is associated with a 15% relative risk reduction in non-fatal MI, without beneficial effects on stroke, CV or all-cause mortality.121 Intensive glucose control was beneficial for CV events in patients with a short duration of DM, lower HbA1c at baseline, and no CVD.122 In addition, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC) (T1DM), the United Kingdom Prospective Diabetes Study (UKPDS), and VADT (T2DM) showed that a long follow-up (up to 20 years) is necessary to demonstrate a beneficial effect on macrovascular complications, and that early glucose control is associated with long-term CV benefits (legacy effect).123 An HbA1c target of <7% (<53 mmol/mol) reduces microvascular complications, while evidence for an HbA1c target to reduce macrovascular risk is less compelling. However, HbA1c targets should be individualized, with more stringent goals (6.0–6.5% [42–48 mmol/mol]) in younger patients with a short duration of DM and no evidence of CVD, if achieved without significant hypoglycaemia. Less stringent HbA1c goals (e.g. <8% [64 mmol/mol] or up to 9% [75 mmol/mol]) may be adequate for elderly patients with long-standing DM and limited life expectancy, frailty with multiple comorbidities, including hypoglycaemic episodes.

6.2.1.1. Additional glucose targets

Post-prandial glucose testing should be recommended for patients who have pre-meal glucose values at target but HbA1c above target. Several epidemiological studies have shown that high post-challenge (2-h OGTT) or post-prandial glucose values are associated with greater CV risk, independent of FPG.124-126 Intervention trials failed to support the role of post-prandial glucose as a CV risk factor independent of HbA1c. The Hyperglycemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type
2 Diabetes Mellitus (HEART2D) trial, an RCT that assigned patients with DM within 21 days after an acute MI to insulin regimens targeting either post-prandial or pre-prandial glucose, reported differences in FPG, less-than-expected differences in post-prandial PG, similar levels of HbA1c, and no difference in risk of future CV events. However, in a post-hoc analysis, this risk was significantly lower in older patients treated with an insulin regimen targeting post-prandial glycaemia. The ACE (Acarbose Cardiovascular Evaluation) trial, in Chinese patients with CAD and IGT, showed that acarbose did not reduce the risk of MACE, but reduced the incidence of DM by 18%. FPG variability was reported to be a strong predictor of all-cause and CVD-related mortality in DM, suggesting that managing glucose variability may become an additional goal. In the intensive arm of the ADVANCE study, an increase in HbA1c and fasting glucose variability was associated with the risk of macrovascular events. In insulin-treated DM, an association between fasting glucose variability and total mortality was also reported in the pooled population of the Trial Comparing Cardiovascular Safety of Insulin Degludec versus Insulin Glargine in Patients with Type 2 Diabetes at High Risk of cardiovascular Events (DEVOTE). Glucose variability increases in the presence of pre-DM. However, the role of glucose variability in CVD is difficult to dissect. In patients with DM, mean blood glucose and HbA1c were more strongly associated with CVD risk factors than were FPG, post-prandial glucose levels, or measures of glucose variability using continuous glucose monitoring. Drugs that reduce post-prandial glucose excursions, including glucagon-like peptide-1 receptor agonists (GLP1-RAs), dipeptidyl peptidase-4 (DPP4) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors, seem an attractive way to reduce glucose variability.

6.2.2. Glucose-lowering agents

Therapeutic agents that manage hyperglycaemia can be broadly characterized as belonging to one of four groups: a) insulin sensitizers (metformin, pioglitazone); b) insulin-providers (insulin, sulphonylureas, meglitinitides); c) incretin-based therapies (GLP1-RAs, DPP4 inhibitors); d) gastrointestinal glucose absorption inhibitor (acarbose); and e) renal glucose re-uptake inhibitors (SGLT2 inhibitors). For further details see sections 7.1.1 and 7.1.2.

6.2.3. Special considerations

6.2.3.1. Hypoglycaemia
Although studies suggest an association between hypoglycaemia and CV events, there is no clear evidence for causality. Prevention of hypoglycaemia remains critical particularly with advanced disease or CVD (including HF), to reduce the risk of arrhythmias and myocardial ischaemia.\(^{136}\) Several studies, including Diabetes Mellitus Insulin-Glucose Infusion in Acute Myocardial Infarction 2 (DIGAMI 2),\(^{137}\) ADVANCE,\(^{138}\) and Outcome Reduction With Initial Glargine Intervention (ORIGIN), indicate that severe hypoglycaemia is associated with increased risk of death and an impaired CV prognosis,\(^{139,140}\) whilst DEVOTE reported decreased hypoglycaemia but failed to show a difference in MACE.\(^{140}\)

6.2.3.2. Glucose monitoring

Structured self-monitoring of blood glucose and continuous glucose monitoring are valuable tools to improve glycaemic control.\(^{141}\) Electronic ambulatory glucose\(^{142}\) has been shown to reduce the time spent in hypoglycaemia and to increase the time when glucose is within the recommended range.\(^{142-144}\)

<table>
<thead>
<tr>
<th>Glycaemic control in DM</th>
<th>Class(^a)</th>
<th>Level(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is recommended to apply tight glucose control, targeting a near-normal HbA1c (<7.0% or <53 mmol/mol) to decrease microvascular complications in DM.(^{145-149})</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>It is recommended that HbA1c targets are individualized according to duration of DM, comorbidities, and age.(^{122,150})</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Avoiding hypoglycaemia is recommended.(^{136,139,140,151})</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>The use of structured self-monitoring of blood glucose and/or continuous glucose monitoring should be considered to facilitate optimal glycaemic control.(^{141-144})</td>
<td>IIa</td>
<td>A</td>
</tr>
<tr>
<td>An HbA1c target of <7.0% (or <53 mmol/mol) should be considered for the prevention of macrovascular complications in DM.</td>
<td>IIa</td>
<td>C</td>
</tr>
</tbody>
</table>

DM = diabetes mellitus; HbA1c = haemoglobin A1c.

\(^a\)Class of recommendation.

\(^b\)Level of evidence.

Gaps in evidence

- More research is needed to define a "personalized" target for patients with DM.
The role of new glucose-monitoring technologies (continuous glucose monitoring and electronic ambulatory glucose) in the control of post-prandial glycaemia and glucose variability needs to be defined.

The role of these new technologies in the prevention of DM complications needs to be tested.

6.3. Blood pressure

Key messages

- The BP goal is to target systolic blood pressure (SBP) to 130 mmHg in DM and <130 mmHg if tolerated, but not <120 mmHg. In older people (aged >65 years) the SBP goal is to a range of 130–139 mmHg.
- The diastolic blood pressure (DBP) target is <80 mmHg, but not <70 mmHg.
- Optimal BP control reduces the risk of micro- and macrovascular complications.
- Guidance on lifestyle changes must be provided for patients with DM and hypertension.
- Evidence strongly supports the inclusion of an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB), in patients who are intolerant to ACEI.
- BP control often requires multiple drug therapy with a renin-angiotensin-aldosterone system (RAAS) blocker and a calcium-channel blocker or diuretic. Dual therapy must be considered as first line.
- The combination of an ACEI and an ARB is not recommended.
- In pre-DM, the risk of new-onset DM is lower with RAAS blockers than with beta-blockers or diuretics.
- Patients with DM on combined antihypertensive treatments should be encouraged to self-monitor BP.

The prevalence of hypertension is high in DM, reaching up to 67% after 30 years of T1DM152 and >60% in T2DM. Mediators of increased BP in patients with DM involve factors linked to obesity, including hyperinsulinaemia.153

6.3.1. Treatment targets

RCTs have shown the benefit (reduction of stroke, coronary events, and kidney disease) of lowering SBP to <140 mmHg and DBP to <90 mmHg in DM. In a meta-analysis of 13 RCTs with DM or pre-DM, a SBP reduction to 131–135 mmHg reduced the risk of all-cause
mortality by 13%, whereas more-intensive BP control (≤130 mmHg) was associated with a
greater reduction in stroke but did not reduce other events.154 In a meta-analysis,
antihypertensive treatment significantly reduced mortality, CAD, HF, and stroke, with an
achieved mean SBP of 138 mmHg, whereas only stroke was reduced significantly, with a
mean SBP of 122 mmHg.155 Reducing SBP to <130 mmHg may benefit patients with a
particularly high risk of a cerebrovascular event, such as those with a history of stroke.154-157

The UKPDS post-trial 10-year follow-up study reported no persistence of the benefits of the
earlier period of tight BP control with respect to macrovascular events, death, and
microvascular complications, while initial between-group BP differences were no longer
maintained.158 In the ADVANCE trial, the combination of perindopril and indapamide
reduced mortality, and the benefit was still present, but attenuated, at the end of the 6-year
post-trial follow-up, without evidence of a sex difference.159 Thus, optimal BP control is
important in reducing the risk of micro- and macrovascular complications, and must be
maintained if these benefits are to be sustained.

In patients with DM receiving BP-lowering drugs, it is recommended that office BP
should be targeted to a SBP of 130 mmHg, and lower if tolerated. In older patients (aged ≥65
years) the SBP target range should be 130–140 mmHg if tolerated. In all patients with DM,
SBP should not be lowered to <120 mmHg and DBP should be lowered to <80 mmHg.160

6.3.2. Managing blood pressure lowering

6.3.2.1. Effects of lifestyle intervention and weight loss

Reduction of sodium intake (to below 100 mmol/day), diets rich in vegetables, fruits, and
low-fat dairy products, and Mediterranean diets have all been demonstrated to improve BP
control.161,162,163 As a result of long-term exercise training intervention, modest but significant
reductions in systolic (by −7 mmHg) and diastolic (by −5 mmHg) BP are observed. Ideally,
an exercise prescription aimed at lowering BP in individuals with normal BP or hypertension
would include a mix of predominantly aerobic exercise training supplemented with dynamic
resistance exercise training.164

A marked improvement in CV risk factors (hypertension, dyslipidaemia, inflammation,
and DM), associated with marked weight loss, was observed after bariatric surgery.165 In the
Look AHEAD trial, those who lost 5% to <10% of body weight had increased odds of
achieving a 5-mmHg decrease in SBP and DBP.166
6.3.2.2. Pharmacological treatments

If office SBP is ≥140 mmHg and/or DBP is ≥90 mmHg, drug therapy is necessary in combination with non-pharmacological therapy. All available BP-lowering drugs (except beta-blockers) can be used, but evidence strongly supports the use of a RAAS blocker, particularly in patients with evidence of end-organ damage (albuminuria and LV hypertrophy). BP control often requires multiple drug therapy with a RAAS blocker and a calcium-channel blocker or a diuretic, while the combination of an ACEI with an ARB is not recommended. A combination of two or more drugs at fixed doses in a single pill should be considered, to improve adherence. The beta-blocker/diuretic combination favours the development of DM, and should be avoided in pre-DM, unless required for other reasons. Among beta-blockers, nebivolol was shown not to affect insulin sensitivity in patients with metabolic syndrome.

A meta-analysis in which ACEIs or ARBs were compared with placebo, reported a reduced incidence of new-onset DM (odds ratio 0.8, 95% confidence interval [CI] 0.8–0.9; P < 0.01) and CV mortality (odds ratio 0.9, 95% CI 0.8–1.0; P < 0.01) on active therapy. In patients with pre-DM, ramipril did not significantly reduce the incidence of DM, but significantly increased regression to normoglycaemia. In patients with IGT, valsartan significantly reduced the incidence of new-onset DM.

6.3.2.3. Blood-pressure changes with glucose-lowering treatments

Trials testing GLP1-RAs showed evidence of a slight, but significant, BP decrease, partly due to weight loss. In the Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial, a sustained decrease was observed (SBP/DBP –1.2/–0.6 mmHg), with a slight increase in heart rate (3 beats per minute). SGLT2 inhibitors induced a larger BP decrease (SBP/DBP –2.46/–1.46 mmHg) without heart rate changes. The BP-lowering effects of these drugs have to be taken into consideration when managing BP.

<table>
<thead>
<tr>
<th>Management of BP in patients with DM and pre-DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>Treatment targets</td>
</tr>
</tbody>
</table>
Antihypertensive drug treatment is recommended for people with DM when office BP is >140/90 mmHg.155, 178-180

It is recommended that a patient with hypertension and DM is treated in an individualized manner. The BP goal is to target SBP to 130 mmHg and <130 mmHg if tolerated, but not <120 mmHg. In older people (aged >65 years) the SBP goal is to a range of 130–139 mmHg.155, 159, 160, 181-183

It is recommended to target DBP <80 mmHg, but not <70 mmHg.160

An on-treatment SBP of <130 mmHg may be considered in patients at particularly high risk of a cerebrovascular event, such as those with a history of stroke.154-157, 173

Treatment and evaluation

Lifestyle changes (weight loss if overweight, physical activity, alcohol restriction, sodium restriction, and increased consumption of fruits [e.g. 2–3 servings], vegetables [e.g. 2–3 servings], and low-fat dairy products) are recommended in patients with DM and pre-DM with hypertension.161-163, 166

A RAAS blocker (ACEI or ARB) is recommended in the treatment of hypertension in DM, particularly in the presence of microalbuminuria, albuminuria, proteinuria, or LV hypertrophy.167-170

It is recommended to initiate treatment with a combination of a RAAS blocker with a calcium-channel blocker or thiazide/thiazide-like diuretic.167-171

In patients with IFG or IGT, RAAS blockers should be preferred to beta-blockers or diuretics to reduce the risk of new-onset DM.173-175

The effects of GLP1-RAs and SGLT2 inhibitor on BP should be considered.175

Home BP self-monitoring should be considered in patients with DM on antihypertensive treatments to check that their BP is appropriately controlled.184

24-h ABPM should be considered to assess abnormal 24-h BP patterns and adjust antihypertensive treatment.185

ABPM = ambulatory blood pressure monitoring; ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; BP = blood pressure; DBP = diastolic blood pressure; DM = diabetes mellitus; GLP1-RA = glucagon-like peptide-1 receptor agonist; IFG = impaired fasting glycaemia; IGT = impaired glucose tolerance; LV = left ventricular; RAAS = renin-angiotensin-aldosterone system; SBP = systolic blood pressure; SGLT2 = sodium-glucose co-transporter 2.

*Class of recommendation.
*bLevel of evidence.
Gaps in evidence

- Optimal BP targets are unknown, particularly in young patients with T1DM, recent-onset T2DM, and DM with CAD.
- The role of stabilization or reversal of end-organ damage (including albuminuria, LV hypertrophy, and arterial stiffness), beyond BP control, is poorly known.
- Is the treatment with GLP-RAs and SGLT2 inhibitors affecting the current treatment algorithms for BP lowering?
- The interaction of GLP1-RAs and SGLT2 inhibitors with BP-lowering treatments, in terms of CV prognosis, is unknown.

6.4. Lipids

Key messages

- Statins effectively prevent CV events and reduce CV mortality, and their use is associated with a limited number of adverse events. Because of the high-risk profile of patients with DM, intensive statin treatment should be used on an individualized basis.
- Currently, statins remain state-of-the-art therapy in lipid-lowering treatment in DM.
- Ezetimibe or a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor on top of a statin – or alone, in case of documented intolerance to statins – further contribute to LDL-C reduction in patients with DM, thus improving CV outcome and reducing CV mortality.

A cluster of lipid and apoprotein abnormalities accompanies DM. The two core components are moderate elevation of fasting and non-fasting triglycerides and low high-density lipoprotein cholesterol (HDL-C). Other features comprise elevation of triglyceride-rich lipoproteins, including chylomicron and very low-density lipoprotein remnants, and normal to mildly elevated levels of LDL-C, with small dense low-density lipoprotein particles. In well-controlled T1DM, HDL-C levels tend to be normal (or even slightly elevated), as do serum triglyceride levels.186

6.4.1. Lipid-lowering agents

6.4.1.1. Statins

Consistent data demonstrate the efficacy of statins in preventing CV events and reducing CV mortality in DM, with no evidence for sex differences. A meta-analysis including 18 686 patients with DM demonstrated that a statin-induced reduction of LDL-C by 1.0 mmol/L (40
mg/dL) was associated with a 9% reduction in all-cause mortality and a 21% reduction in the incidence of major CV events. Similar benefits were seen in both T1DM and T2DM. In patients with an ACS, intensive statin treatment led to a reduction in all-cause and CV death, and contributed to a reduction in atheroma progression. In both T1DM and young-onset T2DM, there is a paucity of evidence to indicate the age at which statin therapy should be initiated. To guide an approach, statins are not indicated in pregnancy, and should be avoided in women with T1DM or T2DM who are planning pregnancy. In the absence of vascular damage, and in particular microalbuminuria, it seems reasonable to delay statin therapy in asymptomatic patients with DM until the age of 30 years. Below this age, statin therapy should be managed on a case-by-case basis taking into account the presence of microalbuminuria, end-organ damage, and ambient LDL-C levels.

Statins are safe and generally well tolerated. Adverse events, except for muscle symptoms, are rare. In the majority of cases of myopathy or rhabdomyolysis, there are drug interactions with a higher-than-standard dose of statin or the combination with gemfibrozil. Evidence indicates that most patients (70–90%) who report statin intolerance are able to take a statin when rechallenged. Patients may be rechallenged with the same statin unless they have creatine kinase elevation. Evidence supports a lower rate of side-effects with low-dose rosuvastatin or pravastatin.

Statin therapy has been associated with new-onset DM: for every 40 mmol/L (mg/dL) reduction of LDL-C by statins, conversion to DM is increased by 10%. The risk of new-onset DM increases with age, and is confined to those already at risk of developing DM. Nevertheless, the benefits in terms of CV event reduction greatly exceed the risks of statin therapy, and this has been confirmed in patients at low CV risk.

6.4.1.2. Ezetimibe

Further intensification of LDL-C lowering occurs by adding ezetimibe to a statin. In the Improved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT), a significant reduction of the primary endpoint event rate (HR 0.85, 95% CI 0.78–0.94) for post-ACS patients with DM receiving simvastatin plus ezetimibe was reported, with a stronger beneficial effect on outcome than in non-DM. The results in this subgroup were mainly driven by a lower incidence of MI and ischaemic stroke. The combination of ezetimibe with a statin should be recommended to patients with DM with a recent ACS,
particularly when the statin alone is not sufficient to reduce LDL-C levels below 1.4 mmol/L (55 mg/dL).

6.4.1.3. Proprotein convertase subtilisin/kexin type 9

The new entry among lipid-lowering therapies is the PCSK9 inhibitors, which reduce LDL-C to an unprecedented extent. In the Efficacy and Safety of Alirocumab in Insulin-treated Individuals with Type 1 or Type 2 Diabetes and High Cardiovascular Risk (ODYSSEY DM-INSULIN) trial, alirocumab, compared with placebo, reduced LDL-C by 50% in DM after 24 weeks of treatment. In the Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) trial, patients with atherosclerotic CVD on statin therapy were randomly assigned to a fixed dose of evolocumab or placebo. The results demonstrated that the primary composite endpoint (CV death, MI, stroke, hospital admission for unstable angina, or coronary revascularization) was significantly reduced. Similar results were obtained from the ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) trial, which randomly assigned patients with CVD and LDL-C >1.8 mmol/L (70 mg/dL) despite high-intensity statins, to alirocumab or placebo, with dose-titration of the active drug targeting an LDL-C level of 0.6–1.3 mmol/L (25–50 mg/dL). Alirocumab significantly reduced the risk of the primary composite endpoint (CV death, MI, stroke, or hospital admission for unstable angina) compared with placebo, with the greatest absolute benefit of alirocumab seen in patients with baseline LDL-C levels >2.6 mmol/L (100 mg/dL). In a subgroup analysis of the ODYSSEY OUTCOMES trial, patients with DM (n=5444) had double the absolute risk reduction compared with pre-DM (n=8246) and non-DM (n=5234) subjects (2.3% vs. 1.2%, respectively). At present, these results should be regarded as exploratory.

6.4.1.4. Fibrates

In patients with high triglyceride levels (≥2.3 mmol/L (200 mg/dL), lifestyle advice (with a focus on weight reduction and alcohol abuse, if relevant) and improved glucose control are the main targets. Both the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and ACCORD studies demonstrated that administration of fenofibrate on top of statins significantly reduced CV events, but only in patients who had both elevated triglyceride and reduced HDL-C levels. Gemfibrozil should be avoided because of the risk of myopathy.
A meta-analysis of fibrate trials reported a significant reduction in non-fatal MI, with no effect on mortality. Fibrates may be administered in patients with DM who are statin intolerant and have high triglyceride levels. If triglycerides are not controlled by statins or fibrates, high-dose omega-3 fatty acids (4 g/day) of icosapent ethyl may be used.

