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Abstract 20 
 21 
Background. Pathogen whole-genome sequencing has huge potential as a tool to better 22 
understand infection transmission. However, rapidly identifying closely-related genomes 23 
among a background of thousands of other genomes is challenging.  24 
 25 
Methods. We describe a refinement to core-genome multi-locus sequence typing (cgMLST) 26 
where alleles at each gene are reproducibly converted to a unique hash, or short string of 27 
letters (hash-cgMLST). This avoids the resource-intensive need for a single centralised 28 
database of sequentially-numbered alleles. We test the reproducibility and discriminatory 29 
power of cgMLST/hash-cgMLST compared to mapping-based approaches in Clostridium 30 
difficile using repeated sequencing of the same isolates (replicates) and data from 31 
consecutive infection isolates from six English hospitals. 32 
 33 
Results. Hash-cgMLST provided the same results as standard cgMLST with minimal 34 
performance penalty. Comparing 272 replicate sequence pairs, using reference-based 35 
mapping there were 0, 1 or 2 SNPs between 262(96%), 5(2%) and 1(<1%) respectively. Using 36 
hash-cgMLST, 218(80%) replicate pairs assembled with SPAdes had zero gene differences, 37 
31(11%), 5(2%) and 18(7%) pairs had 1, 2 and >2 differences respectively. False gene 38 
differences were clustered in specific genes and associated with fragmented assemblies, but 39 
reduced using the SKESA assembler. Considering 412 pairs of infections within ≤2 SNPS, i.e. 40 
consistent with recent transmission, 376(91%) had ≤2 gene differences and 16(4%) ≥4. 41 
Comparing a genome to 100,000 others took <1 minute using hash-cgMLST. 42 
 43 
Conclusion. Hash-cgMLST is an effective surveillance tool for rapidly identifying clusters of 44 
related genomes. However, cgMLST/hash-cgMLST generates more false variants than 45 
mapping-based approaches. Follow-up mapping-based analyses are likely required to 46 
precisely define close genetic relationships. 47 

48 
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Introduction 49 
The rapid development of pathogen whole-genome sequencing offers huge potential for 50 
better understanding the epidemiology of many infections. When trying to intervene to stop 51 
transmission, it is often important to identify the most closely genetically-related organisms 52 
already sequenced, as these represent potential recent sources of infection or cases that 53 
share a common infection source. However, the rapidly growing scale of data generated 54 
makes identifying these closely-related genomes among a background of many thousands 55 
of other genomes very challenging.  56 
 57 
Three main approaches can be taken to identify closely-related genomes. Comparing single 58 
nucleotide polymorphisms (SNPs) identified following mapping to a reference genome 59 
offers high precision, e.g.1 but, despite efforts to optimise computational approaches2, is 60 
relatively slow. In contrast, k-mer based approaches based on hash algorithms, e.g. MASH3 61 
and PopPUNK4, are fast, but the inherent and unstructured dimensionality reduction (e.g. 62 
summarising the whole genome as 500 hash strings selected on the basis of sorted hash 63 
strings) can reduce precision in fine-scale transmission analyses. Core genome multi-locus 64 
sequencing typing (cgMLST)5 potentially provides a solution; genomes are summarised as a 65 
list of ~2000-3000 numbers, with each number representing the unique sequence of each 66 
core gene, i.e. structured dimensionality reduction. This summary enables more rapid 67 
comparisons as, taking the example of Clostridium difficile, only 2270 gene allele numbers 68 
need be compared,6 rather than having to compare 4.3 million base pairs of sequence data 69 
for SNPs. A drawback of cgMLST as described to date is that it requires a centralised 70 
database of alleles of each gene to be maintained, so that cgMLST profiles generated by 71 
different laboratories are comparable. This centralised support can potentially be provided 72 
by academic, public health or commercial organisations, but any given scheme’s 73 
sustainability is potentially limited by the funding available to support it. Additionally, for 74 
some pathogens, including C. difficile, several competing cgMLST/whole-genome-MLST 75 
schemes (e.g. Enterobase [University of Warwick, UK], cgmlst.org [Ridom GmbH, Germany] 76 
and BioNumerics [BioMérieux, France]) containing different genes and profiles have been 77 
developed; the latter two being associated with a commercial platform for processing 78 
sequencing data. 79 
 80 
We therefore propose an alternative to cgMLST as described to date. Instead of maintaining 81 
a database of alleles, each allele is reproducibly converted to a unique hash, or short string 82 
of letters. This compresses each item of identical data to the same smaller representation, 83 
based on the sequence of an allele alone. Therefore, this process can be undertaken 84 
independently in different laboratories without the need to maintain or subscribe to a 85 
central database, but still generates summary data in a reproducible form that can be 86 
exchanged by laboratories. This distributed approach avoids the potentially costly need 87 
maintain a central database. 88 
 89 
This study has two main aims. Firstly, to demonstrate an implementation of hash-based 90 
cgMLST, and to test whether hash-cgMLST profiles can be compared without a significant 91 
performance penalty compared to standard cgMLST; and secondly to test the 92 
reproducibility and discriminatory power of cgMLST compared to SNP-based typing. The 93 
discriminatory power of cgMLST has been previously explored, e.g.6–9, however how cgMLST 94 
gene differences relate to SNP distances has not been comprehensively assessed. Instead it 95 
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is postulated that small numbers of SNPs are likely to fall in different genes, and so SNP 96 
distances and gene differences are likely to be similar for closely related isolates. We 97 
evaluate the extent to which this assumption holds. Related to this, only limited 98 
assessments of the reproducibility of cgMLST have been undertaken. The largest study to 99 
date involved the same Staphylococcus aureus DNA from 20 isolates undergoing sequencing 100 
in 5 laboratories.10 In this setting, in 80 comparisons (i.e. 20 sequences from 4 laboratories 101 
compared with the baseline laboratory) only 3 false gene differences were identified. We 102 
investigate whether these results can be replicated in C. difficile.  103 
 104 
 105 

