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 Introduction 9 

Fragility is an important component of seismic risk and expresses the likelihood of damage sustained 10 

by buildings with certain characteristics in future earthquake events [1]. Fragility is commonly presented 11 

in terms of fragility curves, defined as the probability that a given building damage state will be reached 12 

or exceeded for a given ground motion intensity level, which is termed here X for simplicity. This study 13 

focuses on the empirical assessment of the fragility of buildings based on post-earthquake damage field 14 

data. The GEM Compendium database [2] identified 89 sets of empirical fragility curves for various 15 

building classes. Although two thirds of these sets determined X levels from the observed damage, the 16 

remaining and most recent curves estimate these levels from pre-selected Ground Motion Prediction 17 

Equations (GMPEs). These equations are linear statistical models associated with substantial error, 18 

which use ground motion records from past events to predict the X level at a specific site based on its 19 

local soil conditions and the characteristics of the seismic source and event. The importance of this error 20 

in the prediction of X on the seismic risk assessment of spatially distributed assets is well known (e.g., 21 

[3-8]). However, despite being extensively studied in the seismic hazard field, the error component of 22 

the GMPEs and spatial correlation of X levels has been largely ignored in the field of empirical fragility 23 

assessment of assets. Existing empirical fragility functions are typically based on large databases of 24 

observed building damage data that are often aggregated at municipality level. Such municipalities can 25 

cover a large geographical area, often with soils of significantly different properties. Yet the assumption 26 

is commonly made to represent the ground motion intensity across the municipality with a single best-27 

estimate value of X, estimated at the centroid of the municipality. These values are estimated either by 28 

a GMPE [9] or by a ShakeMap [10]. In the latter case, the X best-estimates are determined by a GMPE 29 

whose outputs are calibrated with the earthquake ground motion records for the studied event at nearby 30 

stations. In 2014, a sensitivity study on fictitious data [11] showed that uncertainty in X can lead to 31 

significantly flatter empirical fragility curves. Moreover, the uncertainty in X levels has been explicitly 32 
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taken into account in the construction of empirical fragility curves of elements of electrical stations 33 

affected by successive earthquakes by Straub & Der Kiureghian [12], who developed a Bayesian frame-34 

work to model multiple sources of uncertainties. More recently, Yazgan [13-15] highlighted the im-35 

portance of modelling both the uncertainty in X levels and the spatial correlation of the levels in nearby 36 

sites using a Bayesian framework. Their framework combined existing analytical fragility curves for 4-37 

storey RC buildings with data from 516 individual buildings affected by the 1999 Düzce and 2003 Bin-38 

göl earthquakes.  39 

 40 

Despite recent advances, it is not well understood whether the uncertainty in the X levels, their spatial 41 

correlation or the presence of ground motion records is important in the construction of empirical fra-42 

gility curves using large databases, which are aggregated at municipality level. The present paper ad-43 

dresses this. A Bayesian framework is adopted here at it offers a natural and flexible way to assimilate 44 

multiple sources of uncertainty in a principled and transparent manner, as well as to combine available 45 

damage databases with prior knowledge accumulated over the past 40 years of research in the field of 46 

fragility assessment of buildings. Nonetheless, such framework requires a high degree of skill to imple-47 

ment. Therefore, the sensitivity analysis performed here aims to explore whether the explicit modelling 48 

of sources of uncertainty typically ignored in the literature leads to a significantly different shape of the 49 

fragility curves, and assesses whether a Bayesian framework is needed. In the empirical fragility assess-50 

ment literature, fragility is typically expressed in terms of the best-estimate fragility curve ignoring the, 51 

often substantial, uncertainty in its shape. This uncertainty, however, needs to be quantified in a defen-52 

sible way if the curves are to be considered useful as part of an informed risk assessment. In the adopted 53 

Bayesian framework, this uncertainty can be summarized using credible intervals. Therefore, the relative 54 

contribution of modelling different sources of uncertainty around the ground motion as well as the im-55 

pact of the presence of ground motion records is assessed here by examining how they change the cred-56 

ible intervals of the fragility curves. Overall, five statistical models of increasing complexity are 57 

developed as part of this study. The models are then fitted to the well-studied 1980 Irpinia damage 58 

database and the constructed fragility curves are compared to existing fragility curves, which are also 59 

based on the 1980 Irpinia data.   60 

 The 1980 Irpinia Earthquake Building Damage Database 61 

On 23rd November 1980, the Campania-Basilicata region was affected by a strong earthquake, with 62 
magnitude Mw = 6.9. Fig.1 highlights the 41 municipalities [16] for which post-earthquake damage data 63 
have been collected. In what follows, the building inventory, the damage scale used for the classification 64 
of the sustained damage and the ground motion intensity at each municipality are briefly presented.  65 

 66 

Fig.1 Map of the Campania-Basilicata region affected by the 1980 Irpinia earthquake. 67 

2.1 Intensity measure  68 

The Campania – Basilicata region is located in Southern Italy along the Southern Appeninic chain, 69 
known for its high seismicity [17]. The 1980 event was the first strong event to occur since 1930. This 70 
moderately large event occurred at 19:34 local time on 23rd November 1980. The event was generated 71 
by a complex normal fault [18]. Fig.1 depicts the epicenter of the event and the projection of the fault 72 
to the surface. In an ideal world, each surveyed building should have a ground motion recording station 73 
installed so the actual ground motion intensity level at its known location could be recorded. In reality, 74 
there is a general lack of dense networks of recording stations and the buildings, especially in large 75 
databases such as the 1980 Irpinia damage database, are aggregated at municipality level. Both the lack 76 
of recordings and the data aggregation pose challenges as to how best to determine the actual ground 77 
motion intensity.  78 
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For the 1980 Irpinia event, the actual ground shaking caused by the main shock was recorded by 17 79 
stations scattered in the Campania-Basilicata region as depicted in Fig.1 [19]. These stations are typi-80 
cally located in municipalities for which no damage data have been collected, with the exception of 81 
Arienzo (see Fig.1), where there is a nearby station, but this is not however included in the municipality. 82 
Given this, a popular approach is to determine the actual intensity measure level, xj, at the geometrical 83 
centre of a given municipality, j, through a pre-selected GMPE. The use of the INGV ShakeMap is not 84 
deemed suitable in this study, as it is based on a larger scale geological map (1:100,000) than the one 85 
used in this study (1:50,000), it provides PGA estimated aggregated in bins of 0.4g and it does not 86 
differentiate between the different sources of uncertainty.   87 

A typical GMPE is a function of the magnitude of the event, M, the source-to-point distance, Rj, the soil 88 
conditions, Sj, and the fault type, F. Nonetheless, the GMPE is not perfect and cannot capture the full 89 
variation in intensities, so that it is necessary to introduce a representation of the GMPE errors in order 90 
to fully reconcile the GMPE with the actual intensities. In modern GMPEs [20-22], the actual ground 91 
motion intensity is determined by explicitly accounting for an event-specific source of error and a spa-92 
tially varying one. The event-specific error accounts for the fact that there will typically be unobserved 93 
features of an event that cause a GMPE to systematically over- or under- predict the actual intensity 94 
everywhere for a given event, although it may be unbiased “on average” over a large number of events. 95 
The spatially varying error accounts for the possibility that the precise parameterisation of the GMPE 96 
may not be appropriate for all events – for example, in a given event the decay rate of intensity with 97 
distance from the source may differ from that assumed in the GMPE due to differences of the wave path 98 
or local site conditions. In general, a GMPE determines the actual ground motion intensity level at the 99 
centroid of a municipality j, xj, as: 100 

   ln , , ,j j j jx f M R S F                                                                                                   ( 1 ) 101 

where   is the event-specific error which is typically termed inter-event error; and εj which is the error 102 

spatially varying within a given event and is known as the intra-event error. Both of these variables are 103 

considered normally distributed, with mean equal to 0 and variance equal to 2

inter  and 2

intra , respec-104 

tively. Existing empirical fragility assessment studies, however, do not use Eq.(1) to determine the actual 105 
intensity levels. Instead, they ignore the two error components and they assign the estimated level of 106 
intensity at the centroid of each municipality, which can be obtained by rewriting Eq.(1) as: 107 
 108 

   ln , , ,j j jx f M R S F                                                                                                ( 2 ) 109 

