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Abstract

We propose a deep representation of appearance, i. e.,

the relation of color, surface orientation, viewer position,

material and illumination. Previous approaches have used

deep learning to extract classic appearance representations

relating to reflectance model parameters (e. g., Phong) or

illumination (e. g., HDR environment maps). We suggest to

directly represent appearance itself as a network we call a

Deep Appearance Map (DAM). This is a 4D generalization

over 2D reflectance maps, which held the view direction fixed.

First, we show how a DAM can be learned from images or

video frames and later be used to synthesize appearance,

given new surface orientations and viewer positions. Sec-

ond, we demonstrate how another network can be used to

map from an image or video frames to a DAM network to

reproduce this appearance, without using a lengthy optimiza-

tion such as stochastic gradient descent (learning-to-learn).

Finally, we show the example of an appearance estimation-

and-segmentation task, mapping from an image showing

multiple materials to multiple deep appearance maps.

1. Introduction

The visual appearance of an object depends on the combi-

nation of four main factors: viewer, geometry, material and

illumination. When capturing and processing appearance,

one wishes to change one or more of those factors and pre-

dict what the new appearance is. This can be achieved using

methods ranging from implicit image-based representations

[6, 13] to explicit Computer Graphics-like representations

[27]. Implicit methods take a couple of photos as input

and allow to predict high-quality imagery in a limited set of

conditions, but modest flexibility, e. g., interpolating an im-

age between two photos but not extrapolating to new views.

Explicit representations allow for more flexibility when ac-

quiring Phong parameters and HDR illumination maps [27],

but incur substantial acquisition effort, e. g., taking a large

number of calibrated (HDR) photos.

DAMs propose a new direction to represent appearance:

Figure 1. Frames from a video with a moving viewer (columns)

comparing a re-synthesis using our novel deep appearance maps

(DAMs) (top) and reflectance maps (RMs) (bottom) to a photo

reference of a decorative sphere with a complex material under

natural illumination (middle).

we move away from the pixel-based nature of implicit image-

based representations into a deep representation, but without

any explicit reconstruction, as we do not target a direct map-

ping to any explicit reflectance model or illumination either.

Still, we show that such a representation can be used to solve

actual tasks, such as image synthesis, appearance acquisi-

tion and estimation-and-segmentation of appearance. This is

enabled by four contributions:

First, we will introduce a generalization of 2D reflectance

maps [13] to 4D, which we call an Appearance Map (AM).

AMs represent appearance for varying geometry under vary-

ing views. This allows freely changing the viewer and sur-

face geometry, which is not possible for classic reflectance

maps that fix the relation between view and illumination (cf.

Fig. 1).

Second, while classic Reflectance Maps (RM) can be

simply tabulated using a single 2D image, the full appearance

is a 4D phenomenon that is more challenging to represent

and process. Storing 4D appearance as a table, modestly

resolving 10 degree features, would require storing (and

somehow also capturing) 364 = 17M ; impractical. Instead,

we suggest using DAMs, neural networks that compactly

represent AMs in only a couple of thousand parameters. This

representation is efficient, does not require any look-ups and
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is differentiable. In addition, it can be learned effectively

from images or video frames with a known viewer position

and surface orientation. Applying this representation to

new view positions and surface orientations can be done at

speed competitive to classic rendering or RMs, i. e., within

milliseconds for full images.

Acquiring a DAM requires learning a deep model for

every new appearance in practice. This would incur sub-

stantial computational effort, i. e., running an optimization

compared to capturing a RM image in seconds. Address-

ing this, our third contribution suggests to use another deep

(convolutional) neural network to map images showing an

appearance to a DAM ([17, 34, 14], one-shot learning [8],

“life-long”, or “continual” learning). This capture requires

milliseconds instead of minutes.

Fourth, the DAM representation can be used for joint

material estimation-and-segmentation, a generalization of

the previous objective. Here the input is an image with

a known number of n materials, and output is n different

DAMs, and a segmentation network that maps every pixel to

a n weights.

We train and quantitatively test all networks on a new

dataset of photo-realistically rendered images as well as on

a set of real photos.

2. Related Work

Inverse Rendering One of the main aims of inverse ren-

dering is to recover material and illumination properties

of a scene. It is a quite challenging, ill-posed and under-

constrained problem that remains hard to solve for the gen-

eral case. Related recent work can be roughly divided into

data-driven and algorithmic approaches.