Methods 106 

Hash-cgMLST 107 
Using the cgMLST scheme of Bletz et al,6 the first allele for each of the 2270 genes was used 108 
to create a BLAST search query. Following previous descriptions,6,10 BLAST searches for each 109 
gene required a 90% identity match, a matched length ≥99% of the query length and the 110 
matched gene to be free from ambiguous characters or premature truncation. To avoid 111 
apparent truncated genes arising from misassembly we checked the number of stop codons 112 
in the gene sequence, and only retained matches with a single stop codon. To avoid 113 
truncation arising from contig breaks we ensured that BLAST matches included the start and 114 
end of the query sequence. Other BLAST search parameters were: “evalue=0.01, 115 
word_size=11, penalty=-1, reward=1, gapopen=5, gapextend=2”. The resulting genes were 116 
either matched to the database available at cgmlst.org, i.e. standard cgMLST, or hashed 117 
using an md5 algorithm to create a 32-character hexadecimal string. Deletions relative to 118 
the search query, represented by dashes in the matched gene sequence were removed 119 
prior to generating the hash. This avoids false differences introduced by locally variable 120 
placement of these deletions introduced by BLAST. The resulting cgMLST and hash-cgMLST 121 
profiles were saved as json files, i.e. a format that could readily be exchanged between 122 
laboratories. Where no BLAST match was found for a gene in the scheme an empty value 123 
was recorded, and that gene excluded in pairwise comparisons.  124 
 125 
The choice of md5 hash provides 1632, i.e. 3.4x1038 possible hashes. There is a theoretical 126 
chance of hash collisions, i.e. different sequences resulting in the same hash, but as the 127 
number of viable sequences for each gene in cgMLST databases is typically only tens to 128 
hundreds this is very unlikely. Importantly if a hash collision occurred this would result in 129 
genomes appearing falsely more similar, rather than falsely excluding potential 130 
transmission. 131 
 132 

