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Abstract
Biases in data availability have serious consequences on scientific inferences that can 
be derived. The potential consequences of these biases could be more detrimental 
in the less-studied megadiverse regions, often characterized by high biodiversity and 
serious risks of human threats, as conservation and management actions could be 
misdirected. Here, focusing on 134 bat species in Mexico, we analyze spatial and 
taxonomic biases and their drivers in occurrence data; and identify priority areas for 
further data collection which are currently under-sampled or at future environmental 
risk. We collated a comprehensive database of 26,192 presence-only bat records in 
Mexico to characterize taxonomic and spatial biases and relate them to species' char-
acteristics (range size and foraging behavior). Next, we examined variables related 
to accessibility, species richness and security to explain the spatial patterns in oc-
currence records. Finally, we compared the spatial distributions of existing data and 
future threats to these species to highlight those regions that are likely to experience 
an increased level of threats but are currently under-surveyed. We found taxonomic 
biases, where species with wider geographical ranges and narrow-space foragers 
(species easily captured with traditional methods), had more occurrence data. There 
was a significant oversampling toward tropical regions, and the presence and number 
of records was positively associated with areas of high topographic heterogeneity, 
road density, urban, and protected areas, and negatively associated with areas which 
were predicted to have future increases in temperature and precipitation. Sampling 
efforts for Mexican bats appear to have focused disproportionately on easily cap-
tured species, tropical regions, areas of high species richness and security; leading 
to under-sampling in areas of high future threats. These biases could substantially 
influence the assessment of current status of, and future anthropogenic impacts on, 
this diverse species group in a tropical megadiverse country.
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1  | INTRODUC TION

A rapid accumulation of species occurrence data over the past 
several decades have enabled researchers to carry out large-scale 
and multitaxa studies to develop methods for inferring present and 
future species distributions (Soberón & Peterson, 2004). Studies 
using species occurrence data provide a crucial basis for identifying 
areas of conservation concern, such as those with high species rich-
ness (Platts et al., 2010) and endemic or rare species (Guisan et al., 
2006), evaluating the risk of invasive species and diseases (Peterson, 
2003), and assessing predictors of species occurrence (Peterman, 
Crawford, & Kuhns, 2013). Such knowledge can then be used for 
identifying threats as well as prioritizing and directing future conser-
vation efforts in this anthropozoic era (Groves et al., 2002; Peterman 
et al., 2013).

Ideally, species occurrence data should be uniform over space 
and different taxa to reflect the real variation in the distribution, 
richness, and abundance patterns of species. However, species 
occurrence data are often seriously biased toward certain regions, 
habitats, and environmental domains with low coverage particularly 
in the most biodiverse regions (Hortal, Lobo, & Jiménez-Valverde, 
2007; Soberón, Davila, & Golubov, 2004; Yesson et al., 2007). Biases 
in data availability have serious consequences on scientific infer-
ences that can be derived. For example, spatial data biases can result 
in an uneven coverage of environmental conditions, such as biomes 
or climatic zones, where a species could occur (Kadmon, Farber, & 
Danin, 2004; Loiselle et al., 2007). Such biases can lead to deriv-
ing erroneous associations of species with environmental variables 
(Phillips et al., 2009; Yang, Ma, & Kreft, 2013), inferring incorrect 

species' absences (Bystriakova, Peregrym, Erkens, Bezsmertna, & 
Schneider, 2012), misidentifying areas that have been sampled in-
tensively as species-rich (Petřík, Pergl, & Wild, 2010) and building 
spurious ecological hypothesis and concepts (Hortal et al., 2015). 
The potential consequences of using spatially biased data could be 
more detrimental in less-studied regions, often characterized by 
high biodiversity and serious risks of human threats, as conserva-
tion and management actions could be misdirected (Bini, Diniz-Filho, 
Rangel, Bastos, & Pinto, 2006). Similarly, if threatened species are 
less surveyed, the uneven distribution of data over species can also 
lead to the underestimation of species extinction risk in the taxon 
(Bland, Collen, Orme, & Bielby, 2015).

