Brain Oxygenation Monitoring

Matthew A. Kirkman and Martin Smith*

Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London, UK.

* Corresponding author email: martin.smith@uclh.nhs.uk

Word Count: 5601
Tables: 5
Figures: 1

Disclosure statement: MS is part funded by the Department of Health National Institute for Health Research Centres funding scheme via the University College London Hospitals/University College London Biomedical Research Centre.

Conflicts of interest: None.

Key words: Cerebral oxygenation; cerebral perfusion; brain monitoring; brain tissue oxygen tension; jugular venous saturation; near-infrared spectroscopy.
Key points:

- The maintenance of adequate cerebral oxygenation is a key goal in the management of patients with acute brain injury and in certain perioperative settings.
- A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes; cerebral oxygenation monitoring is therefore an important aspect of multimodality neuromonitoring.
- There is abundant evidence of an association between low cerebral oxygenation and outcomes, but limited evidence that increasing cerebral oxygenation improves outcome.
- Advances in cerebral oxygenation monitoring will be driven by improved technology and randomized studies proving the utility of different monitors.

Article synopsis:

A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring in both the perioperative and intensive care unit settings. It is increasingly deployed whenever ICP monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address the current uncertainties about cerebral oxygenation monitoring and management. This chapter will describe the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations and future perspectives.
INTRODUCTION

Maintenance of cerebral oxygen supply sufficient to meet demand is a key goal in the management of patients with acute brain injury (ABI), and in perioperative settings. A mismatch between oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes, with time-critical windows to prevent or minimize permanent ischemic neurological injury. The clinical manifestations of cerebral hypoxia/ischemia may remain occult in unconscious or sedated/anesthetized patients, and brain monitoring is required to detect impaired cerebral oxygenation in such circumstances.

Cerebral oxygenation monitoring assesses the balance between cerebral oxygen delivery and utilization, and therefore the adequacy of cerebral perfusion and oxygen delivery. It can be used to guide treatment to prevent or minimize cerebral hypoxia/ischemia, and is established as an important component of multimodality neuromonitoring in both perioperative and intensive care unit (ICU) settings.

This chapter will describe the different methods of bedside cerebral oxygenation monitoring, the indications and evidence base for their use, as well as limitations and future perspectives.
METHODS OF MONITORING CEREBRAL OXYGENATION

There exist several imaging and bedside methods of monitoring global and regional cerebral oxygenation, invasively and non-invasively (table 1). Different monitors describe different physiological variables and, for this reason, they are not interchangeable.

Table 1 near here

Imaging techniques

In addition to providing structural information, several imaging techniques are able to evaluate cerebral hemodynamics and metabolism over multiple regions of interest. Imaging provides only a ‘snapshot’ of cerebral physiology at a particular moment in time and may miss clinically significant episodes of cerebral hypoxia/ischemia, so continuous, bedside monitoring modalities are preferred during clinical management. The reader is referred elsewhere for a detailed description of the role of imaging after ABI [1].

Jugular venous oxygen saturation monitoring

Jugular venous oxygen saturation monitoring (SvjO$_2$) was the first bedside monitor of cerebral oxygenation, but its’ use is being superseded by other monitoring tools.

SvjO$_2$ can be measured through intermittent sampling of blood from a catheter with its tip sited in the jugular venous bulb, or continuously using a fiber-optic catheter. SvjO$_2$ represents a global measure of cerebral oxygenation and provides a non-quantitative estimate of the adequacy of cerebral perfusion based on the simple tenet
that increased cerebral oxygen demand in the face of inadequate supply increases the proportion of oxygen extracted from hemoglobin and thus reduces the oxygen saturation of blood draining from the brain [2]. The range of normal SvO₂ values is 55% to 75%, and interpretation of changes is relatively straightforward. Low SvO₂ values may indicate cerebral hypoperfusion secondary to decreased cerebral perfusion pressure (CPP) or hypocapnea, or increased oxygen demand that is not matched by increased supply, whereas high values may indicate relative hyperaemia or arterio-venous shunting. The arterial to jugular venous oxygen content concentration difference, and other derived variables, have been studied extensively as an assessment of CBF [3].

SvO₂ monitoring has been used during cardiac surgery and craniotomy, although its primary role is in the neurointensive care unit where it has been used to detect impaired cerebral perfusion after traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH), to optimize CPP and, historically, guide therapeutic hyperventilation. However, no interventional trials have confirmed a direct benefit of SvO₂-directed therapy on outcome, and there are several limitations associated with its use (table 1). Importantly, it may miss critical regional ischemia because it is a global, flow-weighted measure. Further, high SvO₂ values are not necessarily reassuring as they may be associated with pathological arteriovenous shunting, and brain death [2].

Brain tissue oxygen tension monitoring

Recent years have seen an increasing trend towards the direct measurement of brain tissue PO₂ (PtiO₂), particularly in patients in whom ICP monitoring is indicated.
PtiO\textsubscript{2} monitoring has the most robust evidence base of all cerebral oxygenation monitors, and is now considered the ‘gold standard’ for monitoring cerebral oxygenation at the bedside [4]. It has contributed significantly to our understanding of the pathophysiology of ABI, and emphasized the importance of multimodality neuromonitoring [5].