Algorithmic methods are based on optimizing appearance

properties for a given input [23]. These methods are usually

off-line and make simplifying assumptions about the world

to reduce computation time and avoid ambiguity and allow

for a mathematical derivation. Most recent works [38, 31]

use a set of real RGBD images to estimate appearance that

are based on a specific illumination model. More refined

models use data-based statistical priors to optimize for illu-

mination and reflectance explaining an image [24, 22].

Deep-learning based approaches make a similar assump-

tion as to how humans can recognize materials based on pre-

vious experience. Recent work [25, 10, 21, 16, 7] uses CNNs

to estimate explicit reflectance model parameters. Similarly,

encoder-decoder CNNs are used to estimate reflectance maps

[29] or illumination and materials [12, 10].

All of theses methods – data-driven or not – have in

common that they rely on a specific illumination model to

estimate its explicit parameters (such as Phong diffuse, spec-

ular, roughness, etc) and they represent lighting as an HDR

illumination map. To the one hand, this is more that what we

do as it factors out lighting, to the other hand our approach is

more general as it makes no assumption on light or geometry

and works on raw 4D samples. One of the other limitations

of above mentioned CNN methods is limited feedback from

a loss function: a change of estimated illumination or re-

flectance can only be back-propagated through the image

synthesis method with suitable rendering layers. Our method

does not involve a renderer, circumventing this problem.

Appearance synthesis Methods to synthesize appearance

– or simply “rendering” –, can be classified as simulation-

based or image-based.

Simulation-based methods require a complete explicit

description of the environment that can be costly and dif-

ficult to acquire in practice [27]. A simple, yet powerful,

method to represent appearance is a reflectance map [13],

a 2D image that holds the color observed for a surface of a

certain orientation and material under a certain illumination.

In graphics, reflectance maps are known as pre-filtered envi-

ronment maps [15], or spherical harmonics (SH) to capture

the entire light transport [33]. A single 2D envmap or 2D

SH however, cannot reproduce 4D appearance variation and

furthermore requires a high pixel resolution or many SH

coefficients to capture fine details (highlights) that are easy

to reproduce using a NN. The entire reflectance field is a

spatial map of these, as captured by Debevec [5].

Image-based rendering (IBR) uses a set of 2D images to

reconstruct a 3D model and present it in a different view or

different light [6]. These methods do geometry prediction,

often with manual intervention, with prediction of rendered

material on top of it. Recent methods [39, 28] address this

problem by using CNN models to predict completely novel

views. The method of Rematas et al. [29] and establish a

relation between surface and light transport properties and

appearance given by photos, generating images “without

rendering”. A simple data-driven approach to IBR is to learn

a per-pixel fully-connected neural network to reproduce per-

pixel appearance [30] depending on light. A generalization

of this is to shade images with per-pixel positions, normals

and reflectance constraints [26]. Our method stems from the

same root but neither works on pixel-based image rendering,

nor does it reconstruct an explicit appearance model. We

will instead use a deep representation of appearance itself.

Light fields [19] also store 4D appearance, but are

parametrized by spatial or surface position [37] and store

2D lumitexels. BRDFs 4D-capture reflectance, but not il-

lumination. Our DAMs capture the 4D relation of surface

orientation and view direction instead.

Segmentation Classic segmentation does not take materi-

als into account [32]. Recent material segmentation work,

such as Bell et al. [2] is mostly a form of extended semantic

segmentation into material labels (23 in their case): Most

arm chairs might be made of only three different kinds of
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materials that such approaches are successful in detecting.

In our work, we have abstract objects (like photographs of

spheres Fig. 1), that do not provide much semantics and

require using a continuous appearance representation. For

videos of view-dependent appearance, this is particularly

difficult. With adequate capture equipment, spatially varying

appearance is captured routinely now [18, 11]. In particular,

with very dense light field that covers a tiny angular region,

changes in appearance can be used to separate specular and

diffuse [1]. Our work uses much sparser samples and goes

beyond a specular-diffuse separation to support arbitrary 4D

appearance extrapolated over all view directions.