Uneven sampling in environmental space is also one of the major 
sources of errors in studies relating species occurrence data to at-
tributes of the environment in order to model species' niches like 
species distribution models (SDMs) (Kadmon, Farber, & Danin, 2003; 
Phillips et al., 2009). If sampling across the environmental space is 
uneven or if some environmental units are not sampled, the resul-
tant model predictions will be truncated in those under-sampled 
environmental conditions, which may actually be suitable (Hortal 
& Lobo, 2008). Model transferability is also highly sensitive to the 
environmental range covered by the data used to develop and pa-
rameterize models (Randin et al., 2006). Incomplete environmental 
response curves predicted by SDMs can be particularly problematic 
for environmental change studies as the full environmental toler-
ances of the species need to be modeled in order to accurately pre-
dict geographic changes in habitat suitability.

Mexico is a megadiverse country harboring approximately 10% of 
all extant species (Mittermeier, Goettsch-Mittermeier, & Robles-Gil, 

F I G U R E  1   Example of the diversity 
of Mexican bats. (a) Antrozous pallidus 
and (b) Lasiurus cinereus belonging to the 
Vespertilionidae family, (c) Pteronotus 
parnellii from the Mormoopidae family, 
and (d) Natalus mexicanus member of the 
Natalidae family. Pictures by Veronica 
Zamora-Gutierrez

(a) (b)

(c) (d)
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1997) and its natural capital faces serious threats caused by de-
forestation, species extinctions, and other environmental changes 
(Malcolm, Liu, Neilson, Hansen, & Hannah, 2006; Mas et al., 2004; 
Visconti et al., 2011). Bats include a large fraction of the richness 
and abundances of the Mexican mammalian faunas (~26%, Figure 1) 
(Ceballos & Oliva, 2005; Medellín, Arita, & Sánchez, 2008) and pro-
vide essential functions and services in ecosystems like pollination, 
seed dispersal, and the suppression of insects' populations (Jones, 
Jacobs, Kunz, Willig, & Racey, 2009). Bats are considered an ideal 
indicator taxon for monitoring the status, changes, and responses 
of biodiversity and ecosystems since their communities respond to 
changes in temperature and precipitation regimes, farmland expan-
sion, and deforestation (Jones et al., 2009). However, the applica-
bility of indicator taxa is reliant on the existence and availability of 
data. Although Mexico is considered to be a pioneer in biodiversity 
informatics (Soberón & Peterson, 2004), there are still considerable 
knowledge gaps and an uneven distribution of the information avail-
able (Sarukhan et al., 2015).

Here, focusing on five biases in the collection and compilation 
of information (taxonomic, geographical location, species richness, 
accessibility, and security), we aimed to explain spatial variations in 
the amount of available bat occurrence data in Mexico and identify 
priority areas where future survey efforts should be directed. We 
hypothesized that geographical location, species richness, accessi-
bility, and security could have an impact in explaining spatial biases 
in available information and that certain groups of species will have 
more data available. Species occurrence data tend to be more nu-
merous in locations that are easily accessible and less remote (e.g., 
near cities or with higher road and population densities), with higher 
actual and/or perceived biodiversity and endemism (e.g., inside pro-
tected areas, with complex landscape heterogeneity, and with re-
ported higher species richness) and with high security levels (Amano 
& Sutherland, 2013; Dennis & Thomas, 2000; Kadmon et al., 2004). 
Similarly, there tend to be more records for species that are abun-
dant, easily detectable (or captured) and identifiable or charismatic 
(Hijmans et al., 2000; Meyer et al., 2011; Newbold, 2010).

Our work provides an essential background to inform studies of 
macroecological patterns and reduce the risk of reaching mislead-
ing conclusions in the identification of priority conservation and risk 
areas. Addressing data gaps and biases is critical to assess the sta-
tus of biodiversity in megadiverse countries and direct conservation 
efforts.

2  | MATERIAL AND METHODS

2.1 | Occurrence data

We generated a presence-only database for all bat species that 
occur in Mexico using information compiled from the National 
Commission for Knowledge and Use of Biodiversity (CONABIO), 
Global Biodiversity Information Facility (GBIF), and Mammal 
Networked Information System (MaNIS). We searched for pub-
lished literature in English and Spanish using Web of Science, Google 
Scholar, and Scielo to obtain additional information on Mexican bat 
occurrence data using the search words “chiroptera,” “M*xico,” “bat,” 
“bats,” “record*,” “occurrence,” “registro*,” “quiropter*,” “murci*lago*.” 
Additionally, we requested unpublished material from Mexican re-
searchers. We performed a data cleaning process as described in 
Zamora-Gutierrez, Pearson, Green, and Jones (2018) leaving 26,192 
occurrence records in Mexico (Figure 2) from 134 species (98% of 
the known species in Mexico) and eight families (100% of the fami-
lies in Mexico) (Medellín et al., 2008). The total number of grid cells 
in Mexico was 25,833, of which 9% (2,289 cells) had at least one bat 
occurrence record (Figure 2). This scarcity of data translates into an 
area of 1.7 million km2 with no bat records.

