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Abstract 

Buildings account for over 32% of total society energy consumption, and to make 

buildings more energy efficient dynamic building performance simulation has been 

widely adopted during the buildings’ design to help select most appropriate HVAC 

(Heating Ventilation and Air Conditioning) systems. Due to the lack of good behavioral 

models in current simulation packages, many researchers have tried to develop useful 

behavioral models to improve simulation accuracy, including window behavior models, 

using field data collected from real buildings. During this work, many mathematical 

and machine learning methods have been used, and some level of prediction accuracy 

has been achieved.  

XGBoost is a recently introduced machine learning algorithm, which has been proven 

as very powerful in modeling complicated processes in other research fields. In this 

study, this algorithm has been adopted to model and predict occupant window behavior, 

aiming to further improve the modeling accuracy from a globally accepted modeling 

approach, namely, Logistic Regression Analysis. Field data in terms of both occupant 

window behavior and relevant influential factors were collected from real residential 

buildings during transitional seasons. Both XGBoost and Logistic Regression Analysis 

were used to build window behavior models, after a feature selection work, and their 

prediction performances on an independent dataset were compared. The comparison 

revealed that XGBoost has solid advantages in modeling occupant window behavior, 

over Logistic Regression Analysis, and it is expecting that the same finding would be 

obtained for other behavioral types, such as blind control and air-conditioner operation.  
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1. Introduction    

Nowadays, buildings account for over 32% of total society energy consumption [1]. 

According to contribution, occupant behavior, such as opening windows and adjusting 

clothing insulation, has been widely acknowledged as a crucial aspect by many 

researchers [2], considering its impact on building energy [3, 4], building retrofitting 

[5], indoor thermal environment [6, 7], occupant thermal comfort [8, 9] and reducing 

building energy demand [4, 10, 11]. Occupant window behavior has been considered 

as having a great impact on both building energy consumption [12] and indoor 

environment [13], especially for non-air-conditioned buildings.  

To select the most appropriate HVAC solutions during the design stage of a building, 

dynamic building performance simulation is being widely used. In real applications, 

however, engineers have realized a significant difference between the building’s 

designed performance and actual performance, and this difference has been defined as 

performance gap [14]. Occupant behavior, including window behavior, has been 

considered as a major contributor to this performance gap [15]. Therefore, many studies 

have been carried out to better understand when occupants open/close their windows 

[16] and to develop useful mathematical models to improve prediction accuracy of 

dynamic building performance simulation [2, 17].   

In existing studies modeling occupant window behavior, logistic regression has been 

widely adopted [18-23] Logistic regression is a probability-based two-classification 

algorithm, which is suitable for predicting binary outputs [24], such as window 

opening/closing. Stazi et al. [25] used logistic regression to model window states for 

school classrooms in Italy, achieved an accuracy rate of 71.9%. Haldi et al. [26] 

developed logistic regression models based on data collected from an office building in 

Switzerland, using outdoor temperature, indoor temperature, wind speed, relative 

humidity and rainfall as inputs. The model was used for predicting field monitored 

states of windows and an accuracy of 65% was obtained. Rijal et al. [27] also proposed 

logistic regression models to predict occupants’ window operation in a residential 

building in Japan, with a final prediction accuracy of 70%. Yun et al. [28] have used 

this method and developed a model predicting window behavior of occupants in an 

office building in the UK. Using data collected from two hospital wards in Nanjing in 

China, Shi et al. [29] have developed a logistic window behavior model, and got a 

prediction accuracy of 70%.  
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In recent years, researchers have started to try some other mathematical algorithms or 

machine learning methods to generate window behavior models for buildings, aiming 

to get a better accuracy. Pan et al. [30] have used Gaussian distributions to model 

occupant window behavior, based on data collected from an office building located in 

Beijing, China. The model employed both outdoor and indoor temperatures as main 

drivers, and the prediction accuracy has been verified to be 74% based on ACC 

evaluation index. Wei et al. [31] compared three modeling methods for window 

behavior, namely, logistic regression model, Markov model and ANN model, and 

obtained prediction accuracies as 52%, 57% and 73%, respectively. Celi et al. [32] used 

logistic regression to identify influential factors on states of windows and used Markov 

chains for prediction. From the study, the most important factors affecting window 

opening were suggested as time of day and indoor CO2 concentration, and the most 

important factors affecting window closing were outdoor temperature and time of day. 

