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Abstract—Massive multiple-input multiple-output (MIMO) systems are
the focus of increasing research attention. In such setups, there is an
urgent need to utilize simple low-resolution quantizers, due to power
and memory constraints. In this work we study massive MIMO channel
estimation with quantized measurements, when the quantization system
is designed to minimize the channel estimation error, as opposed to
the quantization distortion. We first consider vector quantization, and
characterize the minimal error achievable. Next, we focus on practical
systems utilizing scalar uniform quantizers, and design the analog
and digital processing as well as the quantization dynamic range to
optimize the channel estimation accuracy. Our results demonstrate that
the resulting massive MIMO system which utilizes low-resolution scalar
quantizers can approach the minimal estimation error dictated by rate-
distortion theory, achievable using vector quantizers.

Index terms— Massive MIMO, quantization.

I. INTRODUCTION
Modern digital signal processing and communications systems use

quantized digital representations of continuous-amplitude physical
signals [1]. The quantized representations are typically designed to
accurately match the original analog signal, by minimizing some
distortion measure between the analog signal and the digital signal
[2], regardless of the task of the system. Nonetheless, in many cases,
the task of the system is not to recover the analog signal, but to
extract some other information from its quantized representation [3].
It is therefore possible that in such systems – which we refer to as
using task-based quantization – one can obtain further performance
improvements in terms of the quantization rate necessary to achieve
a certain performance.

As practical quantization systems typically utilize scalar uniform
analog-to-digital convertors (ADCs) [1], recent years have witnessed
a growing interest in systems implementing task-based quantization
using low-resolution scalar quantizers. One of the main applications
is massive multiple-input multiple-output (MIMO) [4]–[12]. In such
systems, each base station (BS) in a wireless network is equipped
with a large number of antennas [13], [14]. The BS uses a quantized
representation of the received signal to estimate the underlying
channel [4]–[7] and/or recover the transmitted messages [5]–[12]. For
large number of BS antennas, accurate quantizers become costly in
terms of power and memory usage, and low resolution quantizers are
desirable. As the task in massive MIMO is not to recover the input
signal, but to estimate the channel or decode the transmitted message,
reasonable performance with low-resolution scalar quantizers has
been observed [4]–[12]. However, prior works typically assume
uniform quantization with a fixed dynamic range, thus, they do
not characterize the performance that can be achieved when the
quantizers and the dynamic range also account for the system task.

Joint (vector) quantization is known to outperform scalar quan-
tization in the sense of achieving minimal distortion [15, Ch. 10].
Task-based vector quantization can be considered as a special case
of the indirect lossy-source coding setup [2]. In such scenarios, one
wishes to recover a desired signal based on a discrete representation
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of an observed signal, which is statistically related to the desired
signal [16]. For the mean-squared error (MSE) distortion, it was
shown in [17] that the optimal system which achieves the rate-
distortion curve applies vector quantization to the minimum mean-
squared error (MMSE) estimate of the desired signal. Nonetheless,
in massive MIMO systems, vector quantization becomes infeasible,
and practical quantization approaches are required.

Task-based quantization with scalar uniform ADCs, referred to as
hardware-limited task-based quantization, can be realized in practice
by allowing analog linear processing prior to quantization [18]. In the
context of MIMO systems with quantized inputs, [19] compared the
achievable-rate versus power efficiency tradeoff for various analog
combining systems, [9] and [20] jointly designed precoding with
analog combining to maximize the achievable rate and the MSE
in signal recovery, respectively, with full channel state information
(CSI), while [10] proposed a bit allocation algorithm for minimizing
the quantization error when the analog combining is set to the largest
channel eigenmodes, using high rate quantization analysis. Addition-
ally, [11] studied the achievable rate in the presence of imperfect
CSI when distinct sets of inputs are each combined in analog to
maximize the receive power, while [21] characterized bounds on the
capacity of MIMO communications with analog combining and one-
bit quantization. It is emphasized that previous works which studied
analog combining for MIMO receivers, e.g., [9], [10], [20], required
knowledge of the underlying channel in their design, and thus cannot
be utilized for channel estimation. In particular, the joint design of
the analog combining, quantization rule, and digital processing, to
optimize the accuracy of massive MIMO channel estimation with
scalar ADCs has not yet been studied to the best of our knowledge.

