Abstract

Objective: The theoretical model by Petrie and Greenleaf (2007, 2012) is an admirable attempt to collate the causal factors of disordered eating in athletes. The aims of this systematic review are (1) to provide an overview of the findings from the relevant literature, (2) to assess whether the model is supported by the existing research, (3) to evaluate the different designs, methods, and measures used to test the mediators in the model and (4) to highlight areas for improvements and future research.

Method: A systematic review of four major online databases identified 37 relevant papers on risk factors of disordered eating in athletes which were reviewed and critically compared with the theoretical model.

Results: There is a lack of longitudinal research with the relevant mediators in athlete populations which makes it difficult to determine whether the potential mediators described by Petrie and Greenleaf are causal risk factors rather than simply correlates of disordered eating for athletes. Findings for all the potential mediators are inconsistent and the range of measures used makes it problematic to draw conclusions.

Conclusions: Future research needs to use gold standard measures and longitudinal designs in order to fully test and possibly update the model

Key Words: eating disorder, athletes, anorexia nervosa, bulimia nervosa, sport
Introduction

Eating psychopathology in athletes links the fields of sport, health, and clinical health psychology. Athletes experience pressures unique to the demands of their sport due to the physical and emotional effort required for high levels of competition (Petrie & Greenleaf, 2007, 2012). Like the general population, athletes experience societal pressures to fit a society-determined body ideal. However, for athletes, this societal pressure can be compounded or placed at odds with the pressures of sport, creating a situation ripe for the development of disordered eating (Anderson, Petrie & Neumann, 2012; Cooper & Winter, 2017; Greenleaf, Petrie, Carter & Reel, 2009). Whilst a number of studies have explored the development of eating pathology in athletes, inconsistency amongst the findings and methodologies has made it difficult to pinpoint causal elements in the development of disordered eating (DE) and eating disorders (ED). Disordered eating is a collection of disturbed eating patterns and rituals, and unlike an ED, it does not qualify for a clinical diagnosis of anorexia nervosa, bulimia nervosa or binge eating disorder (see the DSM-V, for diagnostic criteria).

The theoretical model of Petrie and Greenleaf (2007, 2012) collates the research conducted on the causal factors of DE and pressures unique to competitive athletes (see Figure 1). As Petrie and Greenleaf acknowledge, there is a need to test these mediators with a sporting sample, as the model was created using theory and data from both a general nonsporting sample and previous work on athletes, with mainly only female participants included in both groups. The rationale for choosing this specific model for critique is its comprehensive nature, which gives it the best potential of any theoretical model to become an applied model. Additionally, whilst a number of models exist to explain the development of ED and DE in the general population and several have applied the model to samples of athletes, this model is the only one specifically designed to include sport pressure as an integral component, in contrast to general clinical models adapted to an athlete population (e.g., Shanmugam, Jowett & Meyer,
In conducting a review of this particular model, it is hoped that theoretical discrepancies in current research can be exposed, a first step to creating an applied intervention and treatment plan for those athletes suffering from DE and ED. A vast array of studies address the subject matter at hand, and this review aims to create a comprehensive overview of how all the relevant findings fit into a solid theoretical foundation.

The model includes eight mediators that Petrie and Greenleaf (2012) describe as “risk factors”; this review also uses these terms interchangeably. The mediators in the model are (1) Sport Specific Pressures, (2) Societal Pressures, (3) Internalisation, (4) Body Dissatisfaction, (5) Negative Affect, (6) Restrained Eating, (7) Modelled Behaviours Peers and Family, and (8) Binge Eating and Bulimia. Whilst the model also includes moderators, the current review focusses solely on these mediators and on research that specifically investigates them in relation to high-level athletes.

Therefore, the objectives of the current systematic review are to:

1) Provide an overview of the existing literature related to the factors in the theoretical model.

2) Assess whether the data from existing literature on DE in athletes support the theory specified in the Petrie and Greenleaf model.

3) Evaluate the quality of different study designs, methods, and measures used to test the mediators from the model and indicate any areas for improvements.

4) Highlight which parts of the model have been adequately tested in research and which areas lack sufficient testing and should be prioritised in future research.

Methods

This systematic review began with a key terms search via Ovid-Medline, PsycINFO, JSTOR, and EBSCOhost. The search terms were disordered eating or eating disorder, athlete or sport, and risk. The initial search returned 689 results. The inclusion criteria specified that
articles must use quantitative methodology, be peer reviewed, and have been published after 2000. To be included, studies needed to have one of the mediators from the model as an independent measure and a dependent measure of DE or ED (see Table 2). Other reviews and meta-analyses were not included. To ensure that the research included in this review was fully focussed on how the theoretical mediators affected athletes, and not simply frequent exercisers, the inclusion and exclusion criteria were set such that participant samples must include a sample of “high-level” or “elite” athletes, a sample of athletes who train for greater than 10 hours per week, or a sample of athletes who represented their country internationally at a junior or senior level. Determinations of what constitutes an athlete is often inconsistent, so this paper followed recommendations by Byrne and McLean (2002) and Kong and Harris (2015). If any criteria were unclear, the authors of the papers were contacted to supply the missing information.

For collegiate athletes, only those in Division I (D1), the most elite athletic division in the National Collegiate Athletics Association (NCAA), were included to ensure a high level of sporting achievement and to control for the wide range of levels found in Division II and Division III universities. All results were imported into Mendeley where results of the search were sorted first by title, then by abstracts, and finally by a full text review of the remaining results. Once the inclusion and exclusion criteria were applied, 37 papers were included in this review (see Figure 2). A quality tool was then used to rate the quality of the remaining research in terms of bias, design, confounders, collection methods, and analysis appropriateness, and the majority of articles were found to be of high quality (Effective Public Health Practice Project, 1998). See Table 2 for quality tool ratings as well as for information related each included study.

Results

Sport Pressures
Petrie and Greenleaf’s (2007) model includes three factors that are hypothesised to affect the prevalence rates of disordered athletes: being an athlete versus a nonathlete, type of sport, (lean vs. non-lean sports; individual vs. team sports), and competition level. Therefore, for this review, the mediator of sport pressure was considered to include these three factors along with a few additional factors outlined below.