Evidence from studies of patients with TBI demonstrate that cerebral hypoxia/ischemia can occur when intracranial pressure (ICP) and CPP are within established thresholds for normality [6]. As well as highlighting that ICP and CPP do not directly assess the adequacy of cerebral perfusion, these data suggest that reliance on a single monitoring modality is insufficient to detect cerebral compromise [7]. PtiO\textsubscript{2} monitoring has also challenged the role of some components of triple H therapy in the treatment of SAH [8], such that induced hypertension alone is now preferred in patients with suspected delayed cerebral ischemia (DCI).

Technical aspects

PtiO\textsubscript{2} catheters are similar in size to intraparenchymal ICP monitors and are placed in sub-cortical white matter through single or multiple lumen bolts, via a burr-hole, or at craniotomy. PtiO\textsubscript{2} readings are unreliable in the first hour following insertion, and a ‘run-in’ period is essential. This limits intraoperative applications unless the monitor is already *in situ*. Correct functioning of the probe is confirmed prior to commencing monitoring through an oxygen challenge, which should be repeated on a daily basis thereafter. A normal probe response is an increase of 200% or more from baseline PtiO\textsubscript{2} following an increase in FiO\textsubscript{2} to 1.0 for approximately 20 minutes, although impaired pulmonary function can affect responsiveness.
PtiO$_2$ is a focal measure; the region of interest interrogated by a PtiO$_2$ probe is approximately 17 mm2. Probe placement is therefore crucial (figure 1), and location in ‘at risk’ and viable brain tissue is considered optimal by many. Thus, in patients with focal lesions such as intracerebral hemorrhage (ICH) or traumatic contusions, a peri-lesional location is favored, whilst in aneurysmal SAH probe placement in appropriate vascular territories is advised. Such precise placement can be technically challenging or impossible, and risks inadvertent intralesional placement, which does not yield useful information. There is therefore an argument for routine PtiO$_2$ probe placement in ‘normal appearing’ brain, typically in the non-dominant frontal lobe, when it effectively acts as a global measure of cerebral oxygenation and can guide maintenance of normal physiological function in uninjured brain. This is the preferred site in cases of diffuse brain injury. Satisfactory probe location must always be confirmed with a non-enhanced cranial computed tomography (CT) scan to allow appropriate interpretation of PtiO$_2$ readings. One major caveat of PtiO$_2$ monitoring is that heterogeneity of brain oxygenation, even in ‘undamaged’ areas of brain, is well-recognized [9].

Figure 1 near here

Indications for PtiO$_2$ monitoring

PtiO$_2$ monitoring has been used in both ICU and perioperative settings (table 2), but its primary role, and the one for which there is most evidence, is in the intensive care management of severe TBI [6, 10]. Recent guidelines from the Neurocritical Care Society recommend that PtiO$_2$ monitoring can be used to titrate individual targets of
CPP, PaCO₂, PaO₂ and hemoglobin concentration, and to manage intracranial hypertension in combination with ICP monitoring [11]. The Brain Trauma Foundation recommends monitoring and managing PtiO₂ as a complement to ICP/CPP guided treatment in patients with severe TBI [12]. It has also been used in poor-grade aneurysmal SAH [13], in ICH [14], and has recently been recommended by the Neurocritical Care Society as a mean of detecting DCI in sedated or poor grade SAH patients [15].

There have been several published reports of intraoperative PtiO₂ monitoring, but no established role for this indication (table 2). However, a patient with an indwelling PtiO₂ monitor already in place should have monitoring continued during an operative procedure.

Normal PtiO₂ values and thresholds for treatment

PtiO₂ is a complex and dynamic variable representing the interaction between cerebral oxygen delivery and demand [4], as well as tissue oxygen diffusion gradients [16]. Both cerebral and systemic factors influence PtiO₂ values (table 3), and PtiO₂ is best considered a biomarker of cellular function as opposed to a simple monitor of hypoxia/ischemia. This makes it an appropriate therapeutic target.
Normal brain PtiO$_2$ is reported to lie between 20 and 35 mmHg (2.66 and 4.66 kPa). Positron emission tomography studies of patients with TBI suggest that the ischemic threshold is less than 14 mmHg (< 1.86 kPa) [17], and clinical studies indicate that PtiO$_2$ below 10 mmHg (< 1.33 kPa) should be considered an indicator of severe brain hypoxia [9]. However, the threshold for treatment of low PtiO$_2$ remains undecided with recommendations for initiation of treatment varying from PtiO$_2$ < 20 mmHg (< 2.66 kPa) to ≤ 15 mmHg (≤ 2 kPa). It is important to appreciate that these thresholds have been determined through patient outcomes in relatively small studies rather than pathophysiological evidence of ischemic damage at the cellular level.