2.2 | Taxonomic bias

We assessed taxonomic sampling bias based on sampling method 
and species range size. Hypothetically, the number of occurrence 

F I G U R E  2   Availability of bat 
occurrence records. The map shows the 
distribution and abundance of 26,192 bat 
occurrence records for 134 species (98% 
of the known species in Mexico) and 8 
families (100% of the families in Mexico) 
across the 2,289 5 arc minute sampled 
grid cells



4  |     ZAMORA-GUTIERREZ ET Al.

data should increase with the size of the area in which a species 
occurs (Hijmans et al., 2000). To determine range size, we counted 
the total number of grid cells in which the species is expected to 
occur using species range maps (IUCN, 2015). Sampling method has 
been pointed before as a major factor affecting species detectability 
(Meyer et al., 2011). For example, phyllostomids are highly detect-
able by frequently used capture methods (e.g., mist nets and harp 
traps), while insectivorous species are mostly recorded using acous-
tic methods (MacSwiney, Clarke, & Racey, 2008). We used foraging 
space as a surrogate for sampling method because such information 
was not available in the datasets and assigned each species as open-
space, edge–space, or narrow-space forager (Denzinger & Schnitzler, 
2013).

We used a linear regression to determine the effects of range 
size (log-transformed and centered) and foraging space (edge-space 
forager as a reference category) on the number of grid cells sam-
pled (log-transformed) in each species, and included interaction be-
tween the two explanatory variables in the model. We then applied 
a Tukey HSD post hoc test to make a multiple comparison between 
the foraging groups, using the glht function in the multcomp pack-
age (Hothorn, Bretz, & Westfall, 2008) in R (R Development Core 
Team, 2013). In the same model, we estimated the slope of log-trans-
formed range size and its 95% confidence interval for each foraging 
space group using the cld function in the lsmeans package (Lenth & 
Love, 2016) in R. This slope can be interpreted as the exponent b of 
a power–law relationship: y = a xb, where y represents the number 
of grid cells sampled and x range size (i.e., the number of grid cells 
in which the species is expected to occur). When the estimated ex-
ponent b exceeds 1, it indicates that the proportions of grid cells 
sampled (y/x = a xb−1) are high in wide-ranging species, whereas an 
exponent smaller than 1 is a sign that the proportions are higher in 
narrow-ranging species.

2.3 | Spatial bias and its predictors

We first estimated the distribution of all bat occurrence records 
to assess whether the environmental space and the bat species in 
Mexico were sampled in an unbiased way. Ideally, we should also 
use information on abundance and species absence (i.e., a particular 
location was surveyed but no bat species were detected). However, 
neither of these types of data is usually available when collating oc-
currence from these repositories. We thus used the occurrence re-
cords of all bat species together as a proxy for the total bat sampling 
effort across Mexico. We created a grid with the extent of Mexico at 
a 5 arc minutes resolution (~10 km2) and summed the number of bat 
records occurring in each grid cell and then classified them as either 
“sampled” (with at least one record of any species) or “un-sampled” 
(without any record).

To illustrate the geographic variation in sampling activity, we 
created a map showing a network of Thiessen polygons based on 
the centroids of all sampled grid cells. This is a scale-independent 
way of illustrating variation in sampling activity where a big polygon 

indicates regionally low sampling activity, whereas a small polygon 
indicates the opposite (Schulman, Toivonen, & Ruokolainen, 2007; 
Vale & Jenkins, 2012). This analysis was done using the “Create 
Thiessen Polygons” tool in ArcGIS v 10.3.

Then, based on the grid cells representing the sampling effort, 
we assessed how well the environmental conditions in Mexico were 
sampled by quantifying the spatial sampling bias with respect to the 
main ecoregions in the country following the formula developed by 
Kadmon et al., (2004) (Equation 1). The use of ecoregions allowed us 
to define geographic units that share similar environmental and eco-
logical conditions and are recognized units for global conservation 
prioritization (INEGI, CONABIO, & INE, 2008).

where nd is the number of grid cells with bat records in the ecoregion d, 
pd is the proportion of the grid cells in Mexico which fall in ecoregion d, 
and N is the total number of sampled grid cells (N = 2,289). To estimate 
p, a set of N grid cells (with N equal to the number of actual sampled 
grid cells) was distributed at random in Mexico, and then p was taken 
to be the fraction of the random grid cells within a particular ecoregion. 
To estimate the number of random grid cells, we generated 100 sets 
of random grid cells of the same number as the sampled grid cells and 
calculated the mean across the 100 runs per ecoregion. The number 
of sampled grid cells by ecoregion was then compared with number of 
random grid cells using a chi-squared test to assess whether sampled 
grid cells fell into significantly (α = .05) different proportions of ecore-
gions than expected by chance.