In this work we study task-based quantization for massive MIMO
channel estimation. In our previous work [18], we showed that for the
generic parameter acquisition task with fixed input size and number
of quantization bits, hardware-limited task-based quantization can
approach the optimal performance dictated by indirect rate-distortion
theory. Here, we extend our analysis of [18] to massive MIMO
systems, where the dimensions of the input signal are asymptotically
large, while the number of bits per input sample is fixed.

We first characterize the minimal achievable average MSE for any
quantization system operating with a fixed quantization rate, namely,
a fixed number of bits per input sample, revealing the fundamental
limits of massive MIMO channel estimation from quantized measure-
ments. We then proceed to study practical task-based quantization
with scalar uniform ADCs, by allowing analog combining prior to
quantization. We consider two types of analog combining: The first
allows the inputs to be gathered over different antennas as well as over
different time instances, while the second allows only inputs taken at
the same time instance to be combined. For each setup we derive
the optimal system, characterize its analog combining matrix, its
digital processing, and the achievable average MSE. Our simulations
demonstrate that the proposed quantizers, which utilize practical low-
resolution scalar uniform quantizers, are capable of approaching the
fundamental performance limits dictated by indirect rate-distortion
theory, achievable with vector quantizers.

The rest of this paper is organized as follows: Section II reviews
some preliminaries in quantization theory, and presents the system
model. Section III studies the task-based quantization systems. Sec-
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tion IV presents a numerical study.
Throughout the paper, we use boldface lower-case letters for

vectors, e.g., x, and its ith element is denoted (x)i. Boldface upper-
case letters denote matrices, e.g., M , and (M)i,j is its (i, j)th
element. Hermitian transpose, transpose, stochastic expectation, and
mutual information are written as (·)H , (·)T , E{·}, and I (· ; ·),
respectively. We use a+ , max(a, 0), Tr (·) is the trace operator,
In is the n × n identity matrix, δ(·) is the indicator function, ⊗ is
the Kronecker product, R and C are the sets of real and complex
numbers, respectively.

II. PRELIMINARIES AND SYSTEM MODEL

A. Preliminaries in Quantization Theory
To formulate the problem, we first briefly review the standard

quantization setup. While parts of this review also appear in our
previous work [18], it is included for completeness. We begin with
the definition of a quantizer:

Definition 1 (Quantizer). A quantizer Qn,kM (·) with logM bits, input
size n, input alphabet X , output size k, and output alphabet X̂ ,
consists of: 1) An encoding function ge

n : Xn 7→ {1, 2, . . . ,M} ,M
which maps the input from Xn into a discrete index i ∈ M. 2) A
decoding function gd

k : M 7→ X̂ k which maps each index i ∈ M
into a codeword qi ∈ X̂ k.

We write the quantizer output given input x as x̂ = Qn,kM (x).
Scalar quantizers operate on scalar inputs, i.e., n = 1 and X is a
scalar space, while vector quantizers have multivariate inputs. For
equally sized input and output, we write QnM (·) , Qn,nM (·).