To evaluate the reliability of models predicting window states, Fabi et al. [33] used data 

collected from 15 apartments to compare predicted probabilities from four models, one 

new model and three existing models, and suggested certain common characteristics 

for window behaviour models with high accuracy.  

Barthelmes et al. [34] have adopted Bayesian Network Framework to describe window 

opening/closing behavior of occupants, and justified that this machine learning method 

could well capture the stochastic nature of occupants’ use of windows. Haldi et al. [14] 

used generalized linear mixed models to study occupant behavior of opening windows, 

adjusting shading devices and turning on/off lighting simultaneously, and the mixed 

models have been validated using field measured data from buildings. Markovic et al. 

[35] used deep learning algorithm with 5 hidden layers to model window states, and the 

F1-score of prediction results was 0.53-0.74. Langevin et al. [36] measured temperature, 

humidity, wind speed and indoor occupancy rate to model window states using the 

agent-based method, and a BA (Balanced Accuracy, an index to evaluate accuracy) of 

0.72 was achieved. 

Based on the above review work, it could be summarized that in recent years modeling 

occupant window behavior using logistic regressions analysis has been challenged by 

some traditional machine learning methods, such as Gaussian distribution and ANN.  

This study tried to contribute to this research direction by using XGBoost to model 

occupant window behavior. As a new machine learning method, the XGBoost (eXtreme 

Gradient Boost) method was firstly introduced by Chen [37] in 2016, and has been used 

in many other applications, such as automotive manufacturing [38], predicting building 

cooling load [39] and fault detection for HVAC systems [40]. In existing studies, much 
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evidence was available about its advantages (stability, accuracy and efficiency) in 

modeling complex process over other conventional machine learning methods, such as 

SVM algorithm [41, 42], logistic regression method [43-49] and KNN/decision tree [50, 

51]. This study, therefore, was designed to justify its contribution to modeling accuracy 

of occupant window behavior in buildings, mainly against the most conventional 

modeling approach, i.e. logistic regression analysis. Its advantages over other machine 

learning methods were properly discussed as well. The data used for this study was 

longitudinally collected from some residential apartments in China, lasting for 136 days 

during the transitional season. The findings from this study could also be used to guide 

the selection of modeling methods for other types of adaptive behavior in buildings, 

such as air-conditioning behavior and shading behavior.  

2 Research Methods  

2.1 Data collection 

The data used in this study were collected from six residential apartments located in the 

hot summer and warm winter area of China, lasting for a total of 136 days during the 

transitional season, which was between November, 2017 and March 2018. All selected 

apartments were coming from the same climatic region of China, hence having similar 

ambient climate conditions. They all have similar floor areas (approximately 105m2) 

and layout (1 living room; 2 bedrooms; 1 kitchen etc.). During the experiment, all of 

them were using natural ventilation to adjust indoor thermal environment and air quality, 

and all monitored windows were located in their bedrooms. During the measurement 

period, the major adaptive opportunity occupants can use to adjust their indoor thermal 

environment was their windows. In the study, window states were monitored by 

window contactors (Figure 1a) and several factors that may influence occupant window 

behavior have been monitored, including indoor temperature, indoor relative humidity, 

indoor CO2 concentration, indoor PM2.5 concentration, AQI (Air Quality Index), 

outdoor temperature, outdoor relative humidity, outdoor PM2.5 concentration, outdoor 

PM10 concentration and rainfall. Indoor parameters were monitored by an iKair 

monitoring kit, as shown in Figure 1b, with detailed specifications summarized in Table 

1. Outdoor parameters were collected by nearby public weather stations. The data used 

in this study have been published in key journals after analyzed from different angles 

to this study [52-54]. 
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(a) (b) 

Figure 1: Indoor monitoring sensors 

 

Table 1: Main specifications of indoor monitoring devices 

 

Range Accuracy 

Temperature -30ºC~125ºC ±0.3K 

Humidity 0-100%RH ±3%RH 

PM2.5 1-1000ug/m3 ±10% ug/m3 

CO2 400-10000ppm ±40ppm 

2.2 Feature selection 

Feature selection is very important for establishing accurate mathematical models [55], 

by filtering out unnecessary parameters from the modeling work. In this study, Pearson 

Correlation Coefficient has been used. It is a statistical value that can reflect the 

similarity between two variables or vectors, and is calculated by Equation 1, 
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where, cov( , )X Y is the covariance; X Y  is the product of vector standard deviation. 