The first sport pressure highlighted by the included articles was the mere participation in sport. Byrne and McLean (2002) found athletes to have higher eating pathology than nonathletes, a finding replicated by Krentz and Warschburger (2013), Rosendahl, Bormann, Aschenbrenner, Aschenbrenner and Strauss (2009), and Thiemann et al. (2015). Van Durme and colleagues found the same result with female aesthetic athletes, who demonstrated more eating pathology than controls, but no difference was found in males (Van Durme, Goossens & Braet, 2012). However, two studies, Wollenberg, Shriver, and Gates (2015) and Reinking and Alexander (2005) failed to find that their sample of female athletes were at greater risk for developing eating pathology than a nonathlete sample. Similarly, using mixed-gender samples, Rosendahl et al. (2009) found no increased ED risk in elite German high-school athletes, and neither did Rouveix et al. in their study of judo athletes compared to nonathlete controls (Rouveix, Bouget, Pannafieux, Champely & Filaire, 2007). In sum, out of nine relevant articles, five found that athletes were at a higher risk, but four others found no difference in DE symptomology between athletes and nonathletes.

Lean sports are defined as those that rely on a thin physique to be successful, such as horse racing or gymnastics, whilst non-lean sports are defined as those which do not rely on a thin physique for success, such as rugby. Nine studies found that participating in lean sports compared to non-lean sports contributed to eating pathology, either directly or via another mediator, such as increased body dissatisfaction or pressure to be thin (Byrne & McLean, 2002; Francisco, Narciso & Alarcao, 2012; Kong & Harris, 2015; Krentz & Warschburger, 2011;
Milligan & Pritchard, 2006; Reinking & Alexander, 2005; Roussetlet, et al., 2017; Thiemann et al., 2015; Torstveit, Rosenvinge & Sundgot-Borgen, 2008). These results suggest that lean sport participants are at greater risk for DE. However, Milligan and Pritchard (2006) found that participating in lean sports was associated with increased DE patterns for male athletes but not for female athletes. In contrast, Rosendahl et al. (2009) found that female elite sport participants were at a greater risk than non-elite female athletes but that this was not the case for their male counterparts. Giel et al. (2016), who focussed on young German athletes in a mixed gender sample, found that participants of weight-class sports, that is, those that classify competition status based on weight, presented a higher ED pathology than those in other sports.

Another cluster of studies examined level of sport participation, for example, national versus international level, as a sport pressure. Three studies (Pettersen, Hernæs & Skårderud, 2016; Voelker, Gould & Reel, 2014; Francisco et al., 2012) found that level of competition was not predictive of DE scores. However, one study of high-level male and female gymnasts did find that competing at an international level compared to a national level was associated with higher levels of DE (Tan, Calitri, Bloodworth & McNamee, 2016). This echoed work by Kong and Harris (2015), who found that DE symptoms were greater amongst elite athletes than amongst those at a recreational level. However, Hopkinson and Lock (2004) found that elite athletes displayed lower levels of DE than recreational level athletes and that the type of sport did not make a difference.

A small number of studies looked into other miscellaneous risk factors that can be categorised under sport pressures. Haase (2009) found that increased social physique anxiety is associated with increased DE when moderated by sport type and that female individual sport participants who exhibit more social physique anxiety also show increased dieting and bulimic behaviours. In 2017, Neves et al. showed that DE levels fluctuated depending on the point in the season, for instance, competing at championships versus during the offseason, with higher
levels of DE found at the pre-competition stage. The impact of coaches and teammates, either through their comments or through athlete-perceived general pressure to look a certain way or to perform well, was associated with DE symptoms in three studies (Kong & Harris, 2015; Kerr, Berman & Souza, 2006; Petrie, Greenleaf & Carter, 2009b; Scoffier, Maïano & d'Arrripe-Longueville, 2010). Two further studies found that a high ego orientation and a performance climate—rather than a mastery climate—was associated with higher ED behaviours for athletes (de Bruin, Bakker & Oudejans, 2009; Nordin-Bates, Schwarz, Quested, Cumming, Aujla & Redding, 2016). However, Gomes, Martins, and Silva (2011) found that none of the sport variables, level of athlete, team or individual, or pressure from coaches’ comments were associated with DE.

In summary, there is a lack of consistency in the evidence regarding the relationship between sport pressures and DE. The three main sport pressures examined, namely, participation, type, and level, only show relation to DE when gender or sport type or another caveat was accounted for, making it difficult to advance any firm overarching claims about the nature of the relationship between sport pressures and DE.

Societal Pressures and Internalisation of an Ideal

For women and girls, the pressure to be thin, and for men, the pressure to be muscular, is far reaching and pervasive (Petrie & Greenleaf, 2007, 2012). These pressures stem from both the media and from people within an athlete’s family and social circle (Andersen & DiDomenico, 1992; Grogan, 2016). However, when pressures came from coaches or teammates, these were categorised as sport pressures and discussed in the section above, but the distinction of social factors that exist within or outside sport can be blurry.

Societal pressures have been found to be most detrimental in terms of their relationship to DE symptomology if internalised, as they then affect the athlete’s own body satisfaction (Fredrickson & Roberts, 1997; Stice & Shaw, 2002). Thus, internalisation of the thin ideal
occurs when any negative discrepancies between one’s own body and the body that is perceived as ideal by societal standards are incorporated into the psyche (Petrie & Greenleaf, 2007; Thompson & Stice, 2001). In the general population, there is evidence that internalisation of the thin ideal acts as a mediator between societal pressures and body dissatisfaction (Lester & Petrie, 1995; Stice & Agras, 1998). When determining which of the included studies incorporated societal pressures or internalisation, studies that measured perceptions of appearance, the pressure to be thin, or the drive for thinness, or those that used scales that have a specific social aspect or mentions of internalisation, were included. Table 2 shows which measurement scales were used in each study.

Examining an athlete’s day-to-day social and societal interactions, Anshel (2004), Krentz and Warschburger (2011), Petrie et al., (2009b), Petterson et al., (2016), and Haase (2009) all found that elements of the social sphere such as not wanting to give a negative impression, wanting to match stereotypical societal expectations, attending elite schools, and experiencing general social pressure in the environment were associated with more DE. Scoffier et al. (2010) showed that a healthy parent-child relationship can act as a protective factor against disordered eating behaviour. The role of gender was assessed with Byrne and McLean’s study in 2002, which demonstrated that female athletes felt more pressure than males to fit a lean ideal, but that males in lean sports were still at risk of an ED compared to nonathlete controls. However, Francisco et al. (2012) highlighted that both male and female ballet dancers and gymnasts feel pressure to be thin and that coach pressure was a factor in disordered eating development, but that overall social support was not. Bissell (2004) was the only included study to examine media influence, finding that when non-lean athletes were exposed to media that portrayed societal pressures for thinness, it was associated with increased DE.