Crucial to the interpretation of PtiO$_2$ in the clinical setting is the severity, duration and chronological trend of cerebral hypoxia, and not absolute PtiO$_2$ values in isolation, since it is the overall burden of hypoxia/ischemia that is the key determinant of outcome [6, 9]. Many uncertainties remain about when and how to treat reduced PtiO$_2$, and this should be the focus of future research efforts. In particular, the efficacy and safety of increasing FiO$_2$ to normalize PtiO$_2$ is uncertain given the (low quality) evidence of a relationship between arterial hyperoxia and increased mortality after ABI [18]. It also remains to be determined whether PtiO$_2$ values above a certain threshold ensure adequate cerebral oxygenation, or whether or how a mildly elevated ICP should be managed in the presence of normal PtiO$_2$ values (see below).

Management of low brain tissue oxygen tension

There is currently no consensus on how low PtiO$_2$ should be treated. A stepwise approach has been recommended in a manner akin to the treatment of raised ICP, incorporating knowledge of the factors that influence PtiO$_2$ values (figure 1). Exactly
which intervention, or combination of interventions, is most effective in improving PtiO$_2$ remains unclear. In fact, it appears that it is the responsiveness of the hypoxic brain to a given intervention that is the prognostic factor, with reversal of hypoxia being associated with reduced mortality [19].

Figure 1 near here

Evidence for PtiO$_2$-guided therapy on outcomes

There is a substantial body of evidence corroborating the relationship between low PtiO$_2$ values and adverse outcomes after TBI and SAH, but relatively little for other conditions. Furthermore, although there is evidence that interventions such as CPP augmentation, normobaric hyperoxia, and red blood cell transfusions can improve low PtiO$_2$ values after ABI, robust evidence that this translates into improved outcomes is lacking. In TBI, most outcome-based studies of PtiO$_2$-guided therapy have compared standard ICP/CPP-guided therapy with PtiO$_2$-guided therapy in association with ICP/CPP-guided therapy, with conflicting findings (table 4). Such variations in reported outcomes may be the result of heterogeneity in study design including different patient populations, different thresholds for intervention and the interventions used to treat low PtiO$_2$, as well as variable study endpoints. Despite difficulties in controlling for these variations, a systematic review of four studies incorporating 491 patients found overall outcome benefits from PtiO$_2$-directed therapy compared to ICP/CPP-guided therapy alone (odds ratio of favorable outcome = 2.1, 95% confidence interval = 1.4 - 3.1) [10]. However, all studies included in this systematic review were nonrandomized, and only two (with small sample sizes) were truly prospective.
Preliminary results have recently been released from the prospective, phase II randomized controlled brain tissue oxygen in TBI 2 (BOOST-2) trial, which evaluated the safety and efficacy of PtiO₂-directed therapy in 110 adult patients with non-penetrating severe TBI [20]. Participants were randomized to receive either treatment based on ICP monitoring and management alone (target ICP <20 mmHg) or treatment based on ICP (same target ICP) and PtiO₂ monitoring based on a pre-specified protocol to maintain PtiO₂ > 20 mmHg. The time spent with PtiO₂ < 20 mmHg was significantly lower in those in the ICP/PtiO₂ group, and there was no difference in adverse events between the two treatment arms. There was a trend towards lower overall mortality and less poor outcome in the ICP/PtiO₂ group, although these differences were not statistically significant (p = 0.229 and p = 0.221, respectively) which is unsurprising since this study was not powered for outcome. A larger phase III trial is required to clarify the potential outcome benefits of PtiO₂-guided therapy in TBI, as well as in other brain injury types.

Near-infrared spectroscopy

Near-infrared (NIR) spectroscopy (NIRS)-derived cerebral oximetry is currently the only non-invasive, bedside monitor of cerebral oxygenation. Commercial devices measure regional cerebral oxygen saturation (rScO₂) with high temporal and spatial resolution, and permit simultaneous measurement over multiple regions of interest. Despite interest in the clinical application of NIRS for more than three decades, widespread translation into routine clinical practice has not occurred.
Technical aspects

Full technical details of the principles NIRS are beyond the scope of this review, and for further information the reader is referred elsewhere [21]. In brief, NIRS systems are based on the transmission and absorption of NIR light (wavelength range 700 – 950 nm) as it passes through tissue. Several biological molecules, termed chromophores, have distinct absorption spectra in the NIR, and their concentrations can be determined by their relative absorption of light in this wavelength range. From a clinical perspective, oxyhemoglobin (O₂Hb) and deoxyhemoglobin (HHb) are the most commonly measured chromophores, although cytochrome c oxidase (CCO), the terminal complex of the electron transfer chain, is increasingly being investigated as a marker of cellular metabolism and may prove clinically more relevant [22]. In adults, NIR light cannot pass across the whole head so the light source and detecting devices are located a few centimeters apart on the same side of the head (reflectance spectroscopy), allowing examination of the superficial cortex.