In the standard quantization problem, a QnM (·) quantizer is de-
signed to minimize some distortion measure between its input and its
output. Characterizing the optimal quantizer and the optimal tradeoff
between distortion and quantization rate is in general a very difficult
task. In the special case when the input consists of i.i.d. random
variables (RVs), and the distortion measure is separable, the optimal
distortion in the limit n→∞ for a rate R is given by the distortion-
rate function:

Definition 2 (Distortion-rate function). The distortion-rate function
for input x ∈ X with distortion measure d : X×X 7→ R+ is defined
as

Dx (R) = min
fx̂|x:I(x̂;x)≤R

E {d (x̂,x)} . (1)

B. System Model
We study pilot-aided channel estimation from quantized measure-

ments in a noncooperative multi-cell multi-user MIMO system with
nc cells. In each cell, a BS equipped with nt antennas serves nu
single-antenna user terminals (UTs). We focus on the massive MIMO
regime, namely, the number of antennas nt is sufficiently large to
carry out large-scale (asymptotic) analysis.

We consider the block-fading massive MIMO channel model, as
in [13]. To formulate the model, let Dk,l be an nu × nu diagonal
matrix with positive diagonal entries {dk,l,m}num=1 representing the
attenuation between the mth UT of the lth cell and the kth BS,
k, l ∈ {1, 2, . . . , nc} , Nc. Without loss of generality, we assume
that for each k ∈ Nc, the coefficients {dk,k,m}num=1 are arranged
in descending order. Furthermore, let Hk,l ∈ Cnt×nu be a random
proper-complex zero-mean Gaussian matrix with i.i.d. entires of unit
variance, representing the instantaneous channel response between the
UTs of the lth cell and the kth BS, k, l ∈ Nc. Let Gk,l = Hk,lDk,l

be the random channel matrix from the UTs in the kth cell to the lth
BS. We assume a block-fading model for {Hk,l}k,l∈Nc , in which the
channel coefficients {Hk,l}k,l∈Nc are unknown. Let wk[i] ∈ Cnt ,
k ∈ Nc, be an i.i.d. zero-mean proper-complex Gaussian signal with
covariance matrix σ2

W Int , σ
2
W > 0, representing the additive channel

noise at the kth BS.

Fig. 1. Massive MIMO channel estimation with scalar ADCs.

Channel estimation is carried out in a time-division duplex fashion.
Each UT sends an orthogonal pilot sequence (PS) of τ pilot symbols,
where the PSs are the same in all cells. The BSs use the knowledge
of the PSs to estimate the channel. Let sm[i] denote the ith pilot
symbol of the mth user in each cell, m ∈ {1, . . . , nu} , Nu, and
define s[i] , [s1[i], . . . , snu [i]]T . The channel output at the kth BS,
k ∈ Nc, is given by

yk[i] =

nc∑
l=1

Gk,ls[i] + wk[i], i ∈ {1, . . . , τ}. (2)

Alternatively, by defining y
k

, vec
(
yk[1], . . . ,yk[τ ]

)
, wk ,

vec
(
wk[1], . . . ,wk[τ ]

)
, g

k,l
, vec

(
Gk,l

)
, and the nu × τ deter-

ministic matrix S ,
(
s[1], . . . , s[τ ]

)
, the observed signal used for

channel estimation can be written as

y
k

=

nc∑
l=1

(
ST ⊗ Int

)
g
k,l

+ wk. (3)

Since the PSs are orthogonal and τ ≥ nu, it holds that SSH = τ ·
Inu , and the covariance matrix of y

k
is given by Σy

k
= Σy′

k
⊗Int ,

where Σy′
k
,

nc∑
l=1

STD2
k,lS

∗ + σ2
W Iτ . Furthermore, the PS length,

τ , must not be smaller than nu [13, Sec. III-A]. Each BS uses up
to logM bits to represent y

k
, from which an estimate of its channel

g
k,k

, denoted ĝ
k,k

, is produced.
Our goal is to derive the achievable average MSE in estimating

the channel matrix at a given cell with index k ∈ Nc, and to
characterize the corresponding quantization scheme. In our analysis,
we fix the quantization rate, defined as R , 1

nt·τ logM , and derive
the achievable MSE in massive MIMO regime, i.e.,

µk , lim
nt→∞

1

nt · nu
E
{∥∥g

k,k
− ĝ

k,k

∥∥2
}
. (4)

We consider the following quantization systems architectures:

Vector Quantizers: In the optimal task-based quantization system,
the quantizer Qτ ·nt,nu·ntM (·) minimizes the distortion between the
quantized representation ĝ and g. The performance of this system
represents the fundamental limit of massive MIMO channel estima-
tion with quantized measurements.