Four studies measured social perceptions of appearance. Three studies used the Sociocultural Attitudes Toward Appearance Scale (SATAQ; Calogero, Davis & Thompson,
Bachner-Melman et al. (2006) found that there were no significant differences in scores amongst aesthetic athletes, non-aesthetic athletes, and nonathletes controls in terms of the measure, nor did they differ in terms of a self-rated attractiveness question. Neves et al. (2017) conducted a longitudinal study with young gymnasts and did not find that the scores on the SATAQ contributed significantly to DE pathology in their sample. However, Thiemann et al. (2015) found that athletes in aesthetic sports scored higher on the SATAQ in terms of both pressure and the internalisation of that pressure. Voelker, Gould, and Reel (2014) used the Weight Pressures in Sport Scale and showed that self-consciousness regarding weight and appearance was linked to disordered eating in female figure skaters.

Two papers from Petrie et al. (2009a,b) found that appearance orientation and using exercise as a means to increase attractiveness partially and significantly explained the level of disordered eating symptomology across multiple sports for female athletes. Conversely, for male D1 NCAA collegiate athletes, appearance orientation was not significantly related to ED psychopathology (Galli, Petrie, Greenleaf, Reel & Carter, 2014).

Several studies found that lean athletes, a population already established to have higher prevalence rates for DE and EDs, had a higher drive for thinness than nonathletes or norm populations (Bachner-Melman, Zohar, Ebstein, Elizur & Constantini, 2006; Byrne & McLean, 2002; Herbrich, Pfeiffer, Lehmkuhl & Schneider, 2011; Gapin & Kearns, 2013; Roussetlet et al., 2017; Thiemann et al., 2015; Torstveit et al., 2008; Van Drume et al., 2012). Anshel (2004) also found that ballet dancers reported a higher drive for thinness, which was related to elevated weight control behaviours compared to nonathletes but found that their overall Eating Disorder Inventory-2 (EDI-2) scores did not differ significantly. Petrie et al. (2014) examined the drive for muscularity, an internalisation of an ideal more applicable to men, in a sample of male D1 athletes. This study found that this internalised drive for muscularity was significantly correlated with bulimic symptomology. Krentz and Warschburger (2013) analysed the desire
to be leaner so as to improve performance and found that this desire correlated with DE in elite aesthetic sport athletes.

Finally, three papers used the Eating Disorder examination questionnaire (EDE-Q) subscales, which measure shape concern and weight concern to determine social pressure and internalisation scores. All three found that the scores on the subscales were associated with increased DE behaviours in their respective samples (Hopkinson & Lock, 2004; Tan et al., 2016; Van Durme et al., 2012). In summary, many studies showed that social pressures and internalisation were related to DE pathology for athletes; however, as with sport pressures, there were some differences based on gender. With most studies focussing on lean or aesthetic sports, sport type must be accounted for before any robust claims can be made.

Body Dissatisfaction

As described in the original work by Petrie and Greenleaf, body dissatisfaction occurs when one perceives a negative disparity between one’s own body and an internalised ideal, often a thin ideal (Hargreaves & Tiggemann, 2003; Stice & Shaw, 2002). Body dissatisfaction is understood to be key to the development of disordered eating, as seen in the Petrie and Greenleaf model and in other research in nonathlete populations (Jacobi, Hayward, de Zwaan, Kraemer & Agras, 2004). Of note, it may be the case that athletes are satisfied that their body matches a societal ideal, but not sport-specific ideal, or vice versa (Kong & Harris, 2015).

Ten studies in this area used the body dissatisfaction subscale of the EDI-2. Despite the widespread use of this measure, the samples differed in each case, so comparisons are difficult. Looking at the relationship between body dissatisfaction and disordered eating in athlete samples compared to nonathlete samples, one study found that athletes and nonathletes did not differ in body dissatisfaction ratings but that body dissatisfaction was still a significant predictor of disordered eating (Thiemann et al., 2015). Similarly, Bachner-Melman et al.
(2006), Van Durme et al. (2012), and Byrne and McLean (2002) found that nonathletes, aesthetic athletes, and non-aesthetic athletes did not differ significantly in terms of body dissatisfaction. Yet another study found that dancers had lower body dissatisfaction compared to non-dancers but that both groups had similar global EDI scores, suggesting similar levels of ED symptoms (Anshel, 2004).

Gender also plays a role, with Reinking and Alexander (2005) showing that female lean-sport athletes scored higher on the EDI-2 subscale than non-lean sport athletes and discovered that, in general, athletes had lower body dissatisfaction than published norms. Furthermore, a study that compared male and female athletes found that whilst males had higher rates of DE, it was the female athletes who had higher body dissatisfaction (Gapin & Kearns, 2013).

Still utilising the EDI-2, Bissel (2004) found that non-lean athletes reported increased levels of body dissatisfaction and ED behaviours when exposed to societal pressures for thinness in the media compared to those who looked at media which did not specifically promote the thin ideal. Finally, Rousselet et al. (2017) and Herbrich et al. (2011) both found that those high-level athletes and pre-professional dancers who had disordered eating symptomology showed higher scores on the body dissatisfaction subscale and displayed larger discrepancies between current and ideal weight; however, the athlete groups had better overall body satisfaction and positive attitudes about themselves than nonathlete patients with anorexia nervosa.

Another seven studies measured body dissatisfaction using drawing scales or silhouettes, some of which allow for the separation between general body dissatisfaction and sport-related body dissatisfaction (Thompson & Gray, 1995). The work of Francisco et al. (2012) found that sport-related body dissatisfaction specific to aesthetic sports as well as general body dissatisfaction was directly linked to elevated levels of disordered eating in
dancers and gymnasts and that overall, males were more satisfied with their bodies. Krentz and Warschburger (2011) echoed the results of Bachner-Melman et al. (2006), Van Durme et al. (2012), and Byrne and McLean (2002) finding no differences between aesthetic athletes and nonathletes in terms of general body dissatisfaction. They also found that higher body dissatisfaction was associated with disordered eating, which was more pronounced in the athlete group. Torres-McGehee et al. (2008) did not find that body dissatisfaction differed amongst different types of equestrian athletes or that body dissatisfaction was related to disordered eating. Additionally, Krentz and Warschburger (2013) found that sports-related body dissatisfaction did not predict disordered eating symptoms in the aesthetic athletes tested. However, Voelker, Gould, and Reel (2014) established that both types of body dissatisfaction correlated with disordered eating when studying female figure skaters, which is consistent with the theory proposed by the etiological model. Finally, Rosendahl et al. (2009) found that athletes showed greater dissatisfaction with their bodies if they had been dieting, which was linked to DE for those participants (Stice & Shaw, 2002).