ρX,Y is between -1 and 1, with a value closer to 1 meaning a stronger positive correlation 

between the two variables, and a value closer to -1 giving a stronger negative correlation. 

According to [56], the parameter selection was based on a threshold set up as 0.1. It 

means that when the absolute value of ρX,Y is smaller than 0.1, the corresponding 

parameter is not statistically significantly correlated with the model output and 

therefore will be deleted from the model.  

2.3 XGBoost algorithm 

XGBoost is a boosting algorithm belonging to supervised learning, which is an 

ensemble algorithm based on gradient boosted trees [37]. It integrates predictions of 

“weak” classifiers (tree model) to achieve a “strong” classifier (tree model) via a serial 

training process. It can avoid over-fitting by adding a regularization term. Parallel and 

distributed computing makes the learning process faster to give a quicker modeling 

process. Figure 2 shows a schematic diagram of the computational process of XGBoost 

and yi appeared in the process is calculated by Equation 2. 

 

Figure 2. A schematic diagram of XGBoost algorithm 
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where,
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iy is the final tree model; ( 1)t

iy  is the previously generated tree model; ( )t if x  
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is the newly generated tree model, and t is the total number of base tree models.  

For the XGBoost algorithm, both depth and number of trees are important parameters. 

The problem of finding the optimal algorithm was changed into finding a new classifier 

that can reduce the loss function, with the target loss function shown in Equation 3, 

( ) ( )

1 1

ˆ( , ) ( )
t t

t t

i i i

i i

Obj L y y f
 

                       (3) 

where, iy  is the actual value; ( )ˆ t

iy  is the predicted value; ( )ˆ( , )t

i iL y y  is the loss function 

and ( )if  is the regularization term. 

Substituting Equation 2 into Equation 3 and then following some deduction steps (can 

be found in [37]), Equation 4 could be obtained, 
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t t
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             (4) 

The final target loss function was then converted into Equation 5, and the model was 

then trained according to this target loss function. 
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where, ( 1)

( 1)g ( , )t
i

t

i i iy
l y y

   and ( 1)

2 ( 1)h ( , )t
i

t

i i iy
l y y

    are the first and second order 

gradient statistics on the loss function.  

The regularization term t( )f   is calculated by Equation 6 to reduce the model’s 

complexity and also improve its usability to other dataset.  

21
( )

2
f T                              (6) 

where,T is the number of leaves; ω is the weight of the leaves; λ and γ are coefficients, 

with default values set as λ=1, γ=0. 

The XGBoost algorithm can accept both continues variables and discrete variables as 

inputs but the output variable has to be discrete, including binary variables. In this study, 

the XGBoost algorithm was ran in Python 3.6 [37]. When using the XGBoost algorithm, 

Z-statistic is often used for testing the significance of each independent variable, with 

p-value given at 95% confidence interval [57]. It is calculated and given by the 
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computational package after running the XGBoost algorithm.   

2.4 Window state prediction and evaluation criteria  

2.4.1 Window state prediction 

In this study, occupant window behavior was predicted using a popular stochastic 

algorithm adopted in existing studies [28, 58], including 4 steps: 

Step 1: Set the initial state of windows as θ; 

Step 2: Set closed windows as 0 and opened windows as 1; 

Step 3: Calculate the probability, p, to determine state change; 

Step 4: Generate a random value, U, following uniform distribution between 0 and 1, 

and, then compare p with the generated random value. If p>U, set θ = 1 (opened 

windows); otherwise θ = 0 (closed windows). 

2.4.2 ACC 

When only considering the state of windows, not the opening angle, occupant window 

behavior is a binary problem. When evaluating the accuracy on predicting binary 

problems, a confusion matrix is usually developed, as shown in Table 2, with columns 

representing predicted values and rows representing actual values. 

Table 2: Confusion matrix for window state prediction 

                  Predicted values 

Actual values 

Positive 

(window state = 1) 

Negative 

(window state = 0) 

True (window state = 1) TP FN 

False (window state = 0) FP TN 

where, TP is true positive, FN is false negative, FP is false positive, and TN is true 

negative. 

