
Towards Peer-to-Peer Content Retrieval Markets:
Enhancing IPFS with ICN

Onur Ascigil
University College London

o.ascigil@ucl.ac.uk

Sergi Reñé
University College London

s.rene@ucl.ac.uk

Michał Król
University College
London/UCLouvain

michal.krol@uclouvain.be

George Pavlou
University College London

g.pavlou@ucl.ac.uk

Lixia Zhang
UCLA, USA

lixia@cs.ucla.edu

Toru Hasegawa
Osaka University

t-hasegawa@ist.osaka-u.ac.jp

Yuki Koizumi
Osaka University

ykoizumi@ist.osaka-u.ac.jp

Kentaro Kita
Osaka University

k-kita@ist.osaka-u.ac.jp

ABSTRACT
In the current Internet, content delivery, e.g., video-on-demand
(VoD), at scale is associated with a large distributed infrastruc-
ture which requires considerable investment. Content Providers
(CPs) typically resort to third-party Content Distribution Networks
(CDNs) or build their own expensive content delivery infrastruc-
ture in order to cope with the peak demand and maintain sufficient
quality-of-service (QoS), while Internet Service Providers (ISPs)
need to overprovision their networks. In this paper we take a first
step towards designing a system that uses storage space of users
as CDN caches and deliver content with sufficient (i.e., CDN-like)
quality while rewarding users for their resource usage as in a con-
tent retrieval marketplace. As a possible candidate for such a system,
we consider recent P2P storage and delivery systems that have
adopted new mechanisms such as rewarding of useful work (e.g.,
storage) while ensuring fairness and accountability through cryp-
tographic proofs. In this paper, we experiment with the popular
Interplanetary File System (IPFS) and investigate its performance in
delivering VoD content locally within an ISP. Our findings suggest
that operating IPFS (operating on top of IP) has its performance
limitations and complementing it with an ICN network layer can
significantly improve the delivery quality. We then propose and
compare several forwarding strategies for ICN which can efficiently
route requests and balance the load between peers with limited
uplink resources.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architec-
tures; • Networks→ Routing protocols;

1 INTRODUCTION
Global Internet traffic is rapidly increasing and is expected to in-
crease threefold over the next five years [3]. The driving force
behind this growth is Video-on-Demand (VoD), which is expected
to double by 2021 [3] and constitutes nearly 70% of the Internet
peak traffic [4]. Because VoD content requests are by nature asyn-
chronous, they involve unicast delivery by the content providers
(CPs) to each individual end user.

Although CPs can manage the unicast delivery of VoD traffic
through their in-house server and caching infrastructure during
off-peak hours, they either resort to third-party Content Distribution
Networks (CDNs) or build their own content delivery infrastructure

in order to cope with the demand and continue providing sufficient
quality-of-service (QoS) to user applications during peak times [9].
VoD delivery at scale requires a substantial investment for a large,
distributed CDN infrastructure in order to ensure timely delivery.

CDNs typically deploymassively distributed cache servers, where
content is available at many locations, and they dynamically resolve
(i.e., map) content requests to appropriate cache servers. Although
ISPs benefit from decreasing transit costs resulting from reduced
peak time upstream traffic volumes, they struggle to cope with
rapid traffic shifts caused by the dynamic server selection policies
of the CDNs, making it difficult to perform traffic engineering [36].
Although major CDNs often use measurements of network condi-
tions within an ISP, the resolution can introduce areas of congestion
within the ISP network. Furthermore, CPs with popular content
are reluctant to deploy third-party CDNs, because the usage-based
payment model (i.e., per-byte delivery charge) of the CDNs can be
extremely costly for such CPs.

At the same time, peer-to-peer (P2P) storage and delivery is
making a come back with the added features of content integrity,
incentives (i.e., through rewarding), fairness in participation, trust
establishment, etc.which the earlier P2P systems lacked. Nowadays,
a plethora of decentralised P2P storage networks have emerged
such as InterPlanetary File System (IPFS) [17], Storj [28] or Maid-
Safe [29]. This is a result of advances in cryptography, ensuring fair
exchange [21], calculating incentives reliably [18, 27], and enabling
distributed payments through a blockchain [34]. As an alternative
to the increasingly centralised Internet services that use back-end
clouds (e.g., used for content storage) [14] [41] [23] [20], these new
solutions provide a distributed sharing economy marketplace.

In this paper, we investigate whether P2P content delivery within
individual edge ISPs—i.e., that is, content downloaded or pre-fetched
by users are stored locally at user premise devices (ideally always-
on equipment such as access points) and on-demand delivered to
the users of the same ISP as shown in Fig. 1, where user C retrieves
VoD content chunks from nearby users A and B—can be a viable
replacement of CDN caches. We consider IPFS as the representative
of such P2P storage and delivery systems due to its popularity. Our
ultimate goal is to design a content retrieval market that incentivises
both storage and high-quality (i.e., timely) delivery and provides
a comparable performance with a CDN service. In addition to the
security and incentivemechanisms, IPFS uses an information-centric
approach to storage and retrieval through self-certifying names
for content. Also, IPFS together with several extensions [18] can

Content&Producer

R

R
D

D

R

Cache(storage

D
R

VoD content(chunk
Request(for(VoD chunk

Edge ISP

D

D

R

R
R

D

D
D

R

C

A

B

R D

Figure 1: A P2P storage and content retrieval system.

ensure that rational users act truthful and not misbehave when
providing content storage.

IPFS works as an overlay and can work on top of different under-
lying networking protocols, such as TCP, UDP or webRTC. How-
ever, being an application-layer protocol operating on top of an
endpoint-centric IP, IPFS is limited to an application-level resolution
mechanism and unicast communication. In contrast, Information-
Centric Networking (ICN) solutions like NDN [45] and CCNx [1]
can reduce network load by natively delivering content from cached
copies of the downloaded content at the end users.

Considering VoD as the use-case, our initial finding is that IPFS
creates extra overhead for the ISPs in terms of duplicate packet
delivery and fails to provide high-quality delivery mainly due to its
overlay nature. Furthermore, its DHT-based resolution adds extra
latency which can be a significant overhead especially with small to
medium size content transfers. Consequently, we propose to exploit
ICN as the delivery subsystem where the ISPs have full control over
the traffic. The main challenge is to design appropriate routing and
forwarding mechanisms that can scale to a large number of content
and provide load-aware routing strategies which balance the load
among a pool of users with limited uplink bandwidth resources.

The remainder of the paper is organised as follows. We first out-
line the desirable features of a content retrieval system in Section 2.
Then, we provide a comparison of IPFS and Named-Data Network-
ing (NDN) architecture [45] as the representative ICN architecture
in Section 3, including an initial evaluation of NDN and IPFS serv-
ing as a P2P storage and retrieval system using Docker containers
(Section 4). In Section 5, we discuss how to enhance our P2P content
retrieval market solution by combining IPFS and NDN. Finally, in
Section 6, we provide simulations to compare several in-network
name resolution mechanisms using a VoD scenario and evaluate
the quality experienced by users in terms of playback buffering
occurrences and overhead of the traffic on the local ISP’s network.

2 A P2P CONTENT RETRIEVAL SYSTEM
In this section we describe the main requirement for a P2P Content
Retrieval System implementation:

• Data Centric: In a content retrieval system, users do not
care from where they receive the content, but rather focus
on the content itself. The underlying system should reflect
this approach in the design, providing content retrieval with-
out the limitations of host-based networking, such as the
inefficiencies of circuit-based retrieval, and allowing asyn-
chronous data retrieval from any peer.