An additional eight studies measured body dissatisfaction and its relationship to DE with varying tools (see Table 2). Giel et al. (2016) that female athletes scored lower on body-acceptance measures. Gomes, Martins, and Silva (2011) determined that ED psychopathology was predicted by lower satisfaction related to body shape. Kong and Harris’s (2015) results showed that athletes in lean sports had higher body dissatisfaction than non-lean athletes and nonathletes, with those at an elite level choosing the leanest body shape as ideal. Kerr, Berman, and Souza (2016) showed that current gymnasts rated themselves as heavier than they wanted to be on scales that the researchers designed specifically for the study. Milligan and Pritchard (2006) used the Body Shape Questionnaire (BSQ; Cooper, Taylor, Cooper, Fairburn, 1987) and found that male and female athletes’ disordered eating was related to body dissatisfaction levels. Furthermore, research conducted by Petrie in both 2009b and 2014 found in both studies
that body dissatisfaction in terms of muscularity for males was positively correlated to ED symptoms in high-level collegiate athletes across different sports; however, this result was no longer significant in the 2014 study once physical size and social desirability were controlled for. These findings contrast with the longitudinal study by Neves et al. (2017), which determined that disordered eating predicted higher levels of body dissatisfaction on the BSQ, indicating that perhaps the directionality indicated in the etiological model should be reconsidered.

In summary, an array of studies has looked into the relationship between body dissatisfaction and eating pathology with results being largely inconsistent between studies. With gender, level, sport type all not controlled for, it is difficult to critically compare findings despite several of the studies using the same or similar tools.

Negative Affect

Petrie and Greenleaf (2012) discuss negative affect in conjunction with dietary restraint, with both acting as mediators between body dissatisfaction and bulimic behaviours. However, research has shown negative affect to be a valid independent predictor of EDs in athletes due to its relationship with compulsive exercise (Fairburn et al., 2003; Goodwin, Haycraft. & Meyer, 2016; Plateau, Arcelus & Meyer, 2017). Petrie and Greenleaf (2007, 2012) discuss how negative affect can also trigger binge eating, thus invoking it as a risk factor for the development of disordered eating, yet they do not give any details of how negative affect should be measured. Therefore, this review has included any studies that examined mood, affect, or emotions, as well as those which measured depression and anxiety.

Six of the ten included articles found that negative emotions and mood, or heightened depression and anxiety measures, were positively correlated with ED/DE pathology in athletes. Wollenberg and colleagues (2015) found that athletes who had a lower rate of disordered eating were better at regulating their emotions. Tan et al. (2016), Van Durme et al. (2012), and Giel
et al. (2016) all found that heightened depression or anxiety symptoms, either state or trait, were related to heightened DE symptoms. Finally, mood state was found to partially contribute to levels of body dissatisfaction, which was in turn related to eating pathology (Neves et al., 2017).

In one of the few studies to look specifically at affect, Petrie et al. (2014) used a 23-item version of the Positive and Negative Affect Schedule (PANAS; Crawford & Henry, 2004) and found that, once they had controlled for physical size and social desirability, there was no significant association between affect and disordered eating. Similarly, Rouveix and associates (2017) did not find differences in mood states between athletes and nonathletes and found no differences in DE pathology between the groups. Finally, Petrie et al. (2009b) using a five-item mood scale (from Stice & Shaw, 1994) found that shame and guilt were higher in those with EDs; however, the other emotions such as anxiety, shame, confidence, and sadness did not differ between groups.

Modelled Behaviours Peers and Family

None of the included articles investigated modelled behaviours. In the original chapter, modelled behaviours are defined as partaking in disordered eating behaviours because it is sanctioned as acceptable or encouraged by the larger group, or developing this type of pathology due to exposure to it in the group, and internalising it as normal or expected (Petrie & Greenleaf, 2007).

Restrained Eating and Binge Eating and Bulimia

The final two mediators suggested by Petrie and Greenleaf invite criticism in that they are deemed to be mediators acting as risk factors when, in fact, certain levels of restrained eating, binge eating, and bulimia are part of disordered eating and clinical EDs. Hence, it is not appropriate to use ED symptoms as a risk factor for DE/ED itself.
Restrained eating is hypothesised to be linked to binge eating and bulimia due to intense hunger leading to binges and the following guilt resulting in purging behaviour (Stice, 2002; Stice & Agras, 1998). However, the original model does not distinguish between restraint and restriction of food intake: Restriction is defined as the behaviour of restricting intake to lose weight or to prevent weight gain, whilst restrained eating encompasses both actual and attempted restriction (Anokhina & Serpell, 2012; Laessle, Tuschl, Kotthaus & Prike, 1989). Several studies examined dietary restraint as a separate mediator by using the restraint subscale of the EDE-Q, although notably this subscale contains a mixture of items measuring restriction and restraint.

Tan and colleagues (2016) found that international gymnasts scored higher on the restraint subscale than their national-level counterparts. Hopkinson and Lock (2004) found that female athletes scored higher on the restraint scale than male athletes. Voelker et al. (2014) found that it was those athletes with better competition results who scored highest on the restraint subscale.

Using a variety of scales (see Table 2), Petrie et al. (2014), Rousselet et al. (2017), and Torstviet et al. (2008) found that dietary behaviours were related to bulimic symptomology and disordered eating in their respective studies. Byrne and McLean (2002) indicated that both male and female athletes differed significantly compared to male and female nonathletes, with athletes scoring higher on dietary restraint.

The Eating Attitudes Test (EAT-26) also consists of relevant ED-related subscales: Dieting, Bulimia and Food Preoccupation, and Oral Control (Garner, Olmsted, Bohr & Garfinkle, 1982). Rouveix et al. (2007) found that female judo players had significantly higher overall EAT scores as well as higher scores on the bulimia subscale of the EAT than female nonathlete controls. They also had higher overall EAT scores than their male counterparts. Whilst Wollenberg et al. (2015) found that nonathletes scored higher on the bulimia subscale
and on the overall EAT score, in 2015, Kong and Harris highlighted that athletes in lean sports had an increased rate of self-induced vomiting and laxative use compared to non-lean sport participants.

Using the Children’s EDE-Q (Decaluwe & Braet, 1999), Van Durme et al. (2012) found that, compared to a norm group, female adolescent athletes showed more dieting behaviour, and using the EDI-2, they showed that these athletes also engage in more bulimic behaviours than adolescent nonathletes. However, Anshel (2004) did not find any significant difference on the bulimia subscale of the EDI-2 when conducting research on dancers and nonathlete controls.

In summary, restraint and binge eating and bulimia behaviours were linked to disordered eating in athletes, but significant gender and sport type differences exist. However, inconsistency in whether athletes score higher than nonathletes still remains.

Discussion

The theoretical model by Petrie and Greenleaf (2007, 2012) is an admirable attempt to collate the factors that may be linked to disordered eating in athletes. The aim of the current review was to assess research which examined parts of the model to determine to what extent the theory presented in the model has been verified in the existing data. However, several methodological issues complicated this effort.