NIRS interrogates arterial, venous and capillary blood within the field of view, so rScO₂ values represent a weighted tissue oxygen saturation measured from these three compartments. rScO₂ values are also influenced by several physiological variables including arterial oxygen saturation, PaCO₂, systemic blood pressure, hematocrit, cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate (CMRO₂) and cerebral arterial:venous (a:v) ratio [21].

Most commercial devices use spatially resolved spectroscopy to derive a scaled absolute hemoglobin concentration representing the relative proportions of oxy- and
deoxyhemoglobin within the field of view, from which \(\text{rScO}_2 \) is calculated and displayed as a percentage value. Frequency (or domain) resolved spectroscopy and time resolved spectroscopy (TRS) allow measurement of absolute chromophore concentration with obvious advantages [23]. More recently, diffuse correlation spectroscopy techniques have been developed to monitor CBF and derive CMRO\(_2\) [24, 25].

There are several concerns over the clinical application of NIRS, particularly ‘contamination’ of the signal by extracranial tissue. Some commercial cerebral oximeters use two detectors and a subtraction based algorithm to deal with this problem, assuming that the detector closest to the emitter receives light that has passed mainly through the scalp, and that the farthest light has passed mainly through brain tissue. Although there is weighting in favor of intracerebral tissue with an emitter-detector spacing greater than 4 cm, even spatially resolved spectroscopy is prone to some degree of extracerebral contamination [26], and this will be particularly problematic during low CBF states. The NIRS-derived CCO signal is highly specific for intracerebral changes, potentially making it a superior biomarker to hemoglobin-based NIRS variables [27].

Indications

There are many FDA-approved NIRS devices available for clinical use. Because the specific algorithms incorporated into commercial devices vary, and are often unpublished, it is difficult to compare \(\text{rScO}_2 \) values between devices and therefore between studies using different devices. There are very limited numbers of high-quality clinical studies to guide the clinical use of NIRS, and prospective randomized
studies are required not only to establish its potential role in patient monitoring but also to assess the relative efficacy of the multitude of devices on the market [28].

Recent years have seen a significant increase in the use of perioperative cerebral oximetry (table 2), particularly during cardiac and carotid surgery, and surgery in the head-up (beach chair) position [21]. Although secondary ischemic injury following ABI is common, and low rScO₂ values have been associated with poor outcome in case series, data on the use of NIRS in the ICU management of ABI are limited and no outcome studies of NIRS-guided treatment have been published.

There are emerging applications for NIRS as a non-invasive monitor of cerebral autoregulation, using standard signal processing techniques [29] and also novel analytical techniques of multimodal monitoring of slow wave oscillations [30]. NIRS has also been used to determine optimal CPP non-invasively in patients with TBI [31]. Because of the key role of CCO in mitochondrial metabolism, monitoring CCO concentration in addition to oxygenation variables may aid in the determination of ischemic thresholds following ABI by providing additional information about cellular metabolic failure [22].

One challenge in the application of NIRS after ABI is that the presence of intracranial hematomas, cerebral edema or subarachnoid blood may invalidate some of the assumptions upon which NIRS algorithms are based [21]. This has been used to advantage in the identification of intracranial hematomas and cerebral edema [32, 33].

Normal rScO₂ values and thresholds for treatment
The ‘normal’ range of rScO₂ is usually reported to lie between 60% and 75%, but there is substantial intra- and inter-individual variability; NIRS-based cerebral oximetry is therefore best considered as a trend monitor. There are no validated rScO₂-derived ischemic thresholds [21] but clinical studies and management protocols often use absolute rScO₂ values of ≤ 50%, or a ≥ 20% reduction from baseline, as triggers for initiating measures to improve cerebral oxygenation.

Evidence of NIRS-guided therapy on outcomes

The only evidence for outcome effects of NIRS-guided treatment is from three randomized controlled trials in patients undergoing cardiac surgery [34-36] (table 5). In small studies, intraoperative cerebral oxygen desaturation has been associated with early and late cognitive decline after cardiac surgery, but a recent systematic review concluded that only low-level evidence links intraoperative desaturation with postoperative neurologic complications [37]. There is also insufficient evidence to conclude that interventions to prevent or treat reductions in rScO₂ are effective in preventing stroke or postoperative cognitive dysfunction after cardiac surgery. Interestingly, NIRS-guided therapy may improve overall organ outcome after cardiac surgery, suggesting a role for NIRS as a monitor of overall organ perfusion [34]. A systematic review of the role of rScO₂ in pediatric patients undergoing surgery for congenital heart disease also concluded that there is no evidence that rScO₂ monitoring and management leads to a clinical improvement in short-term neurologic outcome in this patient population [38].