Another challenge is multi-materials estimation. Some

work [10, 35] has used multiple materials under the same

illumination, but they require pre-segmented materials. In

our method we perform joint multi-material segmentation

and estimation.

Learning-to-learn Learning-to-learn is motivated by the

observation that a general optimizer, such as the one used

to find the internal parameters for a network, will never be

much better than a random strategy for all problems [36].

At the same time, intelligent actors can learn very quickly,

which obviously does not require a full optimization [17].

We hypothesize, after seeing a material for some time, that

a human, in particular a trained artist, would be able to

predict its appearance in a new condition. This requires the

ability to refine the learned model with new observations

[34]. For convolutional networks, this was done in dynamic

filter networks [14], but we are not aware of applications to

appearance modeling, such as we will pursue here.

3. Deep Appearance Processing

3.1. Appearance maps

We model RGB appearance Lo of a specific material

fr under a specific distant illumination Li as a mapping

from absolute world-space surface orientation n and viewer

direction ωo (jointly denoted as x) as in

Lo(ωo,n
︸ ︷︷ ︸

=x

) =

∫

Li(ωi)fr(ωi, ωo) < n, ωi >
+ dωi.

Essentially, Lo is a six-dimensional function. In the fol-

lowing, we denote the two three-dimensional parameters –

outgoing direction ωo and surface orientation n – as a joint

parameter vector x. The concept if visualized in Fig. 2: In

a classic reflectance map, the normals vary (blue arrows),

but the view direction is the same (orange arrows). In our

generalization, both view and normals vary arbitrarily. We

might even observe the same normal under different views.

Classic reflectance maps [13], assume a view direction z

along the z axis and hold the relation of light and surface
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Figure 2. Reflectance and Appearance maps.

fixed, while also being limited to a single half-space:

LRM(n) where < n, z > ≤
π

2
.

Covering the 4D sphere is motivated by our applications

that allows to independently change view (2D) and surface

orientation (2D). Note, no assumption on a BRDF is made

as others do [12, 10].

3.2. Deep Appearance Maps

We use a deep neural network L̂o(x|θ) to approximate

Lo(x) where θ denotes the networks internal parameters

(Fig. 4, a). The input to such a network is the surface orienta-

tion and viewer direction parametrized as Euclidean vectors,

i. e., a total of six numbers. This is followed by several

fully-connected layers that are ultimately combined into a

single RGB output value. Using 1× 1 convolutions provide

independence of image or object structure. Here, stochastic

gradient descent (SGD) is used to minimize

argmin
θ,δ

cd(θ,W ) + αca(θ, δ)

according to the α-weighted sum of a data cost cd that de-

pends on the DAM model parameters and an adversarial cost

ca that further includes the cost of the parameters of an ad-

versarial model δ, that is biasing the solution to be plausible.

W is a weight vector that is set to 1 for now, but will be

required later for segmentation. We use α = .001. The data

cost is defined as

cd(θ) =
1

n

n∑

i=1

Wi||L̂o(xi|θ)− Lo(xi)||, (1)

where Lo(x) are the observed appearance for normal and

view direction x and L̂o(x|θ) is modeled appearance with

parameter θ. The adversarial cost is defined as

ca(θ, δ) =
∑

I∈I”

∆a(R(θ, I
′

n/v)|δ)

︸ ︷︷ ︸

Rendered appearance is fake

+
∑

I′∈I

(1−∆a(I
′
rgb)|δ))

︸ ︷︷ ︸

Real appearance is real

,

(2)

where I is a set of images with per-pixel color (Irgb),

normals(In) and view directions (Ib) (detailed in Sec. 4),

∆a is an adversarial network with parameters δ, classifying
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Figure 3. Different appearance processing tasks that we address using our deep appearance maps. a) The first task simply reproduces a

given appearance, i. e., it maps from normal and view directions to RGB values using a NN. b) In a learning-to-learn task a network maps

an image to a DAM representation. c) Finally, in the segmentation-and-estimation task, a network maps an image to multiple DAMs and

multiple segmentation networks.

its argument as fake when it is 1, and R is an operator that

applies the appearance model with parameters θ to the per-

pixel normals and view directions in image I (re-synthesis /

rendering). The adversarial network ∆a itself is a common

encoder-style classifier as detailed in Fig. 4, b. It classifies

the input image into a single value between 0 and 1. The

GAN incentivizes the solution to produce plausible results

in regions where no normals or view directions are observed

during training.