• Scalability: The system can consist of a large number of
user and data items. Therefore, the proposed solution must
scale well with increasing network size, providing data on
time no matter how many nodes participate in the network
or how many data items can be requested.

• Scattered content: Users fetch different files from the net-
work and can decide to host the files themselves. In contrast
to NDN producers being responsible for specific prefixes, P2P
network users posses data under multiple prefixes fetched
from different producers. The network must be able to per-
form efficient lookup operations without taking advantage
of prefix aggregation.

• Path Efficiency: Linking with the data-centric requirement,
the content retrieval network should provide optimal paths
and deliver content from the closest available location to
reduce the overhead.

• Load Balancing: In contrast to the cloud or massively dis-
tributed CDNs, users in a P2P network have limited uplink
resources and can be easily overwhelmed with requests, as
shown in Figure 1, with thin pipes for uplink and fat pipes
for downlink. The network should be able to forward re-
quests to different hosts and spread the load between them,
avoiding congestion at end-users.

• Resilience to Network Dynamics: The system can experi-
ence high number of users continuously joining and leaving
the network. Furthermore, hosts can often delete or down-
load new files and the network must be able to efficiently
handle those changes.

• Decentralisation: System governance should be evenly
split between all the participants without privileged enti-
ties. Furthermore, the architecture can not introduce a single
point of failure and should provide redundancy for all the
required system components.

• Security: When retrieving from anonymous peers, users
must be able to reliably verify the integrity of the received
content. Malicious users may also launch a wide variety
of attacks, including Denial-of-Service (DoS), to decrease
network performance. The system should be able to mitigate
those attempts and reduce their effectiveness.

• Incentives: To create a sustainable environment, nodes com-
mitting their resources to share content with others should
be rewarded by the network (e.g., by higher download prior-
ity). At the same time, selfish or malicious users should be
penalised or suffer from reduced rewards.

3 ARCHITECTURAL OVERVIEW OF IPFS
There are significant differences between NDN and IPFS from an
architectural point of view. While IPFS is an overlay solution that
resides in the application layer and uses IP as its underlying network

architecture, NDN is a network-layer solution aimed at completely
substituting IP even though it can work over IP for incremental
deployability.

We believe that NDN and IPFS can complement each other in
some aspects. For instance, using IP as the underlay network tech-
nology results with performance limitations that NDN can solve.
Currently, IPFS needs to resolve data names to endpoint-centric,
location-dependent identifiers, making the protocol translation in-
efficient and adding a significant delay(Section 4). In contrast, NDN
does not need to resolve names due to its inherent name-based
routing. On the other hand, IPFS can scale better using its DHT res-
olution since routing information is spread across multiple nodes.

In this section, we provide a design comparison of NDN and
IPFS, analyse their ability to work together and their suitability to
provide a robust peer-to-peer content delivery system.

3.1 Naming
Both architectures embrace an information-centric approach, nam-
ing data and implementing pull-based communication model. How-
ever, both naming schemes differ significantly. IPFS uses flat names
consisting of self-certifying content hashes as identifiers for con-
tent objects. Such an approach makes content objects immutable,
i.e., changes to the contents of a data object results in a new object
with a different Content ID (CID). At the same time, one can easily
detect content duplicates to optimise the usage of the storage space.

In contrast, NDN uses hierarchical identifiers, but it allows the
specific naming convention to be left to the applications as long as
it is coherent with the security requirements, i.e., content objects
are signed by their producers (Section 3.3). The flexibility of NDN
names means that self-certifying IPFS names may be used with
specific prefix (i.e., /ipfs/<content_hash>).

Name lookup and versioning: Both IPFS and NDN requires
consumers to obtain the content names from a trusted source. IPFS
provides a resolution mechanism where human readable names can
be mapped to CIDs through DNS. Also, a separate InterPlanetary
Name Space (IPNS) system enables each user to store mutable,
signed records (as opposed to immutable content objects) under
/ipns/<NodeId> where NodeId is the hash of the user’s public key.
Such mutable records are addressed by the hash of public keys,
and among its other uses, they are especially useful for storing
up-to-date CIDs of the latest versions of dynamic contents. The
authenticity of the mutable records can be verified through the
user’s public key. However, IPFS can still struggle with dynamic
content, as both DHT and DNS can be slow to update. On the other
hand, NDN can include a version number as a component of the
names and provides a DNS-like name resolution service to obtain
names [11].

Collections: Apart from fetching single files, a P2P storage
should enable downloading collections of files and define relations
between them. IPFS implements collection files following UNIX
filesystem structure and allows requesting content using relative
paths within a tree-like structure (i.e., /ipfs/<collection_hash>/foo/
bar/file.mp3). Once downloaded, the collection file contains a list of
all the files in the collection together with their hashes. Users can
then use this information to recursively request missing content.
Such an approach, allows files to be stored once, but referenced by

multiple collections under different relative names. However, once
created, a collection cannot be modified, so all the collection files
must be present when description is built.

In NDN, collections can be realised using naming conventions
(i.e., assigning names with increasing sequence numbers to video
frames) or described in manifest files[33, 42] containing lists of files
in the collection as well as their checksums. However, while IPFS
collections are just regular files, they can be directly requested from
the network without additional support from NDN and interpreted
in the application layer.

3.2 Routing and Forwarding
A P2P content retrieval system requires a way to route requests for
contents to the endpoints who possess the contents in their storage.
IPFS users collectively maintain a Kademlia Distributed Hash Table
(DHT) [32], which maps each content name to a set of end-points.
A user requesting a file must first resolve its name (i.e., CID or
mutable link) by querying the DHT. For fetching content, IPFS
implements the BitSwap protocol which is inspired from BitTorrent.
It is a message-based protocol with each message containing a list
of requested chunks (i.e., want list) or blocks of data. The DHT
lookup reduces the number of information stored at each node, but
suffers from potentially slow lookup speeds which increases with
the number of nodes n —O(loд(n))—.

In NDN, request packets (i.e., Interest) carry the name of the
desired content chunk which are then routed to any node who has
the requested data. Interests leave “breadcrumb” state as they are
forwarded, and such state is stored in the Pending Interest Table
(PIT) of the forwarders. The Data packets containing the requested
content chunk simply follow the breadcrumbs back to the origin
of the request, following the corresponding Interest packet’s path
in reverse. Through the breadcrumb state in their PITs, the NDN
forwarders can natively support multicast, and also store Data
packets in their (in-network) caches to directly serve content to
users.

NDN forwarders store forwarding information, provided by the
routing protocols, in their FIB tables, and the forwarding involves
longest prefix match of the content name in the Interest packets
against the name prefixes in the FIB. While such an approach re-
moves the lookup delay, it suffers from routing scalability problems
because routers (in the default-free zone) must store information
about all the available contents with size d . However, the hierar-
chical naming allows some aggregation of names (e.g., /google to
represent content produced by Google) to reduce routing table
sizes. NDN also allows a secure mapping of content namespace
to a separate namespace containing forwarding hints (e.g., /att/
north-east-PoP) [13].