The lack of longitudinal studies with the relevant mediators in athlete populations makes it impossible to determine whether the potential mediators described by Petrie and Greenleaf are risk or causal risk factors rather than simply correlates of DE/ED. Only three of the 37 papers reviewed were of longitudinal design. The findings with respect to all the potential mediators are inconsistent and equivocal, and the range of measures used makes it difficult to draw overarching conclusions.
Furthermore, the definition of a mediator in this model may need to be revisited. By definition, a mediator is “a variable that reduces the size and/or direction of the relationship between a predictor variable and an outcome variable and is associated statistically with both” (Field, 2009). However, in the depicted model, it is not clear which are the predictor variables and which are the outcome variables. All the factors in the model are termed mediators or moderators, which is statistically unfitting, as this means that no independent or dependent variables are identified. For example, it is not clear whether social and sport pressures are the predictor variables and whether “restrained eating” and “binge eating and bulimia” are mediators or outcomes. If they are mediators, then no outcome—such as the development of DE—appears in the model.

The research investigated showed methodological inconsistency in terms of research design, sample criteria, and measures used. A wide range of questionnaires, terminology differences, and shifting sample inclusion criteria has led to inconsistent findings that not only stall research but also limit progress in applied care and treatment for the athletes affected by DE and EDs (Hausenblas & McNally, 2004). The included studies all had differing samples in terms of gender, age, and type of athlete. Some included controls, whilst others did not (see Table 2). The measurement tools for both predictor and outcome variables varied, as do the measures, with some studies favouring the EDI-2, others the EAT-26, others the EDE-Q, and still others the QEDD, and with some formally assessing for EDs and others examining DE as the primary outcome (see Table 1). The lack of cohesive methodology means that drawing overall conclusions about what research has determined to be risk factors of DE in athletes is problematic.

Another widespread methodological issue that arose was that a number of studies used subscales of larger measures, such as the body dissatisfaction subscale of the EDI-2, then claimed that high scores of the subscales meant a significant relationship with ED
symptomology which was measured by the global score of that same scale. This review reported these measures as reported by the included studies, but this method has questionable validity, because when a subscale rating of a scale increases, the global score of course also increases, and this is not evidence of any meaningful relationship.

The current review had several limitations. First, very few studies that examine athletes and DE or EDs cite any underpinning theory, such as the one examined here, as the groundwork for the research. This lack of academic rigor means that it was often up to the author’s discretion to determine whether the studies did in fact measure the intended mediators. Furthermore, the current review did not have the scope to include the many moderators depicted in the model. The inclusion of the moderators is something that future reviews and applied research should undertake in order to continue to move the field forward. Additionally, whilst the search methodology was seen as the practical way forward for this review, in which many search terms were relevant, other search terms and methods could also be considered viable. Finally, as with any review, the risk of bias exists; however, attempts were made to limit bias by following a strict systematic protocol and employing a quality tool.

Looking ahead, longitudinal research is the main priority of the research field if true risk factors of disordered eating in athletes are to be uncovered. Future research must also separate different sport types if there is any hope of the research being consistent enough to be replicated and then put into applied practice. Consideration must be taken in terms of what time of the season the athletes are in when tested, what really constitutes a lean and non-lean sport, and how many years the athlete has been engaged in their sport, as all these factors may influence the impact of sport and societal pressure experienced by an athlete. Detailing what constitutes sport pressures via qualitative exploration or by limiting it to a set of confirmed guidelines is warranted, as it is the only element of the model that is unique to athletes, and it is currently poorly defined. The studies reviewed here included both male and female
participants, as male athletes are also susceptible to DE (Galli et al., 2014). However, the original model was created mainly using studies with female participants (Petrie & Greenleaf, 2007). Therefore, future research should be careful to distinguish between male and female when applying this model and endeavour to determine the fit of this model for both men and women (de Sousa Fortes, Ferreira, de Oliveira, Cyrino & Almeida, 2015). Finally, consistent measures must be used to allow a coherent story. This author recommends using the best validated and most commonly used measures reported in this paper to begin to create a consistent evidence bank and to begin the quest for the gold standard to use in athletes. Therefore, using the EDI, the PANAS, the SATAQ, and the EDE-Q would be the recommended place to start testing the model due to their relatively wide use and established validity. All of which will allow for clearer evidence for or against the theoretical model and thus allow the theory to be lifted from page to practice.
References

Table 1. Measurement Tools Utilised

<table>
<thead>
<tr>
<th>Mediator</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport Pressure</td>
<td>Type of Sport: lean vs nonlean; individual vs sport; Being an athlete vs nonathlete control; Level of competition, Coaches’ influence</td>
</tr>
<tr>
<td>Social Pressure</td>
<td>Media, Significant Others; Appearance, Pressure to be Thin; Climate in Social Setting Scale; Appearance Related Social Pressure Adapted for Sport; Social Physical Anxiety; Weight Pressures in Sport Scale; Sociocultural Attitudes Toward Appearance Scale (SATAQ); Appearance Orientation subscale from the Multidimensional Body Self Relations Questionnaire; Beliefs About Attractiveness Scale-Revised (BAA-R)</td>
</tr>
<tr>
<td>Internalisation</td>
<td>EDI-2 subscale; ATHLETE; Drive for Muscularity; EDE-Q</td>
</tr>
<tr>
<td>Body Dissatisfaction</td>
<td>EDI-2; Contour Drawing Rating Scale; Difference between current and ideal weight; Choosing Silhouettes; Body Shape Questionnaire; Frankfurt Body Concept Scales; Frankfurt Body Concept Scales; Sport Condition Questionnaire, Figure Rating Scale; Body Parts Satisfaction Scale</td>
</tr>
<tr>
<td>Negative Affect</td>
<td>Difficulties in Emotion Regulation Scale; Depression Inventory; Patient Health Questionnaire; Children’s Depression Inventory; Mood States; Positive and Negative Affect States; Symptom Checklist-90</td>
</tr>
<tr>
<td>Modelled Behaviours</td>
<td>None</td>
</tr>
<tr>
<td>Restrained eating & Binge Eating and Bulimia</td>
<td>EDE-Q subscales; EAT-26 subscales</td>
</tr>
</tbody>
</table>

Note. There is overlap with many studies looking at more than one risk factor.
Table 2. Overview of Included Articles

