<table>
<thead>
<tr>
<th>Journal:</th>
<th>Annals of Neurology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>ANA-11-0062.R3</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Brief Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Ciccarelli, Olga; UCL Institute of Neurology, Department of Brain Repair and Rehabilitation
Thomas, David; UCL Institute of Neurology, Department of Brain Repair and Rehabilitation
De Vita, Enrico; UCL Institute of Neurology, Lysholm Department of Neuroradiology
Wheeler-Kingshott, Claudia; UCL Institute of Neurology, Department of Neuroinflammation
Kachramanoglu, Carolina; UCL Institute of Neurology, Department of Brain Repair and Rehabilitation
Kapoor, Raj; UCL Institute of Neurology, Department of Neuroinflammation
Leary, Siobhan; National Hospital for Neurology and Neurosurgery,
Matthews, Lucy; John Radcliffe Hospital, Department of Neurology
Palace, Jacqueline; John Radcliffe Hospital, Department of Clinical Neurology
Chard, Declan; University College London (UCL) Institute of Neurology, NMR Research Unit; UCL Institute of Neurology, Department of Neuroinflammation
Miller, David; UCL Institute of Neurology, Department of Neuroinflammation
Toosy, Ahmed; Institute of Neurology, Department of Brain Repair and Rehabilitation
Thompson, Alan; UCL Institute of Neurology, Department of Brain Repair and Rehabilitation |
| Keywords: | NMO, MS, spinal cord |
| Domain: | Clinical and/or Desktop Research |
Low myo-inositol indicating astrocytic damage in a case series of NMO

Running head: In-vivo astrocytic damage in NMO

O Ciccarelli¹,², PhD, DL Thomas¹, PhD, E De Vita¹,², PhD, CAM Wheeler-Kingshott³, PhD, C Kachrmanoglou¹, MRCP, R Kapoor²,³, FRCP, S Leary³, MD, L Matthews³, PhD, J. Palace³, FRCP, D Chard²,³, PhD, DH Miller²,³, FRCP, AT Toosy¹, PhD, AJ Thompson¹,², FRCP.

¹Department of Brain Repair and Rehabilitation, NMR Research Unit, UCL Institute of Neurology, London, UK;
²National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC);
³Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London UK;
⁴Department of Neuroinflammation, NMR Unit, UCL Institute of Neurology, London, UK;
⁵National Hospital for Neurology and Neurosurgery, Queen Square, London, UK;
⁶Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK.

Corresponding author: Dr Olga Ciccarelli; Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Telephone: 0845 155 5000 (ext. 84469); e-mail: o.ciccarelli@ucl.ac.uk

Key words: NMO, MS, spinal cord, MR spectroscopy.

Number of characters in the title and running head: 69 and 32. Number of words in the abstract, and the body of the manuscript: 9988 and 15192440493 (including acknowledgments). Number of color figures: 1.
Abstract

Astrocytic necrosis is a prominent pathological feature of Neuromyelitis Optica (NMO) lesions and is clinically relevant. We report five NMO-related cases, all with longitudinally extensive lesions in the upper cervical cord, who underwent cervical cord 1H-MR spectroscopy. Lower myo-Inositol/Creatine values, suggesting astrocytic damage, were consistently found within the NMO lesions when compared with eleven healthy controls and ten patients with multiple sclerosis (MS), who showed at least one demyelinating lesion at the same cord level. Therefore, the in vivo quantification of myo-Inositol may distinguish NMO from MS. This is an important step towards developing imaging markers for clinical trials in NMO.
Neuromyelitis Optica (NMO) comprises recurrent myelitis, with spinal cord lesions which extend over three or more vertebral segments, and optic neuritis.1 NMO is a disease primarily of astrocytes, due to antibodies against aquaporin-4 (AQP4-Abs), expressed at the astrocytic perivascular endfeet2. The interaction between AQP4-Abs and aquaporin-4 induces several molecular outcomes including oedema, inflammation, demyelination and astrocytic necrosis3. When these pathological processes affect the cervical cord, they can be studied \textit{in-vivo} using advanced spinal cord imaging techniques4.

We performed spinal cord 1H-MR spectroscopy (MRS) in two patients with NMO and three patients with NMO spectrum disorder, each showing a longitudinally extensive transverse myelitis (LETM) in the upper cervical cord (\textit{i.e., involving either completely or partially the cord between C1 and C3}). The main clinical and radiological characteristics of these patients are described in Table 1.