The routing scalability problem of NDN is evenmore pronounced
in the P2P data distribution scenario with users providing stored
content because the routing system needs to keep track of the
stored content at the users. While the namespace mapping solution
is applicable to this scenario, the initial resolution through NDNS
also introduces additional lookup delays. When delivering Inter-
ests, stateful forwarding strategies are able to monitor dataplane
performance (e.g., current network load) and route the Interests
accordingly [43]. This is an important feature in a P2P scenario

where the producers typically have limited resources and upload
bandwidth. When operating with NDN, IPFS would not require
to maintain a separate mapping between content and endpoints.
However, DHT may still prove useful in providing forwarding hints
for the network layer (Section 5).

3.3 Security
After fetching a file, users need to verify the integrity of the fetched
files. Self-certifying names of IPFS allows straightforward content
verification. The security model assumes that users are able to
fetch the content name in advance from a trusted source. Such an
approach, while simple, may be problematic when dealing with
dynamically generated content and live streaming. Furthermore,
file collections are secured with a Merkle DAG following the Git
model. Users can thus download a single file from a collection using
a single hash value and still be able to reliably verify the content.
Both the file and sibling hash can be fetched from untrusted sources
as long as the root of the tree is trusted.

In NDN, each data chunk includes a digital signature from its
producer. When properly configured, users have trust anchors and
are able to automatically download certificates of signing producer
and decide whether to trust the content. Such an approach solves
the problem of dynamically generated data. When maintaining IPFS
names in the network layer, the application layer will still be able to
keep its current security model based on self-certifying identifiers
with NDN providing an additional layer of security. Furthermore,
NDN provides mechanisms to manage keys and automatically boot-
strap trust relations between nodes [44].

In a P2P scenario, NDN routing protocols need to advertise con-
tent stored at the users. However, untrusted users advertising con-
tent through NDN’s control plane is a cause for concern because
malicious users can advertise arbitrary content names that they do
not possess. Consequently, NDN routers do not accept advertise-
ments from untrusted nodes. This is an issue for the NDN routing
system which requires separate mechanisms to ensure that users
advertise only the content that they possess.

3.4 Incentives
For the P2P system to function properly, peers must commit their
resources and provide services for others (i.e., share files). On of
the main issue is thus providing incentives to motivate users to par-
ticipate. When considering file exchange, numerous solutions have
been proposed including centralized and decentralised reputation
systems [30].

Filecoin [27], is a system built on top of IPFS that uses blockchain
to reward users for storing files. It uses Proof of Replication [18]
to cryptographically prove that given file was stored by user for
a specified amount of time. However, while file storage can be
proved, it is currently impossible to prove a file transfer between two
untrusted parties. It means, that a malicious user can store files,
claim rewards, but can either refuse to share them with other or
dedicate insufficient resources when doing so. Such behaviour is
also difficult to detect by IP routers without costly deep packet
inspection [26].

On the other hand, stateful NDN routers can radically improve
network ability to monitor and keep users accountable for their

bandwidth participation. This can possibly happen through a Sat-
isfied Interest Table that we propose in Section 5, which contains
arrival times of both Interest and the corresponding Data packets
in order to determine the faulty party when content is delivered
with unacceptable delay. Such information can be further subitted
to users-reward systems [25]. However, this is a complex problem
and we leave a detailed investigation of an accountable delivery
mechanism for future work.

3.5 Quality of Service
The concept of Quality of Service is still an open discussion in
content based networking. Particularly, in NDN, the hop-by-hop
forwarding can allow a DiffServ QoS model[24], either prioritising
specific data in the cache (that can be differentiated by name[19, 37])
or by adapting the forwarding strategy to the desired QoS scheme.
However there are differences between NDN and IP, such as i) no
end-to-end flow, ii) the use of caches, and iii) the multi-destination,
multi-path forwarding, which makes it difficult to apply the same
end-to-end QoS concepts, such as bandwidth allocation or end-to-
end latency.

Similarly in IPFS, it is difficult to ensure QoS because the data
comes from unknown sources from arbitrary locations in the net-
work. Moreover, there is no control over the delivery at the network
level. To the best of our knowledge, the only way IPFS can provide
some sort of QoS is by using Coral [22], which is a variation of the
Kademlia DHT, called Distributed Sloppy Hash Table (DSHT) that
uses clustering for latency-optimized hierarchical indexing. Coral
successfully clusters nodes by network (latency) diameter, ensuring
that nearby replicas of data can be located and retrieved without
querying more distant nodes.

4 PRELIMINARY PERFORMANCE
COMPARISON

In order to better understand the ability of NDN and IPFS to serve
as a P2P storage and delivery network for VoD, we performed a set
of initial experiments using ns-3 in emulation (real-time) mode [7].
For more realistic results, we attach docker containers (using [8])
running the production code for both projects, using IPFS version
0.4.20 and NDN Forwarding Daemon version 0.6.6. This initial
evaluation consists of a simple star topology with ten peripheral
nodes and a hub node, where one of the peripheral nodes act as
the main server and the rest are clients as shown in Fig. 2. All the
links have a bandwidth of 10 Mbps and have a propagation delay
of 2 ms.

For the experiments, we emulate a VoD HTTP Live Stream-
ing (HLS) application. Clients first download a M3U8 playlist file
containing the video segments information, and then they start
progressively fetching each video segment in the list until the play-
back buffer is full (we use 30 sec playback buffer). Once the video
is consumed and there is less than 30 seconds of video in the buffer,
more segments are requested. We use a 480p, 10-minute long test
video [2] with a size of 27.98 MB. Users do not start all at the same
time; there is a randomly generated gap of 5 to 10 seconds between
subsequent users.

To evaluate NDN, we used the Network Forwarding Daemon
(NFD) [5, 6] with ndn-tools ndnputchunks and ndncatchunks for the

IPFS NDN

Naming Content hash Hierarchical name
Human-readable names No Yes
Name Lookup and Versioning IPNS + DHT Naming Conventions + NDNS
Collections Collection file Naming convention or Manifest
Routing DHT (Kademlia) FIB + NDNS
Routing Table Size O(d/n)) O(d)
Lookup speed O(loд(n)) O(1)
PDU Bitswap Messages Interest + Data
Security Merkle DAG Signatures

Client'with'cache

VoD server

Figure 2: Preliminary evaluation setting.

content publication and retrieval. Both tools send Interests using
the TCP-Cubic algorithm to control the window size. Once a client
receives an HLS video segment from the server, it publishes the
received content in the hub node so that an additional route for that
segment, which points to the user that downloaded the segment, is
added for future requests. We evaluated NDN using three different
forwarding strategies including NCC (CCNx forwarding strategy),
best-route and ASF (Adaptive Smoothed RTT-based Forwarding
Strategy) [12]. To better observe the distribution of requests be-
tween nodes, we disable NDN caching on the central node.

For IPFS, we use the default Go implementation1 and set up
one node that previously adds the video segments to the network
(acting as a server) while the rest of the nodes act as consumers.
We keep the default configuration file, but we replace the public
DHT bootstrap nodes with the node serving the video.