Figure 4. The four architectures used.

Learning a deep appearance model takes more than a

minute while it is executed on a full image within one mil-

lisecond. We will now see how this representation enables

two novel applications: learning-to-learn material appear-

ance (Sec. 3.3) and material estimation-and-segmentation

(Sec. 3.4).

3.3. Learning­to­learn Deep Appearance Models

Taking it a step further, we suggest to replace the learning

procedure explained before by a network (learning-to-learn

[34]). The main idea is to speed up the learning process, al-

lowing acquisition of a deep appearance material on-the-fly

at interactive rates (one millisecond) instead of an optimiza-

tion requiring 71 seconds (for Tbl. 1 on a Nvidia GTX 1080).

A general optimization process can find a good solution to

all problems, but no learning approach that does well on all

problems is much better than guessing [36]. However, we

do not ask for “free lunch” here as we know that we do not

want to solve all problems, but a specific subset: learning

how to map normals and view directions to appearance.

To this end, we employ a convolutional neural network

Θ(I|φ) that is executed on an image I with a second set

of internal parameters φ. Consequently, a network replaces

a general learning algorithm [14]. This network can be

compactly deployed and efficiently executed on arbitrary

images to produce a DAM that can then be used for synthesis.

In this sense, it is a network that predicts the weights (learned

parameters) of network.

The input to the network is a 256×256 RGB, normal

and view direction images I showing the appearance of a

single material Fig. 4, c. Using an image instead of a plain

list of samples allows the network to reason about spatial

arrangement of values, e. g., detecting shapes and relations

of highlights.

The output is a 3360-dimensional vector Θ(I|φ) that de-

scribes the internal parameters of a network producing the

appearance of I . The network Θ has eight layers, reduc-

ing resolution until a fully-connected layer. Training now

minimizes for

argmin
φ,δ

∑

I∈I

cd(Θ(I|φ),w) + αca(Θ(I|φ)|δ), (3)

i. e., the same cost as in the previous section, but defined

on the parameters φ of a network Θ(I|φ) producing another

network instead of the network parameters θ.

3.4. Appearance Estimation­and­Segmentation

A second application is joint appearance estimation and

segmentation. Instead of holding a segmentation fix and

estimating an appearance model for each segment or assum-

ing an appearance to apply a segmentation, we jointly do

both in an unsupervised way. We suggest using SGD it-

self as an optimization method to find the segmentation and
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appearance-predicting networks. Here, the DAM as well as

a segmentation network are used as the latent variables to

be inferred. The number of materials n is assumed to be

known.

The appearance network parameters for all appearances

are stacked into a matrix Θ(I) = (Θ(I|φ1), . . . ,Θ(I|φn))
T.

Instead of directly inferring a per-pixel segmentation

mask in the optimization, we suggest to learn a network

Ψ(ψi) with parameters ψi that jointly produces the all n

segmentation masks (Fig. 4, d).

This network again is a simple encoder-decoder with skip

connections that is shared among the materials in order to

further reduce parameters. Input to this network is an image

I with pixel color, normal, position, and output is a weight

mask expressing how much a pixel belongs to a certain

material i. There is one segmentation network parameter

for each material i, and they are all stacked into a matrix

Ψ(I) = (Ψ(I|ψ1), . . . ,Ψ(I|ψn))
T. The optimization now

becomes

argmin
Θ,Ψ,δa,δm

n∑

i=1

cd(Θ(I|φi),Ψ(I|ψi))+

αca(Θ(I|φi), δa) + βcs(W ). (4)

Here, cs is a sparsity term on the weight mask W that en-

courages a solution where most values for one pixel are zero,

except one i. e., to have one unique material in most pixel.

For every channel w in W it is
∑

i abs(wi − .5).

4. A Multi-view Multi-material Dataset

To work on arbitrary combinations for view, surface ori-

entation and illumination for objects with multiple materials,

we first produce a dataset. To our knowledge, no multi-

material, multi-view dataset exists that allows for a con-

trolled study. Examples from the dataset are shown in Fig. 5.

Figure 5. Two samples from four variants of our data set.

