Title: Towards a neuroimaging biomarker in amyotrophic lateral sclerosis

Article Type: Commentary (Reflection & Reaction)

Corresponding Author: Dr Martin R Turner, PhD

Corresponding Author's Institution: University of Oxford

First Author: Martin R Turner, PhD

Order of Authors: Martin R Turner, PhD; Julian Grosskreutz; Jan Kassubek; Sharon Abrahams; Federica Agosta; Michael Benatar; Massimo Filippi; Laura H Goldstein; Martijn van den Heuvel; Sanjay Kalra; Dorothée Lulé; Bahram Mohammadi; Other members of The 1st NISALS

Manuscript Region of Origin: UNITED KINGDOM
Towards a neuroimaging biomarker in amyotrophic lateral sclerosis

Martin R Turner¹
Julian Grosskreutz²
Jan Kassubek³
Sharon Abrahams⁴
Federica Agosta⁵
Michael Benatar⁶
Massimo Filippi⁵
Laura H. Goldstein⁷
Martijn van den Heuvel⁸
Sanjay Kalra⁹
Dorothée Lulé³
Bahram Mohammadi¹⁰
& other members of ‘The 1st NISALS’*

*Other contributors to The 1st Neuroimaging Symposium in ALS (NISALS): Nazem Atassi¹¹, Peter Bede¹², Habib Benali¹³, Christian Enzinger¹⁴, Christian Gaser², Laura Jelsone-Swain¹⁵, Hans-Peter Müller³, Richard W. Orrell¹⁶, Pierre-François Pradat¹⁷, Johannes Prudlo¹⁸, Stefan Ropele¹⁴, Rakesh Sharma¹, Vincenzo Silani¹⁹, Andrew Simmons⁷, Stephen Smith¹, Stefan Teipel¹⁸, Ahmed Toosy¹⁶, Stella Tsermentseli⁷, Philip Van Damme²⁰, Esther Verstraete⁸, Robert Welsh¹⁵, Matthias Wittstock¹⁷

¹Nuffield Department of Clinical Neurosciences, University of Oxford, UK
²Friedrich-Schiller-University of Jena, Germany
³Department of Neurology, University of Ulm, Germany
⁴Human Cognitive Neuroscience, Centre for Cognitive Aging and Cognitive Epidemiology, Euan MacDonald Centre, University of Edinburgh, UK
⁵Neuroimaging Research Unit, Department of Neuroscience, Scientific Institute and University San Raffaele, Milano, Italy
⁶Department of Neurology, Miller School of Medicine, University of Miami, USA
⁷King’s College London, Institute of Psychiatry, UK
8Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
9Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
10CNS-Lab, International Neuroscience Institute, Hannover & Department of Neurology, University of Lübeck, Germany
11Massachusetts General Hospital-Harvard Medical School, Boston, USA
12Trinity College Dublin, Ireland
13INSERM, Paris, France
14Department of Neurology, Medical University of Graz, Austria
15University of Michigan, USA
16UCL Institute of Neurology, University College London, UK
17Hôpital de la Pitié-Salpêtrière, Paris, France
18Department of Psychiatry, University of Rostock and DZNE, Germany
19Department of Neurology, Universita’ degli Studi di Milano - IRCCS Istituto Auxologico Italiano, Milano, Italy
20University of Leuven, Belgium

Corresponding author: Dr Martin Turner
Nuffield Department of Clinical Neurosciences
West Wing Level 3, John Radcliffe Hospital
Oxford OX3 9DU
UK
Tel: +44 (0)1865 231893
Fax: +44 (0)1865 231885
martin.turner@clneuro.ox.ac.uk

Counts:
Manuscript: 825
Refs: 5
Tables: 2
To be fully prepared for the emergence of candidate neuroprotective drugs in Amyotrophic Lateral Sclerosis (ALS), the development of robust biomarkers of disease activity, as well as those for diagnosis and prognosis in a notoriously heterogeneous disorder, is axiomatic [1]. Guidelines on the use of neuroimaging in the management of ALS recognised the enormous contribution of magnetic resonance imaging (MRI) in the exclusion of ‘mimic’ (largely spinal) disorders [2], but the expanding repertoire of MR sequences with sensitivity to the inherent cerebral motor and extra-motor pathology, now makes it a frontrunner in the search for biomarkers. The Alzheimer Disease Neuroimaging Initiative (ADNI) recognised the power of data-sharing, and a similar multi-centre collaborative approach might generate the large sample sizes needed to fully explore the feasibility of MRI as a future outcome measure in ALS therapeutic trials.