We also scanned ten patients with relapsing-remitting multiple sclerosis (MS) showing at least one demyelinating lesion in the spine involving the same cord level between C1 and C3 (\textit{i.e., the same cord level as NMO cases}), and eleven healthy subjects. The levels of myo-Inositol and N-acetyl-aspartate normalised to Creatine, obtained with MRS, were compared between groups (see supplemental material for details on protocol and analysis).

\textbf{Case 1}
A 38-year old man had Guillain-Barre syndrome at the age of 4 with residual, although minimal, limb weakness. In 2009 he presented with sudden-onset right-sided weakness and numbness which spread to the left. Spinal cord MRI showed a longitudinally-extensive lesion from the cranio-cervical junction to C5 with associated swelling and foci of enhancement. Treatment with IV corticosteroids resulted in an incomplete recovery. He was diagnosed with NMO spectrum disorder. He commenced Prednisolone and Azathioprine. His repeat spinal cord MRI showed improvement in the lesion, which extended from C1 to C5, two small foci of enhancement at C2 and C4/5, and no swelling. Five months later, he suffered another transverse myelitis. His MRI showed a more conspicuous lesion associated with swelling. He received IV steroids and an interval MRI (one month later) showed resolution of the swelling with the lesion extending from C2 to C5 and signal change in the cranio-cervical junction.

In 2010 he developed post-corticosteroid left central serous retinopathy.

Seventeen months after his last transverse myelitis he underwent spinal cord MRS (**Figure 1, Table 2**). **Examination revealed**; at this time, his examination showed normal visual acuity, mild to moderate quadruparesis weakness in all limbs, especially in the right arm, absent reflexes, and reduced right-sided sensation to light touch on the right side.

Case 2
A 44-year old woman presented in 2001 with severe right optic neuritis, followed by transverse myelitisTM, from which she made a partial recovery. In 2003 she developed transverse myelitisTM, with severe quadriparesis, sensory and sphincter disturbance, and was diagnosed with MS. With rehabilitation, she was able to walk with a frame. The following year her transverse myelitisTM recurred. Spinal cord MRI showed a longitudinally-extensive lesion extending from the foramen magnum to C6. Her diagnosis was revised to NMO and she was treated with IV corticosteroids, Mitoxantrone and Azathioprine. In 2010 she presented with her fourth episode of transverse myelitisTM, with right-sided weakness and urinary dysfunction. She commenced on Prednisolone and continued on Azathioprine.

One year after her last transverse myelitisTM, she underwent spinal cord MRS (Table 2). Examination revealed a spastic monoplegia of her right leg and moderate weakness in her left leg and right arm, a sensory level at C5, urinary urgency, and visual loss to light perception in her right eye.

Case 3
A 50-year old woman presented in May 2011 with sudden interscapular pain, and chest tightness. She then developed a paraparesis with left leg numbness. Spinal cord MRI scan showed hyperintense lesions at C2 and C3/C4, and a longitudinal extensive lesionLETM from C6 to the conus, with which was continuous and associated with oedema. All these cord lesions showed patchy enhancement.
Despite IV steroids she progressed to a complete paraplegia, severe pain and reduced sitting ability. She was then treated with plasmapheresis, and commenced oral Prednisolone with Azathioprine. With rehabilitation she made a partial recovery. In July 2011 her spinal cord MRI showed a significant reduction in signal change throughout the cervical and thoracic cord, which became patchy and less confluent.

Four months after the onset of LETM she underwent spinal cord MRS (Table 2). Her neurological examination showed complete monoplegia of her left leg, moderate to severe weakness in her right leg, sensory level at T4 and urinary dysfunction. She then underwent spinal cord MRS (Table 2).

Case 4

A 34-year old man presented in 2007 with hiccups; his vision deteriorated and he was admitted to ITU with respiratory failure due to a brainstem lesion. He developed severe leg weakness due to cervical LETM. He made a partial improvement following plasmapheresis. In 2008 he presented with severe optic neuritis, which did not improve. In 2009 he re-presented with TMa spinal cord relapse, making a good recovery after plasmapheresis. At that time, his spinal cord MRI scan showed a longitudinally-extensive lesion in the entire cervical cord, plus another lesion from T9 to T11. NMO was diagnosed and he commenced Prednisolone and Azathioprine. In 2010 he had further bilateral optic neuritis. In 2011 he presented with low back pain, and urinary urgency, but his
repeat MRI showed a smaller cervical cord lesion, extending from a smaller lesion, from C2 to C6, and the previous thoracic lesion.

Two years following his last transverse myelitis, he underwent spinal cord MRS (Table 2). His examination showed perception of hand movements only in the right eye and blindness in the left eye. He had moderately reduced power in his lower limbs, reduced sensory function in the left leg and urinary dysfunction.