Hardware-Limited Quantizers: Vector quantization may be diffi-
cult to implement, especially for large input sizes. As discussed
in the introduction, practical systems typically implement quanti-
zation using scalar ADCs. Here, each continuous-amplitude sample
is converted into a discrete representation using a single uniform
quantization rule. In particular, we consider the system depicted in
Fig. 1. The observed vector y

k
, is projected into Cp using some pre-

quantization processing carried out in the analog domain. We assume
that p, which represents the number of scalar quantizers, is not larger
than the size of the observed vector τ ·nt. In the following, we write
the number of scalar quantizers in terms of its quotient and remainder
with respect to nt, denoted np and nq , respectively, i.e.,

p = np · nt + nq, 0 < nq < nt. (5)

The motivation for (5) stems from the fact that in massive MIMO,
the number of antennas nt tends to infinity, and thus np and nq
represent how p scales accordingly. Since arbitrary processing may be
difficult to implement in analog, we restrict our attention to linear pre-
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quantization processing only. Thus, we allow the quantization system
to utilize analog combining, modeled via the matrix Ak ∈ Cp×τ ·nt .

The real and imaginary parts of each entry of Aky are quantized
using the same scalar quantizer with resolution M̃p , bM1/2pc,
denoted Q1

M̃p
(·). By defining the combining ratio

r ,
p

τ · nt
=
np
τ

+
nq
τ · nt

, (6)

it holds that M̃p = b2
R
2·r c, and the overall quantization rate is

2·p
τ ·nt log

(
M̃p

)
≤ 1

τ ·nt logM = R. The scalar quantizers Q1
M̃p

implement non-subtractive uniform dithered quantization [24], see
[18, Sec. II] for a detailed discussion on the benefits of carrying out
our analysis assuming dithered quantizers.

To formulate the input-output relationship of the scalar ADC, let
γ denote the dynamic range of the quantizer, and define ∆p , 2γ

M̃p
as the quantization spacing. The uniform quantizer is designed to
operate within the dynamic range. To guarantee this, we fix γ to be
some multiple η of the maximal standard deviation of the input. We
assume that η <

√
3M̃p, such that the variable κp , η2

(
1− 2η2

3M̃2
p

)−1

is strictly positive. Note that η = 2 satisfies this requirement for any
M̃p ≥ 2. The output of the serial scalar ADC with input sequence
y1, . . . , yp can be written as Q1

M̃p
(yi) = qp (Re {yi + zi}) + j ·

qp (Im {yi + zi}), where z1, . . . , zp are i.i.d. RVs with i.i.d. real and
imaginary parts uniformly distributed over

[
− ∆p

2
,

∆p
2

]
, independent

of the input. The uniform quantization function qp(·) is given by

qp(y) =


−γ + ∆p

(
l + 1

2

) y − l ·∆p + γ ∈ [0,∆p]

l ∈ {0, 1, . . . , M̃p − 1}
sign (y)

(
γ − ∆p

2

)
|y| > γ.

Note that when M̃p = 2, the resulting quantizer is a standard one-bit
sign quantizer of the form qp(y) = c · sign(y), where the constant
c > 0 is determined by the dynamic range γ.

Finally, in the digital domain, the system computes the linear
MMSE channel estimate based on the ADC output, denoted qk ∈ Cp,
where (q)i = Q1

M̃p

(
(Aky

k
)i
)
. The estimated vector can be written

as ĝ = Bkqk for some nu · nt × p matrix Bk.