 110 

The term ‘estimated intensity’ is used wherever the intensity level is determined by Eq.(2). The focus 111 
of the present study is to examine whether the explicit modelling of the actual, rather than the estimated, 112 
ground motion intensity leads to significantly different shape of fragility curves.  113 

The identification of the most appropriate GMPE is not straightforward given the years of systematic 114 
research on Italian earthquakes, which produced a plethora of GMPEs. For this reason, three recent 115 
GMPEs [23-25], which explicitly model the two sources of error, are selected and their main character-116 
istics are presented in Table 1. All three have used the ground motion records from the 1980 Irpinia 117 
earthquake and use the Peak Ground Acceleration (PGA) as a measure of ground motion intensity. PGA 118 
is adopted here as it is considered an efficient measure to predict the response of low-rise buildings with 119 
low ductility [26], which represent the majority of the building inventory in the Campania – Basilicata 120 
region affected by the earthquake, and it is a widely used measure of intensity in empirical fragility 121 
assessment studies [2].   122 

Table 1: Main characteristics of the three GMPEs adopted in this study. 123 
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  124 

In Fig.2, the PGA values from the 17 ground motion records are compared to the estimated PGA values 125 
at the location of the 17 stations based on the three GMPEs in the log-log scale. It can be seen that all 126 
three GMPEs provide PGA estimates with a sizeable uncertainty. Nonetheless, the Bindi et al. [23] 127 
GMPE appears to provide a better fit as the data points seem to be symmetrically scattered around the 128 
45-degree line as opposed to the other two GMPEs [24, 25] which tend to overestimate the PGA values. 129 
Having established that Bindi et al. GMPE predicts the recorded PGA levels better than the other two, 130 
in section 3.1.1 it is further examined whether Bindi et al. [23] GMPE also fits the damage data better. 131 
In this study, the GMPE found to fit the damage data better than its alternatives would be selected to 132 
determine the PGA levels required for the fragility assessment. 133 

 134 

Fig.2 Recorded (Rec. PGA) PGA values from 17 stations vs estimated  (Est. PGA) PGA values for the 135 
same locations using the GMPEs proposed by Bindi et al. [23], Kothal et al. [24] and Akkar et al. 136 

[25] in log-log scale.  137 

2.2 Building inventory 138 

The database includes information from 29,661 buildings, which are considered to be a representative 139 
and unbiased sample of the total number of buildings located in the affected region. 89% of the surveyed 140 
buildings are masonry. Information regarding their vertical and horizontal construction materials is in-141 
cluded in the database. In Table 2, it can be seen that masonry buildings are built mainly using field 142 
stone (63%), and to a lesser degree hewn stone (32%). Brick masonry buildings appear to be the least 143 
common in the affected region. It can also be noted that 47% of the surveyed masonry buildings have 144 
wooden floors, followed, in decreasing frequency, by steel (30%) and RC (13%) floors. Masonry build-145 
ings constructed with vaults are the least common in the affected region. Reinforced concrete (RC) 146 
buildings are also present in the affected region. The RC buildings have been built either without a 147 
seismic design code or with an old seismic design code. 148 

Table 2: Classification of buildings to vulnerability classes according to their vertical and horizontal 149 
structure [16]. 150 

Structure Vertical 

Horizontal Field 

Stone 

Hewn 

Stone 

Brick 

Masonry 

RC 

Vaults A 

(1,532) 

A 

(617) 

A 

(16) 

- 

Wood A 

(8,860) 

A 

(3,294) 

C 

(132) 

- 

Steel B 

(5,216) 

B 

(2,323) 

C 

(468) 

- 

RC C 

(855) 

C 

(2,060) 

C 

(601) 

C 

(3,383) 

 151 

If the buildings are classified into 13 classes according to their vertical and horizontal structure, this 152 
results in some classes having a very small number of buildings (see Table 2). To avoid very small 153 
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samples, the 13 building classes are reduced to the three vulnerability classes (i.e., A, B and C) following 154 
the re-classification approach found in Braga et al. [16] (see Table 2). The vulnerability class ‘A’ is the 155 
best represented class in the database with overall 14,406 buildings. Class A is considered the most 156 
vulnerable class as it includes the worst quality masonry buildings. Poor quality masonry buildings are 157 
considered to have floors made of vaults or to have been constructed using field or hewn stone and 158 
wooden floors (see Table 2). The damage database also includes 7,816 class B buildings. This class 159 
includes the better quality field or hewn stone buildings, which have steel floors. Finally, Class C in-160 
cludes the least vulnerable buildings, having similar sample size with the latter class. The present study 161 
concentrates on the most vulnerable (Class A) and the least vulnerable (Class C) classes of buildings to 162 
present the results.  163 

2.3 Damage scale  164 

The damage sustained by the surveyed buildings has been classified into six discrete damage states 165 
according to the MSK-76 scale [27]. The six damage states characterize all possible levels of damage 166 
that a building can suffer, and are described briefly in Table 3.   167 

Fig.3 shows the relationship between the estimated PGA level in each municipality and the percentages 168 

of Class A and C buildings sustaining damage state dsi or above ( i =1, 2, 5). Overall, damaged data 169 

from 14,406 Class A and of 7,439 C buildings aggregated in 41 data points. This is substantially larger 170 

than the minimum sample size required for the construction of meaningful fragility curves provided by 171 

the Global Earthquake Model, empirical vulnerability assessment guidelines [30]. According to the lat-172 

ter, at least 200 buildings are required to be aggregated in a minimum of 10 data points. Over 80% of 173 

the data points, (representing 70% of the building inventory), are clustered in the lower PGA levels, i.e., 174 

0.024g to 0.30g. This scarcity of data for the higher intensity measure levels is not unusual. Moreover, 175 

the total number of recorded buildings in each municipality varies according to the building class: for 176 

example, there are no municipalities with fewer than 50 Class A buildings, but 35 municipalities with 177 

fewer than 50 Class C buildings.  178 

Table 3: Description of damage in each damage state [27]. 179 

DS Description:  

ds0 No damage 

ds1 Negligible or slight damage 

ds2 Moderate damage 

ds3 Substantial to heavy damage 

ds4 Very heavy damage 

ds5 Destruction  

  180 

In Fig.3, the poor performance of class A buildings in the 1980 earthquake is highlighted, as in all 41 181 

municipalities at least half of class A buildings sustained some level of damage (i.e., DS ≥ ds1) and 6% 182 

of the total class A buildings located in over 70% municipalities had been destroyed. Overall, each 183 

municipality appears to have recorded more damaged class A buildings with DS ≥ dsi than class C 184 

buildings. In addition, the scatter in their data points appears to be wider than for class C buildings for 185 

higher damage states; indicating that there is greater uncertainty in the seismic performance of class A 186 

buildings for higher damage states. This is in line with observations in the literature regarding the high 187 

uncertainty in the seismic performance of low quality masonry buildings [28].  188 