Case 5
A 30-year old Chinese woman attended our clinic after moving to London. She had suffered seven episodes of cervical myelitis over the previous eight years and had previously been diagnosed with MS.

Three months after her last transverse myelitis, her spinal cord MRI showed a longitudinally-extensive lesion extending from the cranio-cervical junction to C7. Her examination revealed a spastic tetraparesis, worse on the right, abnormal sensation below the neck and sensory ataxia. Spinal cord MRI showed a longitudinally-extensive lesion extending from the cranio-cervical junction to C7. She tested positive for AQP4-Abs, and was re-diagnosed with NMO spectrum disorder. Her treatment was converted from interferon-beta 1-a to Azathioprine with Prednisolone.
She then underwent spinal cord MRS. Examination revealed spastic tetraparesis, worse on the right, abnormal sensation below the neck and sensory ataxia.

Differences in metabolite concentrations between groups

Myo-Inositol/Creatine ratio was significantly lower in our case series of patients with NMO and NMO spectrum disorder than MS patients (Coeff. -0.78, p<0.001, 95%Conf. Interval (CI) -1.24, -0.35, obtained using the bootstrap) (Table 2)\(^1\) (Figure 1): additionally, patients with NMO showed significantly lower myo-Inositol/Creatine ratio than healthy controls (Coeff. -0.45, p=0.008, 95%CI -0.78, -0.12) (Table 2)\(^1\) (Figure 1). Patients with MS showed higher no significant difference in myo-Inositol/Creatine values than was found between MS patients and healthy controls, but this did not reach statistical significance (Table 2)\(^1\).

N-acetyl-aspartate/Creatine values did not differ between NMO and MS, but were lower in MS than healthy controls (Coeff. -0.48, p<0.001, 95%CI -0.76, -0.21) (Table 2).

Discussion

This case series provides novel insights into the metabolic characteristics of LETM. Our key finding is that the levels of myo-Inositol (normalised to Creatine) of cervical cord lesions can discriminate between NMO/NMO spectrum disorders.
and MS. This may potentially have very important diagnostic implications. Myo-Inositol/Creatine values are reduced in the upper cervical cord NMO lesions when compared to healthy subjects (by about 28%) and to MS patients with demyelinating lesions at the same cord level (by 40%). Myo-Inositol is considered to be a marker of astrocytic activation and proliferation; therefore, its reduction is likely to reflect astrocytic necrosis, which is typically found in NMO lesions and is thought to mediate oligodendrocyte injury. Astrocytic damage per se, as reflected by elevated CSF glial fibrillary acidic protein, has been shown to be clinically relevant in NMO.

The overall degree of tissue injury seen on conventional spinal cord MRI between C1 and C3 was overall less extensive in MS patients (see Supplemental Table 1) than NMO patients, but it is unlikely that this is the cause of the observed differences because healthy controls showed a Myo-Inositol/Creatine values which were lower than in MS patients, but higher than in NMO patients. In particular, although spinal cord MS lesions showed we detected a 17% mean increase in Myo-Inositol/Creatine values than in spinal cord MS lesions when compared to healthy controls, this difference was not statistically significant; previous MRS studies reported increased myo-inositol concentrations in the brain and spinal cord lesions in MS patients, when compared to healthy subjects, reflecting the underlying process of gliosis.
N-acetyl-aspartate (NAA) is considered to be a marker of axonal integrity11 and/or metabolic function12, and is expected to be reduced in the presence of significant neuroaxonal degeneration and impaired metabolism. We found no significant differences in NAA/Creatine ratio between NMO patients and both healthy subjects and MS patients with at least one lesion at the same cord level. Conversely, MS patients showed a significantly lower mean NAA concentration than healthy controls (by about 39%). These results are in agreement with previous studies, that reported (i) no significant spectroscopic abnormalities in the brain of NMO patients as compared to healthy controls13,14 and (ii) reduced levels of NAA in acute and chronic lesions in both the brain and spinal cord of MS patients when compared to healthy subjects4,15.

Our findings of abnormally low myo-Inositol levels in the LETM when compared to MS patients and healthy subjects should encourage further investigation, since advanced spinal cord imaging could lead to novel imaging markers to distinguish NMO from MS and may have value in future clinical trials in NMO with remyelinating or neuroprotective agents.