We analyzed relationships between the availability of records 
and seven explanatory variables related to species richness, ac-
cessibility, and security level at a resolution of ~10 km2 grid cells. 
Three explanatory variables represent species richness: (a) bat spe-
cies richness, that is, the number of all species that are expected 
to occur in each grid cell, estimated by overlaying the IUCN range 
maps of all the bat species distributed in Mexico (IUCN, 2015) and 
counting how many coincide in each cell, (b) elevational heteroge-
neity was estimated as the difference in elevation within each grid 
cell based on a digital elevation model at 60 m resolution (INEGI, 
2017), and (c) the coverage of federal protected areas estimated as 
the percentage of the protected areas polygons within each grid 
cell (CONANP, 2016). Other three variables represent the accessi-
bility of each cell: (a) road density estimated as the sum within each 
grid cell of roads length in km (INEGI, 2015), (b) percentage of urban 
areas estimated as the percentage of the city polygons within each 
grid cell (INEGI, 2014), and (c) human population density by munic-
ipality estimated by assigning the value or average of values given 
by the map polygons that coincide in each cell (CONABIO, 2010). 
The remaining variable measures the security level of each grid cell, 
using reports of the Centro Nacional de Información, which aggre-
gates information on average rate of homicides between 1996 and 
2000 per state (SEGOB, 2016). All variables had a correlation less 
than 0.6 or −0.6.

(1)Biasd=
nd−pdN

√

pd(1−pd)N
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To address spatial autocorrelation in residuals, we used condi-
tional autoregressive (CAR) models in this analysis. Considering 
the zero-inflated nature of the data (i.e., 23,544 out of 25,833 grid 
cells have no records), we used two response variables in separate 
regression analyses: (a) the presence of records in each grid cell 
(n = 25,833) and (b) the number of records in each of the grid cell 
with records (n = 2,289). In both models, the explanatory variables 
were the seven variables described above. All explanatory variables 
were standardized (mean = 0 and SD = 1) before model fitting. We 
fitted the models to the data with the Markov chain Monte Carlo 
(MCMC) method in OpenBUGS 3.2.3 (Spiegelhalter, Thomas, Best, 
& Lunn, 2014) and the R2OpenBUGS package (Gelman et al., 2017) 
in R (R Development Core Team, 2013). Prior distributions of param-
eters were set as noninformatively as possible, so as to produce es-
timates similar to those generated by a maximum likelihood method. 
We used normal distributions with mean of 0 and variance of 1,000 
for coefficients of explanatory variables, an improper uniform dis-
tribution (i.e., a uniform distribution on an infinite interval) for the 
intercept as recommended by Thomas, Best, Lunn, Arnold, and 
Spiegelhalter (2004), and a Gamma distribution with mean of 1 and 
variance of 1,000 for the inverses of variance in an intrinsic Gaussian 

CAR distribution. Each MCMC algorithm was run with three chains 
with different initial values for 100,000 iterations with the first 
50,000 discarded as burn-in and the remainder thinned to one in 
every 10 iterations to save storage space. Model convergence was 
checked with R-hat values (Gelman, Carlin, Stern, & Rubin, 2003).

2.4 | Priority survey areas

We conducted univariate analyses for the relationship between the 
presence of records in each grid cell (n = 25,833) and each of the four 
threat variables (i.e., predicted changes by 2050s in mean tempera-
ture and precipitation, forest and farmland cover percentage per grid 
cell) using CAR models to address spatial autocorrelation in model 
residuals, which is highly expected in this type of data. To gener-
ate the risk variables, we obtained mean values of annual precipita-
tion and annual temperature at a 5 arc minutes resolution (Hijmans, 
Cameron, Parra, Jones, & Jarvis, 2005). For future conditions, we se-
lected the CCSM4 General Circulation Model and an extreme green-
house gas concentration trajectory (Representative Concentration 
Pathways—RCP) for 2050s with CO2 predicted to reach around 