Management of dyslipidaemia with lipid-lowering drugs

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In patients with T2DM at moderate CV risk, an LDL-C target of <2.5 mmol/L (<100 mg/dL) is recommended.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>In patients with T2DM at high CV risk, an LDL-C reduction of at least 50% or an LDL-C target of <1.8 mmol/L (<70 mg/dL) is recommended.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>In patients with T2DM at very high CV risk, an LDL-C reduction of at least 50% or an LDL-C target of <1.4 mmol/L (<55 mg/dL) is recommended.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>In patients with T2DM, a secondary goal of a non-HDL-C target of <2.2 mmol/L (<85 mg/dL) in very high CV risk patients, and <2.6 mmol/L (<100 mg/dL) in high CV risk patients, is recommended.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statins are recommended as the first-choice lipid-lowering treatment in patients with DM and high LDL-C levels: administration of statins is defined based on the CV risk profile of the patient and the recommended LDL-C (or non-HDL-C) target levels.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>If the target LDL-C is not reached, combination therapy with ezetimibe is recommended.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>In patients at very high CV risk, with persistent high LDL-C despite treatment with maximum tolerated statin dose, in combination with ezetimibe or in patients with statin intolerance, a PCSK9 inhibitor is recommended.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Lifestyle intervention (with a focus on weight reduction and decreased consumption of fast-absorbed carbohydrates and alcohol) and fibrates should be considered in patients with low HDL-C and high triglyceride levels.</td>
<td>Ila</td>
<td>B</td>
</tr>
<tr>
<td>Intensification of statin therapy should be considered before the introduction of combination therapy.</td>
<td>Ila</td>
<td>C</td>
</tr>
</tbody>
</table>
Statins should be considered in patients with T1DM at high CV riskc irrespective of the baseline LDL-C level.187, 215 IIa A
Statins may be considered in asymptomatic patients with T1DM beyond the age of 30 years. IIb C
Statins are not recommended in women of child-bearing potential.189, 190 III A

CV = cardiovascular; DM = diabetes mellitus; EAS = European Atherosclerosis Society; ESC = European Society of Cardiology; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol; PCSK9 = proprotein convertase subtilisin/kexin type 9; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus.

aClass of recommendation.

bLevel of evidence.

cSee Table 3.

dSee 2019 ESC/EAS Guidelines for the management of dyslipidaemias for non-HDL-C and apoB targets.

Gaps in evidence

- The optimal LDL-C level needs to be established.
- The effect of fibrates on CV outcomes in patients with triglycerides >2.3 mmol/L is unclear.
- The role of PCSK9 inhibitors in patients with DM remains to be further elucidated.

6.5. Platelets

Key messages

- Patients with DM and symptomatic CVD should be treated no differently to patients without DM.
- In DM at moderate CV risk, aspirin for primary prevention is not recommended.
- In DM at high/very high risk, aspirin may be considered in primary prevention.

Several abnormalities have been described concerning in vivo and/or ex vivo platelet function and increased platelet activation in DM. Hyperglycaemia,216 low-degree inflammation,217 and increased oxidation may contribute to in vivo platelet activation and altered responsiveness to antithrombotic drugs in DM. However, platelet abnormalities and poor antiplatelet drug responsiveness have also been described in patients with DM with good metabolic control.218, 220 Dysmegakaryopoiesis may characterize DM, resulting in increased platelet mass.221
altered ratio between platelet count and volume,221,222 megakaryocyte aneuploidy,223 and increased reticulated platelets in the peripheral blood.219 In addition, platelet thrombin generation appears enhanced, clot type altered, and fibrinolysis reduced in DM.224

6.5.1. Aspirin

Aspirin permanently inhibits cyclo-oxygenase 1 activity and thromboxane A\textsubscript{2}-dependent platelet aggregation.225 Small, proof-of-concept, pharmacodynamic, randomized studies consistently showed that once-daily low-dose aspirin may be insufficient to fully inhibit platelet cyclo-oxygenase 1 activity in DM218-220,226 and increased platelet turnover.219 This would support testing different regimens (e.g. twice daily) of low-dose aspirin in DM in RCTs.

6.5.1.1. Primary prevention

Although aspirin has unquestionable benefits in the secondary prevention of CVD (see section 6.5.1.2), the situation is less clear in primary prevention. In 2009, the Antithrombotic Trialists’ Collaboration published a meta-analysis of primary prevention trials including 95,000 individuals at low risk.227 They reported a 12% reduction in CVD outcomes with aspirin, but a significant increase in major bleeds, which cast doubt on the value of aspirin under these circumstances. Since then, further trials have reported similar or no reduction in CV outcomes, but the risk of major bleeds is consistent across studies.228,229 Gender studies of aspirin use revealed a similar bleeding risk in men and women and a similar 12% reduction in CV events in both sexes, driven by a decrease in ischaemic stroke in women and by MI in men.229 Recent large trials in patients at moderate risk, which 1) excluded DM,230 and 2) specifically recruited DM,231 were unable to progress the argument that aspirin should be used in primary prevention. The A Study of Cardiovascular Events in Diabetes (ASCEND) trial randomized 15,480 patients with DM with no evident CVD to aspirin 100 mg once daily or placebo.231 The primary efficacy outcome (MI, stroke, transient ischaemic attack, death from any cause) occurred in 658 patients (8.5%) on aspirin versus 743 (9.6%) on placebo (rate ratio 0.88, 95% CI 0.79–0.97; \(P=0.01\)). Major bleeding occurred in 314 (4.1%) patients on aspirin versus 245 (3.2%) on placebo (rate ratio 1.29, 95% CI 1.09–1.52; \(P=0.003\)). There were no difference in fatal or intracranial bleeding, and a substantial proportion (≈25%) of the major bleedings defined according to ASCEND were in the upper gastrointestinal tract. The number-needed-to-treat/number-needed-to-harm ratio was 1.2. A recent meta-analysis
demonstrated that the proton pump inhibitors substantially protect from upper gastrointestinal bleeding with an odds ratio of approximately 0.20.232 It should be emphasized that only one in four patients in the ASCEND trial were being treated with a proton pump inhibitor at the end of the study, and wider use in trials could potentially amplify the benefit of aspirin in primary prevention.232

It has been recently suggested that body weight233 or size can lower responsiveness to aspirin as well as to clopidogrel, requiring higher daily doses.234 Pharmacokinetic data suggest a lower degree of platelet inhibition, especially in moderate to severely obese patients.234 However, the benefit of intensified antiplatelet regimens in obese DM patients remains to be established.

6.5.1.2. Secondary prevention

The best available evidence for aspirin in secondary prevention remains that discussed in the 2013 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases, developed in collaboration with the EASD72 (see section 7.1).

Antiplatelet therapy in primary prevention in DM

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Classa</th>
<th>Levelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with DM at high/very high risk,c aspirin (75–100 mg/day) may be considered in primary prevention in the absence of clear contraindications.d</td>
<td>IIb</td>
<td>A</td>
</tr>
<tr>
<td>In patients with DM at moderate CV risk,c aspirin for primary prevention is not recommended.</td>
<td>III</td>
<td>B</td>
</tr>
</tbody>
</table>

Gastric protection

When low-dose aspirin is used, proton pump inhibitors should be considered to prevent gastrointestinal bleeding.232, 235

CV = cardiovascular; **DM** = diabetes mellitus.

aClass of recommendation.
bLevel of evidence.
csee Table 3.
dGastrointestinal bleeding, peptic ulceration within the previous 6 months, active hepatic disease or history of aspirin allergy.

Gaps in evidence

- More data on CV prevention are needed for T1DM where in vivo platelet activation has been reported.236
Need to assess the effect of body mass, especially of moderate-to-severe obesity on antiplatelet drug responsiveness and effectiveness in DM and to investigate higher dose strategies.

Whether antithrombotic preventive strategy effects in pre-DM and DM are similar should be explored.

6.6. Multifactorial approaches

Key messages

- Combined reduction in HbA1c, SBP, and lipids decreases CV events by 75%.
- Multifactorial treatment is still underused.

6.6.1. Principles of multifactorial management

Patients with glucose perturbations may benefit from early identification and treatment of comorbidities and factors that increase CV risk. However, many patients are not achieving risk factor goals for CVD prevention (Table 5). In EUROASPIRE IV, a BP target <140/90 mmHg was achieved in 68% of patients with CAD without DM, in 61% of patients with newly detected DM, and in 54% of patients with previously known DM. An LDL-C target <1.8 mmol/L was achieved in 16%, 18%, and 28% of these groups, respectively. Furthermore, the combined use of four cardioprotective drugs (antiplatelets, beta-blockers, RAAS blockers, and statins) in these groups was only 53%, 55%, and 60%, respectively.

In the Swedish national DM registry, the excess risk of outcomes decreases by each risk factor within target range (HbA1c, LDL-C, albuminuria, smoking, and SBP). In T2DM with variables at target, the HR for all-cause death was 1.06 (95% CI 1.00–1.12), 0.84 (95% CI 0.75–0.93) for acute MI, and 0.95 (95% CI 0.84–1.07) for stroke. The risk of hospitalization for HF was consistently higher among patients with DM than controls (HR 1.45, 95% CI 1.34–1.57).

Intensified, multifactorial treatment for DM in primary care and early in the disease trajectory was evaluated in the Anglo-Danish-Dutch Study of Intensive Treatment In People with Screen Detected Diabetes in Primary Care (ADDITION). One- and 5-year follow-up did not show significant reductions in the frequencies of microvascular events or macrovascular events. Interestingly, modelled 10-year CVD risk calculated with the UKPDS risk engine was lower in the intensive-treatment group after adjustment for baseline CV risk (−2.0, 95% CI −3.1 to 0.9).
A beneficial effect of a multifactorial intervention in patients with DM and established microalbuminuria was demonstrated by the Steno-2 study, in which 160 very high-risk patients with DM were randomized to intensive, target-driven, multifactorial therapy or conventional management. The targets in the intensively treated group were HbA1c <6.5% (48 mmol/mol), total cholesterol <4.5 mmol/L (175 mg/dL), and BP <130/80 mmHg. All patients in this group received RAAS blockers and low-dose aspirin. This approach resulted in a reduction in microvascular and macrovascular events of about 50% after 7.8 years of follow-up. Long-term follow-up (21 years from baseline) showed that intensive treatment significantly reduced end-stage renal disease combined with death to 0.53, and induced a 7.9-year gain of life matched by time free from incident CVD. This study also showed a reduced risk of hospitalization for HF by 70%.

Japan Diabetes Optimal Integrated Treatment Study for 3 Major Risk Factors of Cardiovascular Diseases (J-DOIT3) studied the effect of an intensive multifactorial intervention with stringent goals in Japanese patients with DM aged 45–69 years with risk factors. Results showed significantly improved HbA1c, SBP, DBP, and LDL-C compared with conventional therapy. There was a non-significant trend towards reduction of the primary composite outcome, comprising non-fatal MI, stroke, revascularization, or all-cause death (HR 0.81, 95% CI 0.63–1.04; \(P = 0.094 \)). Post-hoc analysis showed that cerebrovascular events were reduced in the intensive-therapy group (HR 0.42, 95% CI 0.24–0.74; \(P = 0.002 \)), while no differences were seen for all-cause death and coronary events.

Among 1425 patients with known DM and CAD participating in the Euro Heart Survey, 44% received a combination of aspirin, a beta-blocker, a RAAS blocker, and a statin. Patients on this combination had significantly lower all-cause death (3.5 vs. 7.7%; \(P = 0.001 \)) and fewer combined CV events (11.6 vs. 14.7%; \(P = 0.05 \)) after 1 year of follow-up.

<table>
<thead>
<tr>
<th>Table 5 Summary of treatment targets for managing patients with DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factor</td>
</tr>
</tbody>
</table>
| BP | - Target SBP 130 mmHg for most adults, <130 mmHg if tolerated, but not <120 mmHg
- Less stringent targets, SBP 130–139 in older patients (>65 years) |
| Glycaemic control | - HbA1c target for most adults is <7.0% (<53 mmol/mol) |
More stringent HbA1c goals (e.g. <6.5% [48 mmol/mol]) may be suggested on a personalized basis if this can be achieved without significant hypoglycaemia or other adverse effects of treatment.

Less stringent HbA1c goals (e.g. <8% [64 mmol/mol] or up to 9% [75 mmol/mol]) may be adequate for elderly patients (see section 6.2.1).

Lipid profile

- **LDL-C**

 - In patients with DM at very high CV risk, target LDL-C to <1.4 mmol/L (<55 mg/dL) or at least >50% reduction.
 - In patients with DM at high risk, target LDL-C to <1.8 mmol/L (<70 mg/dL).
 - In patients with DM at moderate CV risk (see Table 3), an LDL-C target of <2.5 mmol/L (<100 mg/dL).

Platelet inhibition

In DM patients at high/very high CV risk

Smoking

Cessation obligatory

Physical activity

Moderate to vigorous, ≥150 min/week, combined aerobic and resistance training.

Weight

Aim for weight stabilization in overweight or obese patients with DM, based on calorie balance, and weight reduction in subjects with IGT, to prevent development of DM.

Dietary habits

Reduction in caloric intake is recommended in obese patients with T2DM to lower body weight; there is no ideal percentage of calories from carbohydrate, protein, and fat for all people with DM.

BP = blood pressure; CV = cardiovascular; DM = diabetes mellitus; HbA1c = haemoglobin A1c; IGT = impaired glucose tolerance; LDL-C = low-density lipoprotein cholesterol; SBP = systolic blood pressure; T2DM = type 2 diabetes mellitus.

Multifactorial management in DM and pre-DM

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Classa</th>
<th>Levelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>A multifactorial approach to DM management with treatment targets, as listed in Table 5, should be considered in patients with DM and CVD. 238, 239, 245-248</td>
<td>Ila</td>
<td>B</td>
</tr>
</tbody>
</table>
7. Management of coronary artery disease

Key messages

- T2DM and pre-DM are common in individuals with ACS and chronic coronary syndromes (CCS) and are associated with an impaired prognosis.
- Glycaemic status should be systematically evaluated in all patients with CAD.
- Intensive glycaemic control may have more favourable CV effects when initiated early in the course of DM.
- Empagliflozin, canagliflozin, and dapagliflozin reduce CV events in patients with DM and CVD or at very high/high CV risk.
- Liraglutide and semaglutide reduce CV events in patients with DM and CVD or at very high/high CV risk.
- Intensive secondary prevention is indicated in patients with DM and CAD.
- Antiplatelet drugs are the cornerstone of secondary CV prevention.
- In high-risk patients, the combination of low-dose rivaroxaban and aspirin may be beneficial for CAD.
- Aspirin plus reduced dose ticagrelor may be considered for up to 3 years post-MI.
- Antithrombotic treatment for revascularization does not differ according to DM status.
- In patients with DM and multivessel CAD, suitable coronary anatomy for revascularization, and low predicted surgical mortality, coronary artery bypass graft (CABG) is superior to percutaneous coronary intervention (PCI).

7.1. Medical treatment

Glucose abnormalities are common in patients with acute and stable CAD, and are associated with a poor prognosis.\(^{16,18,249}\) Approximately 20–30% of patients with CAD have known
DM, and of the remainder, up to 70% have newly detected DM or IGT when investigated with an OGTT. Patients with CAD, without known glucose abnormalities, should have their glycaemic state evaluated as outlined in sections 4 and 5.

It is important to acknowledge that recommendations for secondary prevention of CAD in DM are mostly based on evidence from subgroup analyses of trials that enrolled patients with and without DM. Because of the higher CV event rates consistently observed in DM, the absolute benefit often appears amplified while the relative benefit remains similar.

General recommendations for patients with CCS and ACS are outlined in other ESC guidelines.

There is evidence that improved glycaemic control defers the onset, reduces the progression, and (in some circumstances) may partially reverse markers of microvascular complications in DM. Accordingly, early, effective, and sustained glycaemic control is advocated in all DM guidelines to mitigate the risks of hyperglycaemia. Achieving this without detriment and with benefit to the CV system is an important challenge, particularly when selecting glucose-lowering therapies to suit the individual. Key clinical trials that delineate the effects of glucose-lowering therapies on CV outcomes are considered below.

7.1.1. Effects of intensified glucose control

7.1.1.1. UKPDS

In UKPDS, 5102 patients with newly diagnosed drug-naïve DM were randomly assigned to intensive glucose control with a sulphonylurea or insulin, or to management with diet alone, for a median 10.7 years. Although a clear reduction in microvascular complications was evident, the reduction in MI was marginal at 16% (P = 0.052). In the study extension phase, the risk reduction in MI remained at 15%, which became significant as the number of cases increased. Furthermore, the beneficial effects persisted for any DM-related endpoint, including death from any cause, which was reduced by 13%. Of note, this study was performed when modern aspects of multifactorial management (lipid lowering and BP) were unavailable.

7.1.1.2. ACCORD, ADVANCE, and VADT

Three trials reported the CV effects of more-intensive versus standard glucose control in patients with DM at high CV risk. They included >23 000 patients treated for 3–5 years, and showed no CVD benefit from intensified glucose control. ACCORD was
terminated after a mean follow-up of 3.5 years because of higher mortality in the intensive arm (14/1000 vs. 11/1000 patient deaths/year), which was pronounced in those with multiple CV risk factors and driven mainly by CV mortality. A further analysis found that individuals with poor glycaemic control within the intensive arm accounted for the excess CV mortality.259

\textbf{7.1.1.3. DIGAMI 1 and 2}

DIGAMI 1260 reported that insulin-based intensified glycaemic control reduced mortality in DM and acute MI (mortality after 3.4 years was 33\% in the insulin group vs. 44\% in the control group; \textit{P} = 0.011).261 The effect of intensified glycaemic control remained 8 years after randomization, increasing survival by 2.3 years.262 These results were not reproduced in DIGAMI 2, which was stopped prematurely due to slow recruitment of patients.263 In pooled data, an insulin-glucose infusion did not reduce mortality in acute MI and DM.264 If it is felt necessary to improve glycaemic control in ACS, this should be carried out cognisant of the risk of hypoglycaemia, which is associated with a poor outcome in patients with CAD.265, 266

The strategy of metabolic modulation by glucose–insulin–potassium, to stabilize the cardiomyocyte and improve energy production, regardless of the presence of DM, has been tested in several RCTs, without a consistent effect on morbidity or mortality.267, 268

In patients undergoing cardiac surgery, glucose control should be considered.269

Observational data in patients undergoing CABG suggest that the use of continuous insulin infusion achieving moderately tight glycaemic control is associated with lower mortality and fewer major complications than tighter or more lenient glycaemic control.270 In the CABG stratum in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial, long-term insulin-providing treatment was associated with more CV events than insulin-sensitization medications.271

The glycaemic targets for people with CAD and the preferred classes of drugs for DM are outlined in section 6.2 and below.

\textbf{7.1.2. Glucose-lowering agents: new evidence from cardiovascular outcome trials}

\textbf{7.1.2.1. Established oral glucose-lowering drugs}

The CV effects of long-established oral glucose-lowering drugs have not been evaluated in large RCTs, as with more recent drugs.
7.1.2.1.1. Metformin

In a nested study of 753 patients in UKPDS comparing conventional therapy with metformin, metformin reduced MI by 39%, coronary death by 50%, and stroke by 41% over a median period of 10.7 years in newly diagnosed overweight patients with T2DM without previous CVD. Metformin also reduced MI and increased survival when the study was extended for a further 8–10 years of intensified therapy, including the use of other drugs. Observational and database studies provide supporting evidence that long-term use of metformin improves CV prognosis. Still, there are no recent large-scale randomized cardiovascular outcome trials (CVOTs) designed to assess the effect of metformin on CV events.

7.1.2.1.2. Sulphonylureas and meglinides

CV risk reduction with a sulphonylurea is more effective than modest lifestyle interventions alone, but is less effective than metformin. Sulphonylureas carry the risk of hypoglycaemia and since the 1960s there is an ongoing debate on the CV safety of sulfonylureas. However, the CAROLINA study comparing the DPP-4 inhibitor lixisenatide versus the sulfonylurea glimepiride showed comparable CV safety of both drugs in patients with T2DM over 6.2 years. Nateglinide did not reduce major CV events in the Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial, a 5-year prospective study of IGT and CV risk.

7.1.2.1.3. Alpha-glucosidase inhibitor

Acarbose did not alter MACE in patients with IGT and CVD during the large, 5-year, prospective ACE trial.