Table 5 near here
Several methods are used to assess the adequacy of CBF and oxygen delivery during carotid surgery to inform the critical decision regarding shunt placement during the vessel cross-clamp period. Cerebral oximetry has similar accuracy for the detection of cerebral ischemia compared to other commonly used monitoring modalities, and advantages in terms of simplicity [39]. Various thresholds have been used to determine the need for shunt placement, ranging from a 10% to 20% reduction in ipsilateral rScO$_2$ from baseline [40]. Cerebral oximetry has higher temporal and spatial resolution compared to other modalities, and may thus find a role in guiding the manipulation of systemic physiology to minimize the risk of cerebral hypoxia/ischemia during carotid surgery [21]. Recently, the use of a time-resolved optical imaging system which allows simultaneous acquisition of data from 32 regions of interest over both hemispheres has been described [41]. Distinct patterns of changes in Hb and O$_2$Hb were observed in ipsilateral brain cortex, suggesting that non-invasive optical imaging of brain tissue hemodynamics may find a role during carotid surgery.

There has been intense interest in the application of cerebral oximetry in patients undergoing surgery in the beach chair position because of the risk of hypotension-related cerebral ischemic events in anesthetized patients in the steep head-up position. In a recent study of 50 patients undergoing shoulder surgery in the beach chair position, the incidence of intraoperative cerebral desaturation events (defined as decreases in rScO$_2$ of \geq 20% from baseline) was 18% [42]. Of those experiencing desaturation, the mean maximal decrease in rScO$_2$ was 32% from preoperative baseline, and the mean number of separate desaturation events was 1.89 with an average duration of more than 3 minutes. Despite this apparently alarming high
burden of cerebral desaturation, these and other authors have not identified an association between desaturation events and postoperative neurocognitive dysfunction in this patient population. It has been suggested that changes in intracranial geometry and cerebral a:v ratio related to movement from supine to upright position might account, at least in part, for the changes in measured cerebral saturations [23].

Finally, there is no evidence that monitoring and early detection of cerebral desaturations to guide targeted interventions improves perioperative outcomes during other surgical procedures under general anesthesia [40].

Future perspectives

Technological developments are likely to be key drivers in advancing cerebral oxygenation monitoring and its adoption in the ICU and perioperative settings. A multiparameter probe that combines ICP, PtiO₂, and temperature measurements is available commercially (Raumedic AG, Munchberg, Germany), allowing multimodality monitoring via a single invasive device. The addition of CBF quantification into such a probe is likely. Advances in PtiO₂ technology should allow for improved insertion techniques and more durable devices, and stereotactic placement of invasive probes may help target regions of interest with improved accuracy.

Cerebral arterial oxygen saturation has been estimated using fiber optic pulse oximetry [43], and a prototype invasive probe that combines NIRS and indocyanine green dye dilution has been investigated for the simultaneous monitoring of ICP, CBF, and CBV, avoiding NIRS signal contamination by extracerebral tissues [44].
Combined NIRS/EEG provides a unique opportunity to acquire, non-invasively and simultaneously, regional cerebral electrophysiological and hemodynamic data to elucidate on neurovascular coupling mechanisms [45]. A prototype device combining diffuse correlation spectroscopy and NIRS for the bedside measurement of CBF and cerebral oxygenation respectively has been described [46]. In the future, a single NIRS-based device may be able to provide non-invasive monitoring of cerebral oxygenation, hemodynamics and cellular metabolic status over multiple regions of interest, although substantial technological advances are necessary before any of these techniques can be introduced into routine clinical practice.

Conclusions

Cerebral oxygenation represents the balance between cerebral oxygen supply and demand, and a mismatch may lead to cerebral hypoxia/ischemia with deleterious outcomes. There are several tools available for the detection of cerebral hypoxia/ischemia, each with inherent advantages and disadvantages. Although there is a large body of evidence supporting an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation improves outcomes. The adoption of a multi-modality neuromonitoring approach (see also chapter 7) that incorporates cerebral oxygenation monitoring in addition to more established ICP and CPP monitoring is required, along with large randomized prospective studies to address the current uncertainties about such approaches.
References

Figure 1
Schematic for the management of low PtiO₂ values

CPP, cerebral perfusion pressure; EEG, electroencephalography; ETCO₂, end-tidal carbon dioxide; FiO₂, fraction of inspired oxygen; ICP, intracranial pressure; MAP, mean arterial pressure; PaCO₂, arterial partial pressure of carbon dioxide; PaO₂, arterial partial pressure of oxygen; PEEP, positive end-expiratory pressure; PtiO₂, brain tissue oxygen tension.
Figure 2
Axial computed tomography scan of the head demonstrating positioning of a PtIO$_2$ probe (arrow):
A. in normal appearing white matter of the right frontal lobe to measure global cerebral oxygenation;
B. suboptimally within a contusion;
C. adjacent to a penumbral region to monitor cerebral oxygenation in ‘at risk’ tissue.

