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ABSTRACT 5 

The last decade has seen an increasing amount of research on so called “transitional” soils that 6 

are characterised by incomplete convergence to unique normal compression lines and/or 7 

critical state lines in simple laboratory tests. This topic has often provoked reaction, perhaps 8 

because some have seen it as a challenge to critical state frameworks of soil behaviour. A 9 

particular issue is whether incomplete testing or other test defects might cause such an apparent 10 

behaviour. Confusion around the topic has not been helped by the wide range of degrees of 11 

convergence seen for different materials and differences seen between convergence in 12 

compression and shearing. This paper proposes a unifying means of plotting laboratory test 13 

data from such soils that will hopefully provide a rational framework for such discussions, 14 

since it makes explicit the degree of convergence towards unique volumetric states for different 15 

forms of loading. Data are examined for three “transitional” soils, which show that for these 16 

soils bringing about convergence would require strains that are beyond those that may easily 17 

be applied and that the lack of convergence cannot solely be an artefact of test defects. Plastic 18 

volumetric strain was found to cause much faster convergence than plastic shear strain.  19 

Introduction 20 

The central tenet of critical state soil mechanics is that continued shearing will eventually lead 21 

to a state of constant stress, volume and fabric to be reached that is independent of the starting 22 

condition. For many soils of natural origins that must be regarded as a target, which cannot 23 



always be easily reached because of a structure of the soil that is difficult to break down at the 24 

strains applied by standard laboratory tests. Some authors have therefore defined different 25 

critical state lines in the volumetric plane for natural and reconstituted samples of the same soil 26 

(e.g. Cotecchia & Chandler, 2000; Hosseini-Kamal et al., 2014) because the volumetric states 27 

at the ends of their tests are reasonably stable and can be regarded as pseudo critical states. For 28 

some soils this is simply a pragmatic choice and it could be envisaged that much larger strains 29 

or other types of loading might give convergence, but in others very robust forms of natural 30 

fabric can only be broken down by very severe mechanical remoulding (e.g. Fearon & Coop, 31 

2000).  32 

In reconstituted soils the fabric created by the preparation method often has an effect on 33 

subsequent behaviour (e.g. Santucci et al., 1998; Madhusudhan & Baudet, 2014). These effects 34 

may be related to, but should not be confused with, the so-called “transitional” behaviour in 35 

which the initial specific volume of a sample has a persisting effect on the subsequent 36 

behaviour, often regardless of preparation method. In these cases standard laboratory tests such 37 

as oedometers or triaxials may give locations of the normal compression and critical state lines 38 

that appear to depend on the initial density. Samples that have different specific volumes at 39 

similar stress states must have different fabrics, but Shipton & Coop (2015) found that for the 40 

simple sand / kaolin mixed soil, the sample preparation technique per se had no significant 41 

influence beyond the initial sample densities that they enabled to be created.  42 

While the soils that have been used in the work described in this paper are simple laboratory 43 

created mixtures of fairly standard soil particles, this transitional behaviour has also been 44 

reported in reconstituted samples of natural soils, for example saprolites, alluvial and lagoon 45 

sediments, glacial till and natural sands (Ferreira & Bica, 2006; Nocilla et al., 2006; Ponzoni 46 

et al., 2014; Altuhafi et al., 2010; Ventouras & Coop, 2009) as well as a number of “man-47 

made” materials such as mine tailings and rock fill (Coop, 2015; Xiao et al., 2016). In some of 48 



these materials standard tests seem to give normal compression or critical state lines that are, 49 

to all intents and purposes, parallel, while in others a slow convergence with increased stress 50 

level is clear, but often without the possibility that a unique normal compression or critical state 51 

line is defined before the zero void asymptote is approached. While all “transitional soils” must 52 

have an influence of initial density on the compression behaviour, some seem to give better 53 

convergence for critical states, indicating that volumetric and shear strains both affect the 54 

convergence but perhaps differently (Ponzoni et al., 2014).  55 

The subject of transitional soils provokes controversy as it challenges some of our common 56 

assumptions and the idea that fabrics in reconstituted soils can have such persistent effects 57 

seems to be less readily accepted than for natural soils. The fact that it has proven impossible 58 

to predict which soils might be transitional and which not simply from grading has added to 59 

the apparent complexity, even if Ponzoni et al. (2017) have recently shown how mineralogy 60 

and grading may interact to cause it. The purpose of this paper is to navigate a way out of the 61 

complexity of these complex and often apparently contradictory data, hopefully offering a 62 

means to break through entrenched positions on how we should interpret the behaviour. Data 63 

from examples of “transitional soils” are first used to illustrate the problems of identifying 64 

unique behaviour and then a means of quantifying the rates of convergence to unique 65 

volume/stress states is given that allows comparison between data from different types of 66 

loading, highlighting when and how convergence might be brought about.  67 

Materials and Testing  68 

The materials used were not chosen to represent any particular natural soil and exactly what 69 

soils were tested is not of especial relevance because they were chosen mostly as examples that 70 

would clearly demonstrate the methods proposed in this paper. Even so, the gap graded soil 71 

was initially chosen by Martins et al. (2001) to have a similar grading to their natural saprolite. 72 