The 1st Neuroimaging Symposium in ALS (NISALS) was held at St. Edmund Hall, Oxford University, UK on 3rd-5th November 2010. The initial focus was on four MRI techniques, recognising the need to balance a multi-parametric approach (increasing the potential biomarker yield), with simplicity, reproducibility and tolerability.

1. **Voxel-based morphometry** (VBM) refers to the automated analysis of volumetric grey or white matter changes in high resolution 3D T1-weighted images of the brain, and is currently the primary MRI measure of disease progression in both Alzheimer’s and Huntington’s diseases. In ALS, VBM has been consistently sensitive (at a group level) to extra-motor, largely fronto-temporal cerebral changes (reviewed in [1]), reflecting the clinicopathological overlap of ALS with some types of frontotemporal dementia. However, the surprising lack of consistent motor cortical atrophy, and a paucity of large longitudinal MRI studies, makes the sensitivity of VBM to disease progression in ALS much more uncertain.

2. **Diffusion tensor imaging** (DTI) is an established tool for the detection of pathology within white matter neuronal tracts, and in ALS appears to accurately reflect the pathology observed historically in post-mortem histological studies
The most consistent results in ALS have come from studies using a DTI measure of white matter integrity known as fractional anisotropy (FA), which is sensitive to involvement of both the cerebral and cervical corticospinal tract, as well as extra-motor regions (reviewed in [1]). However, overlapping changes are observed in other motor neuron disorders such as hereditary spastic paraparesis, and results from longitudinal studies of FA change in ALS are conflicting at present, so that the true potential of DTI as a diagnostic biomarker or in monitoring disease progression requires further study.

3. **Functional MRI** using blood oxygenation level-dependent (BOLD) contrast has, like PET studies a decade prior, provided evidence for widespread alterations in cortical activity as a consistent feature of ALS pathology. More recently however, the exploration of the task-free resting state image of discrete cortical networks (resting state functional MRI, rs-fMRI) heralds a new era exploring ALS as a ‘system’ failure of interconnected networks. Application of rs-fMRI to ALS patients suggests that reduced inter-hemispheric functional connectivity between motor cortices is a feature of early clinical disease [4], a finding consistent with the structural callosal involvement seen using DTI [3].

4. **Magnetic resonance spectroscopy** (MRS) has proved sensitive to cerebral pathology in ALS using common proton-based cerebral metabolites, mainly N-acetylaspartate, commonly expressed as a ratio with creatine or choline (reviewed in [1]). Higher field strengths (3T and above) permit greater separation of metabolite peaks, with the potential to study those with more specific relevance to ALS pathogenesis, for example glutamate and GABA, as well as myo-inositol. A lack of acquisition standardisation, including single versus multi-voxel sampling, and the technical expertise needed to perform high quality MRS are currently barriers to multi-centre collaboration.

The combination of different MRI techniques may improve sensitivity and specificity for ALS, demonstrated in a study of heterogeneous patients where combining grey matter VBM and DTI improved both indices to 90% [3]. MRI also permits the linking of
structure with function in ALS, through the combination of rs-fMRI with DTI and VBM [5]. The study of pre-symptomatic individuals carrying mutations in genes linked to the ~5% of familial ALS cases is regarded as a priority, as it is the only way to study key events around the ‘clinical horizon’ at present, which may be where the optimal therapeutic window lies.

Consensus was reached on ‘essential’ and ‘desirable’ MRI protocols (Table 1) and clinical information (Table 2) for future ALS studies, with an aim for multi-centre and crucially longitudinal studies. The first stage for MRI-based collaboration will involve exploration of the feasibility of pooling longitudinal data to establish an estimate of the sensitivity of VBM, DTI and rs-fMRI to disease progression in ALS, with a view to a prospective multi-centre study comparing modalities.

A biomarker-focused era has arrived in ALS research, preceding the emergence of multiple disease-modifying drugs, the discovery of which may be facilitated through more efficient therapeutic trials. The 1st NISALS has catalysed a growing international spirit of collaboration with the hope of translation into a better future for patients.
Acknowledgements
The authors are grateful to Professors Kevin Talbot and Nick Fox for their active support of the 1st NISALS, and their comments on the initial version of this manuscript. MRT is supported by the Medical Research Council/Motor Neuron Disease Association Lady Edith Wolfson Clinician Scientist Fellowship.