F I G U R E  3   Spatial and environmental 
representation of sampling bias. (a) 
Sampling activity as the area of Thiessen 
polygons centered on the centroid of each 
sampled grid cell. Each polygon shows the 
area closest to the sampled centroid that 
is situated in the center of the polygon. 
The smaller the polygons, the higher 
the density of sampled grid cells. Colors 
represent the ecoregions at level I defined 
by INEGI, CONABIO, & INE, (2008). (b) 
Environmental bias (Biasd) in sampled 
grid cells for Mexico across ecoregions. 
Bias values go from positive values which 
indicate the over-sampling, to negative 
values which indicate environmental 
under-sampling. DF, Deciduous Forest; 
GP, Great Plains; MC, Mediterranean 
California; NA, North American Deserts; 
SM, Semiarid Meridional Elevations; TeF, 
Temperate Forest; TrF, Tropical Forest



6  |     ZAMORA-GUTIERREZ ET Al.

2,000 ppmv (RCP-8.5) (IPCC, 2013). Current and future land use 
maps were obtained from van Eupen et al., (2014). For future land 
conditions, we selected two extreme socioeconomic contexts: (a) 
a sustainable scenario where the use of resources and fossil fuels 
and deforestation is reduced; and (b) a “business-as-usual” scenario 
where no efforts to reduced land degradation and the use of fossil 
fuels are taken. We used four land use classes (forest, shrubland, 
grassland, and cropland) at 5 arc minute resolution and estimated 
their proportions per each grid cell.

3  | RESULTS

3.1 | Sampling biases

Thiessen polygons network showed that the knowledge of the bat 
fauna in the North American deserts and the great plains is based on 
collections from a few widely spread sampled grid cells (Figure 3a). 
The area of the largest polygon is more than 48,000 km2, indicating 
that knowledge of bats in this area is based upon a single sampled 
grid cell. There were 31 of these large polygons (≥10,000 km2) cover-
ing more than 59 million km2, 16 of which were located in the North 
American desert ecosystem, six in the great plains, four in the north 
of the western mountain range and five in the north of the semiarid 
meridional elevations. Supporting this result, the proportion of sam-
pled grid cells in different ecoregions was significantly different from 
that expected by chance (x2 = 645.64, df = 6, p < .001). The calcula-
tion of Biasd revealed that three ecoregions, North American deserts, 
semiarid meridional elevations and great plains, have particularly been 
under-sampled while three ecoregions, tropical forest, temperate for-
est, and deciduous forest, have been over-sampled (Figure 3b).

The number of reported species per sampled grid cell was very 
low with 68% of the sampled grid cells having ≤5 species reported. 

The percentage of all grid cells within a species' range that were sam-
pled ranged between 0.1% and 27%, with 50 (37%) species having 
≤20 grid cells sampled. There was a significant effect of range size, 
foraging space, and their interaction on the number of sampled grid 
cells (Table 1, Model 1). Post hoc comparison showed that number of 
sampled grid cells for narrow-space foragers was, when controlled for 
their range size, significantly higher than those for edge- and open-
space foragers, while there was no significant difference between 
edge- and open-space foragers (Table 1, Model 2). The estimated ex-
ponent b in the relationship y = a xb (y = the number of grid cells sam-
pled, x = range size) was significantly smaller than 1 for open-space 
foragers and for edge-space foragers, while it was not significantly 
different from 1 for narrow-space foragers (Table 1, Model 3). This 
indicates that the proportions of grid cells sampled were higher in nar-
row-ranging species for open-and edge-space foragers.

3.2 | Predictors of spatial bias

Results of CAR models indicate that both the attractiveness and ac-
cessibility of grid cells are important predictors of data availability. 
The presence of records in each grid cell was associated particularly 
with high topographic heterogeneity, road density, percentages of 
city area, and protected areas (Figure 4a). Similarly, among grid cells 
with records, there were more records in grid cells with higher spe-
cies richness, road density, and percentages of city areas and pro-
tected areas (Figure 4b).