7.1.2.1.4. Thiazolidinediones

The PROspective pioglitAzone Clinical Trial In macroVascular Events (PROactive) of pioglitazone was a neutral trial for its composite primary outcome (HR 0.90, 95% CI 0.80–1.02; P = 0.095). Because of this, reported secondary outcomes should be viewed as hypothesis generating only. These included a nominally significant reduction of the secondary composite endpoint by 16% (HR 0.84, 95% CI 0.72–0.98; P = 0.027), and the risk of subsequent MI and recurrent stroke by 16% and 47%, respectively, with a reduction in the risk of recurrent stroke in non-DM. The occurrence of HF was significantly higher with pioglitazone than with placebo in the PROactive trial, but without increased mortality.
Thiazolidinediones Or Sulfonylureas and Cardiovascular Accidents Intervention Trial (TOSCA.IT), a large, randomized, but unblinded comparison of pioglitazone versus sulphonylurea as add-on to metformin, was stopped prematurely because of futility. The composite endpoint and the individual components of the composite endpoint were similar in the two groups. In the IRIS trial of insulin-resistant subjects without DM, pioglitazone reduced the combined endpoint of recurrent stroke and MI by 24% versus placebo over a median follow-up of 4.8 years. Following a meta-analysis of CV events with the thiazolidinedione rosiglitazone the regulatory landscape for DM drugs underwent a major change in 2008, after which all future DM drugs were required to demonstrate designated margins of CV safety to achieve or maintain regulatory approval. This led to an increase in trials to assess CV outcomes with these therapies, most of which were designed to confirm non-inferiority of the experimental therapy versus placebo, added to background antihyperglycaemic treatment.

7.1.2.1.5. Insulin
In the ORIGIN trial 12 537 people (mean age 63.5 years) at high CVD risk, with IFG, IGT, or DM, were randomized to long-acting insulin glargine (targeting a fasting blood glucose level of 5.3 mmol/L [≤95 mg/dL]) or standard care. After a median follow-up of 6.2 years, the rates of CV outcomes were similar in the two groups. In DEVOTE, a double-blind comparison of the ultra–long-acting once-daily degludec (n = 3818) with insulin glargine U100 (n = 3819) for 1.8 years in patients with DM at high CV risk, found no significant differences in MACE (composite of CV death, non-fatal MI, or non-fatal stroke). A significant reduction in the frequency of hypoglycaemia was observed in the degludec arm.

7.1.2.2. Newer oral glucose-lowering drugs
7.1.2.2.1. Dipeptidyl peptidase 4 inhibitors
Five large prospective trials in T2DM populations with different CV risk (Table 6) have assessed the CV effects of DPP4 inhibitors: saxagliptin (Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-TIMI 53 [SAVOR-TIMI 53]), alogliptin (Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care [EXAMINE]), sitagliptin (Trial Evaluating Cardiovascular Outcomes with Sitagliptin [TECOS]), and linagliptin (Cardiovascular and Renal Microvascular Outcome Study With Linagliptin in Patients With Type 2 Diabetes Mellitus [CARMELINA]) and
CARdiovascular Outcome Study of LINAgliptin Versus Glimepiride in Type 2 Diabetes [CAROLINA] have reported to date. Four of these trials confirmed statistical non-inferiority versus placebo (which included alternative glucose-lowering medication to achieve glycaemic equipoise) for the primary composite CV outcome examined. However, none of the DPP4 inhibitors was associated with significant CV benefits in their trial populations, which comprised patients with a long history of DM and CVD or clustered CVD risk factors. In the SAVOR-TIMI 53 trial, saxagliptin was associated with an increase in risk of hospitalization for HF compared with a numerical, non-significant increase with alogliptin in EXAMINE, and no HF signal with sitagliptin in TECOS, and with linagliptin in CARMELINA. Subgroup analyses of SAVOR-TIMI 53 suggested that a high baseline NT-proBNP, pre-existing HF, or CKD conferred a greater risk of hospitalization for HF in saxagliptin-treated subjects. Only the CAROLINA study compared linagliptin versus glimepiride as an active comparator and showed comparable CV safety of both drugs.

7.1.2.2. Glucagon-like peptide-1 receptor agonists

Seven CVOTs have examined the effect of GLP1-RAs on CV events in patients with DM and high CV risk. In the Evaluation of Lixisenatide in Acute Coronary Syndrome (ELIXA) trial, lixisenatide 10 or 20 ug once daily was non-inferior to placebo, but did not significantly affect a four-point MACE (3-point MACE plus hospitalization for unstable angina) in DM post-ACS. In the Exenatide Study of Cardiovascular Event Lowering (EXSCEL) study of a DM population in whom 73% had experienced a previous CV event, exenatide 2 mg once weekly showed non-inferiority versus placebo and a numerical, but non-significant, 14% reduction of the primary three-point MACE. The intention-to-treat analysis revealed a significant reduction in all-cause death by exenatide of 14% (P = 0.016), but this result has to be considered exploratory given the hierarchical statistical testing. However, in the subgroup with known CVD, those treated with exenatide demonstrated a 10% relative risk reduction for MACE (HR, 0.90, 95% CI, 0.816–0.999; nominal P = 0.047).

In LEADER, 9340 patients with DM at high CV risk (81% with previous CVD) were randomized to liraglutide 0.6–1.8 mg once daily versus placebo as add-on to other glucose-lowering drugs. All patients had a long history of DM and CV risk factors that were well controlled. After a follow-up of 3.1 years, liraglutide significantly reduced the composite three-point primary endpoint (CV death, non-fatal MI, or non-fatal stroke) by 13%. In addition, liraglutide significantly reduced CV death and total death by 22% and 15%,
respectively, and produced a non-significant numerical reduction in non-fatal MI and non-fatal stroke.176 Prespecified secondary analyses showed lower rates of development and progression of CKD with liraglutide compared with placebo.298 The Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN-6) was a phase 3 preapproval study in which a smaller population of 3297 patients with DM and high CV risk (73\% with CVD) were randomized to semaglutide 0.5–1.0 mg once weekly versus placebo. After 2.1 years, semaglutide significantly reduced the three-point MACE by 26\%, an effect driven mainly by a 39\% significant reduction of non-fatal stroke. Moreover, semaglutide led to a non-significant numerical reduction of non-fatal MI. Semaglutide also reduced the secondary endpoint of new or worsening nephropathy.299 The Peptide Innovation for Early Diabetes Treatment (PIONEER)-6 trial, also a phase 3 preapproval CVOT, examined the effect of oral semaglutide once daily (target dose 14mg) versus placebo on cardiovascular outcomes in patients with T2DM and high CV risk. Non-inferiority for cardiovascular safety of oral semaglutide was confirmed with a hazard ratio (HR) of 0.79 (p<0.001) in favour of oral semaglutide compared with placebo over a median follow-up of 16 months. Moreover, semaglutide significantly reduced the risk for CV death [15 (0.9\%) events with oral semaglutide vs 30 (1.9\%) events with placebo, HR 0.49, p=0.03] and all-cause death [23 (1.4\%) events in the semaglutide vs 45 (2.8\%) events in the placebo group, HR 0.51, p=0.008].300 However, albeit low in absolute numbers, there was a significant increase in retinopathy complications, including vitreous haemorrhage, blindness, or requirement for intravitreal agent or photocoagulation, the implications of which require further study. In the Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes) trial, once weekly albiglutide, a no-longer marketed GLP1-RA, led to a significant 22\% reduction of 3P-MACE compared with placebo in patients with DM and manifest CVD. In addition, albiglutide significantly reduced MI by 25\%.301 A recent meta-analysis of five of these trials suggests that GLP-RAs reduce three-point MACE by 12\% (HR 0.88, 95\% CI 0.84–0.94; P < 0.001).302 The Researching Cardiovascular Events With a Weekly Incretin in Diabetes (REWIND) trial assessed the effect of once weekly subcutaneous dulaglutide (1.5 mg) versus placebo on 3P-MACE in 9901 subjects with T2DM who had either a previous cardiovascular event or cardiovascular risk factors. During a median follow-up of 5.4 years, the primary composite outcome occurred in 594 (12.0\%) participants in the dulaglutide group and in 663 (13.4\%) participants in the placebo group (HR 0.88, 95\% CI 0.79–0.99; p=0.026).303
Although the mechanisms by which some of these GLP-RAs reduced CV outcomes are not established, their long half-lives may be contributing to their CV benefits. In addition, GLP1-RAs improve several CV parameters, including a small reduction in SBP and weight loss, and have direct vascular and cardiac effects that may contribute to the results. The gradual divergence of the event curves in the trials suggests that the CV benefit is mediated by a reduction in atherosclerosis-related events.

7.1.2.2.3. Sodium-glucose co-transporter 2 inhibitors

Four CVOTs with SGLT2 inhibitors (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients–Removing Excess Glucose [EMPA-REG OUTCOME], Canagliflozin Cardiovascular Assessment Study [CANVAS] Program and Dapagliflozin Effect on Cardiovascular Events−Thrombolysis In Myocardial Infarction (DECLARE−TIMI 58 trial) and Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation [CREDENCE] trial) have been published. In EMPA-REG OUTCOME, 7020 patients with DM of long duration (57% >10 years) and CVD were randomized to empagliflozin 10 or 25 mg once daily or placebo; patients were followed for a mean of 3.1 years. The patient population was well treated, with good management of risk factors (mean BP 135/77 mmHg and mean LDL-C 2.2 mmol/L). Empagliflozin significantly reduced the risk of the three-point composite primary outcome (CV death, non-fatal MI, or non-fatal stroke) by 14% compared with placebo. This reduction was driven mainly by a highly significant 38% reduction in CV death (\(P < 0.0001 \)), with separation of the empagliflozin and placebo arms evident as early as 2 months into the trial. There was a non-significant 13% reduction of non-fatal MI (\(P = 0.30 \)) and a non-significant 24% increased risk of non-fatal stroke. In a secondary analysis, empagliflozin was associated with a 35% reduction in hospitalization for HF (\(P < 0.002 \)), with separation of the empagliflozin and placebo groups evident almost immediately after treatment initiation, suggesting a very early effect on HF risk. Empagliflozin also reduced overall mortality by 32% (\(P < 0.0001 \)), a highly significant effect, translating into a number-needed-to-treat of 39 over 3 years to prevent one death. These findings were consistent in all subgroups. Additional analyses from EMPA-REG OUTCOME revealed that the CV benefit was gained by those with and without HF at baseline, the latter comprising about 10% of the study cohort.

The CANVAS Program integrated data from two RCTs (CANVAS, CANVAS-R), in which 10 142 patients with DM at high CV risk were randomized to canagliflozin 100–300
mg once daily versus placebo. After 3.1 years, canagliflozin significantly reduced a composite three-point MACE by 14% (P = 0.02), but did not significantly alter CV death or overall death. Similar to the findings in EMPA-REG OUTCOME, canagliflozin significantly reduced HF hospitalization. However, canagliflozin led to an unexplained increased incidence in lower limb fractures and amputations (albeit low numbers), a finding that was not replicated in a recent large cohort study.

DECLARE–TIMI 58 examined the effect of 10 mg dapagliflozin once daily versus placebo in 17 160 patients with DM and CVD or multiple CV risk factors, among them 10 186 without atherosclerotic CVD. After a median follow-up of 4.2 years, dapagliflozin met the prespecified criterion for noninferiority for the composite three-point MACE compared with placebo. In the two primary efficacy analyses, dapagliflozin did not significantly reduce MACE but resulted in a lower rate of the combined endpoint of CV death or HF hospitalization (4.9% vs. 5.8%; HR 0.83, 95% CI 0.73–0.95; P = 0.005). This was driven by a lower rate of HF hospitalizations (HR 0.73, 95% CI 0.61–0.88), but no between-group difference in CV death (HR 0.98, 95% CI 0.82–1.17). The benefit of dapagliflozin with respect to CV death or HF hospitalization was similar in the subgroup with CVD as well as those with multiple risk factors only. A meta-analysis of the three trials suggested consistent benefits on reducing the composite of HF hospitalization or CV death as well as on the progression of kidney disease regardless of existing atherosclerotic CVD or a history of HF, while the reduction in MACE was only apparent in patients with established CVD. The Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial randomized 4401 patients with T2DM and albuminuric CKD (eGFR 30 to <90 mL/min/1.73 m²) to canagliflozin or placebo and showed a relative reduction of the primary renal outcome by 30% by canagliflozin after a median follow-up of 2.6 years. In addition, canagliflozin significantly reduced the prespecified secondary CV outcomes of three-point MACE (HR 0.80, 95% CI 0.67–0.95; P = 0.01) and hospitalization for HF (HR 0.61, 95% CI 0.47–0.80; P < 0.001) compared with placebo in this very high CV risk group of patients (see section 11).

The CV benefits of SGLT2 inhibitors are mostly unrelated to the extent of glucose lowering and occur too early to be the result of weight reduction. The rapid separation of placebo and active arms in the three studies in terms of reduction in HF hospitalizations indicates that the beneficial effects achieved in these trials are more likely the result of a reduction in HF-associated events. They could involve effects on haemodynamic parameters,
such as reduced plasma volume, direct effects on cardiac metabolism and function, or other CV effects.314-317
CONFIDENTIAL
2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

Table 6 Patient characteristics of CV safety studies with glucose-lowering agents. Modified after 316

<table>
<thead>
<tr>
<th>Trial</th>
<th>SGLT2 inhibitors</th>
<th>GLP1-RAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARE-TIMI 58311</td>
<td>EMPA-REG OUTCOME36</td>
</tr>
<tr>
<td>Baseline</td>
<td>Dapagliflozin versus Placebo</td>
<td>Empagliflozin versus Placebo</td>
</tr>
<tr>
<td>n</td>
<td>1716</td>
<td>7020</td>
</tr>
<tr>
<td>Age (years)</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>DM (years)</td>
<td>11.8</td>
<td>57% >10y</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>32.1</td>
<td>30.6</td>
</tr>
<tr>
<td>Insulin (%)</td>
<td>–40</td>
<td>48</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Previous CVD (%)</td>
<td>40</td>
<td>99</td>
</tr>
<tr>
<td>CV risk inclusion criteria</td>
<td>CVD or ≥1 CV risk factor</td>
<td>MI, CHD, CVD, PVD</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>89</td>
<td>94</td>
</tr>
<tr>
<td>Follow-up (years)</td>
<td>4.5</td>
<td>3.1</td>
</tr>
</tbody>
</table>

ACS = acute coronary syndromes; CANVAS = Canagliflozin Cardiovascular Assessment Study; CARMELINA = Cardiovascular and Renal Microvascular Outcomes in Patients With Type 2 Diabetes Mellitus; CAROLINA = Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes; CHD = coronary heart disease; CKD = chronic kidney disease; CVD = cardiovascular disease; MI = myocardial infarction; PVD = peripheral vascular disease; ** = major outcomes; : = minor outcomes; ≥ = greater than or equal to; ≥2 = greater than or equal to 2.
CONFIDENTIAL
2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

Table 6 Patient characteristics of CV safety studies with glucose-lowering agents.

<table>
<thead>
<tr>
<th>Trial</th>
<th>SGLT2 inhibitors</th>
<th>GLP1-Ras</th>
<th>DPP4 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARE–TIMI 58</td>
<td>EMPA-REG OUTCOME</td>
<td>CANVAS</td>
<td>CREDENCE</td>
</tr>
<tr>
<td>Baseline</td>
<td>Dapagliflozin versus Placebo</td>
<td>Empagliflozin versus Placebo</td>
<td>Canagliflozin versus Placebo</td>
</tr>
<tr>
<td>n</td>
<td>17160</td>
<td>7020</td>
<td>10142</td>
</tr>
<tr>
<td>Age (years)</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>DM (years)</td>
<td>11.8</td>
<td>57% >10y</td>
<td>13.5</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>32.1</td>
<td>30.6</td>
<td>32.0</td>
</tr>
<tr>
<td>Insulin (%)</td>
<td>–40</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.3</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Previous CVD (%)</td>
<td>40</td>
<td>99</td>
<td>65</td>
</tr>
</tbody>
</table>
CONFIDENTIAL

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

<table>
<thead>
<tr>
<th>CV risk inclusion criteria</th>
<th>CVD or ≥1 CV risk factor</th>
<th>MI, CHD, CVD, PVD</th>
<th>MI, CHD, CVD, PVD</th>
<th>CKD</th>
<th>ACS <180 days</th>
<th>≥50 y + CVD(^b) or CKD or ≥60 y + ≥1 CV risk factor</th>
<th>CHD, CVD, PVD 27% no previous CV event</th>
<th>MI, CHD, CVD, PVD</th>
<th>At least 50 y + CVD or CKD or ≥60 years + CV risk factors</th>
<th>≥50 y + CVD or CKD or ≥55 y + ≥1 CV risk factor</th>
<th>ACS <90 days</th>
<th>CHD, CVD, PVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension (%)</td>
<td>89</td>
<td>94</td>
<td>89</td>
<td>96.8</td>
<td>76</td>
<td>92</td>
<td>90</td>
<td>86</td>
<td>93</td>
<td>94</td>
<td>81</td>
<td>83</td>
</tr>
<tr>
<td>Follow-up (years)</td>
<td>4.5</td>
<td>3.1</td>
<td>2.4</td>
<td>2.6</td>
<td>2.1</td>
<td>3.8</td>
<td>2.1</td>
<td>3.2</td>
<td>1.6</td>
<td>5.4</td>
<td>1.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

ACS = acute coronary syndrome; CANVAS = Canagliflozin Cardiovascular Assessment Study; CARMELINA = Cardiovascular and Renal Microvascular Outcome Study With Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes; CHD = coronary heart disease; CKD = chronic kidney disease >stage 3; CREDENCE = Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation trial CV = cardiovascular disease; DECLARE–TIMI 58 = Dapagliflozin Effect on Cardiovascular Events–Thrombolysis In Myocardial Infarction 58 trial; DM = diabetes mellitus; DPP-4 = dipeptidyl peptidase-4; ELIXA = Evaluation of Lixisenatide in Acute Coronary Syndrome; EMPA-REG OUTCOME = Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Patients–Removing Excess Glucose; EXSCEL = Exenatide Study of Cardiovascular Lowering; Harmony Outcomes = Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease; GLP1-RA = glucagon-like peptide-1 receptor agonist; HbA1c = haemoglobin A1c; HF = heart failure (New York Heart Association class II or III); LEADER = Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; MI = myocardial infarction; PIONEER 6 = A Trial Investigating the Cardiovascular Safety of Oral Semaglutide in Subjects With Type 2 Diabetes; PVD = peripheral vascular disease; REWIND = Researching Cardiovascular Events With a Weekly Incretin in Diabetes; SAVOR–TIMI 53 = Saxagliptin Assessment of Vascular Outcomes Recorded in Subjects with Diabetes Mellitus–Thrombolysis In Myocardial Infarction 53; SGLT2 = sodium-glucose co-transporter 2; SUSTAIN-6 = Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide in Subjects with Type 2 Diabetes; TECOS = Trial Evaluating Cardiovascular Outcomes with Sitagliptin; y = years.

Follow-up is median years.

\(^a\)Modified after 318

\(^b\)CVD in LEADER and SUSTAIN-6 included CHD, CVD, PVD and HF.
7.1.2.3. Implications of recent cardiovascular outcome trials

For the first time in the history of DM, we have data from several CVOTs that indicate CV benefits from the use of glucose-lowering drugs in patients with CVD or at very high/high CV risk. The results obtained from these trials using both GLP1-RAs (LEADER, SUSTAIN-6, Harmony Outcomes, REWIND, PIONEER 6), and SGLT2 inhibitors (EMPA-REG OUTCOME, CANVAS, DECLARE-TIMI 58, CREDENCE) strongly suggest that these drugs should be recommended in patients with T2DM with prevalent CVD or very high/high CV risk, such as those with target-organ damage or several CV risk factors (see Table 3), whether they are treatment naïve or already on metformin. In addition, based on the mortality benefit seen in LEADER and EMPA-REG OUTCOME, liraglutide is recommended in patients with prevalent CVD or very high/high CV, and empagliflozin is recommended in patients with prevalent CVD, to reduce the risk of death. The recommendation for empagliflozin is supported by a recent meta-analysis.\(^{319}\) The benefit seen with GLP1-RAs is most likely derived through a reduction of arteriosclerosis-related events, whereas SGLT2 inhibitors seem to reduce HF-related endpoints. Thus, SGLT2 inhibitors are potentially of particular benefit in patients who exhibit a high risk for HF. In subjects with newly diagnosed T2DM without CVD and at moderate risk, the results of UKPDS suggest a beneficial effect of metformin in primary prevention. Although the trial-based evidence for metformin monotherapy from UKPDS is not as strong as with the novel drugs tested in recent CVOTs, it is supported by extensive observations from everyday clinical practice. In the recent CVOTs, a majority of patients received metformin before and concurrently with the newer drug under test. However, because metformin was similarly present in the active and placebo groups, it is unlikely to explain the beneficial effects of the newer drugs under test. Thus, the choice of drug to reduce CV events in patients with T2DM should be prioritized based on the presence of CVD and CV risk (Figure 3a and b).
a)

Type 2 DM - Drug naïve patients

- **ASCVD, or high / very high CV risk (target organ damage or multiple risk factors)*

SGLT2 inhibitor or GLP-1 RA Monotherapy§

- If HbA1c above target
 - Add Metformin
 - If HbA1c above target
 - Consider adding the other class (GLP-1 RA or SGLT2i) with proven CVD benefit
 - DPP-4i if not on GLP-1 RA
 - Basal insulin
 - TZD (not in HF pat)
 - SU

Metformin Monotherapy

- If HbA1c above target
 - DPP-4i
 - GLP-1 RA
 - SGLT2i if eGFR adequate
 - TZD

- If HbA1c above target
 - SGLT2i or TZD
 - SGLT2i or TZD
 - GLP-1 RA or DPP-4i or TZD
 - SGLT2i or DPP-4i or GLP-1 RA

- If HbA1c above target
 - Continue with addition of other agents as outlined above

- If HbA1c above target
 - Consider the addition of sulfonylurea OR basal insulin:
 - Choose later generation SU with lower risk of hypoglycaemia
 - Consider basal insulin with lower risk of hypoglycaemia

*See table 4

§ Use agents with proven CVD benefit

1599
b) **Figure 3** Treatment algorithm in patients with T2DM and ASCVD or high/very high CV risk

- (a) drug naïve and (b) metformin treated.