Figure 3(a) presents the average latency of what we call resolu-
tion time, classified by segment sizes (i.e., the elapsed time between
the client requesting the video segment and actually starting to
download the file). In IPFS, we measure the time necessary to re-
solve the hash name of the file until it is added to the want list. In
NDN, we measure the time between sending of the initial interest
and the receipt of the first chunk of the segment, since there is no
name resolution. In contrast, with IPFS we clearly observe one of
its limitations in terms of performance. IPFS needs to convert the
collection hash to the hash name of each IPFS chunk through a
DHT lookup. In case the video segment fits into one chunk (IPFS
chunk size is 256 KB), no further resolution is required (and this
initial resolution can be done only once for the whole video and
cached locally). However, when the video segment is larger than
one chunk, an additional recursive lookup is necessary to obtain

1https://github.com/ipfs/go-ipfs

all the identifiers for the chunks. In the figure, we observe signifi-
cantly smaller lookup times for chunks smaller than 200 KB, where
the resolution time is equivalent to NDN. On the other hand, for
chunks bigger than 200 KB, the resolution latency is on the order of
300-400 ms. The resolution latency is not a significant issue for VoD
which performs resolution once in the beginning, but it can have
a negative impact for live video content, which requires repeated
resolution for upcoming segments.

In Figure 3(b), we observe the average throughput classified by
segment sizes. In this figure, we observe the main issue of IPFS
which is overhead on the network. The average throughput ob-
tained using IPFS is close to a one-tenth of the NDN’s. This is
mainly because of the congestion created by IPFS: with IPFS, the
receivers have no control of what they receive from peers—users
simply register their interest in files, and the peers having the files
send it out without knowing if the user already received the file
from other peers, following the BitSwap protocol. Duplicate packets
are later discarded at the user. We observe that this leads to unnec-
essary congestion which is against ISP’s interest in accommodating
p2p delivery for reducing the traffic in their networks.

In our evaluation, we counted a massive, 15612 duplicated chunk
arrivals at the user, when approximately 1500 unique chunks are
requested. This means on average nine unnecessary duplicates per
chunk. This would impose a high overhead on the network. Al-
though IPFS can parallelise content downloading once the lookup is
done from multiple peers (only files bigger than one chunk can ben-
efit from it), we argue that the performance would be significantly
better using a more conservative delivery approach.

In Figure 3(c), we observe the load distribution among the nodes
in the topology. IPFS is the only solution that uses all the nodes to
distribute the load, even though the selection of the producers is
completely random. Because most of the received packets are later
discarded (i.e., duplicates), most of the content used in the playback
are still provided by the first node. NDN achieves a different load
distribution depending on the forwarding strategy used. The best-
route approach is the one that offloads the traffic most out of the
video server. However, this strategy substitutes the original route
to the server once with the route to the first user that downloads
the content and keeps the latter route throughout the experiment
because the cost of the path between all the users are equal. The
ASF strategy balances traffic based on RTT. Because there is no
server congestion in these experiments and there are not many
RTT changes, we observe that the strategy uses only two users.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

0
-1
0
0

1
0
0
-2
0
0

2
0
0
-3
0
0

3
0
0
-4
0
0

4
0
0
-5
0
0

5
0
0
-6
0
0

6
0
0
-7
0
0

T
im
e

 (
m
s
)

Segment Size (bytes)

IPFS
NDN-BestRoute

NDN-asf
NDN-ncc

(a) Resolution time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0
-1
0
0

1
0
0
-2
0
0

2
0
0
-3
0
0

3
0
0
-4
0
0

4
0
0
-5
0
0

5
0
0
-6
0
0

6
0
0
-7
0
0

T
h
ro
u
g
h
p
u
t
(K
b
p
s
)

Segment Size (bytes)

IPFS
NDN-BestRoute

NDN-asf
NDN-ncc

(b) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7 8 9 10

L
o
a
d

 (
%
)

Node #

IPFS
NDN-BestRoute

NDN-asf
NDN-ncc

(c) Load distribution

Figure 3: Preliminary results

The NCC strategy keeps most of the traffic in the original video
server, but utilises more users than ASF.

To sum up, NDN can be faster and more efficient than IFPS for
VoD content retrieval, because dealing with content distribution at
network instead of application level allows better control of load
distribution and congestion. Furthermore, NDN can use PIT aggre-
gation and caching to reduce the number of bytes transferred in the
network. However, the amount of FIB state at the forwarders and
the need for the routing protocol to advertise the stored segments
at the untrusted users are important concerns. More importantly,
our preliminary results demonstrate the need for a better strategy
to distribute the load between the serving nodes than the inspected
forwarding strategies, ideally retrieving content from the closer
node but without creating congestion. Thus, in the following we
explore different solutions for the aforementioned issues.

5 A P2P CONTENT STORAGE AND
RETRIEVAL SYSTEM USING ICN

NDN [45] can provide a more sophisticated per-hop forwarding
behaviour than IP through its use of soft-state per named packet.
More specifically, NDN forwarders enforce a routing symmetry be-
tween Interest and the corresponding Data packets, which enables
per-Interest dataplane performance measurements which can be
used to adapt future forwarding decisions. One example is the use
of round-trip time (RTT) measurements on the forwarded Interest
packets by the ASF forwarding strategy.

The default forwarding behaviour in IP is to simply route Interest
packets along the shortest paths with minimal load-balancing mech-
anisms (e.g., Equal-cost Multi-Path routing) to the closest producer
with the assumption that producers have sufficient bandwidth re-
sources to deal with whatever network throws at them in terms of
requests to process and respond to. This assumption, however, does
not hold in the case of P2P scenarios as users typically have limited
uplink bandwidth resources2 as shown in Fig. 1. Overwhelming
users with excessive amount of Interests delays Data packets in
respond to Interests, and consequently, the quality of the delivery
suffers, e.g., VoD viewers can experience buffering events due to
excessive jitter. The resolution also needs to consider the overhead

2Netflix recommends 25 Mbps bandwidth for Ultra HD videos, which is higher than
the upstream bandwidth capacity provided by majority of fiber subscriptions in the
United Kingdom [10]

of the traffic on the ISP network as well. Ideally, a load-aware res-
olution mechanism should distribute the content requests across
users within an ISP and efficiently pool the uplink resources of the
users providing content.

A related challenge is the awareness to up-to-date locations of
cached content stored at the users. In a decentralised scenario with
untrusted users sharing their cached content, one can not allow
information on named content locations (i.e., user locations) to
be advertised in the control plane without restrictions. Otherwise,
a user could flood the network with advertisements of contents
that are not available at the user. This could result with a large
amount of incorrect state to be maintained by the resolution system
and Interests to be incorrectly forwarded to attackers. Ideally, the
resolution system, before advertising its location, should verify that
a piece of content is stored at or recently delivered to that location.

Another important challenge for the name resolution is the scal-
ability. In particular, keeping track of the availability of chunks
within the user caches for a large number of content catalogue re-
quires significant amount of state to be maintained, even in the case
of a single ISP. Also, users frequently joining and leaving can re-
sult with large number of updates to the resolution state. However,
users typically download content in their entirety and a resolu-
tion mechanism can take advantage of this. Ideally, the resolution
mechanism should limit forwarding state to at least content-level
information (especially at the “core” routers of the ISP where ma-
jority of the traffic flows) rather than chunk-level information in
order to achieve scalability.

Given the above challenges with the name resolution in a P2P
content retrieval system for an ISP, we consider several possible
solutions based on stateful and adaptive forwarding mechanisms
of NDN. Our first solution is based on a Satisfied Interest Table
(SIT) [39] which contains names of recently forwarded (and ideally
verified) content chunks together with the interfaces where they
are forwarded to. In this solution, forwarders near the end-users
monitor delivery of content and notify the rest of the nodes of the
successful content deliveries. Our second solution is based on a
directory service under the control of the ISP such as NDNS [11].