Some existing studies have used the ACC to evaluate the model’s prediction accuracy 

[30], as defined by Equation 7, 

FNFPTNTP

TNTP
ACC




                      (7) 

The use of a single ACC accuracy index, however, may not sufficient when the states 

of windows are not equally distributed.  

 



 

9 

 

2.4.3 F1-score 

Recall and precision are two important indicators to evaluate the performance of 

classification [59]. Recall is also denoted as sensitivity and it is the fraction of relevant 

instances that have been retrieved over the total amount of relevant instances. Precision 

is also known as positive predictive value and has been defined as the fraction of 

relevant instances among the retrieved instances. Equation 8 and Equation 9 were used 

to calculate both Recall and Precision in this study, 

FNTP

TP
callR


e                         (8) 

Pr
TP

ecision
TP FP




                     (9) 

The F-β coefficient has been used for evaluating the model’s predictive performance 

combining the results from both Recall and Precision [60]. The F-β coefficient is 

defined by Equation 10 and β can be selected according to the requirement of the 

application, namely, whether the study paying more attention to the recall rate or to the 

precision rate.    

 
recallprecison
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                    (10) 

recallprecison

recallcision
F






pre2
1                       (11) 

when β approaches to 0, Fβ ≈ Recall； 

when β approaches to 1, Fβ ≈ F1； 

when β approaches ∞, Fβ ≈ Precision. 

2.5 Model comparison  

Logistic regression has been widely used in existing studies when modeling occupant 

window opening behavior in buildings [18-22]. It is derived from logistic distribution. 

The logistic regression builds a linear correlation between all influential factors, such 

as temperature, and the logit of the probability for event happening, such as window 

opening, as defined by Equation 12. 

1 1 2 2log ( ) log( ) ...
1

n n

p
it p w x w x w x b

p
     


             (12) 
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where, p is probability of event happening, the coefficients w1, …, wn are constants 

estimated by the regression analysis through maximum likelihood estimation and 

x1,…,xn are the environmental parameters, and b is the intercept. 

Solving Equation 12 gives the probability of event happening based on all influential 

factors, as defined by Equation 13, 

1 1 2 2

1 1 2 2

exp( ... )

1 exp( ... )

n n

n n

w x w x w x b
P

w x w x w x b

   


    
                 (13) 

Logistic regression has no restrictions to the type of inputs, which can be both 

continuous or discrete, but the output variable has to be discrete/binary.  

3 Results and Discussions 

When using the data, it was randomly divided into two parts, with 80% used for 

developing window behavior models and 20% for model validation. This division has 

been popularly adopted in existing studies [45, 46, 49, 51, 61]. The whole process 

included feature selection (to filter out unnecessary parameters), model development 

(to build window behavior models), model validation (to justify the validity of the 

developed model on a new dataset) and model comparison (to demonstrate the benefits 

of the new model against the conventional model method, i.e. logistic regression 

analysis).  

3.1 Selected features  

Table 3 has listed the calculated Pearson Correlation Coefficient for each potential 

influential factor considered in this study. 

Table 3: Pearson correlation coefficient for each potential influential factor 

Tin Tout RHin CO2 Time of day   

0.34 0.30 -0.30 -0.30 0.10  

PM2.5in RHout PM10 AQI PM2.5out Rainfall 

0.06 -0.03 -0.02 0.008 -0.007 -0.004 

According to the 0.1 threshold, it could be found that indoor temperature, outdoor 

temperature, indoor humidity, indoor CO2 concentration and time of day performed 

significant impact on the state of windows during the transitional season. Therefore, 
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they were remained in the modeling process and the other parameters were filtered out 

from the study. 

3.2 Model development using XGBoost  

Using the features selected above, the training dataset described in Section 2.1 has been 

used to develop the XGBoost model for predicting monitored states of windows. Table 

4 has listed some important statistical values when developed the XGBoost model. 

Table 4: Statistical values for XGBoost model development 

 Correlation coefficient S.E. Z-statistic p-value 

Tout 0.302 0.018 238.180 0.000 

Tin 0.345 0.016 -35.099 0.000 

RHin -3.024 0.015 -250.524 0.000 

CO2 -3.03 0.032 -144.064 0.000 

Time of day 0.102 0.006 -46.025 0.000 

where, S.E. is the standard error, reflecting the degree of dispersion between sample 

means; Z-statistic is an independent variable test [57]; p-value is given at the 95% 

confidence interval, used for deciding whether the corresponding independent variable 

has statistically significant impact on the model’s output. 