ASCVD = atherosclerotic cardiovascular disease; CV = cardiovascular; CVD = cardiovascular disease; DPP4i = dipeptidyl peptidase-4 inhibitor; eGFR = estimated glomerular filtration rate; GLP1-RA = glucagon-like peptide-1 receptor agonist; HbA1c = haemoglobin A1c; SGLT2i = sodium-glucose co-transporter 2 inhibitor; T2DM = type 2 diabetes mellitus; TZD = thiazolidinedione.

[a] [currently*] See Table 3.

[b] [currently §] Use drugs with proven CVD benefit.
7.1.3. Specific cardiovascular therapies

7.1.3.1. Beta-blockers
In CCS, beta-blockers are effective at reducing both exercise-induced angina and asymptomatic ischaemic episodes, while improving exercise capacity.254 Their favourable impact on prognosis is questionable, and was not confirmed by a propensity score-matched analysis of patients included in a large observational study.320 Long-term beta-blocker administration in patients with DM has recently been questioned by a prospective observational study as well as a post hoc analysis from the ACCORD study suggesting a higher all-cause death in DM patients treated with beta-blockers.321,322 Further assessment is needed in the future.

In contrast, the benefit of long-term administration of oral beta-blockers in the post-MI phase is established in patients with HF and LV ejection fraction (LVEF) <40\%, as outlined in section 8.4.2.252,323 Carvedilol and nebivolol may be preferred because of their ability to improve insulin sensitivity, with no negative effects on glycaemic control.324,325

7.1.3.2. Blockers of the renin-angiotensin-aldosterone system

Treatment with ACEIs is recommended to prevent major CV events and HF in all patients with CCS or ACS and systolic LV dysfunction, based on a systematic review of RCTs.326 An ARB should be administered in patients intolerant of ACEIs. Finally, mineralocorticoid receptor antagonists (MRA) are recommended in patients with LV systolic dysfunction or HF after MI.252,327

7.1.3.3. Lipid-lowering drugs

Details on lipid-lowering drugs are outlined in section 6.4.1.

7.1.3.4. Nitrates and calcium-channel blockers

Nitrates (preferably short acting) and calcium-channel blockers are indicated for relief of angina symptoms,254 and are frequently used when beta-blockers are contraindicated or not tolerated, or in addition to beta-blockers if patients remain symptomatic but offer no prognostic benefit.254

7.1.3.5. Other anti-ischaemic drugs

Ranolazine is a selective inhibitor of the late sodium current, effective in the treatment of chronic angina.254 When added to one or more antianginal drugs in patients with DM, ranolazine further reduced the number of ischaemic episodes and the use of nitrates compared
with placebo. Ranolazine also has metabolic effects, and may lower HbA1c levels in patients with DM. Trimetazidine is an anti-ischaemic metabolic modulator that improves glucose control and cardiac function in patients with DM as well as effort-induced myocardial ischaemia in patients with CCS. The drug was reviewed by the European Medicines Agency in 2012, and is contraindicated in Parkinson’s disease and motion disorders. Ivabradine inhibits the If current – the primary modulator of spontaneous diastolic depolarization in the sinus node – resulting in heart-rate lowering and antianginal effects. Ivabradine is indicated as second-line treatment in patients with CCS (in sinus rhythm) and with a contraindication or intolerance to beta-blockers, or in combination with beta-blockers.

7.1.3.6. Antiplatelet and antithrombotic drugs

There is no evidence at the moment supporting different antiplatelet strategies in patients with ACS or CCS with versus without DM.

7.1.3.6.1. Aspirin

In secondary prevention, low-dose (75–160 mg) aspirin, alone or in combination (see section below), remains the recommended drug in DM.

7.1.3.6.2. P2Y12 receptor blockers

Clopidogrel provides an alternative for aspirin-intolerant patients and is combined with low-dose aspirin as dual antiplatelet therapy (DAPT) (clopidogrel 75 mg once daily, aspirin 75–160 mg once daily) in patients with ACS and those undergoing PCI, with unchanged evidence since the 2013 guidelines. A post hoc analysis of the CHARISMA (Clopidogrel for High Atherothrombotic Risk and Ischemic Stabilization, Management and Avoidance) trial suggested that clopidogrel, added to background aspirin, may increase overall and CV death in DM patients with microalbuminuria (>30 mg/mL). In patients with ACS, DAPT with prasugrel or ticagrelor on a background of low-dose aspirin was superior to DAPT with clopidogrel in the DM subgroup, with a benefit similar to that in the population without DM. Patients with DM tended to have a greater reduction in ischaemic events with prasugrel than clopidogrel, without an increase in major bleeding. The Prevention of Cardiovascular Events in Patients with Prior Heart Attack Using Ticagrelor Compared to Placebo on a Background of Aspirin–TIMI 54 (PEPASUS–TIMI 54) trial compared adding ticagrelor 60
or 90 mg twice daily versus placebo to a background of low-dose aspirin in patients who experienced an MI 1–3 years before recruitment into the study. The relative risk reduction of MACE with ticagrelor was similar in the DM and non-DM cohorts (HR 0.84, 95% CI 0.72–0.99 and HR 0.84, 95% CI 0.74–0.96, respectively). Ticagrelor was associated with an increase in major bleeding, which was similar in the two groups (HR 2.56, 95% CI 1.52–4.33 and HR 2.47, 95% CI 1.73–3.53 in DM vs. non-DM, respectively). 340

7.1.3.6.3. Novel oral anticoagulant drugs

In the ATLAS-ACS–TIMI 51 trial in patients with a recent ACS (32% DM), a low-dose of the activated factor Xa blocker rivaroxaban (2.5 mg twice daily) added to DAPT significantly reduced CV death, MI, or stroke compared with placebo (9.1% vs. 10.7%; HR 0.84, 95% CI 0.72–0.97; P = 0.02). 341 This benefit was associated with a significant increase in major, non–CABG-related bleeding (1.8% vs. 0.6%) and intracranial haemorrhage (0.4% vs. 0.2%) in the rivaroxaban arm, with no difference in fatal bleeding. 341 The Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) trial recruited 27 395 patients with stable atherosclerotic disease and showed that low-dose aspirin (100 mg once daily) combined with a low dose of rivaroxaban (2.5 mg twice daily) was superior to aspirin alone in preventing MI, stroke, or CV death (4.1 vs. 5.4%, respectively; HR 0.76, 95% CI 0.66–0.86; P < 0.001). 342 Major bleeding, but not fatal or intracranial bleeding, was increased (HR 1.7, 95% CI 1.7–2.05; P<0.001). The net clinical benefit favoured the combination (HR 0.80, 95% CI 0.70–0.91; P<0.001 vs. aspirin alone). Approximately 38% of the overall COMPASS population had DM, and the proportional benefit-risk profile of the aspirin/rivaroxaban combination over aspirin alone was similar in both populations. 343

Of potential major importance was the finding that in patients with lower extremity artery disease (LEAD), adverse limb event plus major amputations were reduced by 46% (see section 10.2.3). Of the patients enrolled in the COMPASS trial, 24 824 were specifically diagnosed with stable CAD (CCS).

7.1.3.6.4. Other anticoagulant strategies

A variety of antiplatelet and antithrombotic strategies have been used in patients with ACS undergoing PCI. These include glycoprotein IIb/IIIa inhibitors, unfractionated heparin, and bivalirudin. The indications for their use are discussed in the 2018 ESC/European Association for Cardio-Thoracic Surgery Guidelines on myocardial revascularization. 344
Management of patients with DM and ACS or CCS

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class<sup>a</sup></th>
<th>Level<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEIs or ARBs are indicated in patients with DM and CAD to reduce the risk of CV events.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Statin therapy is recommended in patients with DM and CAD to reduce the risk of CV events.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Aspirin at a dose of 75–160 mg/day is recommended as secondary prevention in DM.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Treatment with a P2Y<sub>12</sub> receptor blocker, ticagrelor or prasugrel, is recommended in patients with DM and ACS for 1 year with aspirin, and in those who undergo PCI or CABG.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Concomitant use of a proton pump inhibitor is recommended in patients receiving DAPT or oral anticoagulant monotherapy who are at high risk of gastrointestinal bleeding.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Clopidogrel is recommended as an alternative antiplatelet therapy in case of aspirin intolerance.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Prolongation of DAPT beyond 12 months<sup>c</sup> should be considered, for up to 3 years, in patients with DM who have tolerated DAPT without major bleeding complications.</td>
<td>IIa</td>
<td>A</td>
</tr>
<tr>
<td>Adding a second antithrombotic drug on top of aspirin for long-term secondary prevention should be considered in patients without increased risk of life-threatening bleeding.<sup>d</sup></td>
<td>IIa</td>
<td>A</td>
</tr>
<tr>
<td>Beta-blockers may be considered in patients with DM and CAD.</td>
<td>IIb</td>
<td>B</td>
</tr>
</tbody>
</table>

ACEI = angiotensin-converting enzyme inhibitor; ACS = acute coronary syndromes; ARB = angiotensin receptor blocker; CABG = coronary artery bypass graft; CAD = coronary artery disease; CCS = chronic coronary syndromes; CV = cardiovascular; DAPT = dual antiplatelet therapy; DM = diabetes mellitus; eGFR = estimated glomerular filtration rate; PCI = percutaneous coronary intervention.

^a Class of recommendation.

^b Level of evidence.

^c Full-dose clopidogrel or reduced-dose ticagrelor (60 mg twice daily).

^d Risk of life-threatening bleeding is defined as history of intracerebral haemorrhage or ischaemic stroke, history of other intracranial pathology, recent gastrointestinal bleeding or anaemia due to possible gastrointestinal blood loss, other gastrointestinal pathology associated with increased bleeding risk, liver failure, bleeding diathesis or coagulopathy, extreme old age or frailty, renal failure requiring dialysis or with eGFR <15 mL/min/1.73 m². Recommendations on glucose targets are outlined in section 6.2.1.

Recommendations on glucose-lowering drugs for DM are outlined in section 7.1.2.
7.2. Revascularization

The anatomical pattern of CAD in DM influences prognosis and response to revascularization. Angiographic studies have shown that patients with DM are more likely to have left main CAD and multivessel CAD, and that coronary pathology is more frequently diffuse and involves the small vessels. In addition, DM frequently has comorbidities, such as CKD, cerebrovascular disease, and LEAD, which adversely affect outcomes after coronary revascularization. The indications for myocardial revascularization, for both symptomatic and prognostic reasons, are the same in patients with and without DM and have been summarized in the 2018 ESC/EACTS Guidelines on myocardial revascularization. In the BARI 2D trial, patients with DM and stable CAD were randomized to optimal medical treatment alone or to revascularization (either PCI or CABG) plus optimal medical treatment. After 5 years, no significant differences were noted in the combined endpoint of death, MI, or stroke between groups. Paralleling the observation in non-DM, the negative impact of incomplete revascularization has also been documented in DM. In the setting of chronic HF of ischaemic origin, only one RCT (involving 1212 patients) has compared revascularization (with CABG) plus optimal medical management versus optimal medical management alone in patients with LVEF ≤35%, and found a significant survival benefit in patients allocated to revascularization at a mean follow-up of 9.8 years. The benefit observed among patients with DM was of the same degree, but did not reach statistical significance. In non-ST-segment elevation ACS, a meta-analysis of nine RCTs including 9904 patients suggested a similar benefit at 12 months in terms of death, non-fatal MI, or hospitalization for an ACS from an early invasive strategy compared with a conservative strategy in patients with and without DM. Yet, because of higher baseline risk, the absolute risk reduction was more pronounced in those with DM. A recent meta-analysis of data from individual patients (n = 5324) suggested that at a median follow-up of 6 months, an early invasive strategy compared with a delayed strategy was associated with reduced mortality in DM (HR 0.67, 95% CI 0.45–0.99) in the absence of a reduction in recurrent MI.

7.2.1. Percutaneous coronary intervention versus coronary artery bypass graft surgery

DM should be considered as a distinct disease entity that is critical for the selection of myocardial revascularization strategies in multivessel disease. Three RCTs have compared the two revascularization modalities in DM, mostly in the setting of stable multivessel CAD using mainly first-generation drug-eluting stents (DES), but
one of them was prematurely terminated and underpowered. In the Coronary Artery
Revascularization in Diabetes (CARDia) trial, 510 patients with multivessel or complex
single-vessel CAD were randomized to CABG or PCI with a bare-metal stent (BMS) or a
first-generation DES. There were no differences between the groups for the primary
endpoint of 1-year death, MI, or stroke, but also this trial was underpowered. Repeat
revascularization occurred more frequently with PCI ($P < 0.001$). The Future
Revascularization Evaluation in Patients with Diabetes Mellitus (FREEDOM) trial
randomized 1900 patients with multivessel CAD, but no left main stenosis, to elective CABG
or PCI with a first-generation DES. The primary endpoint of all-cause death, non-fatal MI,
or stroke at 5 years occurred in 26.6% of patients in the PCI group and in 18.7% patients in
the CABG group ($P = 0.005$). The incidences of death (16.3% vs. 10.9%; $P = 0.049$) and MI
(13.9% vs. 6.0%; $P < 0.001$) were higher in the PCI group, while the incidence of stroke was
lower (2.4% vs. 5.2%; $P = 0.03$). While patients on insulin had higher event rates, no
significant interaction for the primary endpoint was observed between insulin status and
treatment effect. In addition, no interaction was observed between treatment effect and
degree of coronary complexity as assessed by the Synergy between Percutaneous Coronary
Intervention with TAXUS and Cardiac Surgery (SYNTAX) score.

In the DM subgroup ($n = 452$) enrolled in the SYNTAX trial, there were no differences
between PCI with a first-generation DES and CABG in the composite endpoint of death,
stroke, or MI at 5 years. However, the 5-year rates of major adverse CV and cerebrovascular
events (MACCE) (PCI 46.5% vs. CABG 29.0%; $P < 0.001$) and the need for repeat
revascularization (HR 2.75; $P < 0.001$) were higher in the PCI group. Overall, the meta-analysis of 3052 patients with DM randomized to PCI with mainly
first-generation DES versus CABG reported a higher risk of death or MI with PCI (relative
risk 1.51; $P = 0.01$), while the risk of stroke was lower (relative risk 0.59; $P = 0.01$). A
sensitivity analysis showed that the superiority of CABG over PCI in terms of MACCE was
more pronounced with complex CAD (high SYNTAX score). The most recent meta-analysis
of 11 RCTs involving 11 518 patients allocated to PCI with stents (BMS or DES) or CABG
showed that 5-year all-cause mortality was 11.2% after PCI and 9.2% after CABG (HR 1.20,
95% CI 1.06–1.37; $P = 0.0038$). Among patients with DM (38% of the cohort), the
corresponding mortality rates were 15.7% and 10.1% (HR 1.44, 95% CI 1.20–1.74; $P =
0.0001$), while no difference was observed among patients without DM ($P_{interaction} = 0.0077$).
These findings support a benefit for patients with DM from surgery compared with PCI.
With respect to newer generation DESs, a meta-analysis of RCTs including 8095 patients with DM showed a significant reduction in MI, stent thrombosis, and MACE in patients allocated to newer generation everolimus-eluting stents compared with those receiving a first-generation DES. However, in the subset of patients with DM (n = 363) enrolled in the Randomized Comparison of Coronary Artery Bypass Surgery and Everolimus-Eluting Stent Implantation in the Treatment of Patients with Multivessel Coronary Artery Disease (BEST) study, the rate of the primary endpoint of death, MI, or TVR at 2 years was significantly higher in the PCI than the CABG arm (19.2% vs. 9.1%; P = 0.007). Finally, among the 505 patients with DM in the Evaluation of XIENCE versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization (EXCEL) trial, the primary endpoint of death, MI, or stroke at 3 years occurred in 21.2% of patients in the PCI arm and 19.4% in the CABG arm (HR 1.04, 95% CI 0.70–1.55). It remains to be determined whether the use of newer generation DES will, at least in part, reduce the gap in outcomes favouring CABG in patients with DM and multivessel CAD, and whether the extended follow-up in the EXCEL trial will again show no statistical significant differences between PCI and CABG for left main disease.

In non–ST-segment elevation ACS, limited data are available comparing PCI and CABG. In a registry of 2947 patients with DM and stabilized ACS, CABG was compared with PCI with DES. The primary outcome measure of the study was a composite of death, MI, and non-fatal stroke. The benefit of CABG over PCI was significant at 30 days (HR 0.49, 95% CI 0.34–0.71) and at a median follow-up of 3.3 years (HR 0.67, 95% CI 0.55–0.81). A recent observational study investigated outcomes with PCI or CABG for multivessel CAD and LV dysfunction in 1738 propensity matched patients with DM. CABG compared with PCI was associated with significantly lower risks of MACE and mortality at a mean follow-up of 5.5 years. The survival advantage of CABG was observed in patients with LVEF 35–49% as well as in those with LVEF <35%. However, the superiority of bilateral internal mammary artery (BIMA) grafting over a single internal mammary artery (SIMA) in terms of mortality has been confirmed only by observational studies and respective meta-analysis. Factors not related to graft patency, such as the patient’s general status and other unmeasured confounders, may have accounted for the survival benefit of BIMA grafting in the observational series. The best surgical coronary revascularization strategy and graft selection in patients with DM is still subject to debate. The superior graft patency of the internal mammary artery and its impact on survival when grafted to the left anterior descending (LAD) coronary artery would make the use of bilateral internal mammary arteries the most logical and beneficial strategy. However, the superiority of bilateral internal mammary arteries (BIMA) grafting over a single internal mammary artery (SIMA) in terms of mortality has been confirmed only by observational studies and respective meta-analysis. Factors not related to graft patency, such as the patient’s general status and other unmeasured confounders, may have accounted for the survival benefit of BIMA grafting in the observational series.

The best surgical coronary revascularization strategy and graft selection in patients with DM is still subject to debate. The superior graft patency of the internal mammary artery and its impact on survival when grafted to the left anterior descending (LAD) coronary artery would make the use of bilateral internal mammary arteries the most logical and beneficial strategy. However, the superiority of bilateral internal mammary arteries (BIMA) grafting over a single internal mammary artery (SIMA) in terms of mortality has been confirmed only by observational studies and respective meta-analysis. Factors not related to graft patency, such as the patient’s general status and other unmeasured confounders, may have accounted for the survival benefit of BIMA grafting in the observational series.
Revascularization Trial (ART) compared BIMA with SIMA and additional veins, in 1554 patients, and at 10 years showed no significant differences in the rate of death or the composite outcome of death, MI, or stroke.379,380 The radial artery may be the preferred second graft in view of better long-term patency of the radial artery compared with the saphenous vein, but further studies are needed381 (see the 2018 ESC/EACTS Guidelines on myocardial revascularization for further information344).

The appropriate revascularization modality in patients with DM and multivessel disease should be discussed by the Heart Team, taking into consideration individual cardiac and extracardiac characteristics as well as preferences of the well-informed patient. Overall, current evidence indicates that in stable patients with coronary anatomy suitable for both procedures and low predicted surgical mortality, CABG is superior to PCI in reducing the composite risk of death, MI, or stroke, as well as death. However, in DM with low complexity of coronary anatomy (SYNTAX score ≤22), PCI achieved similar outcomes to CABG with respect to death and the composite of death, MI, or stroke. Therefore, PCI may represent an alternative to CABG for low complexity of the coronary anatomy, while for intermediate-to-high anatomical complexity (SYNTAX score >22) CABG is recommended.