 189 

The better seismic performance of class C buildings is also depicted in Fig.3, where in most (71%) 190 

municipalities, less than half of the surveyed Class C buildings sustained some level of damage. The 191 

highest scatter in the data points can be seen for ds1 and this substantially reduces for the higher damage 192 

states. A closer examination of the data shows that the highest percentage of buildings in any given 193 

municipality sustaining moderate damage or above (i.e., DS ≥ ds2) never exceeds 40%. and that in 80% 194 



of the municipalities no Class C buildings have been destroyed (n.b. there are only 52 cases of collapsed 195 

Class C buildings). Therefore, very little information is available from which to construct fragility curves 196 

for the most severe damage states, for buildings with good seismic performance. This is a known issue 197 

in the empirical fragility assessment literature [29] and limits the ability of empirical approaches to 198 

determine the likelihood of collapse of buildings which perform well during earthquakes. 199 

 Empirical fragility assessment  200 

The information regarding the damage, the intensity levels and building class are combined in order to 201 
empirically assess the fragility of class A and C buildings for three damage states (i.e, ds1, ds2 and ds5). 202 
Two simplifications, are deemed necessary to substantially reduce the amount of time required to run 203 
each Bayesian analysis. Firstly, the fragility curves are constructed independently for each damage state 204 
instead of exploiting the ordinal nature of the damage scale. Secondly, the fragility curves are con-205 
structed independently for Class A and C.  206 
 207 
Past studies commonly base their empirical fragility assessment of buildings on three main assumptions 208 
regarding the quality of the post-earthquake database. According to these assumptions, the database is 209 
considered representative of the seismic damage in the affected area, the misclassification error in as-210 
signing the ‘actual’ damage states to each building is considered insignificant and the uncertainty in the 211 
X level can be ignored [30]. In what follows, a reference model based on these assumptions is developed 212 
and fitted to the 1980 Irpinia data. Then, the importance of different sources of uncertainty in the ground 213 
motion intensity is examined by developing and fitting four models of increasing complexity. At each 214 
stage, the effect of accounting for additional information or uncertainties is assessed by examining the 215 
fitted fragility curves and their credible intervals. Finally, the most realistic fragility curves are con-216 
structed by combining the 1980 Irpinia damage data with prior information regarding the fragility of the 217 
Class A and C buildings.   218 

3.1 Models M0-M1: Reference models  219 

Many existing studies adopt a parametric statistical model, whose systematic component is typically 220 
expressed in terms of the cumulative lognormal distribution, and with random component following 221 
various assumptions that are often unrealistic and whose impact on the fragility is discussed in greater 222 
detail in [31]. The present study adopts a Generalised Linear Model (termed GLM) which is proposed 223 
by the Global Earthquake Model (GEM) Guidelines [30]. A GLM assumes that the number of buildings, 224 
yij, which sustained damage DS≥ dsi in municipality, j, follows a binomial distribution: 225 
 226 

  ~ ,ij j i jy Binomial n x                                            ( 3 ) 227 

 228 

where  i jx  is the probability that a building located in municipality, j, will reach or exceed the ‘true’ 229 

damage state, dsi, given estimated intensity level 
jx ; nj is the total number of buildings of the examined 230 

building class in municipality, j. The binomial distribution is characterised by its mean: 231 

     ij j i jn x    ( 4 ) 232 

which is expressed here in terms of a probit model defined in terms of Φ(.), the cumulative distribution 233 
function of a standard normal distribution:  234 
 235 

 1

i j ijx    
                                                                                                   ( 5 ) 236 

 237 
where ηij = is the linear predictor, which can be written in the form: 238 

 239 

 0 1 lnij i i jx                                                                                                               ( 6 ) 240 
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 241 
Here, θ1i, θ0i are the two regression coefficients, representing the slope and the intercept, respectively, 242 
of the fragility curve corresponding to damage state dsi. For the reference model, the ground motion 243 

intensity level,
jx , is estimated at the geographical centre of municipality j from a pre-selected GMPE, 244 

ignoring the two error components in Eq.(1). Throughout the remainder of the paper, the reference model 245 
fitted to the data using a maximum likelihood approach is referred to as M0; the same model fitted using 246 
a Bayesian approach is denoted M1. We next describe the two approaches, and highlight the differences 247 
between them.  248 

3.1.1 M0 – The maximum likelihood approach  249 

In a maximum likelihood approach, the regression coefficients and their standard error are determined 250 
from the log-likelihood function [32], as: 251 
 252 

   
1

arg max arg max log 1
yij j ij

M
n yj

ij ij

ijj

n
L

y
 





    
     

     
θ θ                ( 7 )                                                                                                                           253 

where M is the total number of municipalities. It should be noted that for data aggregated at municipality 254 
level, the variability between municipalities is often greater than expected under the binomial distribu-255 
tion: a phenomenon known as “over-dispersion”, which can be caused due to aggregation of non-homo-256 
geneous data in municipalities or the failure to account for other explanatory variables (for example, 257 
because their data are not available). Where over-dispersion occurs, standard errors for the regression 258 
coefficients will be underestimated, which in turn leads to underestimation of the uncertainty in the 259 
estimated fragility curves. A standard way to deal with over-dispersion in such situations is to carry out 260 
a “quasi-binomial” GLM fit [33], which provides an empirical adjustment to the standard errors to en-261 
sure that they correctly reflect the estimation uncertainty [34]. M0 is fitted to the data with estimated 262 
PGA levels from the three GMPEs. Due to the limited space in this study, the results are presented only 263 
for the GMPE that provides the best fit to the data. However, a sensitivity analysis is presented in the 264 
Appendix in which multiple GMPEs are used. To identify which GMPE fits the damage data best, the 265 
maximised log-likelihood for all fitted models are compared in Table 4. The Bindi et al [23] GMPE is 266 
found systematically to have the highest log-likelihood by a considerable margin: this means that the 267 
PGA levels obtained by this GMPE fit the data best.  268 

Table 4: Maximized log-likelihood values for the three GMPEs. 269 

GMPE ds1 ds2 ds5 

Class A 

Bindi et al. [23] -498.2 -981.5 -559.7 

Kotha et al. [24] -612.4 -1305.5 -966.2 

Akkar et al. [25] -589.1 -1249.1 -859.7 

Class C 

Bindi et al. [23] -428.3 -269.3 -44.6 

Kotha et al. [24] -552.7 -430.3 -98.0 

Akkar et al. [25] -561.1 -435.7 -95.0 

Fig.3 depicts the fragility curves corresponding to ds1, ds2 and ds5, obtained using maximum likelihood 270 
estimates of the regression coefficients and using the Bindi et al. [23] GMPE to determine the PGA 271 
levels at the geographical centre of each municipality. Within the range of estimated PGA levels corre-272 
sponding to the municipalities for which there are available damage data, the best estimate curves rep-273 
resent a small part of the lognormal cumulative distribution function, rather than the full range from 0 274 
to 1. Overall, the best-estimate fragility curves for Class A buildings appear to be systematically higher 275 
than their Class C counterparts, highlighting the poor seismic performance of the Class A buildings. The 276 
values of the regression coefficients are presented in Table 5. 277 



Table 5: Regression coefficients estimates based on M0. 278 

DS Building Class 

A C 

θ0 θ1 θ0 θ1 

ds1 0.16 0.25 -1.51 0.27 

ds2 -1.23 0.29 -3.27 0.40 

ds5 -4.73 0.60 -6.14 0.67 

In Fig.3, the 90% confidence intervals for the ‘true’ fragility curves are plotted accounting for the sam-279 
pling variation in the damage data according to the fitted “quasi-binomial” model.  280 