3.3 | Priority survey areas

The presence of records was negatively associated with changes in 
temperature and precipitation (Figure 5), indicating that records are 

TA B L E  1   Results of the linear model comparing the effects of range size (log-transformed and centered) and foraging space (edge-space 
forager as a reference category) and their interaction on the number of grid cells sampled (log-transformed) in each species (Model 1)

 

Model 1 Model 2 Model 3

df F p Estimate SE t value padj b 95% CI

Range size 1,128 177.80 <.001       

Foraging space 2,128 12.78 <.001       

Interaction 2,128 3.28 <.04       

N-E    0.63 0.20 3.22 0.004   

O-N    −1.03 0.23 4.49 0.001   

O-E    −0.40 0.25 −1.63 0.23   

O        0.53 0.26–0.79

E        0.71 0.55–0.86

N        0.94 0.74–1.15

Note: Model 2 shows the results of the Tukey HSD post hoc test for a multiple comparison between the foraging groups (O = open-space foragers, 
E = edge-space foragers, N = narrow-space foragers). Model 3 summarizes the results of Model 2 with an additional estimate of the slope of log-
transformed range size and its 95% confidence interval for each foraging space group. This slope can be interpreted as the exponent b of a power–
law relationship: y = a xb, where y represents the number of grid cells sampled and x range size (i.e., the number of grid cells in which the species is 
expected to occur).
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particularly scarce in areas with predicted increases in temperature 
and precipitation. On the other hand, the presence of records was as-
sociated with neither forest change nor farmland change (Figure 5). 
Nevertheless this means that areas with predicted deforestation 

and farmland area expansion are not necessarily surveyed well com-
pared to other areas. Priority areas for further surveys which are 
currently under-sampled and at higher risk of environmental change 
include the North American Deserts, Semiarid Meridional Elevations 
and the Great Plains.

4  | DISCUSSION

Although the dataset collated here represents the most comprehen-
sive set of occurrence records for Mexican bats, it shows that Mexico 
is poorly sampled with 90% of the territory with no bat occurrence 
records and with a sampling effort unevenly distributed across the 
country. The substantial lack of biodiversity data coverage in megad-
iverse regions has been pointed out in previous studies (Amano & 
Sutherland, 2013; Bernard, Aguiar, & Machado, 2011; Collen, Ram, 
Zamin, & McRae, 2008; Llorente-Bousquets, Ocegueda, Contreras, 
Chiang, & Papavero, 2008) but this is the first time such detailed 
analysis has been done for Mexican bats. The sampling gaps found 
in Mexico are a matter of concern as they could substantially influ-
ence the way ecological and biodiversity value of different parts of 
the country are perceived. If patterns and changes in biodiversity 
cannot be measured accurately, threats to species and ecosystems 
cannot be adequately addressed and consequently conservation ef-
forts might be misdirected (Collen et al., 2008).

4.1 | Data reliability

Spatial sampling bias over different ecoregions was evident in the 
existing bat occurrence records in Mexico. Sampling appears to 

F I G U R E  4   Effects of hypothesized explanatory variables on (a) the presence of records in each grid cell (n = 25,833); and (b) the number 
of records in each of the grid cell with records (n = 2,289). Estimated coefficients (posterior medians) with 95% and 50% (thick lines) credible 
intervals are shown (those not overlapping with zero shown with filled circles in black)

F I G U R E  5   Estimated coefficients in univariate analyses testing 
the relationship between the presence of records and each of 
the four threat variables: predicted changes in temperature, 
precipitation, forest cover and farmland area. Posterior medians 
with 95% and 50% (thick lines) credible intervals are shown. 
Coefficients with 95% credible intervals not overlapping with zero 
are shown in red
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have focused disproportionately on the tropical regions, while the 
bat fauna of the drylands are represented by only a few scattered 
sampled grid cells. Hence, the completeness of the knowledge of the 
Nearctic and the Neotropical bat faunas is unlikely to be equal. This 
pattern of over and under-sampling of some ecoregions has been 
previously identified in other temperate and arid regions (Bernard 
et al., 2011; Martin, Blossey, & Ellis, 2012; Meyer, Kreft, Guralnick, 
& Jetz, 2015). Bats are crucial components of these under-sampled 
environments as they provide key ecosystem services and have high 
mammalian richness and abundance (Carpenter, 1969; Jones et al., 
2009). Thus, the uneven coverage in the knowledge of the bat fau-
nas may have important consequences in safeguarding the natural 
capital of these regions and the provision of services to the human 
well-being (e.g., biological insect pest suppression).