Sequence data 133 
During whole-genome sequencing of C. difficile undertaken in Oxford and Leeds, UK we 134 
have routinely re-sequenced a subset of isolates as part of our internal quality assurance. 135 
We searched our database for isolates sequenced more than once. For a subset of these 136 
replicate sequences, the same extracted DNA was used to generate both sequences; for the 137 
remainder it was not documented in our laboratory information management system 138 
whether the same DNA extract was re-sequenced, or whether a fresh DNA extract was 139 
made from the same frozen isolate (Table S1). Paired-end sequence data for both types of 140 
replicate were generated using Illumina technology, including on various iterations of the 141 
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HiSeq platform and the MiSeq platform, with read lengths varying from 100-150bp in the 142 
majority of sequences (two 50bp sequences were also included). 143 
 144 
To compare the discriminatory power of hash-cgMLST compared to SNP-based typing we 145 
processed 973 genomes from a previously published study of consecutive C. difficile over 146 
one year in six English hospitals using our hash-cgMLST and SNP pipelines.11  147 
 148 

Bioinformatic processing 149 
For hash-cgMLST typing, raw sequence data underwent adapter trimming and quality 150 
trimming using bbduk.sh from the bbMap package (version 38.32).12 Stringent quality 151 
trimming was applied following Mellmann et al,10 both the left and right ends of each read 152 
were trimmed to a Q30 threshold (using bbduk parameters: “ktrim=r k=23 mink=11 hdist=1 153 
tpe tbo qtrim=rl trimq=30”). Following this the number of bases remaining in the trimmed 154 
reads was divided by the length of the 630 reference genome13 (4290252 bp) to provide the 155 
mean high quality coverage, this was required to be ≥50 for a sequence to be included in 156 
the study. Appropriate quality trimming and adapter removal was confirmed using FastQC.14 157 
To check for contamination with non-C. difficile DNA, the species origin of sequence reads 158 
was classified using Kraken215 using the MiniKraken2_v1 database (built from the refseq 159 
bacteria, archaea, and viral libraries). 160 
 161 
Following Bletz et al,6 reads were de novo assembled using SPAdes (version 3.11.1)16, with 162 
the “--careful” flag to reduce misassembly by using bwa-based mapping to confirm variants. 163 
Assembly quality metrics were obtained using the stats.sh script from bbmap.12 Samples 164 
with assembly sizes (base pairs in contigs) >10% above or below the median size were 165 
rejected. We also tested performance using SPAdes with an addition flag “--only-assembler” 166 
to disable SPAdes internal read correction procedure. As an additional comparison reads 167 
were also de novo assembled using SKESA (version 2.3)17 with default settings. 168 
 169 
Reads (without stringent quality trimming) were also mapped to the 630 reference genome 170 
as described previously,1,11,18 using stampy19 for mapping and mpileup20 for variant calling, 171 
followed by quality filtering of variants. Variant calls were required to have a quality score of 172 
≥30, be homozygous under a diploid model, be supported by ≥5 high quality reads including 173 
≥1 read in each direction and a consensus of ≥90% of bases and not be within a repetitive 174 
region of the genome. See https://github.com/oxfordmmm/CompassCompact for example 175 
implementation. For inclusion, ≥70% of the reference genome needed to be called in the 176 
consensus sequence. Bases in the consensus sequence not passing quality filtering were 177 
denoted N rather than A, C, G or T. 178 
 179 
The bioinformatic pipelines used in this study for assembly and hash-cgMLST were written 180 
as NextFlow workflows21 and can be found at https://github.com/davideyre/hash-cgmlst. 181 
Information on required dependencies and system requirements are provided in the 182 
repository readme file.  183 
 184 

Analysis 185 
Sequences meeting all quality thresholds (high-quality average coverage, assembly size, 186 
proportion of reference genome called) were compared. For replicate sequences, when an 187 
isolate had been sequenced more than twice, a random sequence was chosen as the 188 
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baseline sequence with which all other sequences from the same isolate were compared, in 189 
order to avoid multiple counting. 190 
 191 
Pairwise observed SNP differences between replicates and recombination-corrected SNP 192 
differences between other C. difficile genomes were obtained using Python scripts, PhyML22 193 
and ClonalFrameML23 as previously described11 194 
(https://github.com/davideyre/runListCompare). Whole-genome alignments were used as 195 
input for PhyML. Invariant sites, i.e. those called as the same base as the reference or an 196 
unknown base, N, across all genomes were set to be the same base as the reference for 197 
computational efficiency, given there was no evidence of variation at these sites. All other 198 
sites had evidence of variation in at least one genome and were included unchanged 199 
including any genomes with an N at that site. The maximum likelihood approach taken 200 
accounts the uncertainty in the phylogeny arising from some genomes having an N called at 201 
some variable sites.  202 
 203 
The number of cgMLST loci differences and number loci compared were obtained using 204 
Python (https://github.com/davideyre/hash-cgmlst). Where no BLAST match was found for 205 
a gene in either (or both) of the genomes in a pairwise comparison this was not counted 206 
towards the total number of cgMLST gene differences. 207 
 208 