3.1.2 M1 – The Bayesian approach  281 

In maximum likelihood estimation, uncertainties about unknown quantities are expressed using standard 282 
errors and confidence intervals. In Bayesian inference by contrast, such uncertainties are expressed by 283 
assigning probability distributions directly to those quantities. Using Bayes’ theorem, the likelihood 284 
function is combined with prior knowledge regarding the probability distribution of the regression co-285 
efficients in order to obtain the posterior distribution of these coefficients: 286 

         
1

| 1
yij j ij

M
n yj

ij ij

ijj

n
p Y p L p

y
 





  
    

   
θ θ θ θ                      ( 8 ) 287 

where p(θ) is the prior distribution of the vector of parameters θ=[θ0i, θ1i]; L(θ) is the likelihood function. 288 
In the present work, the posterior distribution of the regression coefficients, together with all other quan-289 
tities of interest, is estimated by the Markov Chain Monte Carlo (MCMC) algorithm, using OpenBUGS 290 
[35]. All posterior distributions of interest are determined from three chains with 90,000 iterations each, 291 
ignoring the first 30,000 iterations. The simulations are fast: each lasts approximately 30 seconds. The 292 
convergence of the MCMC algorithm is assessed by the Gelman-Rubin diagnostic [36], known as Rhat 293 
statistic, which is found to be equal to 1 (to two significant digits) for all analyses, indicating the suc-294 
cessful convergence of all chains.  295 

 296 

The prior distribution provides a mechanism for incorporating additional information into the analysis 297 
to supplement the available post-earthquake data, if such information is available. For compatibility 298 
with model M0 however, initially we make no attempt to incorporate such information. Thus, the prior 299 
distribution for both regression coefficients (i.e., θ0i or θ1i) is taken to be normal, with zero mean and a 300 
very large variance: 301 
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                                                     ( 9 )                                                                                                                                                  302 

 303 

where μθ0i , μθ1i is the prior mean of intercept θ0i and slope θ1i, respectively; 
0

2

i
 and 

1

2

i
  is their vari-304 

ance.  305 

For model M0, a quasi-binomial fit was used to account for over-dispersion. This type of empirical 306 
adjustment is not possible in a Bayesian framework however, so an alternative approach must be sought. 307 
In model M1 therefore, over-dispersion is explicitly modelled by adding a random effect at municipality 308 
level to the linear predictor [37]. Equation (4) is therefore modified to:   309 

 0 1 lnij i i j jx                                                                                                         ( 10 310 

) 311 



9 

 

where the {ξj} are random variables, realised independently for each municipality, which are considered 312 
normally distributed with: 313 

 2~ 0,
jj Normal                                                                                  ( 11 ) 314 

with τ2 is the variance. The size of this variance determines the size of the over-dispersion [37]. For 315 
example, when τ2=0, the model reduces to the binomial, otherwise the over-dispersion is taken into 316 
account. In OpenBUGS [35], the normal distribution is modelled in terms of its inverse variance instead 317 
of its variance. The inverse variance, termed precision, is here assigned a non-informative prior distri-318 
bution in the form of a gamma distribution with mean 1 and variance equal to 100.  319 

In Fig.3, the best estimate fragility curves obtained from the Bayesian approach are compared to their 320 
counterparts obtained by the maximum likelihood approach. The 90% credible intervals around the best 321 
estimates are also plotted. These credible intervals are much wider than the corresponding confidence intervals 322 
from the maximum likelihood method. This is predominantly due to the slightly different model formulations in 323 
the two methods. In model M0, a single fixed fragility curve is assumed for all municipalities and the scatter of 324 
observations is accounted for via an empirical adjustment for overdispersion: the confidence intervals for this 325 
model represent uncertainty about the single fixed curve. In model M1 however, the scatter of observations is 326 
attributed to municipality-specific fragility curves defined via the random effects in Eq.(10): the credible intervals 327 
here represent uncertainty about the fragility curve for an individual municipality. The differences are most 328 
notable for the curves corresponding to ds2 for Class A and ds1 for Class C, which are associated with 329 
the highest scatter in the data points. It should be noted that a smaller sample size would increase the 330 
uncertainty around the fragility curves leading to wider credible intervals. That would reduce the differ-331 
ences between the models.  332 

 333 

Fig.3 The data points represent the proportion of buildings of a given class (A or C) in each municipal-334 
ity, which sustained damage greater or equal to a given damage state dsi. The size of each data point 335 
varies according to the total number of buildings of a given class located in a municipality. Best estimate 336 
fragility curves and their corresponding 90% confidence and the 90% credible intervals comparing M0 337 
vs M1 are also presented.  338 

3.2 Exploring the importance of the uncertainty in X  339 

A sensitivity analysis is performed in order to examine whether the shape of the fragility curves is in-340 

fluenced by explicitly accounting for the error component in the GMPE, the spatial correlation in the 341 

intra-event component, the uncertainty due to the spread of the buildings in each municipality and the 342 

presence of ground motion records. To achieve that, four models (termed M2-M) are constructed here 343 

which explicitly account for the additional sources of uncertainty, the spatial structure of the data or the 344 

presence of the ground motion records. The models increase in complexity as depicted in Table 6.  345 

Table 6: Summary of the five models used in this study. 346 

Model Over-dis-

persion 

Uncer-

tainty in X 

Spatial Correla-

tion in intra event 

component  

Uncertainty due to 

the spread of 

buildings in each 

municipality 

Presence of 

ground motion 

records.  

M1 x - - - - 

M2 x x - - - 

M3 x x x - - 

M4 x x x x - 

M5 x x x x x 

 347 

The fits of these models to the 1980 Irpinia data using the Bayesian approach are then compared to each 348 

other and to the reference model, M1. The fit is compared in terms of the best-estimate fragility curve 349 



as well as the 90% credible intervals. The conclusions were found to be the same if alternative credible 350 

intervals levels (e.g., 75% or 95%) were preferred. In order for the results to be directly comparable, 351 

non-informative prior distributions are assigned to the two regression coefficients: the effect of prior 352 

choice is addressed later. For these models, the posterior distributions of the probability that a damage 353 

state will be reached or exceeded by the buildings of a given class for a range of PGA levels are deter-354 

mined by three MCMC chains with 150,000 iterations each, ignoring the first 30,000 iterations. Each 355 

analysis lasts approximately 12 minutes. The convergence of the MCMC algorithm is assessed by the 356 

Rhat convergence statistic, which is found to be approximately equal to 1 for all analyses, indicating the 357 

successful convergence of the three chains. 358 

3.2.1 M2 – Accounting for the error components in GMPE 359 

A new model M2 is constructed here, which shares Eq.(2) to Eq.(6) with M1, but considers the actual 360 
ground motion intensity, xj, at the center of municipality j by explicitly modelling the two error terms in 361 
Eq.(1). The inter-event error ϕ is common to all municipalities. As a first attempt to account for the 362 
intra-event errors {εj}, they are considered to be mutually independent in model M2 and to follow iden-363 
tical normal distributions: 364 
 365 
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 367 

where µη, µεj are the mean, which are considered equal to zero; 2

 ,
2

j
 are the variance of the residuals. 368 

The average values of the variances are provided by the adopted GMPE and for this reason they are 369 
assigned informed prior distributions. Following standard practice, gamma distributions are assigned to 370 
the corresponding precision parameters, with mean and variance chosen to represent a judgement that 371 
90% of the individual standard deviations are likely to lie within 20% of the provided values:  372 
 373 
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 375 
For more information regarding the prior distributions and their parameters, the reader is referred to the 376 
comments in the file ‘M5.R’ uploaded as supplementary material accompanying this article. 377 
 378 

In Fig.4, the best estimate fragility curves and their 90% credible intervals obtained by fitting the model 379 