This soil, of 75% quartz sand and 25% kaolin, was extensively tested by Shipton & Coop (2012, 73 

2015) who used Thames valley sand for the quartz fraction (Takahashi & Jardine, 2007), 74 

highlighting normal compression lines and critical state lines in the e:lnp’ (e void ratio, p' mean 75 

normal effective stress) plane that they interpreted as parallel and dependent on initial density. 76 

The raw data and testing details for this soil are not repeated here, as only a few new tests were 77 

needed to fill gaps in the existing data and details of procedure and data are given in Shipton 78 

& Coop (2012, 2015). This soil is referred to as sand with plastic fines (SPF).  79 

The other two soils were based on the fractally graded sands that Altuhafi & Coop (2011) 80 

showed had transitional, or non-convergent, compression behaviour in oedometer tests, even 81 

at stresses over 100MPa. The gradings of the quartz and crushed limestone sands were not quite 82 

the same as those Altuhafi & Coop used, because the large amounts of soil needed here meant 83 

that the finer end of the grading could not be controlled to be fractal, but was simply created 84 

by adding commercial quartz or calcium carbonate silts. The quartz sand was Leighton Buzzard 85 

sand (LBS) and the crushed limestone (LMS) was supplied from China. The coarser part of the 86 

grading was controlled to be fractal using the mass method between 63 and 600µm with a 87 

fractal dimension of 2.57, as for Altuhafi & Coop. The gradings of all three soils are shown in 88 

Fig.1. Soils that are nominally fractal, like this, may seem to be purely artificial, but Coop et 89 

al. (2004) found that intense shearing would give a terminal grading of this type and they occur 90 

naturally in tills sheared under glaciers (Altuhafi et al., 2010).  91 

The tests carried out were relatively straightforward, a key motivation behind the work being 92 

to see what compatibility there is between the degrees of convergence in different types of 93 

simple test. The oedometer tests, summarised in Table 1, were generally carried out in 50mm 94 

diameter fixed rings, but to reach the highest stresses smaller diameters of 30 or 20mm were 95 

used, but these had a floating ring design to minimise wall friction.  96 



Three different triaxial apparatus were used, each of a stress path type, one with GDS pressure/ 97 

volume controllers with a sample size of 50mm diameter and 100mm height and two using 98 

Imperial College pneumatic control systems with sizes of 50mm diameter and 100mm height 99 

and 38mm diameter and 76mm height. The volumetric strains were measured either with the 100 

GDS controller or Imperial College volume gauges and the axial strains both by local LVDTs 101 

attached to the samples and an external LVDT mounted outside the cell chamber. Because of 102 

the large strains needed to examine whether unique critical states could be reached, only the 103 

external LVDT data are presented here, but the internal strain data showed good agreement up 104 

to the point where they went out of their measuring range. Also because of the large strains, a 105 

suction cap (Atkinson & Evans, 1985) was used to hold the sample firmly to the axial loading 106 

system, ensuring that it remained upright and concentric. Good saturation, with B values over 107 

96%, was achieved by carbon dioxide circulation prior to water saturation, followed by the 108 

application of back pressures over 200kPa. For the LBS and LMS soils shearing was started at 109 

0.05%/h at axial strains below 0.1%, to achieve good definition of the small strain stiffnesses, 110 

although these data are not discussed here. The rates were then gradually increased to a 111 

maximum of 0.4%/hour at large strains. Similar strain rates were used in drained and undrained 112 

tests, but the LMS and LBS soils were free draining and the slower rates at the start of the tests 113 

were only to ensure that the small strain data could be collected. The strain rates were only 114 

increased gradually to avoid large accelerations, while reaching a speed that was fast enough 115 

to finish each test in reasonable time, each shearing stage test typically lasting 3-4 days overall.  116 

Even if the bulk of the triaxial tests in Tables 2 and 3 were of a fairly standard type, several 117 

tests using lubricated end platens were carried out in the LBS to verify the conclusion of 118 

Shipton and Coop (2015) that they did not make a significant difference. This is not to say that 119 

lubricated end platens are not an important means of improving test quality, just that within the 120 

large void ratio differences seen by Shipton & Coop, their effect was secondary. The high 121 



compressibility of the soils during both isotropic compression and subsequent shearing meant 122 

that in some cases the strains that could be reached in shearing were limited by the available 123 

stroke of the apparatus, and these are highlighted in the tables.  124 

The LBS and LMS samples were all made by dry compaction, using under-compaction, since 125 

water pluviation led to segregation and layering while wet compaction gave rise to high 126 

suctions in the LMS. Some additional tests to fill gaps in the data for SPF utilised moist 127 

compaction or making samples by compression of a slurry, but as Shipton & Coop (2015) 128 

showed, the preparation method does not affect whether or how quickly the volume states 129 

converge in this soil. All of these samples were visually homogeneous. The compaction used 130 

for each sample varied because a wide range of different initial void ratios was required, and it 131 