Data availability 209 
Short read archive accession numbers for analysed replicate genomes are provided in 210 
Supplementary Table S1 with explanatory notes in the accompanying legend. Data for the 211 
973 genomes from six English hospitals can be found at NCBI BioProject PRJNA369188. 212 
 213 

Results 214 
Hash-cgMLST provided the same results as standard cgMLST with minimal performance 215 
penalty. Results are presented throughout using pairwise core-gene differences generated 216 
with hash-cgMLST as these were identical to standard cgMLST gene differences if novel 217 
alleles were accounted for. 218 
 219 

Comparison of hash-cgMLST and SNP typing performance in replicate sequences 220 
A total of 374 sequences from 104 isolates passed all quality checks and were available for 221 
comparison to investigate the reproducibility of sequencing followed by cgMLST for C. 222 
difficile transmission analyses. A median (interquartile range) [range] of 2 (2-3) [2-27] 223 
sequences were available per isolate. Comparing replicate sequences with a randomly 224 
selected baseline sequence for each isolate yielded 272 comparisons for analysis. 225 
 226 
With perfect sequencing no variants would be expected between pairs of sequences from 227 
the same isolate (replicate pairs). Using reference-based mapping and variant calling there 228 
were 0 SNPs between 262 (96%) replicate pairs, 1 SNP between 5 (2%) pairs and 2 SNPs 229 
between 1 (<1%) pair, i.e. a mean 0.026 SNPs per pair which equates to 1 false SNP call per 230 
39 sequences (Figure 1A). Based on the rate of C. difficile evolution and the extent of within 231 
host genetic diversity ≤2 SNPs are expected between >95% of cases related by recent 232 
transmission;1 therefore it is unlikely that transmission would be falsely excluded on the 233 
basis of the error rates seen.  234 
 235 
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Using either hash-cgMLST or standard cgMLST following assembly using SPAdes, 218 (80%) 236 
replicates pairs had zero gene differences, 31 (11%) pairs 1 difference, 5 (2%) pairs 2 237 
differences, and 18 (7%) pairs had >2 differences, with a mean of 0.64 false gene differences 238 
per genome (Figure 1B) (test for symmetry considering 0, 1, 2, >2 SNPs or gene differences, 239 
p=0.004). Applying a threshold of >2 gene differences to rule out transmission (by analogy 240 
with SNP-based metrics1,6), the observed error rate would result in 6.6% (95% binomial 241 
confidence interval, CI, 4.0-10.3%) of transmission pairs being falsely excluded. Restricting 242 
to the subset of sequences where sequencing was known to have been undertaken from 243 
the same pool of extracted DNA produced fewer gene differences (Figure 1). Of 190 pairs, 244 
189 (>99%) had 0 SNPs and 1 (<1%) pair had 1 SNP. From cgMLST, 167 (88%) pairs had 0 245 
gene differences, 19 (10%) had 1 difference, 4 (2%) had 2 differences, and none had >2 246 
differences. 247 
 248 