III. TASK-BASED QUANTIZATION SYSTEMS

In the following we study task-based quantization for massive
MIMO channel estimation. As a preliminary step, we characterize
the average MSE without quantization, i.e., the average MMSE. We
then characterize the achievable average MSE when the BS uses
vector quantizers, which is the optimal quantization strategy [22, Ch.
23]. Next, we derive the achievable average MSE when the BS uses
hardware-limited quantizers. Finally, we note that it may be preferable
in massive MIMO to combine only channel outputs received at the
same time instance. By accounting for this constraint, we derive the
achievable average MSE and the resulting quantization system for
this form of restricted hardware-limited quantization.

To derive the MMSE, define φk,m ,
√
fk,mdk,k,m where

fk,m ,
τd2

k,k,m

σ2
W + τ

nc∑
l′=1

d2
k,l′,m

, k, l ∈ Nc,m ∈ Nu, (7)

as well as the nu×nu diagonal matrices {Φk}k∈Nc and {F k}k∈Nc
with diagonal entries {φk,m}num=1 and {fk,m}num=1, respectively. The
MMSE channel estimation error is stated in the following lemma:

Lemma 1. The average MSE of the MMSE estimate, denoted g̃
k,k

,
is given by

µMMSE
k =

1

nu

nu∑
m=1

(
d2
k,k,m − φ2

k,m

)
. (8)

Furthermore, g̃
k,k

is a zero-mean nt ·nu×1 Gaussian random vector
with covariance matrix E{g̃

k,k
g̃H
k,k
} =

(
Φ2
k ⊗ Int

)
.

Proof: The lemma follows from [14, Appendix B].
Having characterized the MMSE channel estimate for the massive

MIMO setup without quantization, we are now ready to introduce
quantization constraints in the following subsections.

A. Vector Quantization
We now obtain the minimal achievable average MSE of any

quantization system with quantization rate R using indirect rate-
distortion theory. To that aim, let DG(R,Σ) be the distortion-rate
function of a zero-mean proper-complex Gaussian random vector
with covariance matrix Σ, obtained from Def. 2 via the reverse
waterfilling algorithm [15, Ch. 10.3]. The minimal average MSE is
stated in the following proposition:

Proposition 1. The average MSE of the optimal vector quantizer is

µOpt
k = µMMSE

k +
1

nu
DG

(
τ

nu
·R,Φ2

k

)
. (9)

Proof: The proposition follows from indirect rate-distortion
theory, as the distortion is minimized by applying optimal vector
quantization to the MMSE estimate [17], see also [3].

Note that (9) represents the fundamental performance limits of
massive MIMO channel estimation with quantized observations, and
is achievable using vector quantizers.

B. Hardware-Limited Quantization: Spatial-Temporal Combining
Utilizing vector quantization in massive MIMO systems is likely

to be infeasible due to its extremely high complexity for large-scale
inputs. Thus, practical massive MIMO systems utilize serial scalar
uniform ADCs, corresponding to the hardware-limited quantization
setup described in Subsection II-B.

By setting the analog combining matrix Ak to be Int , the system
specializes to the standard model for MIMO channel estimation from
quantized inputs, as in [4]–[7]. Thus, the analog processing of y

k
combined with the adjustment of the dynamic range γ are the main
difference between our model and existing models in the literature.
In Section IV we numerically illustrate that jointly optimizing the
analog combining and the quantization dynamic range significantly
improves the estimation accuracy, and can approach the fundamental
limits achievable with vector quantizers.