A seemingly obvious way to capture such a dataset from

the real world is to take many photos at many exposure

settings of many geometric objects under varying illumina-

tions. Regrettably, this does not scale well to a high number

of samples due to the curse of dimensionality encountered

with so many parameters (the product of geometry, material,

illumination and view). Also it would be difficult to manu-

ally decorate them with ground-truth material segmentation.

Instead, we suggest to use photo-realistically rendered im-

agery.

We acquired five production-quality 3D objects from a

model repository. As most of our architectures consider im-

ages simply as a list of 4D samples, without spatial layout,

this comparatively low number of models appears adequate.

Each model was assigned multiple (three) or one physically-

plausible (layered GGX shading) materials organized on the

objects surface in a complex and natural spatial arrange-

ment. Before rendering, we randomize the hue of the diffuse

component. For illumination, we used 20 different HDR

environment maps. For each model, 32 different but equidis-

tant view points on a circle around the object, with a random

elevation, were used. Overall, this results in 5×20×32=3200

images. Note, the number of photos that would be required

to exhaustively cover 4D; an order of magnitude higher. As

the views and materials are randomized, no sharing between

test and train sets exists. Geometry i. e., certain combina-

tions of normals and view directions, might occur both in

test and training data. We perform the same split into test

and training for all tasks.

For rendering, we use Blender’s [4] Cycles renderer with

high-quality settings, including multiple indirect and spec-

ular bounces. Note that those light paths violate the model

assumption. We add a virtual tripod to be closer to real

photos, which typically also have local reflections which

invalidate the model assumptions of distant illumination.

The resulting images are linearly tone-mapped such that the

95th percentile maps to 1 and kept linear (non-gamma cor-

rected). For each image I in the corpus I, we store many

channels: appearance as RGB colors Ic, position Ip, normals

In, and a weight map Iw with n channels, where n is the

number of materials.

Additionally to the ENVMAP version, we produce a vari-

ant with POINTLIGHT illumination (technically, a single,

small area light) and split the set into flavors: MULTIMATE-

RIAL and SINGLEMATERIAL. Using a single material, the

material segmentation is ignored and one random material

from the objects is assigned to the entire 3D objects. In the

multi-material case, we proceed directly. Note, that such

instrumentation would not be feasible on real photographs.

5. Results

5.1. Protocol

Here we evaluate our deep appearance representation

(Sec. 5.2), as well as its application to learning-to-learn
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the DSSIM (less is better) of all samples in the data set. Blue colors are for point light illumination, red colors for environment maps. Dark

hues are the competitor and light hues ours.

appearance (Sec. 5.3) and joint material estimation-and-

segmentation (Sec. 5.4).

Instrumentation for all tasks is performed in a similar fash-

ion using our multi-view, multi-material data set (Sec. 4).

In particular, we consider its POINTLIGHT and ENVIRON-

MENTMAP variants. Depending on the task, we either use a

SINGLEMATERIAL or MULTIMATERIAL. The main quan-

tity we evaluate is image similarity error (DSSIM, less is

better) with respect to a path-traced reference. We consider

two tasks: re-synthesizing from the SAMEVIEW (training

views) as well as from a NOVELVIEW (test views). We will

use 10 of the 32 views for every sample for training and

predict 22 novel views. The 10 views form a random but

consecutive range of angles ca. 240 degree.

In each application we also consider one application-

specific competitor to solve the task. We use perfect classic

reflectance maps for appearance representation [13], an up-

per bound with what could be estimated [28]. SGD is the

common solution to learn appearance. For testing on real

data, we need to select a single 2D input image for the RM.

We use an oracle that selects the 2D image resulting in the

lowest error. This is an oracle, impossible in practice, as the

selection would required knowing the reference. For mate-

rial segmentation, no clear baseline exists. We experimented

with the method of Bell et al. [2], but concluded it is trained

on semantic shapes (chairs imply wood etc.) which do not

transfer to the abstract shapes we study (see supplemental

materials for examples). Therefore, inspired by intrinsic im-

ages that also find consistent patches of reflectance [9], we

simply employ k-means clustering in RGB-Normal space to

do joint material estimation-and-segmentation. We will now

look into the three specific applications.