7.2.2. Adjunctive pharmacotherapy

As a general rule, adjunctive pharmacotherapy in the setting of myocardial revascularization does not differ between DM and non-DM (antithrombotic therapy, see section 7.1.3.6; glucose lowering, see section 7.1.2). There are insufficient data to support the practice of stopping metformin 24–48 h before angiography or PCI, as the risk of lactic acidosis is negligible. In patients with CKD, metformin should be stopped before the procedure. Renal function should be carefully monitored after PCI in all patients with baseline renal impairment or on metformin. If renal function deteriorates in patients on metformin undergoing coronary angiography/PCI, metformin should be withheld for 48 hours or until renal function has returned to its initial level.

<table>
<thead>
<tr>
<th>Coronary revascularization in patients with DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>It is recommended to implement the same revascularization techniques (e.g. the use of DES and the radial approach for PCI)</td>
</tr>
</tbody>
</table>
use of the left internal mammary artery as the graft for CABG) in patients with and without DM.344

It is recommended to check renal function if patients have taken metformin immediately before angiography and withhold metformin if renal function deteriorates.

Optimal medical therapy should be considered as the preferred treatment in patients with CCS and DM unless there are uncontrolled ischaemic symptoms, large areas of ischaemia, or significant left main or proximal LAD lesions.358

CABG = coronary artery bypass graft; CCS = chronic coronary syndromes; DES = drug-eluting stent; DM = diabetes mellitus; EACTS = European Association for Cardio-Thoracic Surgery; ESC = European Society of Cardiology; LAD = left anterior descending coronary artery; PCI = percutaneous coronary intervention.

aClass of recommendation.

bLevel of evidence.

For details see 2018 ESC/EACTS Guidelines on myocardial revascularization.344

Recommendations for the type of revascularization in patients with DM with stable CAD, suitable coronary anatomy for both procedures, and low predicted surgical mortality (see Figure 4)

<table>
<thead>
<tr>
<th>Recommendations according to extent of CAD</th>
<th>CABG</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Classa</td>
<td>Levelb</td>
</tr>
<tr>
<td>One-vessel CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without proximal LAD stenosis</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>With proximal LAD stenosis382-389</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Two-vessel CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without proximal LAD stenosis</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>With proximal LAD stenosis389-391</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Three-vessel CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With low disease complexity (SYNTAX scorec 0–22)363-365, 367-369, 371, 392-398</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>With intermediate or high disease complexity (SYNTAX scorec >22)383-365, 367-369, 371, 392-398</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Left main CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With low disease complexity (SYNTAX scorec 0–22)369, 397, 399-404</td>
<td>I</td>
<td>A</td>
</tr>
</tbody>
</table>
With intermediate disease complexity (SYNTAX score^c 23–32)^{369, 397, 399-404}

<table>
<thead>
<tr>
<th></th>
<th>Class</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>Ila</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

With high disease complexity (SYNTAX score ≥33)^{369, 397, 399-404}

<table>
<thead>
<tr>
<th></th>
<th>Class</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>III</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

CABG = coronary artery bypass graft; CAD = coronary artery disease; DM = diabetes mellitus; LAD = left anterior descending coronary artery; PCI = percutaneous coronary intervention; SYNTAX = Synergy between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery.

^a Class of recommendation.

^b Level of evidence.

^c SYNTAX score calculation: http://www.syntaxscore.com.

Figure 4 Recommendations for coronary revascularization.

<table>
<thead>
<tr>
<th>CABG</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-vessel or 2-vessel CAD, no proximal LAD

1-vessel or 2-vessel CAD, proximal LAD

3-vessel CAD

Low complexity

Intermediate or high complexity

Left main CAD

Low complexity

Intermediate complexity

High complexity

Class I
Class IIa
Class IIb
Class III
Gaps in evidence

- The pathophysiological mechanisms underlying the development of CAD and the worse prognosis in patients with DM need to be further elucidated.
- The effect of secondary preventive measures in patients with CAD and DM is mainly based on subgroup analyses of trials enrolling patients with and without DM.
- Studies comparing different antithrombotic strategies in patients with DM and CAD are lacking.
- Optimal glycaemic control for the outcome of ACS, stable CAD, as well as post coronary revascularization remains to be established.
- Mechanisms of CV event reduction by the newer therapies need to be determined.
- The role of hypoglycaemia in the occurrence of CV events/mortality needs to be established.
- Following revascularization, the rate of adverse events remains higher in patients with versus without DM; specific preventive therapies should be investigated.
- Although newer generation DES have improved outcomes in DM, RCTs are needed to determine whether they can reduce the gap in outcomes between CABG and PCI.

8. Heart failure and diabetes

Key messages

- Patients with pre-DM and DM are at increased risk of developing HF.
- Patients with DM are at greater risk of HF with reduced ejection fraction (HFrEF) or HF with preserved ejection fraction (HFpEF); conversely, HF increases the risk of DM.
- The coexistence of DM and HF imparts a higher risk of HF hospitalization, all-cause death, and CV death.
- Guideline-based medical and device therapies are equally effective in patients with and without DM; as renal dysfunction and hyperkalaemia are more prevalent in DM, dose adjustments of some HF drugs (e.g. RAAS blockers) are advised.
First-line treatment of DM in HF should include metformin and SGLT2 inhibitors; conversely, saxagliptin, pioglitazone, and rosiglitazone are not recommended for patients with DM and HF.

DM is an important risk factor for HF.\(^1\) In trials of glucose-lowering medications, HF was seen in 4–30% of participants.\(^2\) Unrecognized HF may also be frequent in DM: observational data indicate that HF is present in 28% (~25% HFrEF and ~75% HFpEF).\(^3\) Patients with DM free of HF at baseline are ~2–5 times more likely to develop HF.\(^4\) The risk of HF is also increased in those with HbA1c levels in the pre-DM range (≥5.5–6.4%), who have a 20–40% higher risk of HF.\(^5\) HF itself is associated with a greater prevalence of DM and other dysglycaemic states, and is considered a risk factor for the development of DM, most likely related to an insulin-resistant state.\(^6\) Available data indicate that the prevalence of DM in HF is similar, irrespective of LVEF category (HFpEF, HF with mid-range ejection fraction [HFmrEF] and HFrEF [see Table 7 below]).\(^7\)

Indeed, ~30–40% of patients with HF have been reported to have pre-DM or DM, in trials of HFrEF\(^8\) and HFpEF.\(^9\) Findings from a large pan-European registry indicated that ~36% of outpatients with stable HF had DM,\(^10\) while in patients hospitalized for acute HF, DM was present in up to 50%.\(^11\) Importantly, patients with HF without DM are at increased risk of DM,\(^12\) and the risk is aggravated by the severity of HF and the use of loop diuretics.\(^13\)

8.1. Prognostic implications of diabetes mellitus in heart failure

A significant association exists between DM and adverse outcomes in HF with the strongest predictive value of DM for outcomes seen in patients with HFrEF.\(^14\) Two trials have shown that pre-DM and undiagnosed DM in patients with HF are associated with a higher risk of death and adverse clinical outcomes.\(^15\) Also in patients with worsening HFrEF, newly diagnosed pre-DM was independently associated with a higher long-term risk of all-cause and CV death which underlies the importance of screening for pre-DM in this population.\(^16\) In acute HF, DM increases in-hospital death,\(^17\) 1-year all-cause death,\(^18\) and 1-year HF rehospitalizations.\(^19\)

8.2. Mechanisms of left ventricular dysfunction in diabetes mellitus
Major causes of HF in DM are CAD, CKD (see section 11), hypertension, and direct effects of insulin resistance/hyperglycaemia on the myocardium. CAD is often accelerated, severe, diffuse, and silent, and increases the risk of MI and ischaemic myocardial dysfunction. Hypertension control is associated with a lower risk of HF development. Observational data have also identified LEAD, longer duration of DM, ageing, increased body mass index, and CKD as predictors of HF in patients with DM. Complex pathophysiological mechanisms may be responsible for the development of myocardial dysfunction, even in the absence of CAD or hypertension. The existence of diabetic cardiomyopathy has not been confirmed. The body of evidence for diabetic cardiomyopathy mostly come from experimental and smaller observational studies.

8.3. Phenotypes of left ventricular dysfunction in diabetes mellitus

LV dysfunction in DM may present as HFpEF, HFmrEF, or HFrEF (Table 7). LV diastolic dysfunction is frequent in both pre-DM and overt DM, and severity correlates with insulin resistance and the degree of glucose dysregulation. DM and HFpEF are frequently seen together in older, hypertensive, and female patients with DM.

<table>
<thead>
<tr>
<th>HF phenotype</th>
<th>HFpEF</th>
<th>HFmrEF</th>
<th>HFrEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>Symptoms and/or signs<sup>a</sup></td>
<td>Symptoms and/or signs<sup>a</sup></td>
<td>Symptoms and/or signs<sup>a</sup></td>
</tr>
<tr>
<td>Criterion 2</td>
<td>LVEF ≥50%</td>
<td>LVEF 40–49%</td>
<td>LVEF <40%</td>
</tr>
<tr>
<td>Criterion 3</td>
<td>1. Elevated natriuretic peptides<sup>b</sup> 2. At least one additional criterion: a) structural heart disease (i.e. LVH and/or LAE) b) Diastolic dysfunction<sup>c</sup></td>
<td>1. Elevated natriuretic peptides<sup>b</sup> 2. At least one additional criterion: a) structural heart disease (i.e. LVH and/or LAE) b) Diastolic dysfunction<sup>c</sup></td>
<td>None</td>
</tr>
</tbody>
</table>

HF = heart failure; HFmrEF = heart failure with mid-range ejection fraction; HFpEF = heart failure with preserved ejection fraction; HFrEF = heart failure with reduced ejection fraction; LAE = left atrial enlargement; LVEF = left ventricular ejection fraction.
8.4. Treatment of heart failure in diabetes mellitus

Treatment of HF encompasses pharmacological and device therapies with confirmed benefits in RCTs, in which ~30–40% of patients had DM. Treatment effects are consistent with and without DM, with the exception of aliskiren, which is not recommended in DM due to the risk of serious adverse events.455, 456

8.4.1. Renin–angiotensin–aldosterone system and a neprilysin inhibitors

ACEIs and ARBs have similar treatment effects in patients with HFrEF with and without DM.457–462 RAAS blockers should be started at a low dose, and up-titrated to the maximally tolerated dose.459, 463 There is evidence for a positive effect of ACEIs and ARBs on the prevention of DM.464 MRAs reduce death and HF hospitalization in HFrEF.465, 466 As RAAS blockers increase the risk of worsening renal function and hyperkalaemia in DM, routine surveillance of serum creatinine and potassium levels is advised.467–470 The angiotensin receptor neprilysin inhibitor sacubitril/valsartan has shown superior efficacy to enalapril in the reduction of CV death and HF hospitalization in patients with HFrEF. However, the treatment effect was less pronounced in patients with baseline DM.421 The beneficial effect of sacubitril/valsartan over enalapril is consistent across the spectrum of baseline HbA1c.421, 471 Sacubitril/valsartan therapy has also resulted in a greater reduction in HbA1c levels and a lower rate of insulin initiation over the 3-year follow-up compared with enalapril in DM.472

8.4.2. Beta-blockers

Beta-blockers are effective at reducing all-cause death and hospitalization for HF in DM.473–476 Treatment benefits strongly support beta-blocker use in patients with HF and DM.

8.4.3. Ivabradine

Ivabradine improves the treatment of HFrEF in sinus rhythm, particularly in reduction of HF hospitalizations and improvement in LV function.335
8.4.4. Digoxin
Digoxin may reduce the risk of HF hospitalization in HFrEF treated with ACEIs.477

8.4.5. Diuretics
Despite a lack of evidence for the efficacy of either thiazide or loop diuretics in the reduction of CV outcomes in patients with HF, diuretics prevent and treat symptoms and signs of fluid congestion in patients with HF.478

8.4.6. Device therapy and surgery
Device therapies (implantable cardioverter defibrillator [ICD], cardiac resynchronization therapy [CRT], and CRT with an implantable defibrillator [CRT-D]) have similar efficacies and risks in patients with and without DM.479-481 These therapies should be considered according to treatment guidelines in the general population. In a clinical trial of CABG in HFrEF and two- or three-vessel CAD, there was no difference in the efficacy of surgical revascularization with or without DM.482 Heart transplantation could be considered in end-stage HF, but a large, prospective study of transplanted patients indicated a decreased likelihood of 10-year survival with DM.483

8.5. Effect of oral diabetes drugs on heart failure
8.5.1. Metformin
Metformin is safe at all stages of HF with preserved or stable moderately reduced renal function (i.e. eGFR $>$30 mL/min), and results in a lower risk of death and HF hospitalization compared with insulin and sulphonylureas.484, 485 Concerns regarding lactic acidosis have not been substantiated.486

8.5.2. Sulphonylureas
Data on the effects of sulphonylureas on HF are inconsistent. A signal of an adverse safety profile showed a \sim20–60% higher death rate and a \sim20–30% increased risk of HF compared with metformin.487, 488 Addition of a sulphonylurea to metformin was associated with a higher risk of adverse events and death compared with the combination of metformin and a DPP4 inhibitor.489 However, in UKPDS, NAVIGATOR, and ADOPT, there was no increased HF signal.145, 278,490
8.5.3. Thiazolidinediones

Thiazolidinediones are not recommended in patients with DM and symptomatic HF.279, 491-494

8.5.4. Dipeptidyl peptidase-4 inhibitors

Saxagliptin significantly increased the risk of HF hospitalization291 and is not recommended in DM with HF. Alogliptin was associated with a non-significant trend towards HF hospitalization.292 Sitagliptin and linagliptin had a neutral effect.293, 294 Vildagliptin had no significant effect of LVEF but led to an increase in LV volumes.495

8.5.5. Glucagon-like peptide-1 receptor agonists

All GLP1-RAs had a neutral effect on risk of HF hospitalization in their placebo-controlled RCTs, suggesting they should be considered in patients with DM and HF.272-274

8.5.6. Sodium-glucose co-transporter 2 inhibitors (see also section 7.1.2.2)

Empagliflozin reduced the risk of HF hospitalization by 35% in patients with and without previous HF, while patients hospitalized for HF were at a lower risk of death.306 Canagliflozin also significantly reduced the risk of HF hospitalization by 32%.496 Dapagliflozin significantly reduced the combined endpoint of CV death and HF hospitalization, a result driven mainly by lower rates of HF hospitalization.311 SGLT2 inhibitors are recommended for DM at high risk of HF.

Treatment of HF in patients with DM

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Classa</th>
<th>Levelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEIs and beta-blockers are indicated in symptomatic patients with HFrEF and DM, to reduce the risk of HF hospitalization and death.458, 461, 473-476, 497</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>MRAs are indicated in patients with HFrEF and DM who remain symptomatic despite treatment with ACEIs and beta-blockers, to reduce the risk of HF hospitalization and death.465, 466</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Device therapy with an ICD, CRT, or CRT-D is recommended in patients with DM, as in the general population with HF.479-481</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>ARBs are indicated in symptomatic patients with HFrEF and DM who do not tolerate ACEIs, to reduce the risk of HF hospitalization and death.457, 459, 460</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>
Sacubitril/valsartan is indicated instead of ACEIs to reduce the risk of HF hospitalization and death in patients with HfREF and DM who remain symptomatic despite treatment with ACEIs, beta-blockers, and MRAs.421, 471

Diuretics are recommended in patients with HfPEF, HfmrEF, or HfREF with signs and/or symptoms of fluid congestion, to improve symptoms.478

Cardiac revascularization with CABG surgery has shown similar benefits for the reduction of long-term risk of death in patients with HfREF with and without DM, and is recommended for patients with two- or three-vessel CAD, including a significant LAD stenosis.482

Ivabradine should be considered to reduce the risk of HF hospitalization and death in patients with HfREF and DM in sinus rhythm, with a resting heart rate ≥ 70 beats per minute, who remain symptomatic despite treatment with beta-blockers (maximal tolerated dose), ACEIs/ARBs, and MRAs.335

Aliskiren (a direct renin inhibitor) is not recommended for patients with HfREF and DM because of a higher risk of hypotension, worsening renal function, hyperkalaemia, and stroke.455

aClass of recommendation.
bLevel of evidence.

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Classa</th>
<th>Levelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGLT2 inhibitors (empagliflozin, canagliflozin, dapagliflozin) are associated with a lower risk of HF hospitalization in patients with DM, and are recommended if the eGFR is stable and >30 mL/min/1.73 m2306, 311, 496</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Metformin should be considered for DM treatment in patients with HF, if the eGFR is stable and >30 mL/min/1.73 m2484, 485</td>
<td>Ila</td>
<td>C</td>
</tr>
<tr>
<td>GLP1-RAs (lixisenatide, liraglutide, semaglutide, exenatide, dulaglutide) have a neutral effect on the risk of HF hospitalization,</td>
<td>IIb</td>
<td>A</td>
</tr>
</tbody>
</table>
and may be considered for DM treatment in patients with HF.158, 176, 297, 299, 300, 303, 498, 499

The DPP4 inhibitors sitagliptin and linagliptin have a neutral effect on the risk of HF hospitalization, and may be considered for DM treatment in patients with HF.293, 294	IIb	B
Insulin may be considered in patients with advanced systolic HFrEF.500	IIb	C
Thiazolidinediones (pioglitazone, rosiglitazone) are associated with an increased risk of incident HF in patients with DM, and are not recommended for DM treatment in patients at risk of HF (or with previous HF).279, 491-493	III	A
The DPP4 inhibitor saxagliptin is associated with an increased risk of HF hospitalization, and is not recommended for DM treatment in patients at risk of HF (or with previous HF).291	III	B

DM = diabetes mellitus; DPP4 = dipeptidyl peptidase-4; eGFR = estimated glomerular filtration rate; GLP1-RA = glucagon-like peptide-1 receptor agonist; HF = heart failure; SGLT2 = sodium-glucose co-transporter type 2; HFrEF = heart failure with reduced ejection fraction; T2DM = type 2 diabetes mellitus.

aClass of recommendation.
bLevel of evidence.
cIn patients tolerating empagliflozin or canagliflozin whose eGFR falls persistently <60 mL/min/1.73 m2 or creatinine clearance <60 mL/min, a lower dose of empagliflozin (10 mg/day) or canagliflozin (100 mg/day) is recommended. Empagliflozin or canagliflozin should be discontinued when eGFR is persistently <45 mL/min/1.73 m2 or creatinine clearance persistently <45 mL/min. Dapagliflozin is not recommended in patients with eGFR <60 mL/min/1.73 m2 or creatinine clearance <60 mL/min.

Gaps in evidence

- Studies are needed to better understand the bidirectional relationship between DM and HF, including the pathophysiology of diabetic cardiomyopathy.
- Considering the divergent evidence for the association between DPP4 inhibitors and HF risk, research is needed to further clarify this association.
- How do SGLT2 inhibitors improve HF outcomes?
- Research is needed to confirm whether SGLT2 inhibitors lower the risk of HF in non-DM (HF and pre-DM).
- Does the combination of a SGLT2 inhibitor and sacubitril valsartan lead to excessive diuresis/hypotension?
- Future research should address the risks of polypharmacy, in terms of adherence, adverse reactions, and interactions, especially among vulnerable patients with HF and DM, such as the elderly and frail with multiple comorbidities.
9. Arrhythmias: atrial fibrillation, ventricular arrhythmias, and sudden cardiac death

Key messages

- Atrial fibrillation (AF) is common in DM, and increases mortality and morbidity.
- Screening for AF should be recommended for patients with DM aged >65 years by pulse palpation or wearable devices. AF should always be confirmed by ECG.
- Anticoagulation is recommended in all patients with DM and AF, but can be considered on an individual basis for patients with DM aged <65 years.
- Sudden cardiac death is more common in DM, especially in women. LVEF should be measured in DM patients after MI to evaluate eligibility for an ICD, as it is very rare that such patients would be eligible for an ICD with CRT (CRT-D).
- In HF patients with DM, QRS duration and LVEF should be measured regularly to determine eligibility for CRT±ICD.

9.1. Atrial fibrillation

A recent study reported that DM is an independent risk factor for AF, especially in young patients. Several factors, such as autonomic, electromechanical, and structural remodelling, and glycaemic fluctuations, seem to be implicated in AF pathophysiology in the setting of DM. Atrial premature beats are also common in DM and may predispose to the development of AF. Patients with DM have an increased risk of acute HF at the time of new-onset AF, as a result of loss of atrial kick and impaired LV filling.

When DM and AF coexist, there is a substantially higher risk of all-cause death, CV death, stroke, and HF. These findings suggest that AF identifies subjects with DM who are likely to obtain greater benefits from aggressive management of CV risk factors. Because AF is asymptomatic, or mildly symptomatic, in a substantial proportion of patients, screening for AF can be recommended in DM, and AF must be confirmed by 12-lead ECG, Holter recordings, or event recorders demonstrating a duration of >30 seconds.