We next characterize the minimal achievable average MSE in esti-
mating massive MIMO channels using hardware-limited quantizers.
Our analysis follows similar guidelines to [18, Thm. 1], with the
exception that [18] considered real-valued signals with fixed size and
fixed number of bits. Here, the signals are complex with asymptoti-
cally large dimensions while the number of bits grows proportionally.
We define the non-negative function βk,m(x) , (x · φk,m − 1)+.
Our derivation reveals the optimal analog combining matrix and the
linear MMSE matrix, denoted Ao

k and Bo
k, respectively, and the

corresponding dynamic range γ, for fixed quantization rate R and
analog combining ratio r, as stated in the following proposition:

Proposition 2. The minimal achievable average MSE of the
hardware-limited task-based quantization system is given by

µHL = µMMSE+
1

nu

min(nu,np)∑
m=1

φ2
k,m

βk,m(ζ)+1
+δ(np<nu)

1

nu

×

(
nu∑

m=np+1

φ2
k,m−(r · τ−np)

βk,np+1(ζ) · φ2
k,np+1

βk,np+1(ζ)+1

)
, (10a)

where ζ is set such that
1

τ

np∑
m=1

βk,m(ζ)+(r · τ−np)βk,np+1(ζ) =
3M̃2

p · r
4κp

. (10b)

In the optimal system, the analog combining matrix is given by
Ao
k = UAΛA

(
V H

AΣ
−1/2
y
k
⊗ Int

)
, where V A ∈ Cτ×τ is the right
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singular vectors matrix of τ−1F kS
∗Σ

1/2

y′
k

, ΛA ∈ Cp×τ ·nt is a diag-

onal matrix with diagonal entries (ΛA)2
l,l =

4κp

3M̃2
p ·r
β
k,b l−1

nt
c+1

(ζ) ·
δ(l<nu·nt), and UA ∈ Cp×p is a unitary matrix such that
UAΛAΛH

AUH
A has identical diagonal entries [25, Ch. 2].

The dynamic range of the ADC is given by γ2 =
κp
r

, and the
digital processing matrix is given by

Bo
k=
(
D2
k,kS

∗⊗Int
)

(Ao
k)H
(
Ao
kΣy

k
(Ao

k)H+
4γ2

3M̃2
p

Ip
)−1

.

Proof: The proof is obtained by repeating the arguments in [18,
Appendix C] for complex inputs, while letting their size tend to
infinity, and is omitted due to space limitations.

We note that Ao
k linearly combines samples taken at different time

instances, i.e., temporal combining. Unlike spatial combining, which
can be implemented using simple hardware, see, e.g., [20], temporal
combining requires storing samples for different durations in analog,
which may be difficult when the PS length τ is large. Consequently,
we next characterize the optimal system when Ak is restricted to
implement only spatial combining.
C. Spatial Analog Combining

In Proposition 2 we characterized the minimal achievable MSE
when the input to the scalar ADCs can be written as any linear
transformation of all the channel outputs, y

k
. Since it may be

preferable not to combine samples received at different time instances
in analog, we now restrict the analog processing to combine only
samples received at the same time instance. It should be noted
that this model for analog combining in MIMO systems was also
considered in the works [9], [10], [21].

To formulate the setup, let Ãk ∈ Cnt×p̃ represent the analog
combining, applied to each received channel output. Here, at each
time index i, the vector Ãkyk[i] is quantized using p̃ identical scalar
quantizers with resolution M̃τ ·p̃, where M̃τ ·p̃ = bM1/(2τ ·p̃)c. This
setup is a special case of the model illustrated in Fig. 1, where
the analog combining matrix can be written as Ak = Iτ ⊗ Ãk

and p = p̃ · τ . Consequently, r = p
τ ·nt = p̃

nt
, thus, letting nt

grow arbitrarily large implies that p̃ grows proportionally. Let σk be
the maximal diagonal entry of Σy′

k
. Under this setting, the optimal

system and its average MSE are stated in the following proposition,
given without proof due to space limitations.

Proposition 3. The minimal achievable average MSE when only
spatial analog combining is carried out is given by

µsHL
k =µMMSE

k +
1

nu

nu∑
m=1

φ2
k,m−

r

nu

nu∑
m=1

φ4
k,m

φ2
k,m+

4κp̃·τ ·σk
3M̃2

p̃·τ ·τ
· f2
k,m

.