Mexico has the highest percentage of bat occurrence records 
from Latin America (37%) in the GBIF portal (Noguera-Urbano & 
Escalante, 2014). Yet, more than 50% of the sampled grid cells have 
five or less species recorded and none of the species had more than 
30% of its range sampled. Despite the large efforts by Mexican in-
stitutions to increase the availability of electronic verified records 
(Soberón & Peterson, 2004), data quantities for a large number of 
species are still insufficient. Although the efforts from different 
sources and researchers have allowed us to achieve some under-
standing of the distribution of richness and species for Mexican 
bats, this picture might not be a fair representation of the true dis-
tributions (Sastre & Lobo, 2009). When species richness is predicted 
using biased data, the predicted values tend to be higher in the 
most surveyed localities compared to those under-sampled. Hence, 
biased sampling effort can also bias estimates of species richness 
(Petřík et al., 2010; Sánchez-Fernández, Lobo, Abellán, Ribera, & 
Millán, 2008).

The analysis presented here shows that the representation of bat 
species in the occurrence records was influenced not only by spe-
cies' range size but also by their foraging behavior. The effect of for-
aging style on the amount of sampled grid cells could be explained 
by two main reasons: (a) the over-sampled tropical ecosystems might 
have been dominated by narrow-space foragers (Fenton et al., 1992); 
or (b) narrow-space foragers are the best detected group by capture 
methods (mist nets) which are preferably used in the Neotropics 
(Barnett et al., 2006). Mist nets undoubtedly favor the detection of 
some narrow-space foragers, such as phyllostomid species and un-
der-sample open- and edge-space foragers (e.g., molossids and ves-
pertilionids) (MacSwiney et al., 2008). However, recent technological 
innovations have led to the increased use of new survey methods 
(e.g., ultrasonic detectors) (Jones et al., 2013) that could change the 
overall representativeness of species sampled over time. However, 
changes in species detectability caused by changes in survey meth-
ods may lead to erroneous assumptions about species distributional 
changes. It is important to further explore effects of survey methods 
on species data representativeness in order to disentangle changes 
attributable to sampling rather than environmental or ecological 
drivers (see da Rocha, Ferrari, Feijó, & Gouveia, 2015), and to apply 
correcting methods when dealing with biased data. For example, the 

information contained in occurrence records can be improved (with-
out losing data) with some recently developed statistical techniques 
like random walk priors in Bayesian occupancy models (Outhwaite et 
al., 2018), and specific target-group background selection methods 
when building SDMs (Phillips et al., 2009).

4.2 | Drivers of bias

We found that variables that favor high species richness within an 
area (i.e., protected areas and topographic heterogeneity) had a 
positive effect on the availability of bat occurrence data. This result 
is consistent with previous studies where sampling effort is biased 
toward regions considered as conservation priorities (Parnell et al., 
2003; Reddy & Dávalos, 2003; Yang, Ma, & Kreft, 2014). Plausible 
explanations include that protected areas are more secured, which 
is a considerable barrier for researchers in countries under conflict 
(Amano & Sutherland, 2013). Also, protected areas are more likely 
to host pristine habitats which might increase the chances to find 
endemic, rare, and a higher number of species. Biases toward areas 
with perceived high species richness can be particularly problematic 
for conservation purposes because it can give the wrong impres-
sion of certain areas to be species rich, which can lead to misleading 
prioritization for conservation planning (Boakes, Fuller, McGowan, 
& Mace, 2016).

The concentration of bat occurrence data in highly hetero-
geneous habitats like mountains can be explained by three main 
factors. First, the most important institutions for biodiversity and 
taxonomic research are located in Mexico city and toward the center 
and south of the country (Llorente-Bousquets, Michán, et al., 2008; 
Llorente-Bousquets, Ocegueda, et al., 2008). These institutes are 
located close to areas of high mammal's biodiversity and endemism 
like the states of Oaxaca, Chiapas, and Veracruz (Ceballos & Oliva, 
2005). Second, these biodiverse states host important and complex 
mountainous areas in Mexico like the Sierra Madre de Chiapas and 
Sierra Madre del Sur, and unique vegetation types like the cloud 
forest. Third, the east and west mountain ranges in the country 
are considered between having medium to high mammal's diversity 
(Ceballos & Oliva, 2005). We can thus conclude that the highly bio-
diverse, pristine, and heterogeneous mountainous areas of Mexico 
have attracted the attention of trained taxonomist over the years 
(see references within Ceballos & Oliva, 2005).