M1 using the Bayesian approach are compared to their counterparts obtained by fitting M2. It can be 380 

seen that there is practically no difference in the best-estimate fragility curve between the two models. 381 

The credible intervals of M2 tend to be close and somewhat narrower than for M1. The differences 382 

appear to be notable but not significant for ds5 for both building classes.  383 

 384 

Fig.4 The data points represent the proportion of buildings of a given class (A or C) in each municipal-385 
ity, which sustained damage greater or equal to a given damage state dsi. The size of each data point 386 
varies according to the total number of buildings of a given class located in a municipality. Best-estimate 387 
fragility curves and their corresponding 90% credible interval comparing M1 vs M2 are plotted. 388 

3.2.2 M3 – Accounting for the error components in GMPE and spatial correlation 389 

In model M2, the intra-event errors {εj} were considered to be independent at each municipality. In 390 

reality however, if a GMPE over / underpredicts the ground motion intensity in one municipality for an 391 

event, it is conceivable that there will be a tendency to over / underpredict in neighbouring municipalities 392 

as well: the independence assumption is questionable, therefore. To allow for such dependence requires 393 
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a more complex statistical model, but it is also potentially beneficial because it allows the possibility for 394 

information to flow between municipalities: this can be particularly helpful when data from some mu-395 

nicipalities are sparse, since the characteristics of the GMPE errors there can be inferred (with appropri-396 

ate consideration of uncertainty, via the Bayesian approach to inference) from more data-rich locations 397 

nearby. Model M3 therefore removes the restriction that the intra-event errors are independent. 398 

The significance of the intra-event spatial correlation in seismic risk assessment has generated an exten-399 

sive literature aiming to determine the spatial correlation structure at given sites. Published studies ex-400 

clusively consider that the natural logarithm of X levels in multiple sites follow a multivariate normal 401 

distribution [38]. The mean of this distribution is provided by Eq.(1) ignoring the two random effects, 402 

and the covariance matrix is determined as: 403 
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 406 

where  jkh  is the spatial correlation coefficient which is a function of the distance hjk between the 407 

centroids of municipalities j and k, and is expected to decay with increasing distance. In a Bayesian 408 

context however, the use of correlation-based dependence models can be computationally expensive, 409 

because the intra-site correlation matrix must be inverted at each iteration in order to calculate the like-410 

lihood contribution to the posterior distribution [39]. With m municipalities in total, the computational 411 

cost of inverting a covariance matrix via any standard algorithm is roughly proportional to m3: to do this 412 

at each MCMC iteration (we use 150,000 iterations per model for the results reported below, which is 413 

not an unusually high number, and is considered necessary in order to get a large effective sample size 414 

for the more complex models considered here) is simply not feasible for moderate or large numbers of 415 

locations. For this reason, MCMC-based Bayesian inference for spatial datasets is usually done using 416 

conditional autoregressive (CAR) representations of dependence, in which the distribution of the quan-417 

tity of interest at each spatial location is specified conditional on the values at neighbouring locations. 418 

The CAR approach has gained wide acceptance in other fields (e.g., ecological studies and disease map-419 

ping [40]).  420 

In M3, the intrinsic CAR model [41] (i.e., the simplest form of a CAR model) is used to capture the 421 
spatial correlation of the intra-event component of the uncertainty in the ground motion intensity. Ac-422 
cording to this model, the error εj in municipality j depends on the values of the errors in the neighboring 423 
municipalities, (defined here as those with which municipality j shares a border), and is modelled as a 424 
normal distribution: 425 
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where the 
2

CAR is the unknown variance parameter; and wji are weights which account for the proximity 427 

of two municipalities, and can be written in the form: 428 



1 If  and  are neighbour municipalities

0 If  and  are not neighbour municipalities
jk

k j
w

k j


 


             (16) 429 

The variance of the CAR model,
2 /CAR jiw   (see Eq.(15)) controls the variability of the effect in 430 

municipality j conditional on the effects of neighbour municipalities, and also depends on the number 431 

of these municipalities [42]. The intuition here is that the magnitude of the error in municipality j can 432 

be determined more precisely if the errors in a large number of neighbours are already known, than if 433 

there is little neighbourhood information. Given the lack of prior information regarding the variance of 434 

the spatially distributed effects, an uninformative prior distribution is assigned to the inverse of 
2

CAR , 435 

in the form of a gamma distribution which is assumed to have mean equal to 1 and variance equal to 436 

100. It should be noted that an informative prior based on existing spatial models (e.g., [38]) is not 437 

feasible as the CAR dependence structure cannot be directly related to a model for inter-station 438 

correlations.  439 

 440 

In Fig.5, the best-estimate fragility curves corresponding to ds1, ds2 and ds5 and their 90% credible 441 

intervals obtained by fitting M3 and M1 to the 1980 Irpinia data for class A and C are depicted. The 442 

best-estimate fragility curves for M3 appear to be identical to those for M1 . The differences between 443 

the credible intervals of the two models also appear to be negligible irrespective of damage state or class.   444 

 445 

Fig.5 The data points represent the proportion of buildings of a given class (A or C) in each municipal-446 
ity, which sustained damage greater or equal to a given damage state dsi. The size of each data point 447 
varies according to the total number of buildings of a given class located in a municipality. Best estimate 448 
fragility curves and their corresponding 90% credible interval comparing M1 vs M3 are also plotted. 449 

3.2.3 M4 – Accounting for the error components in GMPE, spatial correlation and uncertainty in 450 

IMLs due to the scatter of buildings in the municipality 451 

In the empirical fragility assessment of aggregated post-disaster data, it is commonly assumed that the 452 

ground motion level is estimated at the geometrical centre of each municipality. For the Irpinia database, 453 

this means that municipalities with hundreds or thousands of buildings, are all assigned the same ground 454 

motion level. This is an unrealistic assumption as buildings can be far away from the geometrical centre 455 

of the municipality or be sited on soils with very different properties. The within-municipality variation 456 

is expected to decrease with distance from the fault (due to an exponential decay in ground motion with 457 

distance from the fault). Model M4 is designed to represent this variation in a simplified manner, and 458 

hence to test the sensitivity of the estimated fragility curves to the common assumption that all buildings 459 

within a municipality experience the same ground motion. To represent the variation, the area in every 460 

municipality is subdivided into a regular grid with cell size 1km x 1km. The ground motion intensity 461 

level at each centre is estimated by Eq.(2). The variation of these estimates is then calculated in order to 462 

determine an index of variation for that municipality. This approach essentially allows greater variation 463 

of the intra-event errors for those municipalities where the ground motion is more variable, thus making 464 

some allowance for the fact that the precise building locations are unknown. 465 

 466 

In M4, the uncertainty due to the spatial distribution of the buildings in each municipality is modelled 467 

by adding a municipality-level random effect component at Eq.(1) in the form: 468 

   ln , , ,j j j j jx f M R S F w                                                                                       (17) 469 

 470 

where wj is assumed to follow a normal distribution with: 471 
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 ~ 0,var
jj ww N                 (18) 472 

The inverse variance is also assigned an informative gamma distribution prior concentrated around the 473 

inverse sample variance of the ground motions across the municipality. It should be noted that unlike εj, 474 

wj is not spatially correlated and for this reason, the two variables are modelled separately.  475 

 476 

In Fig.6, the best estimate fragility curves and their 90% credible intervals for models M4 and M1 appear 477 

to be almost identical. Compared to the fit of M3 (see Fig.5), the addition of an extra random component 478 

in the estimation of the ground motion intensity in M4 leads to small and non-systematic differences. 479 