was not required for all of them to have the same initial value. The initial void ratio of each 132 

sample is given in Tables 1-3.  133 

A particular problem with transitional soils has been the identification of the fabric that gives 134 

rise to the slow convergence, particularly since the wide range of particle sizes means that it is 135 

difficult to know at what scale to examine the fabric with techniques such as SEM (e.g. Nocilla 136 

et al., 2006). However, Mercury Intrusion Porosimetry allows a wide range of scales to be 137 

investigated simultaneously, and Todisco et al. (2018) used this method to determine that for 138 

each soil discussed here there is a micro-fabric that is difficult to break down in conventional 139 

laboratory tests. Isotropy of the shear moduli measured with bender elements also indicated 140 

that the fabrics are isotropic and so they must be heterogeneous at the micro-scale.  141 

Quantifying convergence is critically dependent on the accuracy of the void ratio 142 

measurements. The philosophy adopted here, as in previous similar work on transitional soils, 143 

was that it was not adequate just to evaluate that accuracy from the estimated accuracy of 144 

individual measurements made, such as weights or dimensions, which typically gives an 145 



optimistic assessment. Instead, a positive verification is made by means of multiple 146 

measurements of void ratio on the same sample, utilising dimensions and weights both at the 147 

start and end of each test that were as independent as possible, along with the measured 148 

volumetric strains during testing, as described by Rocchi & Coop (2014). At least three 149 

measurements were therefore made of the initial void ratio of each sample and the accuracy 150 

estimated from the difference between the highest and lowest value, discarding tests where the 151 

accuracy was worse than ±0.03. The specific gravities measured were respectively 2.61, 2.72 152 

and 2.64 for the LBS, LMS and SPF.  153 

 154 

Compression and Shearing Data 155 

Isotropic and oedometric compression data are given in Fig.2 for the LBS and LMS soils. The 156 

data for the SPF soil were presented in detail by Shipton & Coop (2015) and are not repeated 157 

here. In both cases the compression curves steepen slowly and in neither case are there well 158 

defined yield points and unique normal compression line as might be expected in, for example, 159 

a uniformly graded sand at higher stresses (e.g. Coop & Lee, 1993). In isotropic loading there 160 

is little convergence of the compression paths, but in one-dimensional loading there is more, 161 

partly because of the higher stresses reached, but also because yield in oedometric compression 162 

would be expected at a lower stresses than for isotropic. However, there is little space 163 

remaining at very high stresses in the e:logσ'v plane between the ends of the oedometer tests 164 

and the zero asymptote for any normal compression line to exist. The isotropic compression 165 

tests with and without lubricated end platens do not differ significantly within the context of 166 

this lack of convergence.  167 

 168 



Example shearing stress-strain data for the LMS soil are given in Fig.3; space precludes giving 169 

all the data for the LMS soil and so tests with a range of effective cell pressures, different initial 170 

void ratios and both drained and undrained are given. The raw data for the LBS are also not 171 

shown, but these were very similar in nature. For brevity only the volumetric strains εv for the 172 

drained tests are given, since the undrained stress paths are given in Fig.4. The shear strain, εs, 173 

has been defined as: 174 

εs = εa - εv/3    (1)  175 

where εa is the axial strain. In each case an indication of the range of initial void ratio, ei, values 176 

for the various tests is given so that effects of sample density may be identified more easily. 177 

For clarity the stress-strain data are separated into separate plots for looser and denser samples. 178 

There is of course some scatter in the data and some tests were less complete than others due 179 

to apparatus limitations. However, most of the tests do reach large shear strains and in each 180 

case the volumetric strains become reasonably constant.  181 

While the key point of discussion of this paper is the lack of convergence to unique volumetric 182 

states, with some scatter the loose and dense samples do reach unique stress ratios. But perhaps 183 

the most noticeable feature of the data is that there is a surprisingly small range of behaviour 184 

for the different densities, most of the samples being mildly compressive with relative small 185 

volume changes and no peak strengths. None of the samples showed any clear visible strain 186 

localisation, as might be expected from their compressive, strain-hardening mode of behaviour. 187 

The lack of diversity of behaviour will be shown to be related to the slow convergence towards 188 

a unique critical state line. But this should not be thought typical of all well-graded soils and 189 

using similar simple apparatus and techniques the usual clear unique critical state line can 190 

generally be observed in the e:lnp' plane (e.g. Vilhar et al., 2013), with behaviour ranging from 191 



strain-hardening and compressive to dilative and strain-softening, depending on the initial state 192 

parameter.  193 

The paths followed by the tests are given in the q':p' and e:lnp' planes in Figs.4 and 5. A unique 194 

critical state line is clearly defined in stress space, irrespective of initial density, the final value 195 

of q'/p' = M being reached at only 15-20% axial strain. The stress paths for the higher pressure 196 

tests are omitted on Fig.4 for brevity, but they defined the same M values. In contrast, the paths 197 

followed in the volumetric plane do not converge to a unique critical state line within the range 198 

of strains that could be applied, even allowing for a few highlighted tests that are less complete. 199 