<table>
<thead>
<tr>
<th>Author (date)</th>
<th>Method</th>
<th>Design</th>
<th>Relevant Mediator Measure(s)</th>
<th>Relevant Primary Outcome</th>
<th>Quality Tool Rating (EPHPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anshel (2004)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>EDI-2 subscales; Food Intake Attitude Survey (developed for this study)</td>
<td>N=58 female; ballet dancers M age=17.8; N=51 non-dancers M age=17.1 Pressure from others increased weight control behaviours; Drive for Thinness: Dancers > Non-dancers; Body Dissatisfaction: Dancers < Non-dancers; Bulimia Subscale: Dancers=Non-dancers; EDI-2 Global Score: Dancers=Non-dancers</td>
<td>Strong</td>
</tr>
<tr>
<td>Bachner-melman et al., (2006)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>Brief Symptom Inventory; EDI-2 subscales; Sociocultural Attitudes Towards Appearance; Self-rated single question of attractiveness</td>
<td>N=458; female; n=111 aesthetic athletes; n=31 women with AN; n=68 nonaesthetic athletes; n=248 nonathletes controls; ages 13-35 years Body Dissatisfaction: Nonathlete controls=aesthetic athletes=non-aesthetic athletes. Drive for Thinness: Aesthetic athletes > Other groups; SATAQ and Self-Rated Attractiveness: Aesthetic athletes=non-aesthetic athletes =nonathletes controls</td>
<td>Strong</td>
</tr>
<tr>
<td>Bissel (2004)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>Exposure to thin ideals on TV and magazines in sport and nonsport media; EDI-2 subscales</td>
<td>N=78; D1 nonlean female athletes; multi-sport; M age=19 Non-lean athletes exposed thin societal pressures media had lower body image related to increased disordered eating behaviour</td>
<td>Strong</td>
</tr>
<tr>
<td>Byrne & McLean (2002)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>EDI-2 BD and DT subscales 2; the Bulimia Test-Revised; Restraint subscale of the Three Factor Eating Questionnaire; asked to rate from 0-10 feeling of sociocultural pressure to be thin/lean</td>
<td>N=263 co-ed elite athletes (58% female); n=263 nonathlete controls; aged 15-36 years Athletes have higher eating pathology than nonathletes, specifically restraint; Doing lean sports vs nonlean sports higher eating pathology directly or via mediator; Female athletes feel more pressure to fit a lean ideal vs. male athletes</td>
<td>Strong</td>
</tr>
<tr>
<td>Study, Authors & Year</td>
<td>Study Design</td>
<td>Measurement</td>
<td>Participants</td>
<td>Main Findings</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>de Bruin, Bakker & Oudejan (2009)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Task & Ego Orientation in Sport; Perceived Motivational Climate in Sport; Dieting & weight control frequency; Weight-related coach & peer-pressure</td>
<td>BULIT-R; EDI-2</td>
<td>N=94 female aesthetic performers; n=59 gymnasts; n=35 dancers; M age=15.1</td>
<td>Aesthetic performers at a greater risk for disordered eating; high ego orientation and perceptions of the performance climate contributed to increased disordered eating for athletes</td>
</tr>
<tr>
<td>Ferrand et al. (2007)</td>
<td>Cross-Sectional Correlational</td>
<td>Dutch Eating Behaviour Questionnaire-Restraint Scale; Self-report of eating behaviour, weight control techniques, and desired weight</td>
<td>Dutch Eating Behaviour Questionnaire</td>
<td>N=33 elite female synchronized swimmers; M age=17.1</td>
<td>Results focused on factors not relevant for this review</td>
</tr>
<tr>
<td>Francisco, Narisco, & Alaracão (2012)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Pressure to be Thin and Social Support; Body Dissatisfaction with Contour Drawing Rating Scale</td>
<td>EDE-Q</td>
<td>N=249 female and male ballet dancers and gymnasts; M age=15.4</td>
<td>Social support or level of competition did not play a role in disordered eating development; Pressure from coaches was related to higher EDE-Q scores; Ps felt pressure to be thin, sport-related and general body dissatisfaction→elevated levels of disordered eating</td>
</tr>
<tr>
<td>Galli et al. (2014)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Appearance Orientation Scale</td>
<td>Q-EDD</td>
<td>N=203 Male D1 NCAA athletes; M age=20.3</td>
<td>Appearance Orientation scale results was not found to be significantly related to eating disorder psychopathology</td>
</tr>
<tr>
<td>Gapin & Kearns (2013)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EDI-2 Subscales</td>
<td>Q-EDD</td>
<td>N=133 male and female rowers in lightweight and open categories; M age=19.8</td>
<td>Lightweight category athletes showed higher drive for thinness; male athletes had higher rates of disordered eating, but female athletes had higher body dissatisfaction</td>
</tr>
<tr>
<td>Giel et al. (2016)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Frankfurt Body Concept; Patient Health Questionnaire-4 (depression and anxiety)</td>
<td>Structured Inventory for Anorexic and Bulimic Disorders</td>
<td>German co-ed elite athletes N=1138; age range from 23-25 years</td>
<td>Weight class sports Ps had higher eating disorder pathology vs. non-aesthetic sport Ps; Female athletes lower on body acceptance than males; Anxiety associated with higher eating disorder pathology</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Design</td>
<td>Instruments</td>
<td>Sample</td>
<td>Findings</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------</td>
<td>--------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Gomes, Martins & Silva (2011)</td>
<td>Cross-Sectional</td>
<td>Correlational</td>
<td>EDE-Q subscales; Sport Condition Questionnaire; Sport Anxiety Scale; TEOSQ; Cognitive Evaluation of Sport-Threat Perceptions; Self-Presentation Exercise Questionnaire</td>
<td>N=290 co-ed Portuguese elite athletes; M age=17.8</td>
<td>No sport variables, level of athlete, team or individual or pressure from coaches’ comments contributed to disordered eating; eating disorder psychopathology predicted by lower scores in satisfaction of body shape</td>
</tr>
<tr>
<td>Haase (2009)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>Social physique anxiety Eating Attitudes Test subscales (EAT-26)</td>
<td>N=137; female athletes in team sports vs individual sports; M age=19.5</td>
<td>Social pressure → increased DE; Increased social physique anxiety → increased disordered eating when moderated by sport type; and female individual sport participants, who exhibit more social physique anxiety, also show increased dieting and bulimic behaviours</td>
</tr>
<tr>
<td>Herbrich et al. (2011)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>EDI-2 subscales; The Multidimensional Self-Concept Scale</td>
<td>n=52 pre-professional ballet dancers vs n=52 AN patients vs n=44 nonathlete controls; M age=16.4</td>
<td>Dancers higher on body dissatisfaction subscale, larger difference between current and ideal weight, higher drive for thinness than controls; Dancers and controls healthier than patients on all scales</td>