Predictors of false cgMLST gene differences 249 
The observation of greater differences between replicates restricting to variation in the 250 
2270 core genes versus considering SNPs across the whole genome is potentially counter-251 
intuitive. However, it should be remembered that the whole-genome SNP approach 252 
depends on a different bioinformatic approach with sophisticated per variant quality 253 
filtering, whereas the cgMLST is based on de novo assembly with more limited quality 254 
filtering. We therefore investigated potential predictors of false cgMLST gene differences 255 
using the hash-cgMLST algorithm (which were identical to the standard cgMLST approach) 256 
to see if filtering could be improved. Although we had already restricted our analysis to only 257 
include sequences with a mean genome coverage of >50, we investigated whether a more 258 
stringent threshold would improve performance (Figure 2). There was no evidence that 259 
increased coverage was associated with fewer cgMLST gene differences (Spearman’s rho -260 
0.04, p=0.43). There were only 2 sequences in the dataset with 50bp reads, the remainder 261 
had 100 or 150bp reads. 14/222 (6%) sequence pairs where the minimum sequence length 262 
was 100bp contained >2 gene differences, compared to 4/48 (8%) in pairs with both 150bp 263 
reads (exact p=0.54). 264 
 265 
The relationship between cgMLST gene differences and de novo assembly quality metrics is 266 
shown in Figure 3A-C. Given the filtering applied, there was still an association between the 267 
number of false gene differences and the maximum absolute percentage deviation from the 268 
overall median assembly size (4165590bp) within each replicate pair (which was constrained 269 
to be ≤10% for inclusion in the analysis) (Spearman’s rho 0.21, p<0.001, Figure 3A, with both 270 
small and large assemblies contributing to this effect). L50 describes the minimum number 271 
of contigs required to achieve 50% of the assembly size, with higher values representing 272 
more fragmented lower quality assemblies. Higher values of L50 were associated with 273 
greater rates of false gene differences (Spearman’s rho 0.37, p<0.001). 9 (2%) of 257 pairs 274 
with both L50 values ≤125 had >2 false gene differences compared to 9/15 (60%) with one 275 
or more sequences with an L50 >125 (Figure 3B). Another measure of assembly 276 
fragmentation is the total number of contigs; higher numbers of contigs were also 277 
associated with greater false gene differences (Spearman’s rho 0.31, p<0.001, Figure 3C). 278 
 279 
Figure 3D shows the impact of the proportion of reads classified as C. difficile by Kraken2 on 280 
cgMLST gene differences. Within the dataset there was no evidence of significant 281 
contamination with a bacterial species other than C. difficile and the most common species 282 
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was C. difficile in all samples. However, the proportion of reads that could not be classified 283 
at all varied from 0-11% between sequences with the exception of one replicate pair (36% 284 
and 24%). Higher rates of unclassified sequences were associated with higher false gene 285 
differences, but without any clear separation of the data on this basis (Spearman’s rho  286 
-0.23, p<0.001).  287 
 288 

Distribution of cgMLST gene differences in replicate sequences 289 
The gene differences observed between replicate sequences disproportionately affected a 290 
small number of genes (Supplementary Table S2). Only 82 (4%) of 2270 genes contained 291 
differences within the replicate sequences. To avoid multiple counting, we evaluated the 292 
number of isolates that contained at least a pair of replicates with gene differences: 16 293 
genes contained differences in two or more isolates’ replicates, and of these 15 were due to 294 
the same nucleotide differing in all replicate pairs. The reproducible location of the 295 
differences observed for a given gene across different isolates is compatible with consistent 296 
mis-assembly (Table S2). If the 15 genes with identical gene differences affecting ≥2 isolates 297 
were excluded, the number of the 272 replicate pairs with 0 gene differences increased 298 
from 218 (80%) to 236 (87%) and the number of pairs with >2 gene differences reduced 299 
from 18 (7%) to 14 (5%). (Figure S1B). Using the full 2270 gene set and disabling SPAdes 300 
internal read correction resulted in fewer false gene differences: 0 differences in 236 (87%) 301 
pairs and >2 differences in 14 (5%) (Figure S1C).  302 
 303 

Alternative assembler, SKESA 304 
Use of SKESA in place of SPAdes as the assembler used for hash-cgMLST resulted in the 305 
fewer differences between replicate pairs (Figure 1C), 241 (89%) pairs had 0 differences, 22 306 
(8%) pairs 1 difference, 6 (2%) pairs 2 differences and 3 (1%) pairs 3 differences. This 307 
equates to 0.16 false gene differences per replicate pair sequenced. The median (IQR) 308 
number of genes compared between replicate pairs was 2225 (2187 – 2235) using SKESA 309 
and 2227 (2205 – 2242) using SPAdes out of a possible maximum 2270 genes. 310 
 311 