The volumetric strains were reasonably constant at the end of almost all of the tests, so it is 200 

difficult to see what strains might be needed to achieve full convergence. The lubricated end 201 

platens used for some of the LBS tests do not make a significant difference to this pattern of 202 

behaviour. The degree of convergence does seem better at larger stresses but it is clear that 203 

fully convergent paths could not be expected from triaxial tests until stress levels in the 100s 204 

of MPa, at which point there would again be little available room in the e:lnp' plane to fit a 205 

useful critical state line before the zero asymptote is approached.  206 

Observing similar behaviour for the SPF soil, Shipton & Coop (2015) made the pragmatic 207 

choice to define pseudo critical states at the end of test states, so that a different critical state 208 

line could be identified in the e:lnp' plane for groups of samples with similar initial void ratios. 209 

The approach adopted here is to avoid any such controversial choices, and simply to quantify 210 

the rate at which convergence is occurring so that it can be estimated when unique volumes 211 

might be achieved.  212 

Quantifying Convergence 213 

To cope with data that were similarly difficult to interpret, Ponzoni et al. (2014) proposed 214 

quantifying convergence using two methods. The first was simply to take the starting and 215 



ending void ratios of oedometer tests and quantify to what extent initial differences of void 216 

ratio were preserved at the highest stress reached. This was done by plotting the initial void 217 

ratios against those at the highest stress level reached, and calculating a gradient of that graph. 218 

Convergence to a unique normal compression line would mean that the final void ratios would 219 

be independent of the initial values so this gradient would be zero, while compression paths 220 

that had no convergence at all would give a gradient of 1, since the final void ratios would be 221 

directly dependent on the initial values.  222 

The second method was to take the apparent critical states from the ends of triaxial tests where 223 

reasonably constant volumes had been reached and assume that tests on samples that had had 224 

different initial void ratios had reached different critical state lines at the end of shearing  in 225 

the e:lnp' plane. The gradients of the critical state lines, λ, were all assumed to be the same, but 226 

each with a different intercept at 1kPa, Γ. The method then quantified how the Γ values changed 227 

with the initial void ratios of the samples.  228 

There were several difficulties of these methods. Firstly it had been assumed, if only 229 

pragmatically, that e:lnp' critical state lines did exist, even if it was recognised that additional 230 

straining might cause more convergence. Secondly, these were assumed to be linear, which 231 

they might not be. Both methods were tied to quantifying convergence at specific states of the 232 

tests, i.e. the maximum stress reached in the oedometer or the maximum strain in the triaxial, 233 

rather than quantifying the progression of convergence as the tests proceeded. There was also 234 

no means of direct comparison between the two methods. The method proposed here 235 

overcomes these difficulties.  236 

Quantifying Convergence in Compression  237 

The rates of convergence are first discussed for the oedometric compression data. The method 238 

is identical for isotropic compression and the graphs for these stages are omitted for brevity as 239 



there is less convergence for them because of the lower stresses they reached. For each soil, in 240 

Fig.6 the current void ratio at any load level of a test is plotted against the initial void ratio, ei, 241 

which is generally taken to be as close to a p' of 20kPa as possible for both the oedometer and 242 

triaxial tests for consistency. In some cases, notably the high pressure triaxial tests the initial 243 

stresses were a little higher that 20kPa, but the compression curves show that this makes only 244 

a small difference in the void ratio. The values of p' for the oedometer data in Fig.6 assumed a 245 

coefficient of earth pressure at rest, k0=1-sinφ'. For each soil, examples are given of data for 246 

four different load levels; many more were considered but they are omitted from Fig.6 for 247 

clarity. For each stress level a best fit “convergence line” is determined by linear regression, 248 

the gradient of which, m, is calculated, the equations being given on the plots. This is similar 249 

to the method of Nocilla et al. (2006) and Ponzoni et al. (2014), the only difference being that 250 

the value of m is calculated at the various stress levels during the tests rather than solely at the 251 

end.  252 

The values of the gradient m in Fig.6 decrease fairly consistently with increasing stress level 253 

indicating a slow but consistent convergence; m=0 would indicate full convergence to a unique 254 

normal compression line, but in no case is this reached. Within the slight data scatter there is 255 

no noticeable effect of the method of sample preparation for the SPF, as was concluded by 256 

Shipton & Coop (2015). In each case the data are well fitted by straight lines, but it is possible 257 

that this might not be the case for all soils and all possible values of ei.  258 

