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Abstract—Motion correction has been added to a PET-MR
reconstruction tool, SIRF, by incorporating a registration pack-
age, NiftyReg. New functionality has been demonstrated in the
context of estimating kinetic parameters in the left temporal lobe,
comparing direct and indirect reconstructions and evaluating the
impact of using motion correction.

Principal component analysis was used to detect motion
and to determine time frames, while STIR’s parametric-OSEM
was used to perform the motion-corrected direct parametric
reconstruction.

It was found that the variance in the left temporal lobe
decreased when motion correction was performed, and the same
was true of direct reconstructions compared to indirect.

With SIRF, the entirety of the demonstrated functionality can
be performed from a single Matlab or Python script.

I. INTRODUCTION

HYBRID PET-MR is an increasingly useful tool. The
PET component allows for the extraction of functional

information from dynamic PET data using kinetic models.
Moreover, the accuracy of these extracted properties could po-
tentially be improved with the use of MR-derived information.

Motion of the patient during scans (respiratory, cardiac or
general motion) can cause image blurring, resulting in poten-
tially misleading results. For this reason, motion correction
(MC) is currently being incorporated into the Synergistic Im-
age Reconstruction Framework (SIRF) [1], which is available
at www.ccppetmr.ac.uk.

SIRF is an open-source framework, aimed at providing
researchers with a powerful and flexible platform on which to
perform their PET-MR reconstructions. Furthermore, users are
also able to easily prototype and implement new reconstruction
techniques.

This research is a continuation of previous work [2], extend-
ing MC in SIRF from static frame-by-frame reconstruction
to direct parametric reconstruction. To demonstrate this new
functionality, MC direct parametric analysis (MC direct) is
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Fig. 1: Workflow for MC direct, as well as MC indirect and noMC
indirect. Boxes denoted with * are done on a frame-by-frame basis.

compared to MC indirect analysis (MC indirect) and direct
analysis without MC (noMC direct).

Although the example given in this work is PET-MR, the
current work is equally applicable to dynamic PET-CT.

II. MATERIALS AND METHODS

The example used throughout this work is that of an FDG
brain scan, which was taken as part of an epilepsy study. Dy-
namic PET and MR data were acquired on a Siemens Biograph
mMR. PET listmode data and associated normalisation files,
MRAC and an MPRAGE image were used for further off-
line processing. The corresponding MR-based parcellation was
generated with FreeSurfer [3].

A. Reconstruction workflow using motion correction

A simplified workflow for producing the three methods to
be compared (MC direct, MC indirect and noMC direct) can
be seen in Fig. 1.

Principal component analysis (PCA) was used to determine
when motion occurred during the scan, and the listmode
data were split into sinograms accordingly [4], [5]. Non-
attenuation corrected (NAC) frame-by-frame reconstruction
was then performed, such that the frames could be registered
(see the following section for more information) to a reference
frame. The MR data (the MRAC, MPRAGE and the parcella-
tion) were also registered to the reference frame.
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Direct parametric reconstruction was then performed by
supplying the motion information (in the form of a dis-
placement field image) and deformed MRAC for each frame.
Since the study in question used FDG, Patlak analysis was
performed to estimate Ki values. The direct reconstruction
algorithm is described in [6], [7]. The SIRF implementation
is a wrapper around the well-established STIR library for PET
reconstruction [8].

The MC indirect analysis was performed using frame-by-
frame attenuation-corrected (AC) reconstruction, where the
resulting AC images were resampled into the reference space.
The noMC direct analysis was performed by using frames of
standard duration (i.e., PCA was not used to detect motion),
and no motion information was given to the parametric recon-
struction algorithm.

B. Registration

The concept of SIRF is to provide the user with the choice of
reconstruction packages, which can be used interchangeably.
This idea has been extended to the registration framework,
SIRFReg [2]; the user should be able to call different reg-
istration packages from a common interface that is easily
executable via C++, Python or Matlab.

NiftyReg [9] is the first registration package that has
been incorporated into SIRF, providing both affine and rigid
(aladin) and non-rigid (f3d) registrations. NiftyReg’s resam-
pling functions have also been exposed in SIRF.

Although the example of rigid registration is given in
this work (since the application is head motion), non-rigid
registration is equally supported. The simplicity of SIRF’s
Python/Matlab wrapper code for registration is demonstrated
below.

reg = mSIRFReg.NiftyAladin();
reg.set reference image filename(ref file);
reg.set floating image filename(flo file);
reg.set parameter file(param file);
reg.update();
reg.save transformation matrix(TM file);
reg.save inverse transformation matrix(ITM file);
reg.save warped image(warped);

Code 1: Registration with SIRF in Python/Matlab.

C. Reconstruction

NAC, AC and parametric reconstructions were all performed
throughout this study. These were done in SIRF with STIR’s
OSEM and Parametric-OSEM (POSEM) algorithms [8].