Benchmarking 312 
Samples were processed in parallel, with each sample using a single core from an Intel Xeon 313 
Gold 6150 2.70GHz 18-core CPU. For a single sample, the median (IQR) time to undertake 314 
quality control and read filtering was 3.6 (2.7-4.9) minutes and 27.4 (19.6-35.4) minutes to 315 
generate an assembly using Spades with read error correction and 16.3 (12.1-21.5) minutes 316 
without; SKESA took 19.4 (15.5-24.3) minutes. From the assemblies creating a hash-cgMLST 317 
profile took 44.1 (43.5-44.9) seconds. Having made hash-cgMLST profile files, running on a 318 
single CPU core, to compare a single genome to 100,000 others took 40.4 seconds. In 319 
contrast 100,000 comparisons using a standard cgMLST approach took marginally less time, 320 
38.7 seconds, after loading the profiles into memory.  321 
 322 
cgMLST profiles can also be rapidly compared using a laptop or desktop, e.g. using one core 323 
of Intel i7 2.6Ghz laptop processor, comparing the 973 samples from the six hospitals study 324 
required 467Mb of memory, and took 236 seconds for 472,879 comparisons, i.e. 49.9 325 
seconds per 100,000 comparisons. Using the same laptop, creating hash-cgMLST profiles 326 
from existing assemblies typically took ~40 seconds and required <100Mb of memory. 327 
 328 
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Comparison of hash-cgMLST and SNP typing in data from six English hospitals 329 
We analysed 973 genomes from a previous study of C. difficile transmission in six English 330 
hospitals11 Of these, 56 failed the assembly size threshold and 20 the coverage threshold 331 
(one also failing the assembly threshold), leaving 898 (92%) genomes for analysis. We 332 
considered all pairs of genomes within ≤2 SNPs and tested the extent to which the numbers 333 
of hash-cgMLST gene differences, using SPAdes (with the --only-assembler flag) or SKESA 334 
assemblies, followed the number of SNPs (Figure 4A and 4C). Of 412 pairs of sequences 335 
within ≤2 SNPs, using SPAdes 376 (91%) were within ≤2 gene differences, 30 (7%) had 3 336 
differences, 16 (4%) had ≥4 differences and using SKESA 406 (99%) had ≤2 gene differences, 337 
and the remainder all ≤5 differences. The median (IQR) number of genes called in each pair 338 
was 2143 (2084-2191) using SPAdes and 2003 (1891-2110) using SKESA. 339 
 340 
To achieve ≥99% sensitivity for identifying genomes within ≤2 SNPs required a threshold of 341 
≤9 gene differences using SPAdes and ≤3 gene differences using SKESA, with an associated 342 
positive predictive value (PPV) of 11% (410/3720) and 38% (410/1092) respectively. 343 
Specificity was >99% with both assemblers (399031/402341 and 401659/402341 344 
respectively).  345 
 346 
We also considered the distribution of SNPs within pairs of genomes with ≤2 gene 347 
differences using hash-cgMLST. Following assembly with SPAdes, of 590 pairs of genomes, 348 
376 (64%) were within ≤2 SNPs, with the maximum number of SNPs observed 20 (Figure 349 
4B). Using SKESA of 749 genome pairs, 406 (54%) were within ≤2 SNPs (Figure 4D). 350 
 351 
 352 