Before we describe these solutions in detail, one final remark
is on the privacy of the system. An important feature to keep in
mind is to protect consumer and producer privacy in a collaborative
content retrieval system. Because Interests do not contain source
information, consumer information (i.e., identifier and location) is
largely preserved. The main challenge is to keep producer privacy.

In our solutions, the resolution information contains a name for a
region rather than the exact producer location and identity.

5.1 Adaptive Forwarding Strategy
In this solution, edge or access routers, which are directly attached
to users, store the recently satisfied PIT entries in their SIT tables.
These entries are periodically processed by the forwarders and
used to compute forwarding state. The forwarding state contains
name to interface mappings together with a count of the number of
chunks that have been forwarded along each interface. We assume
a convention of naming content chunks in the suffix of the name
with numbers starting from one, and the name prefixes constitute
the content names (e.g., name of a video). The content names can
be either IPFS names or human readable names. In the former case,
an IPFS name for an NDN name can be stored at and obtained from
the DHT of IPFS.

As an example, SIT entries for a content name and particular
interface for first through tenth chunks are summarised in the FIB
table as the name mapping to ten chunks and the corresponding
interface. In case of missing chunks in the SIT, i.e., user downloads
a subset of chunks of a content with missing pieces, no forwarding
information is added to the FIB as it is not downloaded fully; how-
ever, we expect this to be rare as users typically download video
content, which is the focus of this study, from the beginning.

FIB entries of the edge routers are periodically advertised within
an ISP network using an intra-domain routing protocol, and the rest
of the nodes compute their forwarding entries accordingly. In the
advertisements, edge routers place their own location associated
with the set of content names and chunk counts rather than the
users in order to maintain producer anonymity. The computed
chunk count for a content name and interface is the largest of
the counts associated with all the advertisements for the content
received over the interface.

We assume that the edge routers perform a content integrity ver-
ification (i.e., signature verification in the case of human-readable
NDN names or a cheaper hash computation in the case of self-
certifying IPFS names). This solution, therefore, ensures that a
content is downloaded from a user before advertising its location
and have network advertise their location instead of untrusted
users.

We consider two load-balancing mechanisms: one based on PIT
entries to infer the load on the nearby producers, and the other
based on RTT measurements. In this approach, the measurement
state is also used for the update of SIT entries upon producers
leaving the network (e.g., going offline) or replacing content with
recently downloaded one in its storage. In this case, the measure-
ments and PIT timeout events will trigger removal of entries.

A down-side of this approach is the periodic updates that need
to be sent to the entire ISP network and having the core routers
maintain per-content forwarding state which can incur a large
memory footprint. The SIT table can be implemented as a cache
with limited size containing satisfied PIT entries and can be stored
as part of the in-network cache of each forwarder. Therefore, the
SIT table does not incur significant additional overhead in terms of
memory footprint. In this approach, the self-certifying (IPFS) nam-
ing scheme are preferable to hierarchical names for its lightweight

hash-based integrity verification for content as opposed to a more
heavy-weight signature-based content integrity verification.

5.2 Directory-based Resolution
We extend the previous approach with an indirection-based one
in order to achieve better scalability. In this approach, content
names are registered along with a forwarding hint to a directory
service such as NDNS. The registering operation can be done by the
producers themselves. However, in this case we assume that users
will provide a proof that they have the file stored, i.e., Proof-of-
Replication [18], before they are allowed to register in the directory.
We borrow the Proof-of-Replication solution of IPFS project where
a zero-knowledge proof is composed by the users and verified by
the directory system during registry.

In order to achieve producer anonymity in a loose sense and per-
form load-balancing, the forwarding hints for users are designated
as in-network location (i.e., forwarder) names which are at most
few hops away from the users. We assume that users will be able to
obtain forwarding hints associated with their own locations during
a bootstrapping phase by simply sending an Interest containing
a special name, e.g., /forwarding_hint [13], to their first-hop for-
warders. The name resolution in this approach involves obtaining a
forwarding hint and placing the hint in the Interest. The forwarders
simply route the Interest to the location identified in the hint. From
this point, the SIT state maintained at edge forwarders perform
forwarding directly on the name of the content. We assume that the
ISP network is divided into a small number of edge regions in which
forwarders compose their forwarding state by observing satisfied
PIT entries. Once an Interest reaches an edge region, the forwarders
perform load-balancing to distribute the Interests among all the
available producers.

6 EVALUATION
In this section, we evaluate in-network resolution and directory-
based solutions in terms of their load-balancing performance using
the Icarus simulator [38]. Icarus is a packet-level caching simulator
for ICN architectures. We first describe the setting and then discuss
the results.

6.1 Evaluation Setting
Application: We consider VoD player as the application running
on the end users. We consider a scenario where user applications
consume videos from a catalogue of size 100, where each video
consists of 10K chunks. We fix the number of videos to 100 in order
to limit the duration of simulations. We assume that each VoD
chunk contains eight frames of a video and they are consumed by
the applications at a rate of 24 frames per second (as in HD content)
while playing the video3. We consider different playback buffer
sizes in the experiments with a default of five seconds (120 frames).

Topology: We perform simulations in an ISP topology, i.e.,
Tiscali from Rocketfuel dataset with 240 nodes. 79 of the 240 nodes
have a degree of one, and we designate these nodes as access nodes
and attached ten end users to each one of those nodes. Five routers

3Wemake certain simplifying assumptions such as no rate-adaptation at the consumers
and video is transmitted in raw form as opposed to an encoded form that transmits
the difference of subsequent frames.

that have the highest connectivity are designated as border routers.
We assume that the ISP topology links have infinite bandwidth,
while the end users have a limited upload bandwidth which can
serve 20 chunks per second4. We assume that by default the network
does not have a (in-network) cache infrastructure and relies solely
on P2P content retrievals from user caches.

Workload and Storage: The simulator randomly selects 10
nodes out of 790 end-users who are not currently playing a video
each second to initiate the downloading and playing of a video.
Each user plays at most one video at a time and stores at most
two full videos to share with others, 20K chunks. Eventually, all
end-users are viewing videos simultaneously and collaboratively
upload chunks to each other. The distribution of video popularity is
assumed to be of Zipf type with the default exponent value chosen
as 0.7. The simulations continue for one hour after a warm-up
period of 15 minutes.

Content Placement and Caching: We place a stable content
producer for each VoD content to a randomly chosen border router.
The producers are assumed to be cloud providers with an RTT of
300-800 msecs.

6.2 Performance Metrics and Strategies
Our evaluation is based on the following metrics:

• Average number of buffering events: This metric mea-
sures the quality-of-experience (QoE) of the users viewing a
video. It counts the average number of buffering events (i.e.,
playback disruptions) per VoD content download. The count
excludes the initial buffering event of each stream during
which the video is not yet played.

• Overhead: This metric measures the overhead of the VoD
retrievals on the ISP network in terms of the average hop
counts traveled by data as a response to an interest.

• Percentage of downloads from peers: The ratio of VoD
chunk requests that are satisfied from the peers (i.e., end
users) as opposed to the external producers (e.g., cloud).

We present the performance of the following forwarding strate-
gies:

• Shortest-path: This is the baseline strategy which simply
routes Interests to the closest producer (peers) without using
any measurements of the load on the producers similar to
NDN’s best-route forwarding strategy. In the case of multiple
peers with equal distance, the strategy picks one of them
using a round-robin mechanism.