5.2. Appearance representation

We study how well our approach can represent appear-

ance per-se. Most distinctly, we propose to use a 4D appear-

ance map while other works use 2D image representations of

a reflectance map. To quantify the difference, we represent

the SINGLEMATERIAL variant of our dataset as a common

reflectance map, as well as using our appearance map.

To emulate a common reflectance map, which is defined

in view space, we take the input image from the closest view

from the training set as a source image. Every normal in

the new view is converted to camera space of the new view

and the same is done for the normal in the old view. We

then copy the RGB value from the old view image to the

new-view image that had the most similar normal. Note, that

such a multi-view extension of RMs already is more than

the state of the art that would use a single view. We call this

method RM++.

Tbl. 1, top part, shows results as mean error across the

data set. We see that for all data sets our method is a better

representation in terms of having a lower DSSIM error. The

difference in error is more pronounced for NOVELVIEW

than for SAMEVIEW. A detailed plot of error distribution

is seen in Fig. 6, left. This is, as classic reflectance map

captures appearance for a fixed viewer location, for changing

geometry, but does not generalize when the viewer moves.

Arguably, classic RMs look qualitatively plausible without a

reference, but only have low quantitative similarity (SSIM)

in novel views.

5.3. Learning­to­learn appearance models

Here, we also follow the protocol described in Sec. 5.1.

After having established the superiority of deep appearance

maps to classic reflectance maps in the previous section, we

use it as a competitor (SGD) for learning-to-learn. At best,

our learning-to-learn network produces a network which is

as good as running a full SGD pass.

The middle part of Tbl. 1 summarizes the outcome when

executing the resulting φ on the test data set. We see that

both approaches reproduce the appearance faithfully. For

point lights, the mean DSSIM is .144 for SGD while it is .165

for network-based (Tbl. 1, middle part). Naturally, letting

a network do the learning degrades quality, but only by a

marginal amount, in this case 14.1 %. For environment map

illumination, the mean DSSIM is increased from .164 to

.173, a decrease by only 5 %. While being marginally worse,

it is two orders of magnitude faster. Fig. 6 show the error

distribution across the data set.

8734



Table 1. Quantitative results on synthetic data. Rows are different

combination of tasks and methods (three applications, two view

protocols, our two methods). Columns are different data. Error is

measured as mean DSSIM across the data set (less is better).

Task View Method
Error

PNT ENV

Representation

(Sec. 3.2)

Same
OUR .105 .123

RM++ .143 .160

Novel
OUR .144 .164

RM++ .181 .193

Learn-to-learn

(Sec. 3.3)

Same
OUR .106 .131

SGD .105 .123

Novel
OUR .165 .173

SGD .144 .164

Segmentation

(Sec. 3.4)

Same
OUR .113 .122

KMEANS .132 .136

Novel
OUR .161 .154

KMEANS .172 .164

Figure 7. Results of our DAM representation trained using stochas-

tic gradient descent (1st column), our DAMs produced by our

learning-to-learn network (2nd column) as well as a reference

(3rd column) in a novel-view task.

A visual comparison is found in Fig. 7. We see that replac-

ing the SGD computation of several minutes by a network,

can produce a DAM that is qualitatively similar to both the

SGD’s result as well as to the reference. Overall, strength

and sharpness of highlights that is already challenging for

DAM per-se, seems to suffer a bit more by learning-to-learn,

as also seen in Fig. 8.

5.4. Joint Material Estimation­and­Segmentation

Finally, we quantify the joint material-and-segmentation

task from Sec. 3.4. We perform the same split as in the previ-

ous section, however, now on the MULTIMATERIAL variant.

For the re-synthesis to new views we use the ground truth

segmentation in the new view (our method only produces

the segmentation in all old views).

We here compare to a competitor, where the image is first

segmented using k-means clustering on normals and RGB

(same weight, as both have a similar range) and material is

estimated for each segment in consecution.

Tbl. 1, bottom part shows the quantitative results and

Fig. 9 the qualitative outcome. On average, we achieve an

DSSIM error of .133 for POINTLIGHT and .122 for ENVI-

RONMENTMAP. The greedy method performs worse (.161
and .154), as it segments highlights into individual parts.

While the method can understand that highlights belong “to

the rest” of a material, sometimes they end up in different

clusters, as seen in Fig. 8, middle and less in the bottom of

Fig. 9.