Discussion 353 
Here we present the concept of hash-cgMLST as a tool for rapid comparison of bacterial 354 
sequencing data. This is a significant development over standard cgMLST approaches as it 355 
removes the need for a central database of alleles. Such databases require resource-356 
intensive curation to ensure they are maintained to a high standard. Additionally, allele 357 
numbering is currently done consecutively in a single location, which is problematic with 358 
large datasets that span many laboratories; hashes also overcome this limitation. We also 359 
provide the code to run the algorithms developed. 360 
 361 
This manuscript also highlights important limitations of common implementations of 362 
cgMLST as a tool for high resolution outbreak detection. Stringent filtering done on the basis 363 
of mapped data allows the number of false variant calls to be controlled; here we obtained 364 
around 1 false SNP for every 39 genomes sequenced. In contrast, fine-grained per base 365 
quality control is typically not implemented in studies using de novo assembly tools. Using 366 
SPAdes we observed an mean of 0.64 false gene differences per replicate genome pair. The 367 
alternative assembler tested, SKESA, was able to better control false gene differences, with  368 
0.16 per replicate pair, i.e. 1 error per every 6.3 genomes sequenced. The higher rates of 369 
false variation observed using cgMLST/hash-cgMLST led to the counter-intuitive observation 370 
in some samples of more differences comparing 2270 genes than comparing the whole 371 
genome. It should be noted that undertaking SNP-based analyses from alignments of de 372 
novo assemblies without further filtering of variants would be similarly affected. These 373 
errors can be reduced by ensuring the assemblies studied are of high quality. Our data 374 
suggest that the previously described read quality trimming and filtering based on assembly 375 
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sizes6,10 could be further improved by also only analysing samples with an L50 value of 376 
below ~125. However, this stringent filtering would have resulted in 30% of the previously 377 
published dataset studied being unavailable for analysis, questioning its practicability. 378 
 379 
Although our approach does not depend on a database of alleles it is dependent of the 380 
development of a high quality cgMLST scheme, i.e. appropriate identification of core genes 381 
based on a large and diverse collection of genomes, and careful selection of problematic 382 
genes for exclusion. Despite such an approach being taken in developing the C. difficile 383 
cgMLST scheme used, we show that removing a small number of genes from this cgMLST 384 
scheme would likely improve performance if using SPAdes assemblies, as a small subset of 385 
genes contained higher numbers of false gene differences (Table S2, Figure S1). This 386 
highlights the importance of assessing the performance of each cgMLST scheme created on 387 
a per species and scheme basis using appropriate test datasets which include replicate and 388 
closely-related sequences. 389 
 390 
Many of the apparent errors seen in replicate pairs appear to arise from mis-assembly. 391 
SPAdes based read correction did not improve accuracy and instead resulted in more rather 392 
than fewer differences between replicate pairs. Use of an alternative assembler SKESA17 393 
reduced the number of replicate pairs with >2 differences to just 1%, within minimal 394 
reduction in the number of genes compared between replicate pairs (median 2225 395 
compared to 2227 with SPAdes). The reduction in genes compared was greater in the 396 
clinical dataset analysed (median 2143 and 2003), but this reduced discriminatory power for 397 
transmission studies will usually be more than offset by reduced error rates (and therefore 398 
reductions in erroneous exclusion of transmission). 399 
 400 
Our data also highlight that extrapolating the ≤2 SNP threshold for identifying genetically 401 
plausible transmission events to two (or three6) gene differences may be inappropriate 402 
depending on the choice of assembler and settings. Using SPAdes, 4% of pairs of samples 403 
within ≤2 SNPs were >3 genes different by cgMLST, whereas with SKESA this was only 1%. 404 
For public health applications optimised to identify potential transmission, to be ≥99% sure 405 
of not missing pairs of sequences within ≤2 SNPs, a threshold of ≤9 gene differences was 406 
needed for SPAdes assemblies and ≤3 differences with SKESA. However these thresholds for 407 
SPAdes resulted in around 8 genome pairs >2 recombination-corrected SNPs apart being 408 
identified for every 1 pair within ≤2 SNPs (PPV 11%), and 1.6 pairs >2 SNPs apart for every 409 
pair within ≤2 SNPs using SKESA (PPV 38%). In this scenario further SNP-based analysis 410 
based on mapping and filtered variant calling is likely to be required to determine which 411 
genomes are potentially related by recent transmission and which are not. In other cases, 412 
higher numbers of SNPs were observed than gene differences (Figure 4B and 4D), which 413 
may arise from SNPs outside core genes, SNPs in uncalled genes, and imperfect correction 414 
of recombination events. 415 
 416 
Hash-cgMLST allowed rapid comparison of many thousands of bacterial genomes within 417 
seconds, using a relatively unoptimized python script running on a single laptop or server 418 
CPU core. As comparisons with other genomes can be easily divided into independent parts, 419 
this task is readily parallelisable. Using hash-cgMLST, it is therefore potentially possible to 420 
compare each new sequence generated with millions of previous sequences. The 421 
summaries of each genome produced, a roughly 130kb json file, are readily exchangeable 422 
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between laboratories and could potentially be hosted alongside raw reads in sequence read 423 
archives. As such, each laboratory could maintain its own database of hash-cgMLST profiles 424 
and distances, as well as this potentially being usefully provided as part of future web-based 425 
services based on publicly available data. Although without further refinements hash-426 
cgMLST may not allow high-precision fine-scaled transmission studies, it has the potential to 427 
dramatically reduce the search space for closely-related genomes, which can then be 428 
followed by more precise SNP-based analyses on a much smaller subset of genomes.  429 
 430 
Using SPAdes we observed a higher rate of ‘false’ gene differences between genomes where 431 
the sequences were potentially generated from separate DNA extractions of the same 432 
isolates, compared with genomes obtained from the same DNA extraction. It is therefore 433 
plausible that the differences observed represent true differences, but a form of variation 434 
that is much faster and more erratic than mutation/recombination rates based on filtered 435 
SNPs. The erratic nature of the variation observed is unlikely to be informative about recent 436 
transmission. We also did not see these differences to the same extent using an alternative 437 
assembler, SKESA. 438 
 439 
This study is potentially limited by not being an exhaustive investigation of all the potential 440 
options for assembly and for filtering de novo assembly data, in particular further filtering of 441 
variants based on mapping reads back to assemblies may improve precision, e.g. as done by 442 
Enterobase.24 Although we used Kraken2 to search for contamination with DNA from other 443 
species, contamination with C. difficile DNA from other samples processed concurrently may 444 
be an important contributor to some of the differences seen with hash-cgMLST, whereas 445 
resulting mixed calls can be filtered using mapped data.  446 
 447 
In conclusion, appropriately quality controlled cgMLST can identify clusters of related 448 
genomes rapidly and is an appropriate tool for surveillance and reducing the search space in 449 
outbreaks. The SKESA assembler, compared to SPAdes, was associated with lower rates of 450 
gene differences between replicate sequences, and when used for hash-cgMLST more 451 
closely matched the number of SNPs between closely related samples. The approach we 452 
describe has potential to be deployed across a range of pathogens, including those where 453 
linkage across time and wide geographic space, i.e. involving very large sequencing datasets, 454 
may help resolve sources and routes of transmission, such as for food borne infections. 455 
Refined variant calling based on mapping is likely required to precisely define close genetic 456 
relationships. This study highlights the need for detailed quality assurance to determine the 457 
performance of algorithms used for comparing genomes. Our hash-cgMLST implementation 458 
is freely available and provides an effective database-free approach to cgMLST. 459 