For the oedometer tests linear regression fits the data quite well on Fig.6, the data scatter is 259 

acceptable, and the decrease of gradient with increasing stress level is consistent. The same 260 

was true for the isotropic compression data. However, for the triaxial shearing data it is far 261 

more difficult to achieve such consistent data, as will be discussed below, and the gradients of 262 

the convergence lines were not so consistent, so that attempts were made to constrain the 263 

values. One possible means of constraint, shown for two example stress levels for each soil, is 264 



to force all of the chosen lines to pass through the origin. The equations for these are also shown 265 

on the figures. This constraint gives lines for the oedometer tests that fit reasonably well for 266 

the LMS and SPF soils, but poorly for the LBS. The consequence of such an assumption is that 267 

complete convergence of the compression paths for different initial void ratios to reach m=0 268 

would only occur as the zero voids asymptote is approached, which may be correct for some 269 

soils but may not be for others.  270 

The values of m from the isotropic and one-dimensional compression tests are plotted against 271 

log p' in Fig.7. Gradients that are for lines not constrained to pass through the origin have solid 272 

symbols and those for lines constrained to pass through the origin open symbols. The values 273 

of each generally reduce fairly consistently with p'. There is some scatter at higher stresses for 274 

isotropic compression because there were too few tests reaching these stresses, high pressure 275 

triaxial tests being rather more difficult to conduct than oedometers. As noted above, the effect 276 

of the constraint is significant for the oedometer tests on LBS, but less so for isotropic 277 

compression on the same soil. In each case a constraint to pass through the origin has the effect 278 

of increasing the gradient, which might be expected since the intercepts should not be negative 279 

because the current void ratio should always be lower than the initial value.  280 

Quantifying Convergence in Shearing  281 

For triaxial shearing similar gradients, m, were calculated at fixed values of shear strain, (0.1%, 282 

1%, 5%, 10%, 15%, 20% and 30%) grouping data for tests that have similar current p' values 283 

at those strains. Figure 8 shows the data for εs
p=10%. This is the plastic component of shear 284 

strain, the elastic component, which was very small, having been deducted based on elastic 285 

shear moduli from bender element data. For the calculation of the plastic volumetric strains, 286 

εv
p, that are used later, a Poisson’s ratio of 0.3 was assumed in the absence of any measurements 287 

of the elastic bulk modulus. All of the unconstrained lines with intercepts as well as the lines 288 



constrained to pass through the origin are shown, along with their equations, but examples are 289 

only given for a few stress levels in each figure for clarity, the calculation being repeated for 290 

other stress levels. In general the gradients of the lines, m, tend to reduce as stress level 291 

increases, although this is less clear for the LBS. The m values also decrease as the εs
p increases, 292 

but space preclude showing more examples. Using this method, data points may be plotted for 293 

any stress path, and the data for drained and undrained tests are not highlighted on the plot, 294 

since they were indistinguishable. The use of lubricated end platens for some of the LBS tests 295 

does not have any noticeable effect within the data scatter, as highlighted in Fig.8a.  296 

The data in Fig.8 are quite scattered, especially for the unconstrained gradients, even if 20-30 297 

triaxial tests were carried out for each soil. This gives some inconsistent trends in the change 298 

of m with p'. The m values are, however, lower than those for isotropic compression, as they 299 

should be since shearing can only give additional convergence beyond that achieved in the 300 

isotropic compression prior to shearing. The amount of test data needed to reduce the scatter 301 

significantly would therefore be prohibitive, so some form of data conditioning is needed. 302 

While it may be unfair to constrain the lines to pass through the origin, as discussed above, 303 

some form of constraint is required to avoid so much scatter in the shearing data.  304 

Applying Constraints to the Convergence Lines for Shearing 305 

It might be expected that the regression lines on Fig.8 that are not constrained to pass through 306 

the origin should move consistently as the shear strains increase. On Fig.9 the intercepts of 307 

these lines for all strain levels are given for the LMS, to give one example, showing data for 308 

all the stress levels considered, not just those that are on Fig.8b. At first sight the intercepts 309 

look quite scattered. This arises from small inaccuracies of void ratio measurement, even if this 310 

was carefully controlled and so was small. If the accuracy of void ratio cannot be improved, 311 

which would be difficult, then the only way to reduce this scatter of the intercepts is to carry 312 



out even more tests, which becomes prohibitive. Nevertheless, there are important features in 313 

the data that can be seen. At each strain level a mean intercept is shown for all the stress levels. 314 

It might be expected that the intercepts should vary systematically rather than jumping 315 

randomly and it is noticeable that generally the mean values do vary quite consistently. 316 

However, the data have been further conditioned by drawing trends through the mean values, 317 

and it is these trend lines that were then used in the analysis. If these intercepts are constrained 318 

to vary systematically then the gradients will also. These trend lines on Fig.9 been assumed to 319 

be straight for convenience and because the data scatter does not allow a better choice. The 320 

trend lines have a few constraints, for example that they may not increase indefinitely or 321 

decrease below zero. Having chosen these lines, intercepts for the convergence lines are 322 

calculated for each value of shear strain from the line, not the mean value data point at that 323 

strain. New gradients m are then calculated forcing the regression lines on graphs like those 324 

shown in Fig.8 through the imposed intercept. These new lines that are forced through the 325 

chosen intercepts are not shown on Fig.8 to avoid clutter, but they are quite similar to the 326 

unconstrained lines.   327 

The impact of the constraint to the intercept on the gradients m for the shearing data are 328 

illustrated for the LMS soil in Fig.10. The completely unconstrained values, identified with 329 

open symbol type data points are very scattered. A hard, and perhaps unrealistic constraint, of 330 

making all the chosen lines pass through the origin does of course give gradients that are much 331 

more consistent, as shown by the cross-type symbol data points. However, this constraint also 332 

changes the overall trend, increasing the m values significantly. Instead, the proposed “soft” 333 

constraint of imposing intercepts calculated from graphs like Fig.9 helps to reduce scatter while 334 

not changing the overall trends and values significantly, as shown by the grey filled data points. 335 