The fit of M4 appears to have a negligible effect on the width of the credible intervals for the curves 480 

corresponding to ds1, ds2 and ds5 for Class A The width of the intervals corresponding to and ds2 and ds5 481 

for Class C are reduced, whilst the width of the intervals corresponding to ds1 for Class C remains 482 

unchanged.   483 

 484 

Fig.6 The data points represent the proportion of buildings of a given class (A or C) in each municipal-485 
ity, which sustained damage greater or equal to a given damage state dsi. The size of each data point 486 
varies according to the total number of buildings of a given class located in a municipality. Best-estimate 487 
fragility curves and their corresponding 90% credible interval comparing M1 vs M4 are also plotted. 488 

3.2.4 M5 – Accounting for the error components in GMPE, spatial correlation, uncertainty in IMLs 489 

due to the scatter of buildings in the municipality and known IMLs 490 

The models proposed so far have ignored the presence of observed ground motion records from the 491 

studied earthquake. This, however, is not realistic as there are often multiple records, which can be used 492 

to constrain the uncertainty in the X levels. M5 is the same as M4, the only difference between the two 493 

models is that in M5 the PGA level in the 17 municipalities for which there are ground motion records, 494 

is determined by these records. The PGA level at the remaining municipalities is estimated from the 495 

Bindi et al. [23] GMPE, by explicitly accounting for the two error components, the spatial correlation 496 

of the intra-event component and the uncertainty due to the spatial variation of the building inventory 497 

in each municipality.  498 

 499 

In Fig.7, the best estimate fragility curves and their 90% credible intervals obtained by fitting M5 and 500 

M1 to the 1980 Irpinia data can be compared. The best-estimate curves and their 90% credible intervals 501 

appear to be identical for ds1 and ds2 for both building classes. The differences in the two models appear 502 

to be notable for ds5, where the credible intervals appear to be reduced for M5. The fit of M5 is then 503 

compared to the fit of M4. The differences appear to be small, which is in line with similar observations 504 

made in the literature [7, 11] regarding the small impact of a few ground motion stations in the estimation 505 

of the likelihood of damage and highlight once more the need for a denser network of ground motion 506 

stations.   507 



Fig.7 The data points represent the proportion of buildings of a given class (A or C) in each municipal-509 
ity, which sustained damage greater or equal to a given damage state dsi. The size of each data point 510 
varies according to the total number of buildings of a given class located in a municipality. Best estimate 511 
fragility curves and their corresponding 90% credible intervals comparing M1 vs M5 are also plotted. 512 

3.3 Exploring the impact of informative priors 513 

In models M1 to M5, the uninformative priors of the regression coefficients ignore the wealth of research 514 

regarding the fragility of the Italian building inventory. A search in the GEM compendium [43] identi-515 

fied twelve studies [9, 10, 16, 29, 44-50] that can be used to determine the fragility of Class A and C 516 



Italian buildings. These include five empirical studies, six analytical and one heuristic fragility assess-517 

ment study. It should be noted that the 1980 Irpinia earthquake is a well-studied event and its post-518 

disaster data has been used by all the empirical fragility studies chosen [9, 10, 16, 29, 44]. Therefore, 519 

the 5 empirical fragility functions are excluded as sources of prior information regarding the regression 520 

coefficients, as they do not add new information regarding the shape of the fragility curves. Instead, the 521 

sets of fragility curves found in the six remaining analytical [45-49] and heuristic [50] studies are used 522 

here to determine the prior distributions.  523 

 524 

In Fig.8, the plots of the slope against the intercept of the existing curves for the three damage states and 525 

the two building classes are depicted. Overall, the variation in the values of the slope and intercept is 526 

dominated by the variation between studies, which is substantially larger than the variation for individual 527 

studies that have constructed multiple fragility curves. It can also be noted that the intercept appears to 528 

be positively correlated to the slope. Nonetheless, this correlation can be attributed to the variation be-529 

tween studies. For individual studies which constructed multiple fragility curves there is little evidence 530 

of such correlation and for this reason, the correlation between the two coefficients is ignored.  531 

 532 

In using this information to set informed priors for the two coefficients, the intercept is assigned a normal 533 

distribution as it can take both positive and negative values and the slope is considered to follow a 534 

gamma distribution, which accounts for the expectation that the increase in the ground motion intensity 535 

will increase the probability of a building to be damaged. The informative prior distributions for the two 536 

regression coefficients can be written as: 537 
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The mean and the variance of these prior distributions are determined from the existing fragility curves. 539 

In particular, the prior mean intercept and slope (i.e., 
0 i and 

1i ) are set to the means of the corre-540 

sponding values from the existing fragility curves. In setting the prior variances however, it is prudent 541 
to allow for a larger range of coefficient values than is present in the small number of existing fragility 542 
curves. The prior variances in equation (19are therefore set at 16 times the sample variance of the exist-543 
ing intercepts and slopes.  544 

 545 

Fig.8 Plots of slopes against the intercept for existing fragility curves corresponding to 3 damage 546 
states used as priors for class A and C. 547 

In Fig.9, the fragility curves obtained by fitting model M5 to the data using informative (M5-Info) and 548 

non-informative (M5-Uninfo) priors are plotted. The differences in the best-estimate curves as well as 549 

in their 90% credible intervals are not consistent but depend on the building class and damage state. 550 

Overall, the differences can be considered negligible or small with the exception of the collapse fragility 551 

curve (i.e., ds5) for Class C buildings, which is associated with very small probabilities of collapse. For 552 

this case, the M5-Info leads to flatter best-estimate fragility curves and notably narrower credible inter-553 

vals. These observations can be attributed to the relatively large sample sizes of Class A and C buildings 554 

in the 1980 Irpinia database, which ensure that the observations are highly informative and dominate 555 

any effect of the prior specification.  556 

 557 

The existing fragility curves from which the priors were derived are also depicted in Fig.9. It can be 558 

noted that the analytical curves appear to be notably steeper than the best estimate fragility curves irre-559 

spective of whether informative or non-informative priors have been adopted. By contrast, the heuristic 560 

ones are more in line with the empirical ones, although this is not systematic. The systematic difference 561 
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in steepness between the analytical and empirical curves could be attributed to the nature of the analyt-562 

ical studies which are typically based on a single well defined building exposed to known ground motion 563 

excitations. For this reason, they tend to result in steep fragility curves. By contrast, the empirical curves 564 

are based on large databases that include large variations in the performance and geometric characteris-565 

tics of buildings in the same class as well as the variability in the ground motion excitation whose char-566 

acteristics are generally not known. 567 

 568 

Fig.9 Prior fragility curves corresponding to 3 damage states for class A and C as well as the best es-569 
timate fragility curves and their 90% credible intervals based on M5 assuming informative (M5-Info) 570 

and non-informative (M5-Uninfo) priors. 571 

Fig.10 shows our estimated fragility curves based on M5-Info together with their counterparts based on 572 

M1 with uninformative priors. The differences in the credible intervals for the two models appear to be 573 

small, with the exception of the collapse fragility curves for Class C buildings. In this latter case, the 574 

model M5-info yields significantly narrower credible intervals than model M1. Fig.10 also depicts the 575 

curves constructed by the five [9, 10, 16, 44] other existing empirical studies that adopted the 1980 576 

Irpinia damage database for class A and C buildings either on its own or among other databases from 577 

Italy or worldwide. Overall, the results show a significant variation in the fragility curves. This is most 578 

likely due to differences in data included in the studies (many studies include data sets from several 579 

earthquakes), how the data is manipulated for use in the construction of the fragility functions (e.g. 580 

whether the data is complete, biased etc.), differences in ground motion intensity estimation approach 581 

and due to differences in the statistical model used for their development. Such variations in empirical 582 

fragility functions developed from same/similar data is not uncommon, as seen in [51]. Interestingly, 583 

the variation is large both for Class A buildings, (which are known for their poor performance), and 584 