9.1.1. Diabetes and risk of stroke in atrial fibrillation

DM increases the risk of stroke in paroxysmal or permanent AF. Current guidelines recommend that oral anticoagulant therapy, with non-vitamin K antagonist (VKA) oral anticoagulants (NOAC; dabigatran, apixaban, rivaroxaban, or edoxaban) or VKA should be
considered.503 Kidney function should be carefully evaluated in patients with DM when prescribing a NOAC to avoid over-dosage due to reduced drug elimination.503

9.2. Ventricular arrhythmias and sudden cardiac death

9.2.1. Ventricular premature beats and paroxysmal ventricular tachycardia

Palpitations, premature ventricular beats, and non-sustained ventricular tachycardia (VT) are common in DM. Diagnostic work-up and treatment of ventricular arrhythmias does not differ between DM and non-DM.504 In DM with frequent symptomatic premature ventricular beats or episodes of non-sustained VT, the presence of underlying structural heart disease should be examined by exercise ECG, echocardiography, coronary angiography, or magnetic resonance imaging. The risk of cardiac events is usually dictated by underlying heart disease rather than ectopic beats. In highly symptomatic patients with premature ventricular beats or non-sustained VT, beta-blockers, calcium antagonists, class Ic drugs (flecainide or propafenone), or catheter ablation in cases in the absence of structural heart disease can be used to suppress arrhythmias.505

9.2.2. Sustained ventricular arrhythmias

The diagnosis and treatment of sustained VT or resuscitated ventricular fibrillation is similar with or without DM.504 Diagnosis of underlying structural heart disease with imaging techniques and coronary angiography is usually needed, if no obvious trigger factors such as electrolyte imbalance or acute infarction, can be identified. Most patients with sustained VT or aborted cardiac arrest without a diagnosed trigger need an ICD to prevent sudden death.504, 506

9.2.3. Sudden cardiac death in diabetes

Epidemiological studies have shown that patients with DM or pre-DM are at increased risk of sudden cardiac death.507-509 Women at all ages have a lower risk for sudden cardiac death than men, but in the presence of DM the risk of sudden cardiac death in both men and women is quadruple.510 In the Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM) study programme, DM was an independent predictor of mortality, including sudden cardiac death, in HF irrespective of LVEF.432 In post-MI patients, the incidence of sudden cardiac death was higher in DM.511 The incidence of sudden cardiac death was substantially increased in DM with
an LVEF <35%.511 After acute MI, LVEF should be measured in patients irrespective of DM to identify candidates for ICD implantation. In HF patients with DM, the QRS width and LVEF should be determined to identify candidates for CRT±ICD.505 In HF patients with HFrEF, beta-blockers, RAAS blockers, including sacubitril valsartan, and MRAs are recommended to reduce the risk of sudden cardiac death.

The causes underlying increased vulnerability to electrical instability in DM are unclear and are likely to involve several factors. Simultaneous glucose and ambulatory ECG monitoring show that bradycardia and atrial and ventricular ectopic beats are more common during nocturnal hypoglycaemia in DM.512 This observation suggests a possible mechanism for increased death rates (dead-in-bed syndrome) during intensive glycaemic control.

Nephropathy, autonomic neuropathy, prolonged QTc interval, hypoglycaemia, and comorbidities related to DM are thought to increase the risk of sudden cardiac death. On the basis of available evidence, it seems that glucose intolerance, even in pre-DM, is associated with the progressive development of a variety of abnormalities that adversely affect survival and predispose to sudden arrhythmic death. Apart from measurement of LVEF, identification of independent predictors in DM has not progressed to a point where it is possible to devise risk stratification for prevention.

<table>
<thead>
<tr>
<th>Management of arrhythmias in patients with DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>Oral anticoagulation with a NOAC, which is preferred over a VKA, is recommended in DM patients aged >65 years with AF and a CHA\textsubscript{2}DS\textsubscript{2}-VASc score ≥2, if not contraindicated.503</td>
</tr>
<tr>
<td>a) ICD therapy is recommended in DM patients with symptomatic HF (New York Heart Association class II or III) and LVEF ≤35% after 3 months of optimal medical therapy who are expected to survive for at least 1 year with good functional status.</td>
</tr>
<tr>
<td>b) ICD therapy is recommended in DM patients with documented ventricular fibrillation or haemodynamically unstable VT in the absence of reversible causes or within 48 hours of MI.506</td>
</tr>
<tr>
<td>Beta-blockers are recommended for patients with DM with HF and after acute MI with LVEF <40%, to prevent sudden cardiac death.512</td>
</tr>
</tbody>
</table>
Screening for AF should be considered by pulse palpation in patients aged >65 years with DM, and confirmed by ECG, if any suspicion of AF, as AF in DM increases morbidity and mortality.501, 513-517

Oral anticoagulation should be considered on an individual basis in patients aged <65 years with DM and AF without any other thromboembolic risk factors (CHA\textsubscript{2}DS\textsubscript{2}-VASc score <2).503

Assessment of the risk of bleeding (i.e. HAS-BLED score) should be considered when prescribing antithrombotic therapy in patients with AF and DM.503

Screening for risk factors for sudden cardiac death, especially measurement of LVEF, should be considered in patients with DM and previous MI or HF.

Ruling out structural heart disease should be considered in patients with DM and frequent premature ventricular contractions.504

Hypoglycaemia should be avoided, as it can trigger arrhythmias.512, 518

\begin{itemize}
\item AF = atrial fibrillation; CHA\textsubscript{2}DS\textsubscript{2}-VASc = Congestive heart failure, Hypertension, Age \geq75 years (Doubled), Diabetes mellitus, Stroke or transient ischaemic attack (Doubled), Vascular disease, Age 65–74 years, Sex category; DM = diabetes mellitus; ECG = electrocardiogram; HAS-BLED = Hypertension, Abnormal renal/liver function, Stroke, Bleeding history or predisposition, Labile international normalized ratio, Elderly (>65 years), Drugs/alcohol concomitantly; HF = heart failure; ICD = implantable cardioverter defibrillator; LVEF = left ventricular ejection fraction; MI = myocardial infarction; NOAC = non-vitamin K antagonist oral anticoagulant; VKA = vitamin K antagonist; VT = ventricular tachycardia.
\end{itemize}

aClass of recommendation.

bLevel of evidence.

2167 Gaps in evidence

- The role of novel wearable gadgets is not well established in the home-based diagnosis of AF and should be tested in well-designed clinical trials.
- The role of several non-invasive risk markers of sudden cardiac death, such as heart rate variability, QTc interval, albuminuria, hypoglycaemia, etc., is not sufficiently well established to be used in clinical decision-making in prevention of sudden unexpected death.
- The impact of novel antidiabetic drugs on sudden cardiac death is not known.
- Prophylactic ICD therapy in patients with DM is not well-established.

10. Aortic and peripheral arterial diseases

Key messages
LEAD is a common complication of DM, with increasing prevalence with duration and/or coexistence of other CVD risk factors.

At any stage of LEAD, the coexistence of DM is associated with poorer prognosis.

Patients with DM are at higher risk of chronic limb-threatening ischaemia (CLTI) as the first clinical manifestation of LEAD, supporting regular screening with ABI measurement for early diagnosis.

The management of and indications for different treatment strategies are similar in patients with LEAD with or without DM, although the options for revascularization may be poorer because of diffuse and distal lesions.

The management of carotid artery disease is similar in DM and non-DM patients.

10.1. Aortic disease

Several studies show decreased risk of abdominal aortic aneurysm in patients with DM, the reasons for which are unexplained.\(^{519}\) In turn, short- and long-term outcomes after abdominal aortic aneurysm repair are poorer in patients with DM.\(^{520}\) However, in the absence of any specific study on abdominal aortic aneurysm screening and management in DM, the recommendations on population screening for abdominal aortic aneurysm, as proposed in the 2014 Guidelines on the diagnosis and treatment of aortic diseases,\(^{521}\) remain valid in patients with DM.

10.2. Lower extremity arterial disease

According to the 2017 ESC Guidelines on the diagnosis and treatment of peripheral arterial diseases,\(^{522}\) this term includes conditions affecting all arteries, except for the aorta, the coronary and the intracranial arteries.

10.2.1. Epidemiology and natural history

LEAD is a frequent vascular complication of DM, with one-third of patients hospitalized for LEAD having DM.\(^{523}\) Prolonged DM duration, suboptimal glycaemic control, coexistence of other CV risk factors, and/or other end-organ damage (e.g. proteinuria) increase LEAD prevalence.\(^{523}\) LEAD in pre-DM is infrequent in the absence of other risk factors.\(^{524}\) In DM, LEAD more frequently affects arteries below the knee; as a consequence, the revascularization options, as well as their chances of success, are reduced.\(^{523}\) In DM, LEAD is
often diagnosed at a later stage (e.g. non-healing ulcer), because of concomitant neuropathy with decreased pain sensitivity. All of these factors increase the risk of limb infection.525

Clinically, patients with DM often have atypical forms of pain on exertion, which do not meet the typical criteria for intermittent claudication.526 CLTI is the clinical presentation of advanced disease, characterized by ischaemic rest pain, but which may be absent in DM. About 50–70\% of all patients with CLTI have DM. The 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases proposed the Wound, Ischemia, and foot Infection (WIFI) classification to stratify amputation risk and potential benefits of revascularization (\textit{Table 8}).522

\textbf{10.2.2. Screening and diagnosis}

Screening and early diagnosis are of major importance in DM. Clinical evaluation includes medical history, symptom assessment, and examination for neuropathy on a yearly basis. The ABI is the current method for LEAD screening. An ABI <0.90 is diagnostic for LEAD, with 80\% sensitivity and 95\% specificity in all populations.523 However, the accuracy of ABI is lower in DM (see below).527 Beyond LEAD, an ABI <0.90 (or >1.40) is associated with an increased risk of death and CV events (\textit{Figure 5}).528

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{LEAD_Screening_Diagnosis_diagram.png}
\caption{Screening for LEAD in patients with DM.}
\end{figure}
2231 ABI = ankle-brachial index; DM = diabetes mellitus; ESC = European Society of Cardiology; LEAD = lower-extremity artery disease; PAD = peripheral arterial disease; TBI = toe-brachial index.
2232 *The ABI-based screening should be performed once when DM is diagnosed, and then after 10 years of DM if the results from the initial examination were normal (can be considered after 5 years of diagnosis if other risk factors such as smoking exist). Patients should be assessed every year for symptoms and pulses should be checked. The ABI-based screening is proposed in the absence of any clinical suspicion of PAD.
2234 In case of borderline results (e.g. 0.89) repeat the measurement and average the results to increase accuracy. If TBI is available, this can be done in conjunction with the ABI.

2235 If symptoms suggest LEAD but the ABI result is normal, sensitivity can be improved by post-exercise ABI or the toe-brachial index at rest. With intermittent claudication, the treadmill test is helpful for assessment of walking distance. An ABI >1.40 is mostly related to medial calcinosis but is associated with LEAD in 50% of cases. Other tests are useful to diagnose LEAD in the presence of medial calcinosis, including Doppler waveform analysis of the ankle arteries or the toe-brachial index, which may be helpful because medial calcinosis barely affects digital arteries. A toe-brachial index <0.70 is diagnostic for LEAD.

2238 The value of duplex as first-line imaging for confirmation of LEAD, CT angiography and/or magnetic resonance imaging in planned revascularization, and other more detailed imaging tests are fully described in 2017 ESC guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases.

<table>
<thead>
<tr>
<th>Score</th>
<th>Wound</th>
<th>ABI</th>
<th>Ischemia</th>
<th>Foot Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No ulcer (ischaemic rest pain)</td>
<td>≥0.80</td>
<td>>100</td>
<td>≥60</td>
</tr>
<tr>
<td>1</td>
<td>Small, shallow ulcer (distal leg or foot), no gangrene</td>
<td>0.60–0.79</td>
<td>70–100</td>
<td>40–59</td>
</tr>
<tr>
<td>2</td>
<td>Deep ulcer (exposed bone, joint or tendon) ± gangrenous changes limited to toes</td>
<td>0.40–0.59</td>
<td>50–70</td>
<td>30–39</td>
</tr>
<tr>
<td>3</td>
<td>Extensive deep ulcer, full thickness heel</td>
<td><0.40</td>
<td><50</td>
<td><30</td>
</tr>
</tbody>
</table>
10.2.3. Management of lower-extremity artery disease in DM

The medical management of LEAD in DM is not significantly different from that recommended in CVD in general (see Sections 5 and 6). The main COMPASS trial results reported the benefit of 1) rivaroxaban 2.5 mg twice daily plus aspirin 100 mg once daily against 2) rivaroxaban 5 mg twice daily or 3) aspirin 100 mg once daily, in 27,395 patients with stable atherosclerotic vascular disease, indicating a significant reduction in the primary outcome of CV death, stroke, or MI, which led to early termination of the trial. \(^{342}\) In a substudy of 7240 patients with CAD or LEAD with a mean follow-up of 23 months (44% DM), major adverse limb events including amputation, were significantly decreased with combination therapy (HR 0.54; \(P = 0.0037\)). \(^{531}\) These benefits were observed at the cost of major bleeding risk (HR 1.61; \(P = 0.0089\)). The significant reduction in major adverse limb events in this COMPASS substudy raises the possibility of a novel therapeutic regimen in high-risk vascular patients to ameliorate the complications of LEAD. \(^{532,533}\)

Patients with intermittent claudication should take part in exercise training programmes (>30–45 minutes, \(\geq 3\) times per week), as regular intensive exercise improves walking distance, although with less pronounced benefits in DM. \(^{534}\)

In patients with CLTI, strict glycaemic control is associated with improved limb outcomes. \(^{535,536}\) However, revascularization must be attempted when possible, and amputation only considered when revascularization options fail. \(^{522}\) Revascularization should also be considered in severe/disabling claudication. With respect to the revascularization modality of choice, we refer to dedicated guidelines. \(^{522}\) There is no specific trial on

10.2.3. Management of lower-extremity artery disease in DM

The medical management of LEAD in DM is not significantly different from that recommended in CVD in general (see Sections 5 and 6). The main COMPASS trial results reported the benefit of 1) rivaroxaban 2.5 mg twice daily plus aspirin 100 mg once daily against 2) rivaroxaban 5 mg twice daily or 3) aspirin 100 mg once daily, in 27,395 patients with stable atherosclerotic vascular disease, indicating a significant reduction in the primary outcome of CV death, stroke, or MI, which led to early termination of the trial. \(^{342}\) In a substudy of 7240 patients with CAD or LEAD with a mean follow-up of 23 months (44% DM), major adverse limb events including amputation, were significantly decreased with combination therapy (HR 0.54; \(P = 0.0037\)). \(^{531}\) These benefits were observed at the cost of major bleeding risk (HR 1.61; \(P = 0.0089\)). The significant reduction in major adverse limb events in this COMPASS substudy raises the possibility of a novel therapeutic regimen in high-risk vascular patients to ameliorate the complications of LEAD. \(^{532,533}\)

Patients with intermittent claudication should take part in exercise training programmes (>30–45 minutes, \(\geq 3\) times per week), as regular intensive exercise improves walking distance, although with less pronounced benefits in DM. \(^{534}\)

In patients with CLTI, strict glycaemic control is associated with improved limb outcomes. \(^{535,536}\) However, revascularization must be attempted when possible, and amputation only considered when revascularization options fail. \(^{522}\) Revascularization should also be considered in severe/disabling claudication. With respect to the revascularization modality of choice, we refer to dedicated guidelines. \(^{522}\) There is no specific trial on
revascularization strategies in DM; however, a review of 56 studies including patients with DM suggested higher limb salvage rates after revascularization (78–85% at 1 year) compared with conservative management.\(^{537}\)

10.3. Carotid artery disease

Thromboembolism from a carotid artery stenosis is the mechanism underlying 10–15% of all strokes. In brief, carotid artery disease must be rapidly ruled out in all patients presenting with transient ischaemic attack or stroke. In DM without a history of cerebrovascular disease, there is no evidence that carotid screening improves outcome, and systematic screening is not recommended.

Asymptomatic carotid disease is frequently treated conservatively, and the patient is followed up with duplex ultrasound. Carotid revascularization should be considered in asymptomatic patients in the presence of one or more indicators of increased stroke risk (previous transient ischaemic attack/stroke, ipsilateral silent infarction, stenosis progression, high-risk plaques), and if the estimated perioperative stroke or death rate is <3% and the patient’s life expectancy is >5 years.\(^{522}\)

In symptomatic patients, carotid revascularization is indicated if the stenosis is >70%, and should be considered if the stenosis is >50%, assuming that estimated perioperative stroke or death rate is <6%.\(^{522}\)

RCTs comparing carotid endarterectomy with carotid artery stenting in the periprocedural period have shown an excess of minor strokes with carotid artery stenting, and more episodes of myocardial ischaemia and cranial nerve palsies with endarterectomy. Postoperatively, both treatments offer similar protection from recurrent stroke, and have similar rates of repeat interventions.\(^{538}\) Carotid endarterectomy remains the standard of care, while stenting may be considered as an alternative in patients at high risk of endarterectomy.\(^{522}\)

With respect to the impact of DM on carotid revascularization, a meta-analysis of 14 observational studies involving 16 264 patients showed that those with DM had higher risk of perioperative stroke and death.\(^{539}\) Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) was the only trial comparing carotid endarterectomy and carotid artery stenting to enrol enough patients with DM (\(n = 759\)) for subgroup analysis. Although restenosis rates were low at 2 years after carotid stenting (6.0%) and carotid endarterectomy (6.3%), DM was a predictor of restenosis with both techniques.\(^{540}\)
Diagnosis and management of PAD in patients with DM

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Classa</th>
<th>Levelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carotid artery disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In patients with DM with carotid artery disease, it is recommended to apply a similar diagnostic work-up and therapeutic options (conservative, surgical, or endovascular) to those proposed in patients without DM.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>LEAD diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening for LEAD is indicated on a yearly basis, with clinical assessment and/or ABI measurement.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Patient education about foot care is recommended in patients with DM, and especially those with LEAD, even if asymptomatic. Early recognition of tissue loss and/or infection and referral to a multidisciplinary team is mandatory to improve limb salvage.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>An ABI <0.90 is diagnostic for LEAD, irrespective of symptoms. In case of symptoms, further assessment, including duplex ultrasound, is indicated.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>In case of elevated ABI (>1.40), other non-invasive tests, including toe-brachial index or duplex ultrasound, are indicated.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Duplex ultrasound is indicated as the first-line imaging method to assess the anatomy and haemodynamic status of lower-extremity arteries.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>CT angiography or magnetic resonance angiography is indicated in case of LEAD when revascularization is considered.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>In case of symptoms suggestive of intermittent claudication with normal ABI, a treadmill test and post-exercise ABI should be considered.</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>In patients with DM with CLTI with below-the-knee lesions, angiography, including foot run-off, should be considered before revascularization.</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>LEAD management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In patients with DM and symptomatic LEAD, antiplatelet therapy is recommended.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>As patients with DM and LEAD are at very high CV risk, an LDL-C reduction of at least ≥50% or an LDL-C target of <1.4 mmol/L (<55 mg/dL) is recommended.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>In patients with DM with CLTI, the assessment of the risk of amputation is recommended; the WIfI score is useful for this purpose.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>In case of CLTI, revascularization is indicated whenever feasible, for limb salvage.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>In patients with DM with CLTI, optimal glycaemic control should be considered to improve foot outcome.</td>
<td>IIa</td>
<td>C</td>
</tr>
</tbody>
</table>
In patients with DM with chronic symptomatic LEAD without increased risk of life-threatening bleeding, the combination of low-dose rivaroxaban (2.5 mg twice daily) and aspirin (100 mg once daily) should be considered, if the bleeding risk is low.

\[\text{ABI} = \text{ankle-brachial index}; \text{CLTI} = \text{chronic limb-threatening ischaemia}; \text{CT} = \text{computed tomography}; \text{CV} = \text{cardiovascular}; \text{DM} = \text{diabetes mellitus}; \text{eGFR} = \text{estimated glomerular filtration rate}; \text{LDL-C} = \text{low-density lipoprotein cholesterol}; \text{LEAD} = \text{lower-extremity artery disease}; \text{PAD} = \text{peripheral arterial disease}; \text{WIFI} = \text{Wound, Ischaemia, and foot Infection}. \]

\[a \text{Class of recommendation.} \]
\[b \text{Level of evidence.} \]
\[c \text{Including a diabetologist and a vascular specialist.} \]
\[d \text{See Table 3.} \]
\[e \text{See Table 8.} \]
\[f \text{Risk of life-threatening bleeding is defined as history of intracerebral haemorrhage or ischaemic stroke, history of other intracranial pathology, recent gastrointestinal bleeding or anaemia due to possible gastrointestinal blood loss, other gastrointestinal pathology associated with increased bleeding risk, liver failure, bleeding diathesis or coagulopathy, extreme old age or frailty, renal failure requiring dialysis or with eGFR <15 mL/min/1.73 m}^2. \]

Gaps in evidence

- The regularity and mode of vascular screening in DM have not been adequately assessed.
- The use of antithrombotic therapies at different clinical stages has been poorly addressed.
- Specific trials are needed to help clinicians to choose different pharmacological strategies according to the presence of PAD.