In each case, however, while m does reduce with increasing shear strain, the m values are far 336 

from reaching the value of zero which would indicate a unique critical state line in the e:lnp' 337 



plane. Similar constraints to have consistently evolving intercepts on the regression lines used 338 

to calculate m could also be used for the oedometer and isotropic compression data, but it was 339 

not found necessary and the unconstrained values could be used.  340 

Convergence Surfaces 341 

To compare the m values for different types of tests, the assumption made is that the degree of 342 

convergence will depend simply on the plastic volumetric and shear strains that are applied to 343 

the soil, and not on the apparatus applying them. A similar dependence on plastic strains is 344 

made in the damage functions that define the rates of destructuration for many models for 345 

natural soils (e.g. Kavvadas & Amorosi, 2000), which seems appropriate since the slow 346 

convergence is known to result from the difficulty in breaking down the initial fabric. The 347 

strains used are cumulative from the start of each test at p'=20kPa since it is the overall strain 348 

that the soil has experienced that should determine the breakdown of structure.  349 

To construct a convergence surface a three-dimensional graph is drawn relating the m values 350 

to the plastic shear and volumetric strains, εs
p and εv

p, using all three methods of deriving m, 351 

from isotropic compression, oedometric loading and triaxial shearing. This is shown for the 352 

LMS in Fig.11 using the m values that were constrained with the hard constraint so that the 353 

convergence lines for all types of loading all pass through the origin of the convergence graphs. 354 

This is shown in preference to the completely unconstrained data since the data for completely 355 

unconstrained m values are too scattered in shearing.  356 

The resulting graph is difficult to understand and so an annotated version is shown in Fig11b. 357 

The graph is quantifying how quickly tests on samples of different initial void ratios approach 358 

convergence to unique void ratios, for example on a unique normal compression line (isotropic 359 

or one-dimensional) or unique critical state line, when m will be zero. Isotropic compression 360 

runs from the start of the surface at zero strains and m=1 (no convergence yet) almost following 361 



the zero shear strain axis. For isotropic compression tests estimates of the shear strains were 362 

calculated using the measured volumetric strains combined with the axial strains from the 363 

internal axial strain transducers, although those shear strains were of course very small.  364 

For the oedometer tests the ratio of total volumetric to shear strains is fixed, and the path of the 365 

data points therefore lies diagonally across the graph at a ratio of strains of about 2/3 with m 366 

decreasing as the tests proceed. The ratio is not quite 2/3 because here we plot plastic, not total 367 

strains. For the isotropic and oedometric compression each point represents all of the tests 368 

conducted on that soil and so a strain must be assigned to each the m values calculated, for 369 

example, from Fig.6b. The value chosen is the mean strain reached by all the tests at that stress 370 

level, since the variation between tests was not large. 371 

The triaxial shearing data define a series of points at the chosen shear strain values, running 372 

across the graph with m decreasing as shear strain increases, while the volumetric strain also 373 

increases but by much less. The starting point for triaxial shearing is after isotropic compression 374 

has been applied, so the paths will start on the isotropic compression path, tests at lower stresses 375 

starting closer to the start of the graph at m=1 and zero strains, while high pressure triaxial tests 376 

will have already had some significant reduction in m during isotropic loading.  377 

 A surface has been fitted through all of the data points and, given the data scatter, this has 378 

simply been assumed to be an inclined flat surface. To help visualisation in a two-dimensional 379 

image, firstly the coordinates of the corners of the surface are highlighted, and then the 380 

locations of the data points are clarified with a vertical line extending from each point to the 381 

surface, points lying below the surface having a solid line and those above a dashed one. In 382 

fitting the surface, least squares regression was used but weighting was applied to each data 383 

point for the number of tests used to derive it, so greater weight is given to the oedometer data 384 

points. The plane chosen has been constrained to pass through m=1 at zero strains, as it must 385 



do. There is no reason why the surface must be flat, and it would be expected, for example, that 386 

if it does approach m=0 then it would become asymptotic to that boundary since it cannot cross 387 

it. But to define the precise curved shape would again require a very large number of tests and 388 

for the present purpose there are data both above and below the chosen plane, so it seems to be 389 

a reasonable choice.  390 

Some of the LMS data plot with small negative εv
p values because the small plastic volumetric 391 

strains during isotropic compression were less than the dilation during shear. This illustrates 392 

one defect of the current formulation, which is that plastic straining should destructure whether 393 

it is positive or negative and some means of combining them better needs to be devised, which 394 

be, for example, some form of work done, but this is beyond the current scope and will not 395 

frequently be a problem for transitional soils that are generally compressive in shearing. 396 