Competing interests
There are none.

Financial disclosures
The Motor Neuron Disease Association (UK) and Oxford Radcliffe Hospitals NHS Trust Charitable Funds provided funding for the Oxford NISALS meeting. Venue hire costs were met by the MRC/MNDA Lady Edith Wolfson Clinician Scientist Fellowship (MRT). Travel and accommodation costs were borne by individual delegates.
Table 1

Consensus guidelines on MRI protocol for ALS studies.

<table>
<thead>
<tr>
<th>MRI modality</th>
<th>Essential</th>
<th>Desirable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanner field strength</td>
<td>1.5T</td>
<td>3T</td>
</tr>
<tr>
<td>Voxel-based morphometry</td>
<td>T1 (MP-RAGE or equivalent high resolution 3D pulse sequence);</td>
<td>High GM–WM contrast</td>
</tr>
<tr>
<td></td>
<td>Isotropic voxels: max. 1mm³</td>
<td></td>
</tr>
<tr>
<td>Diffusion tensor imaging</td>
<td>Gradient directions: min. 12</td>
<td>Axial acquisition (to maximise brainstem coverage)</td>
</tr>
<tr>
<td></td>
<td>Isotropic voxels: max. 2.5mm³ slice thickness</td>
<td>More than one cycle to allow ‘averaging’</td>
</tr>
<tr>
<td></td>
<td>T2, FLAIR (to consider other WM pathology e.g. cerebrovascular disease)</td>
<td>Cervical cord as well as brain</td>
</tr>
<tr>
<td>Functional MRI</td>
<td>Resting state sequence (in addition to any task-based paradigm)</td>
<td>Axial acquisition (to maximise brainstem coverage)</td>
</tr>
<tr>
<td></td>
<td>EPI, isotropic voxels, max. 3mm slice thickness</td>
<td>Pulse and respiratory waveform monitoring to allow physiological noise correction</td>
</tr>
<tr>
<td></td>
<td>Consistent, either ‘eyes open-fixed target’ or ‘eyes closed-not asleep’ for resting state acquisition</td>
<td>Task-based protocol for both motor and cognitive functions</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>Standardised methodology</td>
<td>Myo-inositol, Glutamate and GABA measurements</td>
</tr>
<tr>
<td></td>
<td>NAA-based measures within PMC</td>
<td></td>
</tr>
</tbody>
</table>

EPI – echo planar imaging
FLAIR – fluid attenuation inversion recovery
GM – grey matter
MP-RAGE - magnetization prepared rapid gradient echo
PMC – primary motor cortex
WM – white matter
Table 2

Consensus guidelines on the clinical dataset for MRI studies in ALS.

<table>
<thead>
<tr>
<th>Category</th>
<th>Essential</th>
<th>Desirable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td>Date of birth
Gender</td>
<td>Handedness
Date of death (retrospectively)</td>
</tr>
<tr>
<td>Diagnostic aspects</td>
<td>Diagnosis (ALS, other MND, control)
Date of symptom onset (first weakness, month and year)
Date of diagnosis by neurologist (ALS tertiary centre)
Family history</td>
<td>Revised El Escorial EMG staging
Genotype for familial cases
Co-morbidities</td>
</tr>
<tr>
<td>Clinical features</td>
<td>Site of first weakness (bulbar, upper limb R/L, lower limb R/L, respiratory, trunk)
ALSFRS-R score (with sub-scores)
A simple cognitive battery, including verbal (letter) fluency, to classify patients as: ALS-cu, ALS-ci or ALS-FTD (Strong/Neary criteria)</td>
<td>Pattern and timing of regional spread of symptom
Distribution of clinical UMN (and LMN) findings within territories, considering:
a. A ‘pathological reflex’ sum score (e.g. [3])
b. Tapping speed (finger and foot bilaterally)
c. Spasticity measure (e.g. Ashworth score)
Forced vital capacity (% predicted)
Detailed neuropsychological profile and behavioural assessment (e.g. FrSBE)
Any atypical findings e.g. sphincter or sensory symptoms
Concomitant medications (riluzole at any time)</td>
</tr>
</tbody>
</table>

ALS-cu – ALS cognitively unimpaired
ALS-ci – ALS cognitively impaired
ALS-FTD – ALS with frontotemporal dementia
FrSBE – Frontal System Behaviour Scale
References