Class C buildings, (which are expected to perform better).  585 

 586 

Fig.10 Plots of best-estimate fragility curves and their 90% credible intervals based on M5 with 587 
informative priors and M1 with uninformative priors. Fragility curves from five studies which also used 588 
the 1980 Irpinia  damage database are also included. 589 

3.4 Prediction of collapsed buildings  590 

So far, this paper has focused on the construction of fragility curves. Despite the importance of such 591 

curves in the seismic risk assessment of the buildings inventory, decision makers often need answers to 592 

questions such as how many buildings are expected to collapse in a future event. The adopted Bayesian 593 

framework can be used to make these predictions, quantifying the uncertainty involved in the expected 594 

number of collapsed buildings.  In general, predictions within as well as beyond the range of the data 595 

are possible. However, due to the limited information which produced fragility curves being only part 596 

of the lognormal cumulative distribution function, rather than its full range from 0 to 1, the credible 597 

intervals outside the provided range of data should be used for a qualitative assessment of the fragility. 598 

Fig.11 depicts the posterior distributions of the number of Class A and C buildings expected to collapse 599 

in three municipalities in a future repetition of the 1980 Irpinia earthquake. The predictions concern 600 

three municipalities (see Fig.1) associated with low, medium and high estimated PGA levels. It can be 601 

seen that there is higher uncertainty in predicting the collapsed Class A buildings for all three 602 

municipalities. By contrast, the predictions of collapsed Class C buildings are associated with smaller 603 

uncertainty, and the collapses of multiple buildings are expected only for the municipality very close to 604 

the epicentre.   605 

 606 

Fig.11 Histogram of the posterior distribution of the number of buildings expected to be destroyed (i.e., 607 

to sustain damage DS=ds5) in a future earthquake in three municipalities which are exected to be 608 



affected by very low (0.03g), medium (0.09g) and high intensity (0.64g) levels (based on fitting the M1 609 

model with uninfromative priors of regression coefficients).  610 

 611 

In the preceding sections, the differences between the models presented in this paper have been studied 612 

by visual inspecting the best-estimate fragility curves and the length of the corresponding 90% credible 613 

intervals. Notwithstanding the ease of intepretation of the results of such a qualititative approach, the 614 

strength of the conclusions is reinforced here by quantifying the differences between the models in 615 

predicting the number of buildings likely to suffer a given damage state. The focus is on the state of 616 

collapse, as the differences between the models were found to be more pronounced at this damage state. 617 

Table 7 depicts the relative change in the predictions of the number of Class A or C buildings likely to 618 

collapse in the municipality with the largest PGA value, based on models M2-M5 for uninformative 619 

prios and M5 for informative priors compared to model M1. The relative change in the best estimate 620 

and the length of the 90% credible intervals are both recorded. For this extreme case, the differences can 621 

be notable for Class A buildings for both the best estimate and the length of the credible intervals. The 622 

largest relative change is noted for the most complex M5 model with informative priors. For this model, 623 

the expected number of collapsed buildings is 14% lower than for M1 and the credible intervals are 20% 624 

narrower than for M1. The differences between the models are much higher for Class C buildings. In 625 

particular, for M5-info, 46% fewer buildings are expected to collapse than for M1 and the 90% credible 626 

intervlas appear 59% narrower than for M1. These observations highight that the more complex model 627 

has a substantial impact only for the probability of collapse of Class C buildings, where the probability 628 

of collapse is low.   629 

Table 7: Predicted numbers of collapsed Class A and C buildings in Lioni, a municipality with a total 630 
of 356 Class A and 604 Class C buildings exposed to  PGA=0.64g as well as the relative change of the 631 
predictions based on M2-M5 using uninformative priors and M5 using informative priors compared to 632 

M1. 633 

Class Model 
Values  

Best Estimate (95%, 5%) 

Interval 

length 

Relative change com-

pared to M1 

Best  

Estimate 

Interval 

length 

A M1 53 (159, 3) 156     

  M2 54 (139, 4) 135 -1% 13% 

  M3 50 (146, 2) 144 6% 8% 

  M4 50 (143, 3) 140 7% 10% 

  M5 49 (131, 4) 127 9% 19% 

  M5_Info 46 (127, 2) 125 14% 20% 

C M1 28 (116, 0) 116     

  M2 24 (95, 0) 95 13% 18% 

  M3 24 (108, 0) 108 14% 7% 

  M4 21 (83, 0) 83 24% 28% 

  M5 21 (69, 0) 69 23% 41% 

  M5_Info 15 (47, 0) 47 46% 59% 

 634 
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 Conclusions 635 

A Bayesian framework is used in this study in order to examine the importance of the uncertainty in the 636 

ground motion intensity in the shape of fragility curves based on post-disaster data aggregated at mu-637 

nicipality level. The advantage of such framework is its ability to combine prior information regarding 638 

the shape of the fragility curves with post-disaster data and its flexibility in modelling additional sources 639 

of uncertainty. The novelty of the framework includes the use of a CAR model to model the spatial 640 

correlation in the intra-event component and the modelling of the uncertainty due the scatter of the 641 

buildings in the municipality.  642 

 643 

The framework was applied to the 1980 Irpinia earthquake building damage database, which includes 644 

damage data from 21,845 Class A and C buildings aggregated in 41 municipalities and the ground mo-645 

tion intensity is estimated by a GMPE. Five models of increasing complexity were constructed in order 646 

to account for the uncertainty in the ground motion, the spatial correlation of its intra-event component 647 

and the uncertainty due to the scatter of the buildings in the municipality as well as to account for the 648 

known ground motion intensity records. The fit of these models to the data was compared to the fragility 649 

curves constructed by fitting a reference model using maximum likelihood analysis to determine the 650 

regression coefficients.  651 

 652 

The analyses show that more complex models (e.g. M2-M5) yield almost identical results to those ob-653 

tained from the reference model M1 that uses the estimated, instead of the actual, ground motion inten-654 

sity and ignores the sources of uncertainty associated with the ground motion intensity or the presence 655 

of ground motion records. This suggests that the studies with aggregated post-disaster data did not in-656 

troduce an error to the shape of the fragility curves by ignoring the uncertainty in the ground motion 657 

intensity. It was also noted that due to the large number of post-disaster data, the prior information was 658 

found to have a negligible impact on the shape of the fragility curves constructed here with the exception 659 

of the collapse fragility curves for Class C buildings, associated with low probability of exceedance. 660 

Finally, the analyses also highlight the need to appropriately model the significant over-dispersion in 661 

the data (i.e., the variation between the municipalities), which is typically ignored in the literature. 662 

Hence, the use of the reference model M1 can appropriately capture the uncertainty in the damage data 663 

and provide informed predictions regarding the number of buildings likely to suffer damage in a future 664 

earthquake. This has important implications for the seismic risk assessment of the building inventory as 665 

well as for decision makers interested in informed predictions of the vulnerability of the inventory in 666 

future events.    667 
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 806 

Appendix – Ground motion intensity based on Multiple GMPEs 807 

In the main article, the results were based on selecting a single GMPE (i.e. Bindi et al [23]) to estimate 808 
the ground motion intensities of interest which was found to fit the ground motion records for the 1980 809 
Irpinai earthquake better and was found to fit the damage data substantially better than the two 810 
alternatives. A sensitivity analysis is performed here in which all three GMPEs are used to produce 811 
combined assessments of interest, under the simplifying assumption that each of them is equally credible 812 
a priori. Given the overwhelming differences between the fit of the three GMPEs, as measured by their 813 
log-likelihoods in Table 4, this sensitivity analysis can be regarded as extremely conservative in the 814 
sense that it encompasses a much broader range of scenarios than is supported by the available evidence.    815 