• Optimal: This forwarding strategy schedules video chunk
requests at the closest producer that can meet the playback
deadline of the requested chunk. The strategy has the the
knowledge of both i) instantaneous load on all producers
and ii) the arrival time of already scheduled requests on each
producer. This strategy avoids playback interruptions while
achieving a high cache hit rate and low overhead on the
network.

• Adaptive: In this strategy, the routing use per-Interest RTT
measurements to estimate the load on each producer. The
first-hop access nodes (i.e., at the consumer-side) make a

4Each chunk is of size max IP packet 64KB and contains eight frames of HD video
content.

routing decision and attach a forwarding hint on the Inter-
ests. The forwarding hint is the name of the access node of a
producer (i.e., at the producer-side). The nodes prefer closer
(i.e., based on the number of hops) nodes that can meet the
playback deadline based on the past measurements and rout-
ing information (i.e., hop distance) . Once the Interests arrive
at the producer-side access node, a producer is selected (if
there is more than one producers) based on the current load
of the producers inferred by the amount of (unsatisfied) PIT
state to each producer.

• Directory-based: In this strategy, consumers obtain for-
warding hints for a set of producers from a directory service,
i.e.,NDNS. During the initial buffering phase, consumers ran-
domly select a peer for each Interest and observe the RTT
resulting from the arrival time of the corresponding data. We
ensure that at least one of the chosen peer is the external pro-
ducer with unlimited bandwidth resources. Once the initial
buffering phase is over, the consumer selects peers for each
request whose RTT can meet the playback deadline based
on the observed RTTs per peer. The network simply routes
Interest packets to the given forwarding hints of producer-
side access nodes. Then, the access node at the producer-side
forwards the Interests to a producer according to its SIT ta-
ble. If there are more than one producer with the requested
content, then the access node randomly selects a producer.

6.3 Results
In this section, we investigate the impact of i) size of playback
buffer, ii) size of in-network caching, and iii) content popularity on
the performance of the shortest-path, directory-based (e.g., NDNS),
Adaptive and Optimal forwarding strategies.

6.3.1 Impact of playback buffer size. Fig. 4(a) shows the number
of buffering events for each of the four forwarding strategies. The
shortest-path strategy, which simply routes interests to the clos-
est peer, results in the highest number of buffering events where
video playback is interrupted for buffering. This is simply because
the shortest-path strategy is unable to share the upload overhead
evenly among the users. Even worse, it overwhelms certain pro-
ducers with too many requests. The shortest-path strategy results
in nearly five buffering events per video stream for the smallest
buffer size of one second worth of content. Even with a buffer
size of ten-seconds worth of video, the shortest-path strategy still
causes excessive buffering. According to our results (not shown in
the Figures) only 4% of the viewers did not experience buffering
events for the shortest-path strategy with the largest buffer size.
20% of streams experienced more than one buffering interruptions
throughout the streaming. On the other hand, the directory-based
resolution results with significantly less buffering events where
at least 82% of streams do not experience any playback interrup-
tion for the smallest buffer size. In this approach, we observed that
99% of streams observed at most one buffering event, i.e., no re-
peated buffering event. This is because users experiencing long
RTTs during pulling of VoD chunks from a peer can simply switch
to a different peer. However, even for the largest buffer size, around
5% of streams experience buffering events.

 0
 0.05

 0.1
 0.15

 0.2

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

N
u
m
b
e
r
o
f
B
u
ff
e
ri
n
g

 E
v
e
n
ts

Playback Buffer Size (number of seconds)

OptimalAdaptiveNDNSShortest-path

 0.7

 2
 3
 4
 5

(a) Buffering Events

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

1 2
.5
5
.0
7
.5
1
0

O
v
e
rh
e
a
d

Playback Buffer Size (number of seconds)

OptimalAdaptiveNDNSShortest-path

(b) Overhead

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

1 2
.5
5 7
.5
1
0

 P
e
rc
e
n
t
o
f
D
o
w
n
lo
a
d
s

 f
ro
m

 P
e
e
rs

Playback Buffer Size (number of seconds)

OptimalAdaptiveNDNSShortest-path

(c) Percentage of Producer Hits

Figure 4: Results with varying playback buffer size.

The adaptive streaming approach achieves a significantly (i.e.,
over 100% improvement) better performance than the directory-
based approach through its ability to detect and react to congestion
at producers using i) RTT measurements at the first-hop access
forwarder of the consumer and ii) load-balancing at the last-hop
producer-side access node using PIT state. We observe that even for
the smallest buffer size, only 7% of the streams experience buffering
and less than 0.4% of users experience buffering for the largest
buffer size. We observe that the optimal strategy is able to achieve
no interruptions to playback for all buffer sizes through its full
knowledge of the instantaneous load on the producers.

In Fig. 4(b), we observe that the directory-based strategy incurs
the highest overhead in terms of average number of hops traveled
by content to the network. This is because in this approach, the
consumers select a peer without the knowledge of hop-distance
to the peer when there is more than one peer available. Adaptive
forwarding strategy incurs significantly less overhead than the
directory-based approach because the first-hop node gives higher
priority to closer destinations who can meet the deadline. The
shortest-path approach is the other extreme where the incurred
overhead is even less than optimal strategy albeit achieving the
worst performance (in terms of buffering) among all the strategies.
Since the optimal strategy selects the closest peer which can meet
the deadline, it incurs the least possible overhead.

In terms of the percentage of video chunks downloaded from
peers, we observe that the shortest-path strategy is very close to
the optimal strategy as shown in Fig. 4 at the expense of achieving
the worst QoE for the consumers. The adaptive and directory-based
approaches achieved similar percentages of local downloads even
though their overheads and buffering performances are quite dif-
ferent.

6.3.2 Impact of in-network caching. In the previous experiments,
the forwarders did not possess any caches in the network. In this
section, we examine the impact of in-network caching on the per-
formance of the strategies in Fig. 5. In these experiments, we set
the playback buffer size to the minimum size used in the previous
experiments, i.e., one-second worth of traffic. In the figures, the
values in the x axis are the total cache budget for the network given
in terms of the percentage of the total number of chunks, i.e., be-
tween minimum of 0.1% to a maximum of 5% of total chunks. We
uniformly divide the total cache budget on the forwarders.

In Fig. 5(a), we observe that caching significantly improve the
buffering interruptions for all the strategies but the shortest-path.
This is because in the shortest-path strategy, most of the popular
content is available from another user nearby (i.e., 2.8 hops away on
average as shown in Fig 5(b)), and at the same time the users who
are streaming the same content are out-of-synch (as a nature of
VoD). This results with poor caching performance for most streams
which flow along very short paths with small number of caches.

On the other hand, the rest of the strategies use longer paths
with higher diversity than the shortest-path. Also, the consumers
downloading the same content can converge on the same users
as a result of measurement-based routing decisions. This leads to
better caching performance. We observe in Fig 5(c) that caching
can significantly reduce buffering events for the top-ten most pop-
ular content. As expected, overhead of the strategies reduce with
increasing cache size as shown in Fig. 5(b).

6.3.3 Impact of content popularity. We investigate the impact of
content popularity on the performance of the forwarding strategies
in Fig. 6. In these experiments, we set the in-network cache size
set to 0.1% of content and the playback buffer size to one second
playback worth of chunks.

We observe in Fig. 6(a) that the buffering occurrences increase
with the increase in popularity of content. This is because of the
limited storage space at the end-users which we assume to hold at
most two full videos, and we limit each user to also download three
videos and immediately leave the network. As a result, interests
contend for increasingly limited upload bandwidth resources as
increasingly smaller number of content becomes increasingly more
popular.