11. Chronic kidney disease in diabetes

Key messages

- CKD is associated with a high prevalence of CVD and should be considered in the highest risk group for risk factor management.
- Screening for kidney disease in DM requires serum creatinine to enable calculation of eGFR and urine tests of albumin excretion.
- Optimizing glycaemic and BP control may slow decline in kidney function.
- ACEI and ARBs are the preferred antihypertensive drugs in patients with albuminuria.
- Therapeutic reductions in albuminuria are associated with “renoprotection”.
- Data from recent CVOTs suggest that SGLT2 inhibitors, GLP1-RAs, and DPP4 inhibitors may confer renoprotection.
In the CREDENCE trial, canagliflozin reduced the relative risk of the primary renal outcome by 30% compared with placebo.

CKD developing in the context of DM is a major health issue, which is associated with the highest risk of CVD and should therefore be managed accordingly. CKD is defined as a reduction in eGFR to <60 mL/min/1.73m² and/or persistent proteinuria (e.g. urinary albumin:creatinine ratio >3 mg/mmol), sustained over at least 90 days. The most widely used classified system, developed by Kidney Disease: Improving Global Outcomes (KDIGO), stratifies patients according to both their eGFR (“G” stage) and their urinary albumin excretion (“A” stage), in a two-dimensional manner (Table 9).

Monitoring DM should include assessment of kidney function by both blood and urine testing to determine the eGFR and albumin:creatinine ratio, respectively. Approximately 30% of patients with T1DM and 40% with T2DM will develop CKD. A decline in eGFR makes glycaemic control more challenging, and increases the risks of drug-induced adverse events such as hypoglycaemia.

| Table 9 CKD classification by eGFR and albuminuria |
|---------------------------------|---------------------------------|---------------------------------|----------------|
| eGFR (mL/min/1.73 m²) | Albuminuria categories (albumin:creatinine ratio spot urine) | |
| | A1 (<3 mg/mmol) | A2 (3–30 mg/mmol) | A3 (>30 mg/mmol) |
| G1 (≥90) | No CKD | G1 A2 | G1 A3 |
| G2 (60–89) | No CKD | G2 A2 | G2 A3 |
| G3a (45–59) | G3a A1 | G3a A2 | G3a A3 |
| G3b (30–44) | G3b A1 | G3b A2 | G3b A3 |
| G5 (<15) | G5 A1 | G5 A2 | G5 A3 |

Increasing risk→

CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate.
Green = low risk; yellow = medium risk; orange = high risk; red = very high risk.

11.1. Management
11.1.1. Glycaemic control
Improving glycaemia may reduce the risk of progression of nephropathy, but is more complex in diabetic kidney disease because a fall in eGFR restricts the use of several oral glucose lowering drugs. For example, although metformin is useful and possibly beneficial in stage 1–3 CKD, an observational study from Taiwan reported a 35% increase in death in
metformin users with stage 5 CKD, a finding that was not replicated with other hypoglycaemic drugs. Metformin should therefore be used with caution as the eGFR drops towards 30 mL/min/1.73m². Accumulation of renally excreted sulphonylureas may increase the likelihood of hypoglycaemia. As kidney function deteriorates, use of insulin in place of oral regimens is likely to assist in achieving better glycaemic control, particularly as patients near renal replacement therapy. GLP1-RAs liraglutide, dulaglutide and semaglutide can even be administered with an eGFR >15 mL/min/1.73 m².

11.1.2. New approaches to nephroprotection

Data on composite kidney endpoints from recent CVOTs suggest that some of the newer oral antihyperglycaemic drugs have beneficial renal effects. Nephroprotection has been observed with two GLP1-RA (liraglutide and semaglutide) and three SGLT2 inhibitor (empagliflozin, canagliflozin, dapagliflozin) CVOTs. These trials did not include patients with advanced CKD, and nephroprotection was not the adjudicated primary outcome. In response to these preliminary findings, several studies have been initiated to investigate renal outcomes (DAPA-CKD [clinicaltrialts.gov ID: NCT03036150], EMPA-Kidney, and CREDENCE). The CREDENCE trial assigned patients with T2DM and eGFR 30 to <90 mL/min/1.73m² (urinary albumin:creatinine ratio 33.9 to 565 mg/mmol) to either canagliflozin 100 mg/day or placebo. The trial was stopped prematurely by the safety committee after an interim analysis demonstrated superiority. A total of 4401 patients were followed for 2.6 years and the relative risk of the primary outcome (a composite of end-stage renal disease, doubling of serum creatinine level, or renal or CV death) was reduced by 30% (43.2 vs. 61.2/1000 patient years, P = 0.00001). Secondary outcomes, including the composite of CV death or hospitalization for HF, the composite of CV death, MI, or stroke, and the analysis of hospitalization for HF alone, all demonstrated significant benefits with canagliflozin. These findings in a high-risk population of patients with T2DM and renal impairment validate the secondary outcome observations in the CVOTs and confirm the importance of SGLT2 inhibitors in managing DM, CKD, and associated CVD. The CREDENCE trial also demonstrated that the SGLT2 inhibitor, canagliflozin, may be used with benefit down to an eGFR of 30 mL/min/1.73m².

<table>
<thead>
<tr>
<th>Prevention and management of CKD in patients with DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
</tbody>
</table>

97
It is recommended that patients with DM are screened annually for kidney disease by assessment of eGFR and urinary albumin:creatinine ratio.543

Tight glucose control, targeting HbA1c (<7.0% or <53 mmol/mol) is recommended to decrease microvascular complications in DM.145-149

It is recommended that patients with hypertension and DM are treated in an individualized manner, targeting a BP of 130–139/80–90 mmHg, with SBP values closer to 130 mmHg preferable.155, 159, 181-183

A RAAS blocker (ACEI or ARB) is recommended for the treatment of hypertension in DM, particularly in the presence of proteinuria, microalbuminuria, or LVH.167-170

Treatment with a SGLT2 inhibitor (emplagliflozin, canagliflozin, dapagliflozin) is associated with a lower risk of renal endpoints and is recommended if eGFR is 30 to <90 mL/min/1.73 m2).306, 311, 313, 496

Treatment with the GLP1-RAs liraglutide and semaglutide is associated with a lower risk of renal endpoints and should be considered for DM treatment if eGFR is >30 mL/min/1.73m2.176, 299

ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; BP = blood pressure; CKD = chronic kidney disease; DM = diabetes mellitus; eGFR = estimated glomerular filtration rate; HbA1c = haemoglobin A1c; LVH = left ventricular hypertrophy; RAAS = renin-angiotensin-aldosterone system; SBP = systolic blood pressure; SGLT2 = sodium-glucose co-transporter 2.

aClass of recommendation.
bLevel of evidence.

Gaps in evidence

- Lack of renal primary outcome trials with GLP1-RAs in patients with DM.
- Whether the nephroprotection shown in CREDENCE is a class effect of SGLT2 inhibition or specific to canagliflozin remains to be determined.

12. Patient-centred care

Key message

- Group-based structured education programmes improve disease knowledge, glycaemic control, disease management, and empowerment in patients with DM.

12.1. General aspects
Supporting patients in achieving and sustaining lifestyle changes on an individualized basis, using defined therapeutic goals, continues to be a challenge.551 For instance, 33–49\% of patients with DM fail to meet targets for glycaemic, cholesterol, or BP control, and even fewer meet targets for all three measures.552 Whereas a wide range of studies have documented the effect of self-management education and support programmes in patients with DM on DM outcomes and in patients with CVD delivered separately, the evidence underpinning the best approach to deliver educational or self-management interventions targeted at both DM and CVD is limited. A patient-centred approach is considered an important way to help strengthen patients’ capabilities for self-managing their conditions553 and should also be the basis of healthcare professional–patient interactions in patients with DM and CVD.

Patient-centred care is an approach that facilitates shared control and decision-making between patient and provider. It emphasizes a focus on the whole person and their experiences of illness within social contexts, rather than a single disease or organ system, and it develops a therapeutic alliance between patient and provider.554 It is also a care strategy that is respectful and responsive to individual patient preferences, needs, and values,555 and it places the patient as an “active drug” at the centre of care, working in collaboration with healthcare professionals. Different approaches on how to integrate patient-centred care in clinical practice exist. One such approach comprises six interactive components, including validating the patients’ experiences, considering the broader context in which the illness is experienced, working towards mutual understandings between healthcare professionals and patients, engaging in health promotion, taking a partnership approach to the healthcare professional–patient relationship, and being realistic about goals.556 In addition, patients with low socioeconomic status are more likely to have DM557 and CVD558 Limited health literacy is a major barrier to disease prevention, disease management, and positive outcomes. Attention to health literacy skills in healthcare provider–patient interactions are thus important in patients with DM and CVD.559

The effect of education and self-management strategies have been evaluated on both DM outcomes and CVD risk factors. A systematic review including patients with DM found that group-based, structured education programmes resulted in clinically relevant improvements in glycaemic control, DM knowledge, triglyceride levels, BP, medication reduction, and self-management for 12–14 months. Benefits for 2–4 years, including decreased DM-related retinopathy, were apparent when group classes were provided on an annual basis.560 A systematic review with meta-analysis showed that group-based structured DM self-
management patient education programmes reduced HbA1c, FPG, and body weight, and improved DM knowledge, self-management skills, and empowerment.561 Another study compared the effectiveness of group-based structured interventions with individual structured interventions or usual care in DM. Outcomes favoured reductions in HbA1c for group-based structured education programmes compared with controls.562 Studies of self-management education programmes indicates that they are cost-effective in the long term.563 Empowerment strategies included individual consultations, phone calls, web-based sessions, and the use of a booklet were evaluated across 11 studies. Outcomes included HbA1c, self-efficacy, levels of DM knowledge, and quality of life. In addition, some of the studies assessed secondary outcomes in the form of CVD risk factors. These studies were carried out in both T1DM and T2DM, in primary and secondary care. Improvements in individual empowerment strategies were shown in self-efficacy, levels of DM knowledge, and quality of life. However, no statistically significant improvement was found for HbA1c.564 Patients with pre-DM benefit from structured empowerment interventions and lifestyle education, to reduce progression to DM,565-567 and beneficial effects on CVD risk factors, such as BP and total cholesterol, have been reported.82, 568 The Diabetes Prevention Program provides the strongest evidence for DM prevention in pre-DM.569 In patients with DM after an ACS, four RCTs included in a systematic review evaluated the effectiveness of structured self-management interventions plus an intensified comprehensive cardiac rehabilitation programme. The review concluded that there is currently no evidence to support the effectiveness of combined interventions to promote self-management behaviour with regard to clinical, psychological, or behavioural outcomes.570 In patients undergoing PCI, a retrospective study found that patients with DM benefited from cardiac rehabilitation, with regard to all-cause death, to a similar degree to those without DM.571 However, several studies have also indicated that cardiac rehabilitation uptake is low in patients with DM.571, 572

<table>
<thead>
<tr>
<th>Patient-centred care in DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations</td>
</tr>
<tr>
<td>Group-based structured education programmes are recommended in patients with DM, to improve DM knowledge, glycaemic control, disease management, and patient empowerment.560-562</td>
</tr>
</tbody>
</table>
Patient-centred care is recommended to facilitate shared control and decision-making within the context of patient priorities and goals.553,554,573

| Provision of individual empowerment strategies should be considered to enhance self-efficacy, self-care, and motivation in patients with DM.564,574-579 | IIa

| DM = diabetes mellitus. |

| aClass of recommendation.
| bLevel of evidence. |

Gaps in evidence

- Further research is required to determine the effect of group- and individually based structured patient education programmes on CVD risk factors.
- Effects of patient-centred interventions on micro- and macrovascular complications are unknown.
- More research is needed to develop robust combined self-management interventions, including cost-effectiveness evaluations of joint DM and CVD interventions; future studies should compare different modes delivering individual empowerment strategies.
- In patients with CVD and concomitant DM, barriers to cardiac rehabilitation should be explored, and future prospective studies should investigate the benefit of cardiac rehabilitation programmes.
- Uptake of empowerment programmes in different ethnic groups requires evaluation.
- Possible differences between men and women with regards to optimal delivery of patient-centred care, structured education and self-management programmes should be explored.
13. ‘What to do’ and ‘what not to do’ messages from the guidelines

Diagnosis of disorders of glucose metabolism

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is recommended that screening for potential T2DM in patients with CVD is initiated with HbA1c and FPG, and that an OGTT is added if HbA1c and FPG are inconclusive.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>It is recommended that an OGTT is used for diagnosing IGT.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>It is recommended that the diagnosis of DM is based on HbA1c and/or FPG, or on an OGTT if still in doubt.</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>

Use of laboratory, ECG and imaging testing for cardiovascular risk assessment in asymptomatic patients with DM

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine assessment of microalbuminuria is indicated to identify patients at risk of developing renal dysfunction or at high risk of future CVD.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>A resting ECG is indicated in patients with DM diagnosed with hypertension or with suspected CVD.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Carotid ultrasound intima-media thickness screening for CV risk assessment is not recommended.</td>
<td>III</td>
<td>A</td>
</tr>
<tr>
<td>Routine assessment of circulating biomarkers is not recommended for CV risk stratification.</td>
<td>III</td>
<td>B</td>
</tr>
<tr>
<td>Risk scores developed for the general population are not recommended for CV risk assessment in patients with DM.</td>
<td>III</td>
<td>C</td>
</tr>
</tbody>
</table>

Lifestyle modifications in DM and pre-DM

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking cessation guided by structured advice is recommended in all individuals with DM and pre-DM.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Lifestyle intervention is recommended to delay or prevent the conversion of pre-DM states, such as IGT, to T2DM.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Reduced calorie intake is recommended for lowering excessive body weight in pre-DM and DM.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Moderate-to-vigorous physical activity, notably a combination of aerobic and resistance exercise, for ≥ 150 min/week is recommended for the prevention and control of DM, unless contraindicated, such as when there are severe comorbidities or a limited life expectancy.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Vitamin or micronutrient supplementation to reduce the risk of DM or CVD in DM is not recommended.</td>
<td>III</td>
<td>B</td>
</tr>
</tbody>
</table>

Glycaemic control in DM
It is recommended to apply tight glucose control, targeting a near-normal HbA1c (< 7.0% or < 53 mmol/mol) to decrease microvascular complications in DM\(^1\).\(^4\)\(^5\)-\(^1\)\(^4\)\(^9\)

It is recommended that HbA1c targets are individualized according to duration of DM, comorbidities, and age.\(^1\)\(^2\)\(^2\)-\(^1\)\(^5\)\(^0\)

Avoiding hypoglycaemia is recommended.\(^1\)\(^3\)\(^6\), \(^1\)\(^3\)\(^9\), \(^1\)\(^4\)\(^0\),\(^1\)\(^5\)\(^1\)

Management of blood pressure in patients with DM and pre-DM

Treatment targets

<table>
<thead>
<tr>
<th>Antihypertensive drug treatment is recommended for people with DM when office BP is >140/90 mmHg(^1)(^5)(^5), (^1)(^7)(^8)(^0)</th>
<th>I</th>
<th>A</th>
</tr>
</thead>
</table>

It is recommended that a patient with hypertension and DM is treated in an individualized manner. The BP goal is to target SBP to 130 mmHg and < 130 mmHg if tolerated, but not < 120 mmHg. In older people (aged >65 years) the SBP goal is to a range of 130-139 mmHg.\(^1\)\(^5\)\(^5\), \(^1\)\(^5\)\(^9\), \(^1\)\(^6\)\(^0\), \(^1\)\(^8\)\(^1\)-\(^1\)\(^8\)\(^3\)

<table>
<thead>
<tr>
<th>It is recommended to target DBP < 80 mmHg, but not < 70 mmHg.(^1)(^6)</th>
<th>I</th>
<th>C</th>
</tr>
</thead>
</table>

Treatment and evaluation

Lifestyle changes (weight loss if overweight, physical activity, alcohol restriction, sodium restriction, and increased consumption of fruits [e.g. 2–3 servings], vegetables [e.g. 2–3 servings], and low-fat dairy products) are recommended in patients with DM and pre-DM with hypertension.\(^1\)\(^6\)\(^1\)-\(^1\)\(^6\)\(^3\),\(^1\)\(^6\)\(^6\)

<table>
<thead>
<tr>
<th>A RAAS blocker (ACEI or ARB) is recommended in the treatment of hypertension in DM, particularly in the presence of microalbuminuria, albuminuria, proteinuria, or LV hypertrophy.(^1)(^6)(^7)-(^1)(^7)(^0)</th>
<th>I</th>
<th>A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>It is recommended to initiate treatment with a combination of a RAAS blocker with a calcium-channel blocker or thiazide/thiazide-like diuretic.(^1)(^6)(^7)-(^1)(^7)(^1)</th>
<th>I</th>
<th>A</th>
</tr>
</thead>
</table>

Management of dyslipidaemia with lipid-lowering agents

Targets

In patients with T2DM at moderate CV risk\(^e\) an LDL-C target of <2.5 mmol/L (<100 mg/dL) is recommended.\(^2\)\(^1\)\(^0\)-\(^2\)\(^1\)\(^2\)

In patients with T2DM at high CV risk\(^e\), LDL-C reduction of at least 50% or an LDL-C target of < 1.8 mmol/L (< 70 mg/dL) is recommended.\(^2\)\(^1\)\(^0\)-\(^2\)\(^1\)\(^2\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
In patients with T2DM at very high CV risk, an LDL-C reduction of at least 50% or an LDL-C target of < 1.4 mmol/L (< 55 mg/dL) is recommended.200, 201, 210

In patients with T2DM, a secondary goal of a non-HDL-C target of < 2.2 mmol/L (< 85 mg/dL) in very high CV risk patients, and < 2.6 mmol/L (< 100 mg/dL) in high CV risk patients is recommended.213, 214

Treatment

Statins are recommended the first choice lipid-lowering treatment in patients with DM and high LDL-C levels: administration of statins is defined based on the CV risk profile of the patiente and the recommended LDL-C (or non-HDL-C) target levels.187

If the target LDL-C is not reached, combination therapy with ezetimibe is recommended.200, 201

In patients at very high CV risk, with persistent high LDL-C despite treatment with maximal tolerated statin dose, in combination with ezetimibe or in patients with statin intolerance, a PCSK9 inhibitor is recommended.203-206

Statins are not recommended in women of child bearing potential.189, 190

Antiplatelet therapy in primary prevention in DM

In patients with DM at moderate CV risk, aspirin for primary prevention is not recommended

Glucose-lowering treatment in DM

SGLT2 inhibitors

Empagliflozin, canagliflozin, or dapagliflozin is recommended in patients with T2DM and CVD or at very high/high CV riske to reduce CV events.306, 308, 309, 311

Empagliflozin is recommended in patients with T2DM and CVD to reduce the risk of death.306

GLP1-RAs

Liraglutide, semaglutide or dulaglutide is recommended in patients with T2DM and CVD or at very high/high CV riske to reduce CV events.176, 299, 300, 301, 302, 303

Liraglutide is recommended in patients with T2DM and CVD or at very high/high CV riske to reduce the risk of death.176