 The aim of this note is to determine how the combined information from the three GMPEs can be used 816 
within our analysis framework.  Some notational changes are deemed necessary in Eq.(1) and Eq.(2) in 817 
the article because each GMPE has its own function f(.), its own event-specific error φ and its own set 818 
of residual errors {εj}. Therefore, a subscript g is used to denote the values of these quantities from the 819 
gth GMPE. Eq.(1) thus becomes, for g=1,2,3: 820 

    ln , , ,  j g j j g jgx f M R S F                                                                                    (A.1) 821 

and Eq. (2) becomes 822 

   ln , , ,jg g j jx f M R S F      .                                                                               (A.2) 823 
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The absence of a g subscript on the left-hand side of Eq, (A.1) above is correct: xj is the actual ground 824 
motion, which is the same regardless of which GMPE is used. Also in this equation, the quantities φg 825 

and εjg have their own GMPE-specific variances, σinter𝑔

2 and σintra𝑔

2 say.  826 

According to equations (A.1) and (A.2), if the gth GMPE is correct then ln xj has a normal distribution 827 
with expected value ln �̃�𝑗𝑔 and variance σinter𝑔

2 + σintra𝑔

2 . Moreover, under this GMPE, and under the 828 

assumption used in models M0 to M2 that the errors {ε··} are uncorrelated between locations, the co-829 

variance between ln xj and ln xk is σinter𝑔

2 . Formally, we can write E(ln xj |g) = ln �̃�𝑗𝑔; Var (ln xj|g) = 830 

σinter𝑔

2 + σintra𝑔

2 ; and Cov (ln xj , ln xk|g) =  σinter𝑔

2 , where the notation ·|g denotes a property of a proba-831 

bility distribution conditional on the gth GMPE being correct. 832 

Now: assuming that all three GMPEs are considered equally credible a priori, then a probability of 1/3 833 
is assigned to each of them. In this case, the laws of iterated expectation and variance are applied to 834 
combine the information from all three GMPEs. In particular, the expected actual ground motion inten-835 
sity is: 836 
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The variance and covariance are, respectively: 838 
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    (A.5) 842 

To apply the framework of the main paper to this ‘multi-GMPE’ setting, it is necessary to identify ‘ag-843 

gregate’ quantities 2

inter. and 2

intra. that can be interpreted as combined estimated of inter- and intra- 844 

event variation corresponding to quantities σ𝜙
2  and σ𝜀𝑗

2  respectively in Eq. (12).  In this case, the value 845 

of Eq.(A.4) must correspond to 2

inter. + 2

intra.  and Eq.(A.5) to 2

inter. . Unfortunately, the desired quanti-846 

ties do not exist in general because the values of (A.4) and (A.5) vary between sites (they depend on the 847 

values of j and k). Nonetheless, it is not necessary to be too precise about the values of 2

inter. and 2

intra. . 848 

There are two reasons for this. First, the focus of this sensitivity analysis is on ‘very conservative’ as-849 
sumptions as noted above, a rough approximation will suffice. Secondly the estimates of the inter- and 850 
intra- variations are used to determine the parameters of the respective prior distributions (see Eq.12) so 851 

that indicative values will suffice. In view of this, 2

inter.  is determined as the average value of expres-852 

sion.(A.5) over all sites, and 2

inter. + 2

intra.  as the average value  of expression.(A.4) over all sites.   853 

Using the mean, variance and covariance of the intensity levels based on the combined three GMPEs, 854 
the reference models M0-M1 (as defined in section 3.1) are fitted to the damage data and fragility curves 855 
corresponding to ds1, ds2 and ds5 for Building Class A and C are constructed. Fig.A.1 depicts the best 856 



estimate fragility curves and the 90% credible intervals obtained by fitting M1 to damage data and in-857 
tensity levels estimated by a single GMPE [23] and the combined GMPEs [23-25]. Overall, the intensity 858 
level at the centroid of each municipality is smaller when estimated by the combined GMPEs. This leads 859 
to the best-estimate fragility curves being systematically higher than the ones based only on Bindi et al. 860 
[23]. This suggests that the combined GMPEs leads to more conservative results with both examined 861 
building classes being more vulnerable to earthquakes than the curves based on the best-fitted GMPE. 862 
It can also be noted that the differences in the width of the credible intervals for the two tested assump-863 
tions are not systematic. They appear to vary according to the damage state and building class.  864 

 865 

Fig.A.1 The data points represent the proportion of buildings of a given class (A or C) in each munici-866 
pality, which sustained damage greater or equal to a given damage state dsi. The size of each data point 867 
varies according to the total number of buildings of a given class located in a municipality. Best estimate 868 
fragility curves and their corresponding 90% credible intervals for M1 for intensity levels based on the 869 
best-fitted Bindi et al. [23] GMPE and on combining the three selected GMPEs [23-25].   870 

Table A.1: Summary of the three models used for this sensitivity study. 871 

Model Over-dis-

persion 

Uncertainty 

in X 

Uncertainty  

due to the spread of buildings  

in each municipality 

M1 x - - 

M2 x x - 

M3 x x x 

The inter-model variability on the shape of the fragility curves is examined next by explicitly accounting 872 
for the error component in the combined GMPEs as well as the uncertainty due to the spread of the 873 
buildings in each municipality. It should be noted that the most complex models used in this sensitivity 874 
analysis ignores the spatial correlation. In principle, it would be possible to relax the assumption that 875 
the intra-event errors are uncorrelated between locations for each GMPE and to account for the spatial 876 
correlation. Nonetheless, that would result in substantially more complicated expressions and, given the 877 
arguments in the preceding paragraph, it is not clear that the additional complexity is justified. A sum-878 
mary of the main characteristics of the three models used in this sensitivity analysis can be found in 879 
Tabel.A.1. A visual inspection of the fit on the reference model M1 with the more complex models M2 880 
and M3* depicted in Fig.A.2 and Fig.A.3 show that neither the best-estimate fragility curves or their 881 
90% credible intervals change significantly for M2 or M3 compared to M1.   882 

The sensitivity analysis presented in this appendix highlighted that intensity levels based on the ex-883 
tremely conservative assumption which combined multiple GMPEs, leads to significant differences 884 
when compared to the curves based on the assumption of the best-fitted GMPE. It was also shown that 885 
with regard to the inter-model differences, in neither case do the best-estimate fragility curves or 90% 886 
credible intervals change significantly for M2 or M3 compared to M1 if the multiple GMPEs were used 887 
to estimate the intensity levels. 888 

 889 

Fig.A.2 The data points represent the proportion of buildings of a given class (A or C) in each munici-890 
pality, which sustained damage greater or equal to a given damage state dsi. The intensity levels are 891 
estimated by combining the three selected GMPEs. The size of each data point varies according to the 892 
total number of buildings of a given class located in a municipality. Best estimate fragility curves and 893 
their corresponding 90% credible intervals comparing M1 vs M2 are also presented. 894 

 895 

Fig.A.3 The data points represent the proportion of buildings of a given class (A or C) in each munici-896 
pality, which sustained damage greater or equal to a given damage state dsi. The intensity levels are 897 
estimated by combining the three selected GMPEs. The size of each data point varies according to the 898 
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total number of buildings of a given class located in a municipality. Best estimate fragility curves and 899 
their corresponding 90% credible intervals comparing M1 vs M3 are also presented. 900 
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