Consistent with the previous results, we observe that the adap-
tive strategy performs better than directory-based approach. Adap-
tive strategy is also not affected by the change in content popularity
as much as the rest of the non-optimal strategies.

7 RELATEDWORK
Similar to our work, a number of previous studies has considered ex-
ploiting the nearby storage of user premise devices for VoD delivery
at the edges [35, 40]. Recently, P2P systems (e.g., IPFS) have been
evolving beyond a system of per-content swarms (e.g., BitTorrent)
towards achieving an ambitious goal of providing a content-centric

 0
 0.05

 0.1
 0.15

 0.2

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

N
u
m
b
e
r
o
f
B
u
ff
e
ri
n
g

 E
v
e
n
ts

Network Cache Size (Percentage of Contents)

AdaptiveNDNSShortest-path

 3

 4

 5

(a) Buffering Events

 0

 1

 2

 3

 4

 5

 6

 7

 8

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

0
.0
0
1

0
.0
0
5

0
.0
1

0
.0
5

O
v
e
rh
e
a
d

Network Cache Size (Percentage of Contents)

AdaptiveNDNSShortest-path

(b) Overhead

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5 6 7 8 9 1
0

1 2 3 4 5 6 7 8 9 1
0

C
D
F

 o
f
B
u
ff
e
ri
n
g

 E
v
e
n
ts

Top-10 Most Popular Videos

1% cache budgetWithout cache

(c) Buffering Events for Popular Content

Figure 5: Results with varying in-network cache budget.

 0
 0.1
 0.2
 0.3
 0.4
 0.5

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

N
u
m
b
e
r
o
f
B
u
ff
e
ri
n
g

 E
v
e
n
ts

Zipf Exponent

OptimalAdaptiveNDNSShortest-path

 3

 4

 5

(a) Buffering Events

 0

 1

 2

 3

 4

 5

 6

 7

 8

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

O
v
e
rh
e
a
d

Zipf Exponent

OptimalAdaptiveNDNSShortest-path

(b) Overhead

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

0
.1
0
.2
5

0
.5
0
.7
5

1
.0

 P
e
rc
e
n
t
o
f
D
o
w
n
lo
a
d
s

 f
ro
m

 P
e
e
rs

Zipf Exponent

OptimalAdaptiveNDNSShortest-path

(c) Percentage of Producer Hits

Figure 6: Results with varying content popularity.

delivery service with CDN-like quality for users. Such systems con-
sider scalability, quality-of-delivery, incentives, fairness, and trust
issues, to name a few.

As pointed out by existing studies, lack of a content-centric
network layer is a source of various problems for such P2P systems
that work as an overlay on top of IP [31]. Mastorakis et al. has
considered complementing the BitTorrent protocol with a content-
centric network layer [31]. Instead, in this work, we focused on IPFS,
which is amore advanced content-centric application-layer protocol
suite that connects all its users in a single swarm and enables
content-centric access to data. However, we have shown that IPFS
has several limitations in terms of overheads and inefficiencies in
data delivery which prevents IPFS to be a viable replacement for
a CDN. We have proposed extending IPFS with a content-centric
delivery with several extensions that are based on several existing
work: secure namespacemapping [13], scalable name resolution [11,
15], stateful Interest forwarding [16, 43], and satisfied interest table
(SIT) based forwarding [39].

8 CONCLUSIONS
In this work, we took a first-step towards designing a P2P content
retrieval market for edge ISPs which can replace CDN content
delivery within each individual ISP. We have demonstrated through
ns-3 simulations using original containerised code of the IPFS that
IPFS by itself is not able to take over such a task without help
from the network layer in terms of load-balancing and reducing
the delivery overhead for the network.

We find NDN to be a complementing network-layer architecture
to IPFS. The adaptive, stateful routing mechanisms of NDN can

observe and react to congestion at the producers and steer traffic
to less congested producers. Also, NDN forwarders with the addi-
tion of a Satisfied PIT Table can observe locations of content and
advertise this information in the control plane.

The main take-away from this study is that adaptive load-based
forwarding strategies are very useful in the network layer. However,
in this study we limit the load-balancing to first- and last-hop
forwarders on the path between consumers and producers. This
was due to looping issues with involving too many decision making
nodes on the path. As a future work, we plan to investigate more
sophisticated adaptive routing techniques involving more nodes in
a collaborative manner.

9 ACKNOWLEDGMENTS
The authors are grateful to the anonymous reviewers of ACM
ICN’19 for their constructive comments and suggestions. This work
was supported by the Fonds de la Recherche Scientifique - FNRS
under Grant #F452819F, EC H2020 ICN2020 project under grant
agreement number 723014, EPSRC INSP Early Career Fellowship
under grant agreement number EP/M003787/1 and H2020 DECODE
project under grant agreement number 553066.

REFERENCES
[1] 2018. Project CCNx. http://www.ccnx.org/.
[2] 2019. Big Buck Bunny. https://download.blender.org/peach/bigbuckbunny_

movies/big_buck_bunny_480p_h264.mov
[3] 2019. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update, 2016–2021 (White Paper). (May 2019). https://www.cisco.com/
c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
white-paper-c11-738429.html

[4] 2019. Global Internet Phenomena Report: Asia-Pacific and Eu-
rope. (May 2019). https://www.sandvine.com/press-releases/blog/
sandvine-over-70-of-north-american-traffic-is-now-streaming-video-and-audio

[5] 2019. ndn-cxx: NDN C++ library with eXperimental eXtensions. Version 0.6.6.
https://github.com/named-data/ndn-cxx

[6] 2019. NFD - Named Data Networking Forwarding Daemon. Version 0.6.6. https://
github.com/named-data/NFD

[7] 2019. ns-3 | a discrete-event network simulator for internet systems. https://
www.nsnam.org/

[8] 2019. NS3 Docker Emulator. https://chepeftw.github.io/NS3DockerEmulator/
[9] 2019. Presentation at Joint iCore and CommNet2 Workshop 2017: Con-

tent Caching and Distributed Storage for Future Communication Net-
works. (May 2019). https://commnet.ac.uk/wp-content/uploads/2017/06/
Richard-Bradbury-The-scalability-challenge-for-broadcasting-on-the-Internet.
pdf

[10] 2019. Which broadband has the fastest upload speeds? (May
2019). https://www.broadbandchoices.co.uk/ask-our-expert/
which-broadband-has-the-best-upload-speeds

[11] Alexander Afanasyev, Xiaoke Jiang, Yingdi Yu, Jiewen Tan, Yumin Xia, Allison
Mankin, and Lixia Zhang. 2017. NDNS: A DNS-like name service for NDN. In
2017 26th International Conference on Computer Communication and Networks
(ICCCN). IEEE, 1–9.

[12] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, Ilya Moiseenko,
Yingdi Yu, Wentao Shang, Yanbiao Li, Spyridon Mastorakis, Yi Huang, Jerald Paul
Abraham, Steve DiBenedetto, Chengyu Fan, Christos Papadopoulos, Davide
Pesavento, Giulio Grassi, Giovanni Pau, Hang Zhang, Tian Song, Haowei Yuan,
Hila Ben Abraham, Patrick Crowley, Syed Obaid Amin, Vince Lehman, and Lan
Wang. 2015. NFD Developer’s Guide. Technical Report NDN-0021, Revision 4.
NDN. http://named-data.net/techreports.html

[13] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang.
2015. SNAMP: Secure namespace mapping to scale NDN forwarding. In Computer
Communications Workshops (INFOCOMWKSHPS), 2015 IEEE Conference on. IEEE.