However, a Cam Clay style work equation would be unlikely to work because the surface 397 

clearly shows that convergence from the breakdown of the initial fabric is brought about much 398 

more rapidly by volumetric than shear strains and in this respect is similar to some 399 

destructuration models for natural clays (e.g. Kavvadas & Amorosi, 2000).  400 

Each type of test has its own defects and inaccuracies, for example wall friction in oedometer 401 

tests or in a triaxial the effects of end restraint or strain localisation. It was shown above that 402 

within the large differences of void ratio caused by lack of convergence, the effects of end 403 

restraint are not significant, but Fig.11 provides further confirmation that it is not test defects 404 

that inhibit reaching unique states since the m values at given strains are broadly similar for 405 

different types of test. The key feature of the plot is that the degree of “incompleteness” of the 406 

tests is explicit and it is clear, for example, that continued shearing in a triaxial test will not 407 

bring about convergence.  408 



As was highlighted above, using constrained values of m with zero intercepts imposed, may 409 

not be a desirable assumption, even if the lines derived fit the data reasonably well in Figs.6 410 

and 8. Figure 12 therefore shows surfaces for all three soils that are plotted using the m values 411 

that are partially constrained or have the “soft” constraint for shearing. Here the completely 412 

unconstrained values are used for isotropic and oedometric compression, but for triaxial 413 

shearing the intercepts are constrained to change consistently, as in Fig.9. Relaxing the 414 

constraint in this way does make m more sensitive to shear strain for the LMS, but it is still the 415 

volumetric strain that dominates convergence. It can also be seen that at high shear strains the 416 

data points are tending to plot above the flat planes, indicating that they should perhaps curve 417 

to shallower gradients with respect to εs
p. The key features of the graphs remain, though, that 418 

simple tests of the type carried out here, even at high pressures, will never bring about 419 

convergence, and will never give unique normal compression or critical state lines for these 420 

types of soil. If convergence were to be found, it would require enormous stress and/or strain 421 

levels, well beyond most engineering relevance and possibly so close to the zero void boundary 422 

as to make it difficult to define any useful normal compression or critical state line.  423 

Conclusion 424 

Transitional behaviour is a controversial subject that can provoke entrenched positions, as have 425 

often been experienced by the authors. Not least, the name of this mode of behaviour is 426 

unhelpful as it risks confusion with other uses of “transitional” in soil mechanics, such as 427 

transitional fines content. The terminology is difficult to change and it may be that the two uses 428 

are related through the grading. The use of “transitional” here was originally supposed to 429 

indicate a transition between clay and sand modes of behaviour, although this has probably 430 

become obsolete as a justification as more examples are found. This paper has tried to present 431 

a means of quantifying rates of convergence towards unique volumetric states in compression 432 

or shearing, which should help focus the discussion. Using this method it is clear that for the 433 



three soils presented there is no possibility that simple laboratory element tests such as triaxial 434 

or oedometer tests can get anywhere near full convergence of the volumetric states such as to 435 

give useful unique normal compression or critical state lines. It is also clear that this is not the 436 

result of defective testing techniques but must be related to the persistence of fabric effects, as 437 

highlighted by Todisco et al. (2018). If we wished to bring about that convergence we would 438 

need other apparatus able to impose very much larger strains and/or stress levels which may 439 

then have little relevance to engineering practice. Finally, while the soils tested here may be 440 

somewhat unlikely artificial soil gradings, it should be recalled that transitional behaviour has 441 

been observed in many natural soils and so this unifying method will be a useful new tool to 442 

interpret data from such soils. Of course the technique could also be used for soils that are not 443 

transitional, and would be useful in assessing how quickly unique normal compression lines or 444 

critical state lines are reached and in understanding whether data are consistent between 445 

different forms of loading.  446 
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NOMENCLATURE 504 

e void ratio 505 

ei initial void ratio 506 

k0 coefficient of earth pressure at rest 507 

LBS Leighton Buzzard sand 508 

LMS crushed limestone  509 

M stress ratio at critical state 510 

m convergence parameter  511 

p'  mean normal effective pressure 512 

http://dx.doi.org/10.1144/1470-9236/06-017
http://dx.doi.org/10.1144/1470-9236/06-017


q deviatoric stress 513 

SPF sand plastic fine (75% sand – 25% kaolin) 514 

εs shear strain (εs
p plastic component) 515 

εv volumetric strain (εv
p plastic component) 516 

Γ intercept of critical state in e:lnp' plane at p'=1kPa 517 

λ gradient of critical state or normal compression lines in e:lnp' plane 518 

φ' angle of shearing resistance 519 

σ'v  vertical effective stress 520 

 521 

Table 1 Details of oedometer tests on LBS and LMS samples. 522 

Type of soil Initial void ratio, ei  Final void ratio, efinal Accuracy of the initial void ratio 

LBS 

0.597 0.322 ±0.015 

0.389 0.292 ±0.019 

0.534 0.303 ±0.003 

0.453 0.298 ±0.012 

0.411 0.291 ±0.003 

0.378 0.297 ±0.001 

LMS 

0.812 0.328 ±0.017 

0.611 0.253 ±0.023 

0.512 0.273 ±0.002 

0.537 0.317 ±0.021 

0.645 0.249 ±0.005 

0.511 0.202 ±0.002 

0.410 0.230 ±0.007 

0.431 0.248 ±0.009 

0.359 0.225 ±0.005 

 523 

Table 2 Details of triaxial tests on LBS samples 524 

Test no. 