Acknowledgment
This work was supported by the NIHR UCLH/UCL COMPREHENSIVE BIOMEDICAL RESEARCH CENTRE BRC. The authors thank Dr. Evelyne Balteau for her help with the shimming procedure.
References

Table 1. Main clinical and radiological characteristics of NMO and NMO spectrum patients. TM=Transverse Myelitis, CSF=Cerebrospinal Fluid, OCB=Oligoclonal Bands

<table>
<thead>
<tr>
<th>Patients</th>
<th>Age (yrs)</th>
<th>Gender</th>
<th>Disease duration</th>
<th>AQP4- Abs</th>
<th>Time from last TM</th>
<th>Conventional Brain MRI</th>
<th>Conventional Spinal cord MRI</th>
<th>CSF OCB results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1 NMO spectrum</td>
<td>38</td>
<td>M</td>
<td>2 years</td>
<td>Positive</td>
<td>17 months</td>
<td>Normal</td>
<td>Lesion from C2 to C5 and lesion in the cranio-cervical junction</td>
<td>Negative</td>
</tr>
<tr>
<td>Case 2 NMO</td>
<td>44</td>
<td>F</td>
<td>10 years</td>
<td>Positive</td>
<td>12 months</td>
<td>Normal (except for high T2 signal in the right optic nerve)</td>
<td>Lesion from foramen magnum to C6</td>
<td>Negative</td>
</tr>
<tr>
<td>Case 3 NMO spectrum</td>
<td>50</td>
<td>F</td>
<td>4 months</td>
<td>Positive</td>
<td>4 months</td>
<td>Few, non-enhancing, white matter lesions in the periventricular regions, pons</td>
<td>Lesions at C2 and C3/C4, and lesion from C6 to the conus</td>
<td>Positive in the CSF, negative in the serum</td>
</tr>
<tr>
<td>Case</td>
<td>Diagnosis</td>
<td>Age</td>
<td>Duration</td>
<td>Status</td>
<td>Lesion Description</td>
<td>Result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>NMO</td>
<td>34 M</td>
<td>5 years</td>
<td>Positive</td>
<td>Non-enhancing, white matter lesions in the supratentorial and infratentorial (pons and medulla) regions</td>
<td>Lesion from C2 to C6 and lesion from T9 to T11</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Case 5</td>
<td>NMO spectrum</td>
<td>30 F</td>
<td>8 years</td>
<td>Positive</td>
<td>Normal</td>
<td>Lesion from the cranio-cervical function to C7</td>
<td>Negative</td>
<td></td>
</tr>
</tbody>
</table>

Legend: TM=Transverse Myelitis, CSF=Cerebrospinal Fluid, OCB=Oligoclonal Bands
Table 2. Metabolite concentrations in healthy subjects, patients with MS, and patients with either NMO or NMO spectrum disorder; results of the comparisons between groups.

<table>
<thead>
<tr>
<th>Ratios</th>
<th>Healthy subjects</th>
<th>Patients with MS</th>
<th>All patients with LETM</th>
<th>p-value* NMO vs. MS</th>
<th>p-value* NMO vs. controls</th>
<th>p-value* MS vs. controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA/Cr</td>
<td>1.22 (0.3)</td>
<td>0.74 (0.3)</td>
<td>0.91 (0.6)</td>
<td>n.s.</td>
<td>n.s.</td>
<td><0.001</td>
</tr>
<tr>
<td>mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ins/Cr</td>
<td>1.62 (0.5)</td>
<td>1.95 (0.6)</td>
<td>1.17 (0.2)</td>
<td>0.008</td>
<td><0.001</td>
<td>n.s.</td>
</tr>
<tr>
<td>mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: * from Bootstrap analysis; NAA= N-acetyl-aspartate; Cr= Creatine plus Phosphocreatine; Ins= Myo-Inositol; n.s = non-significant.
Figure 1. MR Spectroscopy of case 1 (NMO spectrum): (A) and (B)
Spinal cord sagittal T2-weighted image showing a LETM between C2 and C5.
(C) Location of the spectroscopic voxel at C1-C3 on the sagittal image. (D)
Graph showing the mean values (and +/- 2SE) of Ins/Cr ratio in patients with
NMO vs. patients with MS and healthy controls; (E) Patient’s spectrum,
showing reduced Ins/Cr (1.35) in comparison with a MS patient’s spectrum
(Ins/Cr= 1.69) (F) and healthy control’s spectrum (Ins/Cr= 1.39) (G).
(A) and (B) Spinal cord sagittal T2-weighted image showing a LETM between C2 and C5. (C) Location of the spectroscopic voxel at C1-C3 on the sagittal image. (D) Graph showing the mean values (and +/− 2SE) of Ins/Cr ratio in patients with NMO vs. patients with MS and healthy controls; (E) Patient’s spectrum, showing reduced Ins/Cr (1.35) in comparison with a MS patient’s spectrum (Ins/Cr= 1.69) (F) and healthy control’s spectrum (Ins/Cr= 1.39) (G).
Supplemental material