5.5. Discussion

Typical failure modes are show in Fig. 8. For represen-

tation Fig. 8, left, the network can overshoot e. g., become

darker than desired, for unobserved directions. More input

images or a more effective GAN could suppress this. Sharp

details cannot be represented by the cascade of functions of

a small network. Fitting a network with more parameters

might be required. For learning-to-learn Fig. 8, right, SGD

might produce the right network, but the learned network

overshoots. Similarly, highlights tend to be more blurry (not

shown). For segmentation Fig. 8, middle, the rim highlight

in the back of the character is purely white and apparently

does not look enough like other highlights on blue to be un-

derstood. Consequently, it is assigned the metallic material,

which is incorrect.

.125

0

D
S
S
IM

GlossHigh Low

Test
Total
Train

Figure 10. Relation of gloss

and representation error.

When the material ap-

proaches an arbitrarily com-

plex illumination seen in a

mirror, no network can cap-

ture all 4D variation anymore.

This relation is shown in the

inset plot (Fig. 10) where

the vertical axis denotes er-

ror, which is decreasing when

specular is decreased as well,

along the horizontal axis.

5.6. Other Applications

DAMs can also be used for other tasks such as super-

resolution, where we extract a DAM in low pixel resolution

that can be transferred to a high resolution normal image

and denoising of Monte Carlo path tracing, where we extract

a DAM from noisy observations and re-generate the image

from the DAM, removing the noise. Detailed evaluation,

comparing to a state-of-the-art MC denoiser [3] and super-

resolution [20] are found in the supplemental material.
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Figure 8. Failure modes for all three tasks: blurry highlights, split highlight segmentation and a overshooting DAM.

Figure 9. Results of joint material segmentation and estimation for

two samples (rows). In every part we show a re-synthesis, as well

as two estimated materials and the resulting mask. The insets in the

last row show that, while not all reflection details are reproduced,

ours is free of color shifts around the highlights and mostly a low-

frequency approximation of the environment reflected.

6. Real-world Evaluation

We have collected a second dataset of photographs of

spherical objects with complex appearance (glossy objects

under natural light). In particular we use 3 different materials

and 5 different illuminations each with 5 images from regis-

tered views (Fig. 11) for training and 70 for testing. Please

see the supplemental video for the animation. Transfer of

appearance captured from a real world image sequence to

other complex geometry is shown in Fig. 12.

Figure 11. Real-world photo data and our reconstruction (from

other views) of multiple materials (denoted M) in multiple illumi-

nation (L) from multiple views (V).

Table 2. DSSIM (less is better) error on real data.

Same view Novel view

OUR RM++ OUR RM++ RM

DSSIM Error .069 .001 .079 .090 .127

Tbl. 2 summarizes the outcome for the representation

task previously explored for synthetic data only. An example

result is seen in Fig. 1, more are shown in the supplemental

materials. Our method can estimate view-dependent appear-

ance, unlike RM/RM++, from a small training set, but it

can’t fully reconstruct mirror-like reflections.

Target 1 Target 2 Target 3

DAM
(ours)

Source

Reference
(Path trace)

Source

DAM
(ours)

DAM
(ours)

Source

Figure 12. Transfer of appearance from a real video sequence (left)

to new 3D shapes (right).

7. Discussion and Conclusion

We have proposed and explored a novel take on appear-

ance processing that neither works on pixel-level IBR-like

representations nor by extracting classic explicit reflectance

and illumination parameters. Instead, we work on a deep

representation of appearance itself, defined on a generaliza-

tion of reflectance maps that works in world space where

observations cover all directions. We have shown to enables

effective reproduction, estimation by learning-to-learn and

joint material estimation-and-segmentation.

In future work, we would like to generalize our approach

to allow independent control of illumination and reflectance

(BRDF) [10, 21, 16, 7], providing an improved editing expe-

rience. Equally, we have not yet explored the symmetric task

of learning - how to learn segmenting appearance (Sec. 3.3).

8736



References

[1] Anna Alperovich and Bastian Goldluecke. A variational

model for intrinsic light field decomposition. In ACCV, pages

66–82, 2016. 3

[2] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala.

Material recognition in the wild with the materials in context

database. In CVPR, pages 3479–87, 2015. 2, 6

[3] Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A.
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