Table 1

Bedside monitors of cerebral oxygenation

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SjvO₂</td>
<td>• Real-time</td>
<td>• Invasive insertion procedure with risk of hematoma, carotid puncture and vein thrombosis during prolonged monitoring</td>
</tr>
<tr>
<td></td>
<td>• Global trend monitor</td>
<td>• Insensitive to regional ischemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assumes stable CMRO₂ to infer CBF changes</td>
</tr>
<tr>
<td>PtiO₂</td>
<td>• Focal monitor permitting selective monitoring of critically perfused tissue</td>
<td>• Focal monitor – the position of the probe is crucial</td>
</tr>
<tr>
<td></td>
<td>• Real-time</td>
<td>• May miss important pathology distant from the monitored site</td>
</tr>
<tr>
<td></td>
<td>• The most effective bedside method of detecting cerebral ischemia</td>
<td>• Invasive</td>
</tr>
<tr>
<td></td>
<td>• Relatively safe with low hematoma rate (<2%, usually small and clinically insignificant)</td>
<td>• Small degree of zero and sensitivity drift</td>
</tr>
<tr>
<td></td>
<td>• No reported infections</td>
<td>• One hour ‘run-in’ period required and thus critical early hypoxic/ischemic episodes may go undetected</td>
</tr>
<tr>
<td>NIRS</td>
<td>• Real-time</td>
<td>• Technical complication rates (dislocation or drift) may reach 13.6%</td>
</tr>
<tr>
<td></td>
<td>• High spatial and temporal resolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-invasive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assessment of several regions of interest simultaneously</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CBF, cerebral blood flow; CMRO₂, cerebral metabolic rate for oxygen, CPP, cerebral perfusion pressure; ICP, intracranial pressure; NIRS, near infrared spectroscopy; PtiO₂, brain tissue oxygen tension; SjvO₂, jugular venous oxygen saturation.
Table 2
The main indications for PtIO\(_2\) monitoring and NIRS in the perioperative and intensive care settings, based upon clinical data

<table>
<thead>
<tr>
<th>Modality</th>
<th>Indications</th>
<th>Evidence</th>
<th>Highest quality evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtIO(_2)</td>
<td>ICU:</td>
<td>Low PtIO(_2) associated with worse mortality [47], lower GOS [6, 9], and increased neuropsychological deficits [48]</td>
<td>Prospective observational</td>
</tr>
<tr>
<td></td>
<td>Severe TBI</td>
<td>Treatment of low PtIO(_2) may improve outcomes [10, 20]</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PtIO(_2) can help define individual CPP thresholds [49]</td>
<td>Prospective observational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response to PtIO(_2) guided therapy associated with reduced mortality [50]</td>
<td>Retrospective analysis of prospective observational data</td>
</tr>
<tr>
<td>Poor-grade SAH</td>
<td>Low PtIO(_2) values associated with increased mortality, but the relationship with morbidity is less clear [51]</td>
<td>Prospective observational</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PtIO(_2)-derived ORx autoregulation assessment can predict the risk of DCI [13] and unfavorable outcome [52]</td>
<td>Prospective observational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response to PtIO(_2) guided therapy associated with improved long-term functional outcomes [19]</td>
<td>Retrospective analysis of prospective observational data</td>
</tr>
<tr>
<td>ICH</td>
<td>PtIO(_2) monitoring may help identify optimal CPP targets [53]</td>
<td>Retrospective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced peri-hematomal PtIO(_2) values associated with poor outcome [53]</td>
<td>Retrospective</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Study Type</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AIS</td>
<td>PtiO₂-derived CPP-ORx may predict the development of malignant MCA infarction [54]</td>
<td>Prospective observational</td>
<td></td>
</tr>
<tr>
<td>Peri-operative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebral angiography</td>
<td>Low PtiO₂ values correlated with severe intracranial angiographic arterial caliber reduction in patients with poor-grade SAH [55]</td>
<td>Retrospective</td>
<td></td>
</tr>
<tr>
<td>Aneurysm surgery</td>
<td>PtiO₂ threshold of 15 mmHg found to be a sensitive indicator of the likelihood of developing procedure-related ischemia [56]</td>
<td>Prospective observational</td>
<td></td>
</tr>
<tr>
<td>AVM surgery</td>
<td>Correlation observed between reduced PtiO₂ values and development of a peri-probe ischemic infarction [57]</td>
<td>Case report</td>
<td></td>
</tr>
<tr>
<td>NIRS ICU:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBI</td>
<td>Association between increasing length of time with rScO₂ ≤ 60% and mortality, intracranial hypertension and compromised CPP [58]</td>
<td>Prospective observational</td>
<td></td>
</tr>
<tr>
<td>SAH</td>
<td>Time-resolved NIRS was able to predict angiographic-proven vasospasm with 100% sensitivity and 85.7% specificity, and confirm vasospasm when TCD was not diagnostic [59]</td>
<td>Prospective observational</td>
<td></td>
</tr>
<tr>
<td>AIS</td>
<td>May help predict cerebral edema in patients with complete MCA infarction [33]</td>
<td>Prospective observational</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rScO₂ predicts poor outcome during endovascular therapy for AIS [60]</td>
<td>Prospective observational</td>
<td></td>
</tr>
</tbody>
</table>
Peri-operative:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac surgery</td>
<td>Intraoperative cerebral desaturations may be associated with more major organ morbidity and mortality [34]</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td></td>
<td>The role of intraoperative cerebral desaturations in postoperative cognitive decline is unclear [34, 35, 37]</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td></td>
<td>Intraoperative cerebral desaturations may be associated with protracted ICU [34] and hospital [35] LOS, although others disagree [36]</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td>Carotid surgery</td>
<td>Similar accuracy and reproducibility in the detection of cerebral ischemia compared to TCD and stump pressure [39]</td>
<td>Prospective observational</td>
</tr>
<tr>
<td>Head-up (beach chair) position surgery</td>
<td>Hypotension-associated decreases in rScO₂ are not associated with a higher incidence of postoperative cognitive dysfunction or serum biomarkers of brain injury [61]</td>
<td>Prospective observational</td>
</tr>
</tbody>
</table>