Thiazolidinediones
<table>
<thead>
<tr>
<th>Section</th>
<th>Level</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiazolidinediones are not recommended in patients with HF.</td>
<td>III</td>
<td>A</td>
</tr>
<tr>
<td>DPP4 inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saxagliptin is not recommended in patients with T2DM and a high risk of HF.</td>
<td>III</td>
<td>B</td>
</tr>
<tr>
<td>Management of patients with DM and ACS or CCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACEIs or ARBs are indicated in patients with DM and CAD to reduce the risk of CV events.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Statin therapy is recommended in patients with DM and CAD to reduce the risk of CV events.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Aspirin at a dose of 75–160 mg/day is recommended as secondary prevention in DM.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Treatment with a P2Y12 receptor blocker, ticagrelor or prasugrel, is recommended in patients with DM and ACS for 1 year with aspirin, and in those who undergo PCI or CABG.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Concomitant use of a proton pump inhibitor is recommended in patients receiving DAPT or oral anticoagulant monotherapy who are at high risk of gastrointestinal bleeding.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Clopidogrel is recommended as an alternative antiplatelet therapy in case of aspirin intolerance.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Coronary revascularization in patients with DM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is recommended to implement the same revascularization techniques (e.g. the use of DESs and the radial approach for PCI; the use of the left internal mammary artery as the graft for CABG) in patients with and without DM.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>It is recommended to check renal function if patients have taken metformin immediately before angiography and withhold metformin if renal function deteriorates.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Treatment of HF in patients with DM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACEIs and beta-blockers are indicated in symptomatic patients with HFrEF and DM, to reduce the risk of HF hospitalization and death.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>MRAs are indicated in patients with HFrEF and DM who remain symptomatic despite treatment with ACEIs and beta-blockers, to reduce the risk of HF hospitalization and death.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Device therapy with an ICD, CRT or CRT-D is recommended in patients with DM, as in the general population with HF.</td>
<td>I</td>
<td>A</td>
</tr>
</tbody>
</table>
ARBs are indicated in symptomatic patients with HFrEF and DM who do not tolerate ACEIs, to reduce the risk of HF hospitalization and death.457, 459, 460

Sacubitril/valsartan is indicated instead of ACEIs to reduce the risk of HF hospitalization and death in patients with HFrEF and DM who remain symptomatic despite treatment with ACEIs, beta-blockers, and MRAs.421, 471

Diuretics are recommended in patients with HFpEF, HFmrEF, or HFrEF with signs and/or symptoms of fluid congestion, to improve symptoms.478

Cardiac revascularization with CABG surgery has shown similar benefits for the reduction of long-term risk of death in patients with HFrEF with and without DM, and is recommended for patients with two- or three-vessel CAD, including a significant LAD stenosis.482

Aliskiren (a direct renin inhibitor) is not recommended for patients with HFrEF and DM because of a higher risk of hypotension, worsening renal function, hyperkalaemia, and stroke.455

T2DM treatment to reduce HF risk

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Classa</th>
<th>Levelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGLT2 inhibitors (empagliflozin, canagliflozin, dapagliflozin) are associated with a lower risk of HF hospitalization in patients with DM, and are recommended if the eGFR is stable and >30 mL/min/1.73 m2g 306, 311, 496</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Thiazolidinediones (pioglitazone, rosiglitazone) are associated with an increased risk of incident HF in patients with DM, and are not recommended for DM treatment in patients at risk of HF (or with previous HF).279, 491-493</td>
<td>III</td>
<td>A</td>
</tr>
<tr>
<td>The DPP4 inhibitor saxagliptin is associated with an increased risk of HF hospitalization, and is not recommended for DM treatment in patients at risk of HF (or with previous HF).291</td>
<td>III</td>
<td>B</td>
</tr>
</tbody>
</table>

Management of arrhythmias in patients with DM

Oral anticoagulation with a NOAC which is preferred over VKAs is recommended in DM patients >65 years with AF and a CHA\textsubscript{2}DS\textsubscript{2}-VASc score ≥ 2, if not contraindicated.503

a) ICD therapy is recommended in DM patients with symptomatic HF (New York Heart Association class II or III) and LVEF ≤35% after 3 months of optimal medical therapy who are expected to survive for at least 1 year with good functional status.
b) ICD therapy is recommended in DM patients with documented ventricular fibrillation or haemodynamically unstable VT in the absence of reversible causes or within 48 hours of MI.\(^{506}\)

Beta-blockers are recommended for patients with DM with HF and after acute MI with LVEF < 40%, to prevent sudden cardiac death.\(^{512}\)

Diagnosis and management of PAD in patients with DM

Carotid artery disease

In patients with DM with carotid artery disease, it is recommended to apply a similar diagnostic work-up and therapeutic options (conservative, surgical, or endovascular) to those proposed in patients without DM.

LEAD diagnosis

Screening for LEAD is indicated on a yearly basis, with clinical assessment and/or ABI measurement.

Patient education about foot care is recommended in patients with DM, and especially those with LEAD, even if asymptomatic. Early recognition of tissue loss and/or infection and referral to a multidisciplinary team\(^{h}\) is mandatory to improve limb salvage.\(^{522}\)

An ABI <0.90 is diagnostic for LEAD, irrespective of symptoms. In case of symptoms, further assessment, including duplex ultrasound, is indicated.

In case of elevated ABI (>1.40), other non-invasive tests, including toe-brachial index or duplex ultrasound, are indicated.

Duplex ultrasound is indicated as the first-line imaging method to assess the anatomy and haemodynamic status of lower-extremity arteries.

CT angiography or magnetic resonance angiography is indicated in case of LEAD when revascularization is considered.

LEAD management

In patients with DM and symptomatic LEAD, antiplatelet therapy is recommended.\(^{541}\)

As patients with DM and LEAD are at very high CV risk\(^{d}\), an LDL-C reduction of at least ≥50% or an LDL-C target of <1.4 mmol/L (<55 mg/dL) is recommended\(^{e, 200, 201, 210}\).

In patients with DM with CLTI, the assessment of the risk of amputation is recommended; the WIfI score\(^{i}\) is useful for this purpose.\(^{494, 522}\)
In case of CLTI, revascularization is indicated whenever feasible, for limb salvage.542

Prevention and management of CKD in patients with DM

It is recommended that patients with DM are screened annually for kidney disease by assessment of eGFR and urinary albumin:creatinine ratio.543

Tight glucose control, targeting HbA1c (<7.0\% or <53 mmol/mol) is recommended to decrease microvascular complications in DM.145-149

It is recommended that patients with hypertension and DM are treated in an individualized manner, targeting a BP of 130–139/80–90 mmHg, with SBP values closer to 130 mmHg preferable.155, 159, 181-183

A RAAS blocker (ACEI or ARB) is recommended for the treatment of hypertension in DM, particularly in the presence of proteinuria, microalbuminuria, or LVH.167-170

Treatment with a SGLT2 inhibitor (emplagliflozin, canagliflozin, dapagliflozin) is associated with a lower risk of renal endpoints and is recommended if eGFR is 30 to <90 mL/min/1.73 m2).308, 311, 313, 496

Patient-centred care in DM

Group-based structured education programmes are recommended in patients with DM, to improve DM knowledge, glycaemic control, disease management, and patient empowerment.560-562

Patient-centred care is recommended to facilitate shared control and decision-making within the context of patient priorities and goals.553, 554, 573

\begin{tabular}{|l|l|}
\hline
ABI & ankle-brachial index; **ABPM** & ambulatory blood pressure monitoring; **ACEI** & angiotensin-converting enzyme inhibitor; **ACS** & acute coronary syndromes; **AF** & atrial fibrillation; **ARB** & angiotensin receptor blocker; **BP** & blood pressure; **CABG** & coronary artery bypass graft; **CAC** & coronary artery calcium; **CAD** & coronary artery disease; **CCS** & chronic coronary syndromes; **CHA2DS2-VASc** & Congestive heart failure, Hypertension, Age ≥75 years (Doubled), Diabetes mellitus, Stroke or transient ischaemic attack (Doubled), Vascular disease, Age 65–74 years, Sex category; **CKD** & chronic kidney disease; **CLTI** & chronic limb-threatening ischaemia; **CRT** & cardiac resynchronization therapy; **CRT-D** & cardiac resynchronization therapy with implantable defibrillator; **CT** & computed tomography; **CTCA** & computed tomography coronary angiography; **CV** & cardiovascular; **CVD** & cardiovascular disease; **DAPT** & dual antiplatelet therapy; **DBP** & diastolic blood pressure; **DM** & diabetes mellitus; **DPP4** & dipeptidyl peptidase-4; **ECG** & electrocardiogram; **eGFR** & estimated glomerular filtration rate; **FPG** & fasting plasma glucose; **GLP1-RA** & glucagon-like peptide-1 receptor agonist; **HAS-BLED** & Hypertension, Abnormal renal/liver function, Stroke, Bleeding history or predisposition, Labile international normalized ratio, Elderly (>65 years), Drugs/alcohol concomitantly; **HbA1c** & haemoglobin A1c; **HDL-C** & high-density lipoprotein cholesterol; **HR** & heart failure; **HfmrEF** & heart failure with mid-range ejection fraction; **HfPEF** & heart failure with preserved ejection fraction; **HfPEF** & heart failure with reduced ejection fraction; **ICD** &
\end{tabular}
A commonly stated goal for obese patients with DM is to lose around 5% of baseline weight. It is recommended that all individuals reduce the amount of sedentary time by breaking up periods of sedentary activity with moderate-to-vigorous physical activity in bouts of 10 minutes or more (broadly equivalent to 1000 steps).

See Table 3.

In patients tolerating empagliflozin or canagliflozin whose eGFR falls persistently <60 mL/min/1.73 m² or creatinine clearance <60 mL/min, a lower dose of empagliflozin (10 mg/day) or canagliflozin (100 mg/day) is recommended. Empagliflozin or canagliflozin should be discontinued when eGFR is persistently <45 mL/min/1.73 m² or creatinine clearance persistently <45 mL/min. Dapagliflozin is not recommended in patients with eGFR <60 mL/min/1.73 m² or creatinine clearance <60 mL/min.

Including a diabetologist and a vascular specialist.

See Table 8
14. Appendix

CPG member list and National Cardiac Societies Reviewers list will be inserted by Guidelines office upon publication phase

Authors/Task Force Members’ affiliations:
List to be finalized and integrated by Guidelines office for publication
First name, Middle name or initials (if needed), Last name, Department, Institution, City, Territory (if needed), Country

ESC Committee for Practice Guidelines (CPG): Stephan Windecker (Chairperson) (Switzerland), Victor Aboyans (France), Colin Baigent (United Kingdom), Jean-Philippe Collet (France), Veronica Dean (France), Victoria Delgado (Netherlands), Donna Fitzsimons (United Kingdom), Chris P. Gale (United Kingdom), Diederick Grobbee (Netherlands), Sigrun Halvorsen (Norway), Gerhard Hindricks (Germany), Bernard Iung (France), Peter Jüni (Canada), Hugo A. Katus (Germany), Ulf Landmesser (Germany), Christophe Leclercq (France), Maddalena Lettino (Italy), Basílio S. Lewis (Israel), Bela Merkely (Hungary), Christian Mueller (Switzerland), Steffen E. Petersen (United Kingdom), Anna Sonia Petronio (Italy), Dimitrios J. Richter (Greece), Marco Roffi (Switzerland), Evgeny Shlyakhto (Russian Federation), Iain A. Simpson (United Kingdom), Miguel Sousa-Uva (Portugal), Rhian M. Touyz (United Kingdom).

ESC National Cardiac Societies actively involved in the review process of the 2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases
List to be finalized and integrated by Guidelines office for publication

15. References

7. Cosson E, Hamo-Tchatchouang E, Banu I, Nguyen MT, Chiheb S, Ba H, Valensi P. A large proportion of prediabetes and diabetes goes undiagnosed when only fasting plasma glucose and/or HbA1c are measured in overweight or obese patients. Diabetes Metab 2010;36(4):312-8.

cardiac events in a population of diabetic patients without a history of cardiac disease): a

Comparison of non-traditional biomarkers, and combinations of biomarkers, for vascular
risk prediction in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study.
Atherosclerosis 2017;264:67-73.

S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD,
Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J. Diabetes
mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative

B, Gudbjornsdottir S. Excess mortality and cardiovascular disease in young adults with
type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study.

25. Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjornsdottir S,
Wedel H, Clements M, Dahlqvist S, Lind M. Excess Mortality among Persons with Type

DK, Eliasson B, Gudbjornsdottir S. Age at Diagnosis of Type 2 Diabetes Mellitus and
Associations With Cardiovascular and Mortality Risks. Circulation 2019;139(19):2228-
2237.

27. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT,
Corra U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FDR, Lochen ML, Lollgen H,
M, van der Worp HB, van Dis I, Verschuren WWM, Binno S, ESC Scientific Document
practice: The Sixth Joint Task Force of the European Society of Cardiology and Other
Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by
representatives of 10 societies and by invited experts)Developed with the special
contribution of the European Association for Cardiovascular Prevention & Rehabilitation

A. Characteristics and Prognosis in Women and Men With Type 1 Diabetes Undergoing

34. Huelsmann M, Neuhold S, Strunk G, Moertl D, Berger R, Prager R, Abrahamian H, Riedl M, Pacher R, Lugr A, Clodi M. NT-proBNP has a high negative predictive value...

74. Akazawa S, Tojkubo M, Nakano Y, Nakamura S, Tamai H, Yonemoto K, Sadasima E, Kawasaki T, Koga N. Usefulness of carotid plaque (sum and maximum of plaque thickness) in combination with intima-media thickness for the detection of coronary

82. Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined Diet and Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI
(Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study

Zhao YT, Weng CL, Chen ML, Li KB, Ge YG, Lin XM, Zhao WS, Chen J, Zhang L, Yin JX, Yang XC. Comparison of glucose-insulin-potassium and insulin-glucose as adjunctive therapy in acute myocardial infarction: a contemporary meta-analysis of randomised controlled trials. Heart 2010;96(20):1622-6.

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

Marx N, on behalf of the CAROLINA® investigators. Effects of Linagliptin versus Glimepiride on Cardiovascular Outcomes in Type 2 Diabetes. The CAROLINA Randomized Clinical Trial. (Submitted).

CONFIDENTIAL

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

3818 304. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular
3819 Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and
3822 S, Kempthorne-Rawson J, Newman J, Johansen OE, Woerle HJ, Broedl UC. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular
3823 outcome trial of empagliflozin (EMPA-REG OUTCOME). Cardiovasc Diabetol
3826 T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME
3828 Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2
3831 HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME® trial investigators. Heart failure
3833 308. Neal B, Perkovic V, Matthews DR, Mahaffey KW, Fulcher G, Meininger G, Erondo N,
3834 Desai M, Shaw W, Vercruysse F, Yee J, Deng H, de Zeeuw D, CANVAS-R Trial
3836 Collaborative Group. Rationale, design and baseline characteristics of the CANagliflozin
3837 cardioVascular Assessment Study-Renal (CANVAS-R): A randomized, placebo-
3840 Desai M, Matthews DR, CANVAS Program Collaborative Group. Canagliflozin and
3841 Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017;377(7):644-
3842 657.
3845 311. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker
3846 TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT,
3847 Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS,
3848 DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type

319. Juni PPR.

CONFIDENTIAL

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

CONFIDENTIAL

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

outcomes in patients with type 2 diabetes mellitus: results from the Bypass Angioplasty
Revascularization Investigation 2 Diabetes (BARI 2D). Circ Cardiovasc Interv

360. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, Michler RE,
Bonow RO, Doenst T, Petrie MC, Oh JK, She L, Moore VL, Desvigne-Nickens P, Sopko
G, Rouleau JL, STICHES Investigators. Coronary-Artery Bypass Surgery in Patients

CP, Clayton TC, de Winter RJ, Fox KA, Lagerqvist B, McCullough PA, Murphy SA,
Spacek R, Swahn E, Windhausen F, Sabatine MS. An invasive or conservative strategy in
patients with diabetes mellitus and non-ST-segment elevation acute coronary syndromes:

D, Vonthein R, Desch S, Thiele H. Optimal timing of an invasive strategy in patients
with non-ST-elevation acute coronary syndrome: a meta-analysis of randomised trials.

Moritz T, Stroupe K, Reda D, VA CARDs Investigators. Percutaneous coronary
intervention versus coronary bypass surgery in United States veterans with diabetes. J
Am Coll Cardiol 2013;61(8):808-16.

364. Kapur A, Hall RJ, Malik IS, Qureshi AC, Butts J, de Belder M, Baumbach A, Angelini
G, de Belder A, Oldroyd KG, Flather M, Roughton M, Nihoyannopoulos P, Bagger JP,
Morgan K, Beatt KJ. Randomized comparison of percutaneous coronary intervention
with coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia
(Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol

DJ, Rosenberg Y, Solomon SD, Desai AS, Gersh BJ, Magnuson EA, Lansky A, Boineau
Smith CR, Muratov V, Bansilal S, King S, 3rd, Bertrand M, Fuster V, FREEDOM Trial
Investigators. Strategies for multivessel revascularization in patients with diabetes. N
CONFIDENTIAL
2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

coronary intervention or coronary artery bypass grafting in the synergy between
percutaneous coronary intervention with taxus and cardiac surgery trial. Circulation
2014;129(23):2388-94.

405.Aronow WS, Ahn C, Kronzon I. Comparison of incidences of congestive heart failure in

406.Chen YT, Vaccarino V, Williams CS, Butler J, Berkman LF, Krumholz HM. Risk factors

407.Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, Gardin
JM, Rutledge JE, Boineau RC. Predictors of congestive heart failure in the elderly: the

408.Castagno D, Baird-Gunning J, Jhund PS, Biondi-Zoccai G, MacDonald MR, Petrie MC,
Gaita F, McMurray JJ. Intensive glycemic control has no impact on the risk of heart
failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am
Heart J 2011;162(5):938-948 e2.

Hoes AW. High prevalence of previously unknown heart failure and left ventricular

411.Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes:

412.Matsushita K, Blecker S, Pazin-Filho A, Berton A, Chang PP, Coresh J, Selvin E. The
association of hemoglobin a1c with incident heart failure among people without diabetes:

Rengo F. Congestive heart failure predicts the development of non-insulin-dependent
diabetes mellitus in the elderly. The Osservatorio Geriatrico Regione Campania Group.

414.Engstrup M, Kistorp CN, Schou M, Hofsten DE, Moller JE, Tuxen CD, Gustafsson I.
Abnormal glucose metabolism is associated with reduced left ventricular contractile
reserve and exercise intolerance in patients with chronic heart failure. Eur Heart J

CONFIDENTIAL

2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

4355 Prevalence of Prediabetes and Undiagnosed Diabetes in Patients with HFpEF and HFrEF and Associated Clinical Outcomes. Cardiovasc Drugs Ther 2017;31(5-6):545-549.

4395 Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehlsen J, Hanssen KF. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 1999;22(7):1186-90.

CONFIDENTIAL
2019 ESC/EASD Guidelines on diabetes, pre-diabetes, and cardiovascular diseases

EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Europace
2014;16(9):1257-83.

with Framingham Risk Score to predict cardiovascular events and mortality: a meta-
4759

529. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, Fowkes FG,
4760
Hiatt WR, Jonsson B, Lacroix P, Marin B, McDermott MM, Norgren L, Pande RL, Preux
4761
PM, Stoffers HE, Treat-Jacobson D, American Heart Association Council on Peripheral
4762
Vascular Disease, Council on Epidemiology and Prevention, Council on Clinical
4763
Cardiology, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology
4764
and Intervention, Council on Cardiovascular Surgery and Anesthesia. Measurement and
4765
interpretation of the ankle-brachial index: a scientific statement from the American Heart
4766

530. Aboyans V, Ho E, Denenberg JO, Ho LA, Natarajan L, Criqui MH. The association
4768
between elevated ankle systolic pressures and peripheral occlusive arterial disease in
4769

4771
Alings M, Kakkar AK, Keltai K, Maggioni AP, Lewis BS, Stork S, Zhu J, Lopez-
4772
Jaramillo P, O'Donnell M, Commerford PJ, Vinereanu D, Pogosova N, Ryden L, Fox
4773
KAA, Bhatt DL, Missetwitz F, Varigos JD, Vanassche T, Avezum AA, Chen E, Branch
4774
4775
with or without aspirin in patients with stable peripheral or carotid artery disease: an
4776
international, randomised, double-blind, placebo-controlled trial. Lancet
4777

4779
4780
N, Jamieson A, Matthews D, Leese G, McKnight J, O'Brien I, Semple C, Petrie J,
4781
Gordon D, Pringle S, MacWalter R, Prevention of Progression of Arterial Disease and
4782
Diabetes Study Group, Diabetes Registry Group, Royal College of Physicians Edinburgh.
4783
The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial
4784
randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes
4785
and asymptomatic peripheral arterial disease. BMJ 2008;337:a1840.

4787
Armitage J, ASCEND Study Collaborative Group. ASCEND: A Study of Cardiovascular
4788
Events in Diabetes: Characteristics of a randomized trial of aspirin and of omega-3 fatty
4789

Magnani JW, Mujahid MS, Aronow HD, Cene CW, Dickson VV, Havranek E, Morgenstern LB, Paasche-Orlow MK, Pollak A, Willey JZ, American Heart Association Council on Epidemiology and Prevention, Council on Cardiovascular Disease in the Young, Council on Cardiovascular and Stroke Nursing, Council on Peripheral Vascular Disease, Council on Quality of Care and Outcomes Research, Stroke Council. Health Literacy and Cardiovascular Disease: Fundamental Relevance to Primary and Secondary