\textbf{1H-MRS protocol and analysis}

Eleven healthy controls (age: 38.9yrs, SD 8.5), ten relapsing remitting MS patients (age: 39yrs, SD 9.6) showing at least one demyelinating lesion involving the cervical cord region between C1 and C3 \textit{(Supplemental material - Table 1)} and five patients with NMO or NMO spectrum disorder (age: 39.2yrs, SD 7.9) showing a LETM lesion involving either partially or completely the spine between C1 and C3 underwent the same MRI protocol.

All MR data were collected on a Magnetom Tim Trio 3T system (Siemens AG, Erlangen, Germany), using the posterior half of a 12 channel receiver head coil, the posterior part of a neck array coil, and the upper element of the spine array coil.

After conventional T2 sagittal and coronal images, MRS was acquired with the PRESS sequence (TE=30ms; TR=3000ms; 160 averages), CHESS water suppression and cardiac gating. A non water-suppressed spectrum (2 averages) was also acquired for eddy-current correction. A single voxel was placed along the main axis of the cord between C1 and C3 on T2-weighted sagittal images, as shown in \textbf{Fig 1}. Optimal shim currents were calculated off-line with in-house software.1
The analysis of the spectra was done using LCModel\(^2\) using an analysis window between 1.6 and 4.0 ppm and the ratios of the concentrations of the main metabolites, especially total N-acetyl-aspartate (NAA)/Creatine plus Phosphocreatine [Cr] and myo-Inositol [Ins]/[Cr], were obtained. LCModel standard error estimates (%SD, Cramer-Rao lower bounds) were used to assess the confidence of the concentration estimates. Spectra of three MS control patients were excluded for low quality data (cases 8, 9 and 10 in the Table). All the remaining spectra showed %SD of [Cr] and [Ins] <23% and %SD of [NAA] <25%, except for case no. 2 (NMO) (SD of [NAA] 30%) and case no. 4 (NMO) (SD of [Ins] 26%). The average value of [NAA]/[Cr] and [Ins]/[Cr] in controls and in MS patients was calculated. The % difference in these ratios and those obtained in the NMO and NMO spectrum disorder patients was calculated.

Statistical analysis

The differences in [Ins]/[Cr] and [NAA]/[Cr] between the three groups (i.e., NMO patients, MS patients and controls) were compared using the bootstrap, which is indicated when the sample is small and is distribution-independent. For each comparison, the observed coefficient, the 95% confidence interval and the p value are reported.

Supplemental Table 1. Time from last spinal cord relapse and conventional spinal cord MRI findings of patients with Multiple Sclerosis (MS).

<table>
<thead>
<tr>
<th>Patients</th>
<th>Time from last episode of myelitis</th>
<th>Conventional Spinal Cord MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 months</td>
<td>Demyelinating lesion at C1 and additional lesion at C2-C3.</td>
</tr>
<tr>
<td>2</td>
<td>11 months</td>
<td>Patchy lesions from C2-C3 down to the upper thoracic cord.</td>
</tr>
<tr>
<td>3</td>
<td>3 months</td>
<td>Multiple, patchy and short lesions in the cervical cord involving C2-C3, C3-C4, C5 and C6-C7, T1, T3 and T4-5.</td>
</tr>
<tr>
<td>4</td>
<td>4 months</td>
<td>Discrete lesions in the cervical and thoracic cord (at C2-C3, C7, T1-T3) and lower thoracic cord.</td>
</tr>
<tr>
<td>5</td>
<td>60 months</td>
<td>Lesion at C2-C3 and further lesions at T3-T4 and T11.</td>
</tr>
<tr>
<td>6</td>
<td>8 months</td>
<td>Patchy lesions at C1, C2 and C4 and further lesions at T6-T6 and T9.</td>
</tr>
<tr>
<td>7</td>
<td>6 months</td>
<td>Patchy lesions throughout the spinal cord, also involving C2 and C3.</td>
</tr>
<tr>
<td>8</td>
<td>8 months</td>
<td>Lesion at C2.</td>
</tr>
<tr>
<td>9</td>
<td>24 months</td>
<td>Lesion at C2-C3 and C7-T3.</td>
</tr>
<tr>
<td>10</td>
<td>3 months</td>
<td>Patchy lesions throughout the cord, in particular at C1-C2, C3-C4 and C5-C5.</td>
</tr>
</tbody>
</table>