AIS, acute ischemic stroke; CPP, cerebral perfusion pressure; DCI, delayed cerebral ischemia; GOS, Glasgow outcome score; ICH, intracerebral hemorrhage; ICU, Intensive Care Unit; LOS, length of stay; MCA, middle cerebral artery; NIRS, near-infrared spectroscopy; ORx, oxygen reactivity index; PtiO₂, brain tissue oxygen tension; rScO₂, regional cerebral oxygen saturation; SAH, subarachnoid hemorrhage; TBI, traumatic brain injury; TCD, transcranial Doppler.
Table 3
The main variables known to influence PtiO$_2$ values

<table>
<thead>
<tr>
<th>Systemic variables:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Partial pressure of oxygen (PaO$_2$)</td>
</tr>
<tr>
<td>• Partial pressure of carbon dioxide (PaCO$_2$)</td>
</tr>
<tr>
<td>• Fraction of inspired oxygen (FiO$_2$)</td>
</tr>
<tr>
<td>• Mean arterial blood pressure</td>
</tr>
<tr>
<td>• Cardiopulmonary function</td>
</tr>
<tr>
<td>• Hemoglobin level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brain-specific variables:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cerebral perfusion pressure and intracranial pressure</td>
</tr>
<tr>
<td>• Cerebral blood flow</td>
</tr>
<tr>
<td>• Cerebral vasospasm</td>
</tr>
<tr>
<td>• Cerebral autoregulatory status</td>
</tr>
<tr>
<td>• Brain tissue gradients for oxygen diffusion</td>
</tr>
<tr>
<td>• Composition of the microvasculature around the probe and the relative dominance of arterial or venous vessels</td>
</tr>
</tbody>
</table>
Table 4

Summary of studies comparing outcome following brain tissue oxygen tension-directed therapy vs. intracranial pressure/cerebral perfusion pressure-directed therapy in patients with severe traumatic brain injury

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study type</th>
<th>PtiO₂-guided therapy, n</th>
<th>ICP/CPP-guided therapy, n</th>
<th>PtiO₂ threshold for intervention</th>
<th>Endpoint(s)</th>
<th>Principle findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamides et al, 1998 [62]</td>
<td>Prospective</td>
<td>20</td>
<td>10</td>
<td>2.66 kPa (20 mmHg)</td>
<td>GOS at six months</td>
<td>No significant difference in mean GOS score between the two groups (PtiO₂ group = 3.55, ICP/CPP group = 4.40; p = 0.19).</td>
</tr>
<tr>
<td>Meixensberger et al, 2003 [63]</td>
<td>Retrospective (historical controls)</td>
<td>53</td>
<td>40</td>
<td>1.33 kPa (10 mmHg)</td>
<td>GOS at six months</td>
<td>A non-significant trend towards improved outcomes in the PtiO₂ group (GOS 4 or 5 in PtiO₂ group = 65%, in ICP/CPP group = 54%; p = 0.27).</td>
</tr>
<tr>
<td>Stiefel et al, 2005 [64]</td>
<td>Retrospective (historical controls)</td>
<td>28</td>
<td>25</td>
<td>3.33 kPa (25 mmHg)</td>
<td>In-hospital mortality</td>
<td>Mortality rate in PtiO₂ group (25%) significantly lower than ICP/CPP group (44%; p < 0.05).</td>
</tr>
<tr>
<td>Martini et al, 2009 [65]</td>
<td>Retrospective cohort study</td>
<td>123</td>
<td>506</td>
<td>2.66 kPa (20 mmHg)</td>
<td>In-hospital mortality, FIM at hospital discharge.</td>
<td>Slightly worse adjusted mortality in PtiO₂ group compared to ICP/CPP group (adjusted mortality difference 4.4%, 95% CI = -3.9 – 13%). Worse functional outcomes at discharge in the PtiO₂ group (adjusted FIM score difference -0.75, 95% CI = -1.41 – -0.09).</td>
</tr>
<tr>
<td>McCarthy et al, 2009 [66]</td>
<td>Prospective</td>
<td>81</td>
<td>64</td>
<td>2.66 kPa (20 mmHg)</td>
<td>In-hospital mortality, GOS every three</td>
<td>No significant difference in mortality rates between PtiO₂ group (31%) and ICP/CPP group (36%; p =</td>
</tr>
</tbody>
</table>
Narotam et al, 2009 [67] Retrospective (historical controls) 139 41 2.66 kPa (20 mmHg) GOS at six months months post-discharge. 0.52). A non-significant trend towards improved outcome (GOS 4 or 5) in PtiO\textsubscript{2} group (79%) compared to ICP/CPP group (61%; p = 0.09).