The optimal analog combining matrix Ão
k is diagonal with iden-

tical diagonal entries
(
Ão
k

)2
i,i

=
3M̃2

p̃·τ
4κp̃·τ ·σk

. The dynamic range is

γ2 =
3M̃2

p̃·τ
4

, and the digital processing matrix is

B̃o
k =

(
D2
k,kS

∗ ⊗
(
Ão
k

)H)((
Σy′

k
⊗ Ão

k

(
Ão
k

)H)
+ Iτ ·p̃

)−1

.

Note that yk[i] has i.i.d. entries. Therefore, intuitively, combining
the entries of yk[i] into a lower dimension may result in an inaccurate
estimation. Furthermore, it follows from Proposition 3 that Ã

o
k

merely multiplies each input by a constant, whose purpose is to
guarantee that the quantized entries are within the dynamic range
of the uniform scalar quantizers. Consequently, when the quantizer
cannot combine samples taken at different time instances in the
analog domain, most of the performance gain is a result of the digital
processing and the scaling of the input to be in the dynamic range.

IV. NUMERICAL RESULTS
In this section we numerically evaluate the performance channel

estimation systems studied in Section III. We consider a massive
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Fig. 2. Asymptotic average MSE vs. R.
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Fig. 3. Asymptotic average MSE vs. τ for R = 2.

MIMO system with nc = 7 hexagonal cell of radius 400 m, with
nu = 10 UTs uniformly distributed in each cell. We focus on the BS
of the first cell. Following [13], the attenuation coefficients are set to
dk,l,m =

zk,l,m
ρ2
k,l,m

, where {zk,l,m} are the shadow fading coefficients,
randomized from a log-normal distribution with standard deviation
of 8 dB, and {ρk,l,m} represent the range between the mth UT of
the lth cell and the kth BS. The PSs are obtained from the columns
of the τ × τ discrete Fourier transform matrix [5, Sec. II-A].

We compare the performance of our proposed hardware-limited
quantizers to the fundamental limit in (9), as well as to the channel
estimator of [7], which extends the 1-bit Bussgang-LMMSE estimator
of [5] to multiple bits. We set η = 2 and the analog combining ratio to
r = min

(
nu
τ
, R

2

)
and r = min

(
1, R

2

)
for the systems of Proposition

2-3, respectively. In Fig. 2 we fix the PS length to τ = 40, and evalu-
ate the achievable average MSE versus R ∈ [0.5, 8]; in Fig. 3 we fix
R = 2 and compute the performance versus τ ∈ [10, 100]. Observing
Fig. 2, we note that the performance of the hardware-limited quantizer
of Proposition 2 approaches the fundamental limits, achievable with
vector quantizers, for quantization rate as small as R = 1.5. The
hardware-limited quantizer with spatial combining approaches the
fundamental limits for R ≥ 5, and outperforms the estimator of
[7] for all considered quantization rates. From Fig. 3 we note that
as τ increases, µHL approaches the optimal performance µOpt for a
fixed quantization rate R, as its analog combining ratio nu

τ
decreases.

When this happens, uniform quantization can be carried out at more
accurately for the same R, resulting in a negligible quantization error.
Both hardware-limited systems significantly outperform the estimator
of [7], which implements no analog combining.

The results above demonstrate the fundamental performance limits
of channel estimation in massive MIMO systems, and illustrate that
properly designed hardware-limited quantizers can approach these
limits at relatively low quantization rates.

V. CONCLUSIONS

In this work we studied task-based quantization for massive MIMO
channel estimation. We derived the average achievable MSE with
vector quantization system and with scalar ADCs. Our numerical
study demonstrates that our proposed quantization systems utilizing
scalar ADCs can approach the fundamental limits of massive MIMO
channel estimation, achievable with optimal vector quantizers.
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