460 
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Figure Legends 580 
 581 
Figure 1. Observed differences using SNP typing (panel A) and hash-cgMLST based on 582 
SPAdes (panel B) and SKESA (panel C) assemblies in 272 replicate sequence pairs. With 583 
perfect sequencing no variants would be expected between pairs of sequences from the 584 
same isolate. Pairs of sequences known to have been obtained from the same pool of DNA 585 
are shown in dark blue. Where information was unavailable on whether the same pool of 586 
DNA was used or a fresh DNA extract was made from the same isolate, this is shown in light 587 
blue. 588 
 589 
Figure 2. Relationship between hash-cgMLST gene differences in replicate sequence pairs 590 
and average genome coverage and read length. Jitter applied to points to assist 591 
visualisation. SPAdes with “--careful" flag used to generate assemblies. 592 
 593 
Figure 3. Relationship between hash-cgMLST gene differences in replicate sequence pairs 594 
and de novo assembly quality metrics (panels A-C) and Kraken2 read classification (panel 595 
D). Jitter applied to points to assist visualisation. One point is omitted from Figure 3D for 596 
ease of visualisation with the proportion of reads classified as C. difficile of 0.64 and 0 gene 597 
differences. SPAdes with “--careful" flag used to generate assemblies. 598 
 599 
Figure 4. Relationship between hash-cgMLST gene differences and SNPS in C. difficile 600 
genomes from consecutive infections in six English hospitals. Panel A shows the 601 
distribution of hash-cgMLST gene differences between pairs of genomes within ≤2 SNPs. 602 
Panel B shows the distribution of SNPs within pairs of genomes within ≤2 gene differences. 603 
Panel A and B were generated using SPAdes assemblies with the “--careful --only-604 
assembler” flags. Panel C and D show the same analysis using the SKESA assembler. 605 
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