</tr>
<tr>
<td>Hopkinson & Lock (2004)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>EAT-26 subscales; Level of athletic competition</td>
<td>N= 257 male and female athletes; varsity and recreational level at Stanford (D1); ages between 18-22 years</td>
<td>Female athletes higher on restraint scale and overall eating disorder pathology than male athletes; Elite athletes > disordered eating than recreational level athletes; Sport type not relevant; Weight and shape concern related to increased disordered eating for both levels</td>
</tr>
<tr>
<td>Kerr et al. (2006)</td>
<td>Cross-Sectional</td>
<td>Correlational</td>
<td>Surveys were designed by the principal author for the purposes of the study.</td>
<td>N=95 female active gymnasts; M age=14.4</td>
<td>Impact of coaches and teammates increased disordered eating symptoms; gymnasts low on body dissatisfaction compared to norm</td>
</tr>
<tr>
<td>Kong & Harris (2015)</td>
<td>Cross-Sectional</td>
<td>Quasi-Experimental</td>
<td>EAT-26 subscale; Figure Rating Scale: current, ideal, sport; General body</td>
<td>N=320 elite, recreational, female athletes in lean and nonlean</td>
<td>Lean sports and elite level increased eating pathology directly or via or mediator (body dissatisfaction or pressure to be thin) compared to</td>
</tr>
<tr>
<td>Study</td>
<td>Design Type</td>
<td>Methodology</td>
<td>Measures</td>
<td>Participants</td>
<td>Key Findings</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Krentz & Warschburger (2011)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EAT-26; Body dissatisfaction EDI-BD; Contour Drawing Rating Scale (sports-related body dissatisfaction); ATHLETE drive for thinness and performance; Social pressure from sports environment (Appearance-Related Social Pressure adapted to sport)</td>
<td>n=96 elite athletes from aesthetic sports and n=96 matched controls; both girls and boys; ages 11 to 18 years</td>
<td>Lean sport participation contribute to eating pathology: Social pressure affected disordered eating mediated by wanting to be leaner for sport performance; Aesthetic athletes and nonathletes measured the same for general body dissatisfaction, but that body dissatisfaction still associated with disordered eating; Sports-related body dissatisfaction did not predict disordered eating</td>
<td></td>
</tr>
<tr>
<td>Krentz & Warschburger (2013)</td>
<td>Longitudinal Correlational</td>
<td>Contour Drawing Rating Scale; desire to be leaner to improve performance (adapted from ATHLETE); Appearance-Related Social Pressure adapted to sport)</td>
<td>N=65 aesthetic sport athletes; male and female; ages 11 to 18 years</td>
<td>Aesthetic athletes at higher risk for disordered eating when thought sport performance could improve by changing weight and shape; Body dissatisfaction was not relevant for disordered eating development</td>
<td></td>
</tr>
<tr>
<td>Milligan & Pritchard (2006)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Body Shape Questionnaire</td>
<td>N=176 D1 male and female athletes; lean and nonlean; M age=19.8</td>
<td>Lean sports contributed to eating pathology for males; Non-lean female athletes at greater risk for disordered eating patterns; Athletes’ disordered eating pos. related to body dissatisfaction for both genders</td>
<td></td>
</tr>
<tr>
<td>Neves et al. (2017)</td>
<td>Longitudinal Correlational</td>
<td>Body Shape Questionnaire; Media internalisation; the Sociocultural Attitudes Towards Appearance Questionnaire-3 (SATAQ-3); Brunel Mood Scale</td>
<td>N= 20 Brazilian elite gymnasts aged 10–16 years; female; ages 10-18 years</td>
<td>Aesthetic sport Ps higher on the SATAQ; Disordered eating levels fluctuated depending point in season; Disordered eating predicted body dissatisfaction levels; Neg. mood state associated with lower body dissatisfaction and thus disordered eating</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Measurement Tools</td>
<td>Participants</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Nordin-Bates et al. (2016)</td>
<td>Longitudinal Quasi-Experimental</td>
<td>Perceived Motivational Climate in Sport Questionnaire 2, EAT-26</td>
<td>N=597, male and female teenage dancers; M age=14.7</td>
<td>High ego orientation and perceptions of the performance climate contributed to disordered eating; Older dancer showed more disordered eating patterns</td>
<td></td>
</tr>
<tr>
<td>Petrie et al. (2014)</td>
<td>Cross-Sectional Correlational</td>
<td>Positive and Negative Affective States scale; Body Parts Satisfaction Scale Revised; Dietary Intent Scale; Drive for Muscularity Scale; Social desirability; Marlowe-Crowne Social Desirability</td>
<td>6-item Bulimia Test-Revised, N=203 Male D1 NCAA athletes; M age=20.3</td>
<td>Dietary restraint and drive for muscularity significantly impact bulimia symptomology</td>
<td></td>
</tr>
<tr>
<td>Petrie et al. (2009a)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Psychological Well-Being; Life Orientation Test-Revised; Reasons for Exercise Inventory; Appearance Orientation subscale from Multidimensional Body Self Relations Questionnaire</td>
<td>Q-EDD, N=204 D1 female athletes; M age=20.2</td>
<td>Appearance orientation and using exercise as a means to increase attractiveness partially, and significantly, explained level of disordered eating symptomology across multiple sports</td>
<td></td>
</tr>
<tr>
<td>Petrie et al. (2009b)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Weight Pressures; Mood scale; Beliefs About Attractiveness Scale-Revised; Body Parts Satisfaction Scale-Revised; Appearance Evaluation subscale from Multidimensional Body-Self Relations Questionnaire</td>
<td>Q-EDD, N=442 female athletes DI; M age=19.7</td>
<td>Pressure from others affected the eating disorder symptomology; Lower body dissatisfaction related to increased eating disorder symptomology; Shame and guilt higher in those with eating disorders</td>
<td></td>
</tr>
<tr>
<td>Pettersen, Hernæs & Skårderud, (2016)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EDI-2 subscales; The sociodemographic variables</td>
<td>EDI-2, Norwegian female junior cross-country skiers and biathletes (n=262)</td>
<td>Level of competition not predictive of disordered eating scores nor was type of sport; Attendance of an elite high school impacted disordered eating development via drive for thinness, which may be related to social expectations and pressure</td>
<td></td>
</tr>
<tr>
<td>Reinking & Alexander (2005)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EDI-2 and its subscales</td>
<td>EDI-2, N=146 and n=84 female NCAA D1 athletes (divided into lean and non-lean)</td>
<td>Athletes = nonathletes for eating pathology; Lean sport participation related to development of an eating disorder vs. nonlean sport; Lean athletes showed higher disordered eating scores</td>
<td></td>
</tr>
</tbody>
</table>