Initial 

void ratio, 

ei 

Void ratio 

end of 

shearing 

p’compression 

[kPa] 

p’end of 

shearing 

[kPa] 

Accuracy 

of e 

LBD1 0.582 0.484 100 180 ±0.014 



LBD2* 0.583 0.472 500 930 ±0.014 

LBU3 0.555 0.500 500 460 ±0.006 

LBD4 0.551 0.466 500 940 ±0.004 

LBD5 0.524 0.445 500 950 ±0.01 

LBD6 0.544 0.461 1000 1830 ±0.03 

LBD7+ 0.472 0.443 100 190 ±0.04 

LBD8+ 0.435 0.422 100 200 ±0.003 

LBD9 0.420 0.411 100 190 ±0.01 

LBD10 0.435 0.369 300 550 ±0.02 

LBD11 0.497 0.420 500 990 ±0.013 

LBD12*+ 0.457 0.386 500 1100 ±0.007 

LBD13 0.437 0.388 500 840 ±0.007 

LBU14 0.412 0.358 500 380 ±0.01 

LBD15 0.436 0.281 5300 9680 ±0.003 

* sheared to less than 10% shear strain, + lubricated ends. 525 

 526 

Table 3 Details of triaxial tests on LMS samples 527 

Test no. 

Initial 

void ratio, 

ei 

Void ratio 

end of 

shearing 

p’ compression 

[kPa] 

p’end of 

shearing 

[kPa] 

Accuracy 

of e 

LMD1 0.605 0.555 50 80 ±0.003 

LMU2 0.607 0.520 720 475 ±0.008 

LMU3 0.548 0.511 95 40 ±0.012 

LMD4 0.549 0.453 300 650 ±0.004 

LMD5 0.506 0.432 300 610 ±0.008 

LMD6 0.538 0.410 570 1250 ±0.022 

LMD7 0.531 0.382 1020 2240 ±0.010 

LMD8 0.513 0.341 3080 6250 ±0.007 

LMD9 0.445 0.453 50 130 ±0.01 

LMD10 0.415 0.416 50 130 ±0.007 

LMU11 0.409 0.405 50 750 ±0.007 

LMD12 0.464 0.422 100 170 ±0.026 

LMD13 0.395 0.373 200 930 ±0.002 

LMD14 0.388 0.368 200 490 ±0.002 

LMD15* 0.492 0.389 500 520 ±0.05 

LMD16 0.471 0.356 470 1050 ±0.012 

LMD17 0.425 0.387 500 1140 ±0.005 

LMU18 0.390 0.356 500 1630 ±0.007 

LMD19 0.415 0.288 2400 5100 ±0.01 

LMD20 0.373 0.234 3880 7860 ±0.009 

LMD21 0.350 0.300 1000 2150 ±0.008 

*constant p' shearing. 528 

  529 



 530 

Fig.1 Gradings of the three soils.  531 

 532 

(a) 533 

 534 

(b) 535 

Fig.2 Compression data for LMS and LBS soils, (a) isotropic, (b) oedometric 536 
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(a) 538 

 539 

(b) 540 

 541 

(c)  542 

Fig.3 Example triaxial stress-strain data for the LMS soil, (a) stress ratio for looser samples, 543 

(b) stress ratio for denser samples, (c) volumetric strains for drained tests on samples of all 544 

densities.  545 
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(a) 548 
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(b)  550 

Fig.4 Stress paths (a) LBS (b) LMS 551 
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Fig.5 Paths followed in the volumetric plane (a) LBS (b) LMS 558 
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(b) 564 

 565 

 566 

(c) 567 

Fig.6 Convergence lines for oedometer tests on the three soils, (a) LBS, (b) LMS and (c) SPF 568 
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(a) 571 
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(b)  573 

Fig.7 Summary of m values for (a) one-dimensional and (b) isotropic compression 574 
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(c)  580 

Fig.8 Convergence lines at εs
p = 10% during triaxial shearing of the three soils, (a) LBS, (b) 581 

LMS and (c) SPF 582 
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  583 

Fig.9 Evolution of intercepts of shearing convergence lines with shear strain for LMS.  584 

 585 

 586 

Fig.10 Evolution of shearing m values with stress level and shear strain for LMS.   587 
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(a)  590 

 591 

(b)  592 

Fig. 11 (a) Convergence surface for constrained m values of LMS, (b) surface with 593 

explanatory annotation.  594 
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c)  600 

Fig.12 Convergence surfaces with partial unconstraint of m values, a) LBS, b) LMS and c) 601 

SPF.  602 