When developing XGBoost models, hyper-parameters need to be determined to drive 

correlation establishment. Important parameters involved in this study were as 

followings: 

 ‘max_depth’: the maximum depth of the base tree model, with higher values for 

more complicated base-tree models;  

 ‘n_estimators’: the number of base tree models, with higher values for more 

iterations;  

 ‘min_child_weight’: the minimum sum of child node weights, with higher 

values for more conservative models;  

 ‘gamma’: minimum loss reduction required to make a further partition on a leaf 

node of the tree, with higher values for more conservative models;  

 ‘subsample’: subsample ratio of training instances;  
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 ‘colsample_bytree’: subsample ratio of columns when producing new trees;  

 ‘reg_lambda’: L2 regularization term on weights, with higher values for more 

conservative models. 

Take max_depth as an example. Its F1-scores of different depth values are listed in 

Table 5.  

Table 5: Values of max_depth for developing the XGBoost model 

max 

depth 
2 3 4 5 6 7 8 9 10 

F1-

score 
0.687 0.708 0.714 0.720 0.751 0.777 0.802 0.795 0.791 

According to Table 5, when the value of ‘max_depth’ was taken as 8, the performance 

achieved the best. Therefore, 8 has been selected for ‘max_depth’ in this study. Using 

the same method, the rest parameters have been determined as well and the results are 

shown in the Table 6. 

Table 6: Values for hyper-parameters for developing the XGBoost model 

n_estimators min_child_weight gamma 

500 4 0.01 

subsample colsample_bytree reg_lambda 

0.8 0.9 0 

When using the variables selected in Section 3.1 and the training dataset (80% of the 

overall dataset) to train the XGBoost model for states of windows, main statistical 

parameters described in Section 2.3 and the F1-score on the training dataset are listed 

in Table 7. The depth of the tree represents the maximum depth of the base tree model, 

with bigger values for more complicated base tree models. The number of trees means 

the number of base tree models, with bigger values for more iterations.  
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Table 7: Main parameters and training results of the XGBoost model 

Variables Depth of the tree Number of trees F1-score 

Toutt+ Tin+ RHin+ CO2+ Time of day 8 500 0.814 

3.3 Model validation using independent dataset 

To validate the model developed above, it was used for predicting the monitored states 

of windows in the validation dataset with 20% of overall data, which is independent to 

the training dataset. Five different sets of validation datasets were taken using validation. 

The two evaluation parameters, namely, ACC and F1-score, introduced in Section 2.4 

were used to reflect the model’s prediction accuracy. Due to the stochastic nature of 

this method, a total of five predictions were tested, with the average of them used for 

evaluating the overall performance of the model in different validation dataset. Table 8 

has listed the results at each prediction.   

Table 8: Predicting results of the XGBoost model using the validation dataset 

Group number Precision Recall F1-score ACC 

Group 1 0.801 0.815 0.811 0.826 

Group 2 0.803 0.807 0.805 0.810 

Group 3 0.799 0.804 0.801 0.807 

Group 4 0.810 0.817 0.814 0.821 

Group 5 0.804 0.808 0.805 0.811 

Average 0.811 0.810 0.807 0.815 

The results listed in Table 6 reflects that both evaluation parameters gave consistent 

evaluation results and both values were around 0.81, meaning 81% predictions were 

correct. The average values of both parameters can well reflect the model’s accuracy, 

and for F1-score it was 0.807, and for ACC it was 0.815, over 5% higher than existing 

literatures using other modelling methods, such as logistic regression (0.719 [25], 0.65 

[26], 0.70 [27]), Markov (0.572 [31]) and Gaussian distribution method (0.74 [30]).   
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3.4 Comparison with logistic regression  

For comparison, the same input variables and training data were again used for the 

development of a logistic regression model, with important statistical results listed in 

Table 9 and the final model defined by Equation 13.  

Table 9: Important model coefficients and the F1-score on training dataset 

outT  
inT  

inRH  
2CO  

Time  
Intercept 

  

F1-score on 

training dataset 

2.587 1.166 -2.240 -3.668 -0.297 -0.006 0.552 

2 imelog ( ) log( ) 2.587 1.166 2.240 3.668 0.297 0.006
1 out in inT T RH CO T

p
it p

p
          


  (13) 

To justify the advantage of XGBoost over logistic regression, the developed logistic 

regression model was used to predict the monitored window states in the validation 

dataset, and its modeling accuracy was compared with the one obtained from the 

XGBoost model, as used in the last section. Table 10 has listed the prediction accuracies 

for all five rounds of predictions, with the average accuracy listed at the end of the table. 