Strong refers to the strength of the evidence, indicating a high confidence level in the findings.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Methodology</th>
<th>Outcome Measures</th>
<th>Sample Size</th>
<th>Findings</th>
<th>Study Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosendahl et al. (2009)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Body image and body ideal were measured with male and female silhouettes representing different weight categories</td>
<td>EAT-26</td>
<td>N=576 elite German high school athletes in grades 5-12 and n=291 non athletes from regular high schools, co-ed sample</td>
<td>Lean sport participants and elite athletes more vulnerable for disordered eating than nonlean sport and non-elite athletes, but only for females; Athletes had higher body dissatisfaction, linked to disordered eating</td>
<td>Moderate</td>
</tr>
<tr>
<td>Rousselet et al. (2017)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EDI-2 subscales; Athlete’s dietary habits using 24 h recall interview, and food frequency; Psychological assessment</td>
<td>EDI-2; interview and somatic assessment</td>
<td>N=340 French high-level athletes (lean vs nonlean); minimum age of 12</td>
<td>Athletes with disordered eating had higher scores on the body dissatisfaction subscale and had larger discrepancies between current and ideal weight; Athletes who skipped meals or restrained caloric intake were more likely to show disordered eating symptomology</td>
<td>Strong</td>
</tr>
<tr>
<td>Rouveix et al. (2007)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Athletic involvement, training regimen, weight history, eating-related behaviours; eating patterns; Weight satisfaction, and state whether they wished to lose or gain weight; EAT-26 subscales; Profile of Mood States</td>
<td>EAT-26</td>
<td>N=24 Judo athletes (male and female) and n=31 non athlete controls; M athlete age=16.9</td>
<td>Female athletes higher on Global EAT scores vs male athletes. Female athletes showed higher eating pathology than controls and scored higher bulimia athletes=nonathletes for mood states</td>
<td>Strong</td>
</tr>
<tr>
<td>Scoffier et al. (2010)</td>
<td>Cross-Sectional</td>
<td>Sport Friendship Quality Scale Coach Relationship Quality; French version of the Marsh (1990) Self-Description Questionnaire (SDQ-II) subscales</td>
<td>EAT-26</td>
<td>N=227 elite adolescent female athletes engaged in various aesthetic sports; M age=15.8</td>
<td>Coaches and teammates, through comments or general pressure was related to more disordered eating symptoms; Parent-athlete relationships do affect on disordered eating psychopathology</td>
<td>Strong</td>
</tr>
<tr>
<td>Tan et al. (2016)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EDE-Q subscales; Beck Depression Inventory</td>
<td>EAT-26; EDE-Q</td>
<td>N=51 male and female gymnasts;</td>
<td>Depression related to heightened disordered eating; Weight and shape</td>
<td>Strong</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Methodology</td>
<td>Instruments</td>
<td>Sample Size</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Thiemann et al. (2015)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EDE-Q Subscales; SEDI-2 subscales; Clinical Interview for DSM-IV Axis I Disorders; Patient Health Questionnaire (screening for mental disorders); Sociocultural Attitudes Towards Appearance Scale (SATAQ-3); ATHLETE</td>
<td>EDE-Q; EDI-2</td>
<td>N= 108 German female professional athletes aged 12 to 34 years and N=108 age-matched female nonathletes</td>
<td>Lean sports compared to nonlean sports at greater risk for eating disorder directly and via increased body dissatisfaction or pressure to be thin; Aesthetic sport athletes higher eating disorder symptomology than nonathlete controls; Aesthetic athletes had a higher drive for thinness; Athletes=controls in dissatisfaction ratings, but body dissatisfaction still predictor of disordered eating</td>
<td></td>
</tr>
<tr>
<td>Torres-GcGehee et al. (2011)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Body disturbance with sex-specific BMI silhouettes</td>
<td>EAT-26</td>
<td>N= 138 (mean age = 19.88 years). English riding (n = 91) & Western riding (n = 47)</td>
<td>Equestrian riders at risk for developing disordered eating due to the sport-specific pressures; Body dissatisfaction not different between types of equestrian athlete</td>
<td></td>
</tr>
<tr>
<td>Torstveit, Rosenvinge, & Sundgot-Borgen (2008)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Questions regarding menstrual, body weight, training, injury, and dietary history, physical activity patterns, nutritional habits, use of pathogenic weight control methods and self-reported EDs; EDI-2 Subscales; EDE Interview</td>
<td>EDI-2; EDE Interview</td>
<td>N=938 female athletes (ages 13-39); N=900 controls (n=900)</td>
<td>Aesthetic sports contributed to eating pathology; Dietary behaviours was related to disordered eating</td>
<td></td>
</tr>
<tr>
<td>Van Durme, Goossens, & Braet, (2012)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Sport Competition Anxiety Test; Competitive State Anxiety Inventory-2; Dutch Eating Behaviour Questionnaire; EDI-2 subscales; Children's Eating Disorder Examination Questionnaire; EDI-2</td>
<td>Children's Eating Disorder Examination Questionnaire; EDI-2</td>
<td>N=68 adolescent aesthetic athletes; age range 11-21 years</td>
<td>Aesthetic sport athletes higher eating disorder symptomology than nonathlete controls; Female aesthetic athletes more eating pathology than controls, difference was not in male athletes; Weight and shape concern, drive for thinness, bulimic behaviours, and</td>
<td></td>
</tr>
</tbody>
</table>
dieting elevated and related to increased disordered eating behaviours for the female athletes; Nonathlete=aesthetic athletes=non-aesthetic athletes for body dissatisfaction; Higher competition state anxiety related to more disordered eating pathology

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Illusion</th>
<th>Scale</th>
<th>Participants</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voelker, Gould, & Reel (2014)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>Weight Pressures in Sport Scale-Females; General and sport-related body dissatisfaction—The Contour Drawing Rating Scale</td>
<td>EAT-26; EDE-Q</td>
<td>N=272 female figure skaters ages 12-25</td>
<td>Level of competition (sub-elite vs elite) not predictive of disordered eating scores, but those scored higher in competition also scored higher on restraint subscale; Weight and appearance linked to disordered eating in females; Both types of body dissatisfaction positively correlated with disordered eating</td>
</tr>
<tr>
<td>Wollenberg, Shriver, & Gates, (2015)</td>
<td>Cross-Sectional Quasi-Experimental</td>
<td>EAT-26 subscales; Difficulties in Emotion Regulation Scale</td>
<td>EAT-26</td>
<td>540 female NCAA D1 college students (n = 389 nonathletes; n = 151 athletes)</td>
<td>Female athletes not at greater risk for developing eating pathology compared to nonathletes; Non-athletes scored higher on the subscale and therefore on the overall EAT score; Athletes had better emotion regulation and a lower rate of disordered eating</td>
</tr>
</tbody>
</table>