The POSEM algorithm has been enhanced such that dis-
placement field images (easily produced from the transforma-
tion matrices) for each frame can also be supplied. If present,
the image will be transformed before forward projection and
after backprojection. The backprojection uses the transpose
operation of the forward deformation.

The OSEM and POSEM reconstructions were performed
with 7 subsets over a total of 70 image updates.

Fig. 2: NAC reconstruction over the duration of the whole scan, to
give an idea of motion that occurred.

The output of the indirect parametric reconstruction with
MC was smoothed and then used as the initial estimate for
the direct parametric reconstruction.

D. Patlak analysis

The input function was determined by fitting a population-
based input function to the data. This was done by segmenting
the carotids on the MPRAGE and superposing the resulting
mask on each decay-corrected, AC frame. Partial volume cor-
rection was then performed using the single-target correction
model (only correcting the carotids) implemented in [10].
Patlak plots were then generated by superposing the MR-
derived parcellation of the chosen volume of interest (VOI),
the left temporal lobe. The MC Patlak plot was used to
determine when equilibrium had been reached and therefore
Patlak analysis could begin.

III. RESULTS AND DISCUSSION

Fig. 2 shows an NAC reconstruction over the duration of
the whole scan (from 0 to 2700 s). This gives an idea as to
the amount of motion that occurred during the scan and shows
that, without MC, the reconstructed parametric image might
be susceptible to quality degradation.

Fig. 3 shows the first three principal components plotted
for the last 2000 s of the scan (the portion of the scan that is
interesting for Patlak analysis). Rapid fluctuations in the PCA
signals were interpreted as patient motion (since such changes
could not be due to the radiotracer redistribution).

It can be seen that three sections of the scan were discounted
due to patient movement. The time frames for the parametric
analysis were based on standard time frames, and modified to
account for motion.

Shown in Fig. 4 is the Patlak plot for the chosen VOI,
the left temporal lobe. From the Patlak plots with MC, it
was determined that the VOI was in equilibrium from around
750 s (R2 of 0.984), so the analysis was carried out from
this time point until the end of the acquisition (2700 s),
comprising a total of 7 frames. From Fig. 4, it can be seen
that a noticeable perturbation occurs at 900s in the transformed
Patlak curve. This corresponds to the time when rapid changes
were observed in the PCA signals, which were interpreted as
a period of rapid patient motion.
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Fig. 3: PCA plot over the last 2000 s of the scan. Large changes in
the motion signal indicate patient motion. The resulting time frames
are also shown.

Fig. 4: Patlak plots of the left temporal lobe, both with and without
motion correction.

Fig. 5: Time frames for noMC and MC (direct and direct) of the
section of the scan to be used for Patlak analysis (750 - 2700 s).

Fig. 6: Sagittal, coronal and axial views (top to bottom) of voxelised
Ki values for MC direct, MC indirect and noMC direct (left to right).

motion occurs at 900 s in transformed Patlak time.

Using Fig. 4, the time period over which the Patlak analysis
would be performed was established. The time frames that
were then used for the analysis are shown in Fig. 5, both for
the noMC and MC methods. Both methods contain 7 time
frames, but in the case of noMC the time frames were evenly
distributed, whereas in the case of MC they were altered to
produce motionless frames. By comparing Fig. 5 with Fig. 3,
it can be seen that the gaps in the MC time frames align with
the detected motion.

In Fig. 6, the sagittal, coronal and axial views of voxelised
Ki values can be seen for the three different methods. It can be
seen that the MC direct method is particularly noisy, and it is
difficult to distinguish different brain subregions. Furthermore,
in the sagittal view of noMC direct (top right), it can be
seen that the inferior frontal lobe is underestimated. From
these images, it can therefore be concluded that, of the three
methods, MC direct can produce images that are less noisy
than MC indirect and with less artefacts than noMC direct.

The resulting Ki of the left temporal lobe for MC direct,
MC indirect and noMC direct was 0.99, 1.16 and 1.21 ×
10−2 mL/min/mL, with standard deviations of the voxels in
the VOI of 54.0, 79.6 and 79.5 %, respectively. The reduced
standard deviation in the case of MC direct implies greater
precision compared to the other two methods. This is likely
due to the decrease of noise compared to MC indirect, and
reduction of artefacts compared to noMC direct.
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IV. CONCLUSION

This paper demonstrates the implementation of direct Patlak
reconstruction with MC in SIRF.

By studying a larger cohort of patients, further investigations
will be carried out as to the improvements that the MC direct
method can bring over conventional methods.

It should be noted that this method is equally applicable
to non-rigid problems, such as gated dynamic reconstructions.
This will be the focus of future work. Since motion in head
scans is typically small, the advantages of MC are expected
to be greater when applied to data acquired in other areas of
the body.

Another focus of research in the near future is the imple-
mentation of anatomical parametric priors. Such priors will
make greater use of the available MR data, furthering synergy
between the two modalities.
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