[14] J. Arkko, B. Trammell, M. Nottingham, C. Huitema, M. Thomson, J. Tantsura,
and N. ten Oever. [n. d.]. Considerations on Internet Consolidation and the
Internet Architecture. Internet-Draft draft-arkko-iab-internet-consolidation-
01. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-arkko-iab-internet-consolidation-01 Work in Progress.

[15] Onur Ascigil, Sergi Rene, Ioannis Psaras, and George Pavlou. 2018. On-demand
routing for scalable name-based forwarding. In Proceedings of the 5th ACM Con-
ference on Information-Centric Networking. ACM, 67–76.

[16] Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou. 2017. A native
content discovery mechanism for the information-centric networks. In Proceed-
ings of the 4th ACMConference on Information-Centric Networking. ACM, 145–155.

[17] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561 (2014).

[18] Juan Benet, David Dalrymple, and Nicola Greco. 2018. Proof of replication. Techni-
cal Report. Technical report, Protocol Labs, July 27, 2017. https://filecoin. io/proof-
of-replication. pdf. Accessed June.

[19] Weibo Chu, Lifang Wang, Haiyong Xie, Zhi-Li Zhang, and Zejun Jiang. 2016. Net-
work delay guarantee for differentiated services in content-centric networking.
Computer Communications 76 (2016), 54 – 66. https://doi.org/10.1016/j.comcom.
2015.09.009

[20] Bernhard Debatin, Jennette P Lovejoy, Ann-Kathrin Horn, and Brittany NHughes.
2009. Facebook and online privacy: Attitudes, behaviors, and unintended conse-
quences. Journal of computer-mediated communication 15, 1 (2009), 83–108.

[21] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. FairSwap: How to
fairly exchange digital goods. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 967–984.

[22] Michael J. Freedman, Eric Freudenthal, and David Mazières. 2004. Democratizing
Content Publication with Coral. In Proceedings of the 1st Conference on Sym-
posium on Networked Systems Design and Implementation - Volume 1 (NSDI’04).
USENIX Association, Berkeley, CA, USA, 18–18. http://dl.acm.org/citation.cfm?
id=1251175.1251193

[23] April Glaser. 2018. How Apple and Amazon Are Aiding Chinese Censors.
[24] Anil Jangam, Prakash Suthar, and Milan Stolic. 2019. Supporting QoS aware Data

Delivery in Information Centric Networks - draft-anilj-icnrg-icn-qos-00. Tech-
nical Report. Internet Engineering Task Force. https://tools.ietf.org/html/
draft-anilj-icnrg-icn-qos-00 Work in Progress.

[25] Michał Król, Alberto Sonnino, Mustafa Al-Bassam, Argyrios Tasiopoulos, and
Ioannis Psaras. 2019. Proof-of-Prestige A Useful Work Reward System for Unver-
ifiable Tasks. In Proceedings of the 1st International Conference on Blockchain and
Cryptocurrency. IEEE.

[26] Sailesh Kumar, Jonathan Turner, and John Williams. 2006. Advanced algorithms
for fast and scalable deep packet inspection. In 2006 Symposium on Architecture
For Networking And Communications Systems. IEEE, 81–92.

[27] Protocol Labs. [n. d.]. Filecoin: A Decentralized Storage Network,
https://filecoin.io/filecoin.pdf. ([n. d.]).

[28] Storj Labs. 2019. Storj Whitepaper. Technical Report. Storj Labs. https://storj.io/
whitepaper/

[29] MaidSafe.net. 2019. MaidSafe Whitepaper. Technical Report. MaidSafe.net. https:
//github.com/maidsafe/Whitepapers

[30] Sergio Marti and Hector Garcia-Molina. 2006. Taxonomy of trust: Categorizing
P2P reputation systems. Computer Networks 50, 4 (2006), 472 – 484. https://doi.
org/10.1016/j.comnet.2005.07.011 Management in Peer-to-Peer Systems.

[31] Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, and Lixia Zhang. 2017.
ntorrent: Peer-to-peer file sharing in named data networking. In 2017 26th Inter-
national Conference on Computer Communication and Networks (ICCCN). IEEE,
1–10.

[32] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In International Workshop on Peer-to-Peer
Systems. Springer, 53–65.

[33] Ilya Moiseenko. 2014. Fetching content in Named Data Networking with embedded
manifests. Technical Report.

[34] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[35] Gianfranco Nencioni, Nishanth Sastry, Gareth Tyson, Vijay Badrinarayanan,

Dmytro Karamshuk, Jigna Chandaria, Jon Crowcroft, Gianfranco Nencioni, Nis-
hanth Sastry, Gareth Tyson, et al. 2016. SCORE: Exploiting global broadcasts to
create offline personal channels for on-demand access. IEEE/ACM Transactions
on Networking (TON) 24, 4 (2016), 2429–2442.

[36] Ingmar Poese, Benjamin Frank, Georgios Smaragdakis, Steve Uhlig, Anja Feld-
mann, and Bruce Maggs. 2012. Content-aware Traffic Engineering. (2012).

[37] I. Psaras, L. Saino, M. Arumaithurai, K. K. Ramakrishnan, and G. Pavlou. 2014.
Name-based replication priorities in disaster cases. In 2014 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 434–439. https://
doi.org/10.1109/INFCOMW.2014.6849271

[38] Lorenzo Saino, Ioannis Psaras, and George Pavlou. 2014. Icarus: a Caching
Simulator for Information Centric Networking (ICN). In Proceedings of the 7th
International ICST Conference on Simulation Tools and Techniques (SIMUTOOLS
’14). ICST, ICST, Brussels, Belgium, Belgium, 10.

[39] Vasilis Sourlas, Onur Ascigil, Ioannis Psaras, and George Pavlou. 2018. Enhanc-
ing information resilience in disruptive information-centric networks. IEEE
Transactions on Network and Service Management 15, 2 (2018), 746–760.

[40] Kyoungwon Suh, Christophe Diot, Jim Kurose, Laurent Massoulie, Christoph Neu-
mann, Don Towsley, and Matteo Varvello. 2007. Push-to-peer video-on-demand
system: Design and evaluation. IEEE Journal on Selected Areas in Communications
25, 9 (2007).

[41] Jake Swearingen. 2018. http://nymag.com/selectall/2018/03/when-amazon-web-
services-goes-down-so-does-a-lot-of-the-web.html.

[42] Christian Tschudin and Christopher Wood. 2016. File-like icn collection (flic).
Internet Engineering Task Force, Internet-Draft draft-tschudin-icnrg-flic-00 (2016).

[43] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang,
and Lixia Zhang. 2013. A case for stateful forwarding plane. Computer Commu-
nications 36, 7 (2013), 779–791.

[44] Yingdi Yu, Alexander Afanasyev, David Clark, Van Jacobson, Lixia Zhang, et al.
2015. Schematizing trust in named data networking. In Proceedings of the 2nd
ACM Conference on Information-Centric Networking. ACM, 177–186.

[45] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D Thornton,
Diana K Smetters, Beichuan Zhang, Gene Tsudik, Dan Massey, Christos Pa-
padopoulos, et al. 2010. Named data networking (ndn) project. Relatório Técnico
NDN-0001, Xerox Palo Alto Research Center-PARC (2010).