Spiotta et al, 2010 [68] Retrospective (historical controls) 70 53 2.66 kPa (20 mmHg) In-hospital mortality, GCS at three months Higher mean GOS score in PtiO\textsubscript{2} group (3.55 ± 1.75) compared to ICP/CPP group (2.71 ± 1.65; p < 0.01). OR for good outcome in PtiO\textsubscript{2} group = 2.09 (95% CI = 1.03 - 4.24). Reduced mortality rate in the PtiO\textsubscript{2} group (26% versus 41.5%; RR reduction 37%) despite higher ISS scores in PtiO\textsubscript{2} group.

Green et al, 2013 [69] Retrospective cohort study 37 37 2.66 kPa (20 mmHg) In-hospital mortality, GOS and FIM at discharge No survival difference offered by PtiO\textsubscript{2}-guided therapy (64.9% vs. 54.1%, p = 0.34), or difference in discharge GCS or FIM. Of note, the PtiO\textsubscript{2}-guided therapy group had significantly lower ISS at baseline.

Shutter et al. 2014 [20] Prospective phase II RCT 53 57 2.66 kPa (20 mmHg) Proportion of time PtiO\textsubscript{2} <20 mmHg, safety, feasibility of protocol implementation, non-futility (mortality, GOS-extended at 6 months). Median proportion of time with PtiO\textsubscript{2} <20 mmHg significantly lower in the ICP/ PtiO\textsubscript{2} group (0.14) compared to the ICP group (0.44, p<0.00001). No significant difference between adverse events, and protocol violations were infrequent. Lower overall mortality and poor outcome on the 6-month GOS-
extended in the ICP/ PtiO₂ group, but neither reached statistical significance (p=0.229 and p=0.221, respectively).

CI, confidence interval; CPP, cerebral perfusion pressure; FIM, functional independence measure; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Score; ICP, intracranial pressure; ISS, injury severity score; LOS, length of stay; MAP, mean arterial pressure; OR, odds ratio; PtiO₂, brain tissue oxygen tension; RCT, randomized controlled trial; RR, relative risk.
Table 5
Summary of the randomized studies evaluating outcomes following near-infrared spectroscopy-guided management of cerebral desaturations

<table>
<thead>
<tr>
<th>Reference</th>
<th>Surgery type</th>
<th>Intervention arm, n</th>
<th>Control arm, n</th>
<th>Target rScO₂ values in intervention arm</th>
<th>Endpoint(s)</th>
<th>Principle findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murkin et al. 2007 [34]</td>
<td>CABG</td>
<td>100</td>
<td>100</td>
<td>≥75% of baseline threshold</td>
<td>30 day postoperative morbidity and mortality</td>
<td>Prolonged cerebral desaturations (p = 0.014) and ICU stay observed in the control group (p = 0.029). MOMM* higher in the control group (p = 0.048) and associated with lower baseline and mean rScO₂, more cerebral desaturations, longer ICU and hospital LOS.</td>
</tr>
<tr>
<td>Slater et al. 2009 [35]</td>
<td>CABG</td>
<td>125</td>
<td>115</td>
<td>≥80% of baseline threshold</td>
<td>Cognitive function (using a battery of tests) up to 3 months and hospital LOS</td>
<td>A high rScO₂ desaturation score (>3000%·second) associated with early postoperative cognitive decline (p = 0.024) and hospital stay >6 days (p = 0.007). Benefits of the intervention on cognitive outcomes lost in multivariate analysis.</td>
</tr>
<tr>
<td>Deschamps et al. 2013 [36]</td>
<td>High-risk cardiac surgery**</td>
<td>23</td>
<td>25</td>
<td>≥80% of baseline threshold for 15 seconds</td>
<td>Desaturation load (% desaturation x time), ICU and hospital LOS</td>
<td>Half of the patients had cerebral desaturations that could be reversed 88% of the time. Interventions resulted in smaller desaturation loads in the operating room and ICU. No difference in hospital or ICU LOS.</td>
</tr>
</tbody>
</table>

* Major organ morbidity and mortality (MOMM) composed of the following variables as determined by the Society of Thoracic Surgeons: death, stroke, reoperation for bleeding, mediastinitis, surgical reintervention, renal failure requiring dialysis, and ventilation time >48 h.

** Desaturation score calculated by multiplying rScO₂ less than 50% by duration in seconds.
**High-risk cardiac surgery defined by the authors as: redo surgery, adult congenital surgery, thoracic aortic surgery with and without circulatory arrest, and combined procedures surgery.

CABG, coronary artery bypass grafting; ICU, intensive care unit; LOS, length of stay; OR, odds ratio; rScO₂, regional cerebral oxygen saturation.