Location's accessibility is also an important predictor of data 
availability for both presence and abundance of records, meaning 
that more accessible places tend to be more frequently sampled and 
with more data. These biases in occurrence data could lead to erro-
neous ecological patterns. For example, previous studies have found 
that off-road avian community composition significantly differs 
from samples taken around roads (Wellicome, Kardynal, Franken, & 
Gillies, 2014). Similar patterns might hold for bats as different spe-
cies and trophic groups have different tolerance to disturbance and 
human-made environments (Estrada-Villegas, Meyer, & Kalko, 2010; 
Gonçalves, Fischer, & Dirzo, 2017; Jung & Kalko, 2011). Sampling 
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bias toward densely populated areas can cause erroneous conclu-
sions about associations between species and people, and it may un-
derestimate the impact of human activities on biodiversity (Barbosa, 
Pautasso, & Figueiredo, 2013; Ficetola et al., 2014). Mexico leads 
the list of countries with the highest deforestation rates (Mas et al., 
2004) and with the highest human densities (World Bank, 2017). 
The biases found here toward anthropogenic elements give caution 
in making ecological and biogeographic inferences on bat distribu-
tions as it might have serious consequences for conservation and 
management plans. It is important to study data biases involving 
human-made environments to disentangle sampling artifacts from 
environmental patterns and associations. Security aspects may also 
influence field sampling but we did not find evidence that insecure 
conditions limit the number of records available in Mexico. This re-
sult might be scale dependent as we used a security metric given 
at state level. A more detailed analysis on specific dangerous areas 
might give a different result as it is known that scientist tend to avoid 
sampling conflict areas (Amano & Sutherland, 2013; Boakes et al., 
2016).

4.3 | Prioritization

This study identified the areas that need to be better explored and 
characterized in terms of their bat fauna. Our study emphasizes the 
need to improve bat data, and very likely from other taxa, in areas 
with specific environmental (drylands), geographic (northern Mexico 
and outside protected areas), and socio-economic characteristics 
(e.g., remote away from cities and roads), and for specific bat groups 
(e.g., open-space foragers) to improve the quality and representa-
tiveness of distributional data and consequently species knowledge 
to take well-informed conservation decisions. The sampling biases 
identified here lead to an evident Wallacean shortfall, that is, poorly 
understood and incomplete knowledge on species distributions. It is 
particularly worrying that the lack of records is found in areas pro-
jected to have extreme weather events by 2050s and that are likely 
to suffer high rates of land use change. This lack of information is 
likely to limit (a) our understanding on how biodiversity is and will be 
affected by environmental changes and (b) subsequently our capac-
ity to develop sound conservation strategies.

Ideally, species should be sampled homogenously across 
space and time and a good example of long term and long scale 
biodiversity surveys can be seen at the Butterfly Monitoring 
Scheme which started in the UK in the mid-1970s, and since then, 
it has been extended to more than ten European countries. This 
monitoring program is based on standardized sampling protocols 
designed to collect data for both common and rare species, cov-
ering a wide range of habitats, and it is constantly updated and 
adjusted to detect and reduce data gaps by prioritizing survey ef-
forts (Van Swaay, Nowicki, Settele, & Strien, 2008). This type of 
surveys must be implemented in countries highlighted as data de-
ficient and of high conservation priorities like Mexico (e.g., Brazil, 
Bernard et al., 2011).

The next step is to fill in the information gaps identified here. 
Mexico is leader in data mobilization through the CONABIO 
(Soberón & Peterson, 2004); thus, this data biases might be a con-
sequence of the lack of sampling effort, rather than data sharing. 
A crucial action is to prioritize data collection to minimize efforts 
and money. Citizen science programs have proven to be effective to 
increase the representativeness of some taxa on digital occurrence 
databases (Amano, Lamming, & Sutherland, 2016), as they can be 
done over large regions at a low cost. However, citizen science data 
collection may continue promoting certain biases like accessibility 
and security. Overcoming these biases will be particularly challeng-
ing in megadiverse regions as the most data deficient regions are less 
accessible and secure, and require a great investment of time and 
money to reach (Bernard et al., 2011).

Indirect observation through acoustic surveys is particularly 
useful for less detectable groups like bats and they have been suc-
cessfully implemented to improve the coverage of bat's distribu-
tional data (Jones et al., 2013). In any case, further sampling must 
be encouraged toward areas and species that require immediate at-
tention. In other to close the information gap across species and re-
gions, new data collection programs should focus on the regions and 
species groups with data deficiencies identified here. Survey design 
should be stratified so that sampling must be systematic and carried 
out by trained biologists or surveyors.
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