From the calculated F1-scores of both models, it could be obviously observed that the 

XGBoost model provided much better prediction results than the common logistic 

regression model, with the former one around 0.8 and the latter one around 0.58. The 

other parameters, namely, the Precision, the Recall and ACC scores also confirmed this 

finding. Figure 3 shows both predicted states of windows by the two mathematical 

methods, as well as the monitored states of windows in a typical day, i.e. 9th February, 

2018, at a time interval of one minute. XGBoost achieved an accuracy rate of 84%, 

while Logistic Regression has an accuracy rate of 63%. 
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Table 10: Comparison between the XGBoost and the logistic regression models 

    Precision Recall F1-score ACC 

Group 1 

XGboost 0.801 0.811 0.815 0.826 

Logistic 0.552 0.541 0.546 0.593 

Group 2 

XGboost 0.803 0.805 0.807 0.810 

Logistic 0.554 0.541 0.547 0.593 

Group 3 

XGboost 0.799 0.801 0.804 0.807 

Logistic 0.552 0.539 0.546 0.592 

Group 4 

XGboost 0.810 0.814 0.817 0.821 

Logistic 0.551 0.540 0.545 0.591 

Group 5 

XGboost 0.804 0.805 0.808 0.811 

Logistic 0.554 0.542 0.548 0.594 

Average 

XGboost 0.811 0.807 0.810 0.815 

Logistic 0.553 0.541 0.546 0.593 

 

Figure 3. Predicted and monitored states of windows in a typical day 
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4 Conclusions  

Nowadays, it has been widely accepted that occupant window behavior has a significant 

impact on buildings’ energy performance and indoor environment. Accurate modeling 

of occupant window behavior can provide great support on dynamic building 

performance simulation to achieve more reliable computer-aided design of buildings. 

In the past several decades, many modeling algorithms, such as logistic regression and 

Gaussian distribution methods, have been used for modeling occupant window 

behavior in buildings, and these modeling techniques have achieved some level of 

accuracy. This study, has tested a new machine learning method, namely, XGBoost 

(eXtreme Gradient Boost) algorithm, which is a recently introduced machine learning 

algorithm that has achieved great achievements in modeling complicated processes in 

other research fields. Field data including both states of windows and relevant 

influential factors have been collected from six apartments, lasting for 136 days. Before 

modeling, feature selection was performed to pick out most useful influential factors 

for the model output. Both XGBoost, the new method, and Logistic regression, a 

commonly adopted method, have been used for modeling these monitored states of 

windows and both models were validated and compared using an independent dataset. 

Main findings from this study are listed as followings:  

1) Feature selection methods can help to simply modeling work by reducing 

number of inputs for model development; 

2) The XGBoost method, as a newly emerged machine learning method, can 

provide high accuracy on modeling occupant window behavior in buildings, 

with prediction accuracy around 80%;  

3) Comparing to a more common method, namely Logistic Regression Analysis, 

the XGBoost method has a solid advantage in terms of modeling accuracy (80% 

vs. 60%) for occupant window behavior.   

This study provides a successful preliminary exploration of using XGBoost algorithm 

for modeling occupant window behavior in buildings, and a great success has been 

realized. This work expands the use of XGBoost in building applications, especially for 

occupant behavior modeling, which is a hot research topic in recent years, according to 

both IEA Annex 66 and Annex 79. The limited sample size in terms of monitored 

households restricts the reflection of individual variations between people during the 

modeling process, and this is a common issue of studies monitoring significant 
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parameters using electronic devices [62], such as 3 offices for Yun and Steemers [28], 

5 offices for Li et al. [63] and 3 apartments for Schweiker et al. [64]. However, as the 

main aim of this study was to test different modeling methods, the number of 

households being monitored should not affect the research findings mentioned above. 

In future studies, data from more households will be collected to enhance the sample 

size to better reflect behavioral variations between people in the modeling work. It is 

expecting that this newly developed machine learning method could also be used for 

modeling other types of adaptive behavior in buildings, such as blind control and air-

conditioner operation.  
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