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A GENERALIZED CUBIC MOMENT AND THE PETERSSON
FORMULA FOR NEWFORMS

IAN PETROW AND MATTHEW P. YOUNG

ABSTRACT. Using a cubic moment, we prove a Weyl-type subconvexity bound for the qua-
dratic twists of a holomorphic newform of square-free level, trivial nebentypus, and arbitrary
even weight. This generalizes work of Conrey and Iwaniec in that the newform that is being
twisted may have arbitrary square-free level, and also that the quadratic character may have
even conductor. One of the new tools developed in this paper is a more general Petersson
formula for newforms of square-free level.

1. INTRODUCTION

1.1. Cubic moments. Let y, be a real, primitive character of conductor ¢ and ¢ = rad(q)
its square-free kernel. Let H(IV) be the set of Hecke-normalized holomorphic newforms for
[o(N), of weight x, and trivial central character. Our main result is

Theorem 1.1. For any square-free r with (r,q) = 1 we have

(1.1) d © L(1/2, f @ Xg)® Ko ()"
feH(rq")
q'lq

The estimate holds for any even k > 2, and depends polynomially on kK.

Corollary 1.2. For any holomorphic newform f of square-free level s and x, any real
primitive character of conductor ¢ we have

1.2 L(1/2 sg )
(12) wfow < (L)

Remark. The conductor of L(1/2, f ® x,) is s¢*/(s,q). Therefore, the bound (2) is a
Weyl-type subconvexity bound in g-aspect, but does not reach the convexity bound in the
s-aspect. Note that the corollary holds without a relatively prime hypothesis on s, q.

Corollary [L2 gives a non-trivial bound when the root number €sg,, = +1 (since otherwise
L(1/2,f ® xq4) = 0). See Section Bl specifically equation (8.2) for a concrete formula for
the root number.

Our work here is a generalization of the cubic moment studied by Conrey and Iwaniec [CI],
who obtained, in our notation, the case r = 1, k > 12, and ¢ odd. The extension of their
work to k£ > 2 was obtained by the first-named author [Pet]. It may be somewhat surprising
that, prior to Corollary [[.2, a Weyl-type subconvex bound in the g-aspect was previously
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not known for any values of r besides 1 (nor for even ¢). The case r = 1 has some pleasant
simplifications; for one, the conductor of L(1/2, f ® x,) is ¢* for all f of level dividing gq.
Furthermore, the nth Fourier coefficient of f ® y, vanishes unless (n,q) = 1. For these
reasons, Conrey and Iwaniec could use a formula of Iwaniec, Luo, and Sarnak [ILS], who
proved a Petersson formula that is applicable to (LI with » = 1. The case r # 1 lacks
these simplifications, so in order to approach the proof of Theorem [I.I] we developed a more
general form of the Petersson formula that is applicable to (LLI]) with any square-free r. This
formula, which is of independent interest, is described in Section

Corollary improves on a hybrid subconvexity result of Blomer and Harcos [BH|, Theo-
rem 2’|, which holds more generally for f of arbitrary level and nebentype character. In our
notation (and assuming (g, ) = 1) the result of Blomer and Harcos takes the form

(1.3) L(1/2, f ® xq) < (r*¢%® + r2¢ ") (rq)*.

One may check that Corollary [2is superior to (L3)), except in the range r < ¢/27°1) where
all the bounds are equalized. This result of Blomer and Harcos is more general in that x,
can be replaced by an arbitrary primitive Dirichlet character, f may be a Maass form, and
it is not restricted to the central point. In addition, the Blomer-Harcos bound proceeds by
bounding an amplified second moment, and is Burgess-quality in the g-aspect for r fixed.
If ¢ is fixed and r is large, then the cubic moment is not the appropriate moment to use,
and both Corollary [[2 and (3] are weaker than the convexity bound (specifically, (2] is
superior to the convexity bound of (rg?)'/4*¢ for r < ¢*7°).

The work of [CI] treats both holomorphic forms and Maass forms, with similar proofs.
Provided one generalizes our newform Petersson formula to the setting of the Bruggeman-
Kuznetsov formula, then our methods should carry over to the Maass case, as in [CI]. Note
added May 31, 2018: the Bruggeman-Kuznetsov formula for newforms has now appeared
in [Y2].

The type of sum appearing in Theorem [[.T] may look somewhat unusual, but it is very
important for the proof. It is crucial in [CI] that, after applying the Petersson formula, the
moduli of the Kloosterman sums are all divisible by ¢. The form of (1)) is chosen to group
together the terms with ¢’ | ¢ to give a sum of Kloosterman sums with ¢ = 0 (mod ¢). As
a rough sketch of what this means, and why it is important, one may consider the case of
prime level q. Very roughly, one naively expects the Petersson formula to say

(14) Y %%(m + ) %C}f)(n) O+ 2m Y M
f level 1 ’ )

f new of level ¢ ¢=0 (mod q)

This is not quite correct because there are other types of oldforms not appearing on the left
hand side, but that does not affect the broader thrust of this discussion (the reader interested
in the correct version of this formula will find abundant discussion throughout this paper!).
Meanwhile, the sum over f of level 1 has a Petersson formula in which all ¢ > 1 appear.
Thus, by rearranging these expressions, we see that a newform formula for f of level ¢ should
have all ¢ > 1 present. With the cubic moment, one also has a factor x,(mn), and one wishes
to apply Poisson in these variables. The total modulus of y,(mn)S(m,n;c) is [g, ¢] which
for g | ¢ is still ¢, but if (¢,¢) = 1 it is gc which is much larger. In this latter case, Poisson
summation is practically ineffectual.
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Our proof of Theorem [[T]in fact shows a stronger asymptotic result of the form

(1.5) > wiL(1/2, f @ Xg) = Reg+ O((qr)*(r™ 7 4 ¢7'/2r71/4)),
JEH;(rq')
a'lq

where wy are certain positive weights satisfying w; = (gr)~+°M) and R, , is a complicated
main term arising from a residue calculation (see Section for details). The error term
here is seen to be o(1) provided r > ¢° for some fixed § > 0. Conrey and Iwaniec [CI]
express interest in finding the asymptotic of the cubic moment in their case r = 1; it is
perhaps surprising that deforming the problem slightly in the r-aspect allows us to solve this
problem in a hybrid range. In light of (L)), perhaps it is possible to amplify the moment in
the r-aspect, and thereby improve the exponent of s in (L2).

1.2. Arithmetical applications of the cubic moment. The bound from Corollary
implies a bound on the Fourier coefficients of half-integral weight cusp forms, as we now
describe. Suppose that g(2) = > c(n)e(nz) is a weight HTH Hecke eigenform of nebentypus 1)
and level 4r where r is odd and square-free, and « is even. The Shimura correspondence links
g to aform f of weight &, level 27, and nebentypus 12 , and Waldspurger’s formula gives under
some local conditions (see [Wal, Théoreme 1)) that ¢(|D|)2 = co|D|"= L(1/2, f @ ¥ xp)
where D is a fundamental discriminant, and ¢, is some constant of proportionality depending
on g. Note f ® 1! has trivial nebentypus. Since 2r is square-free, Corollary applies,
and we deduce:

Theorem 1.3. Assume that v is a real character. With notation as above, we have
(16) e(|D]) <, | DI e,

Theorem has applications to the representation problem for ternary quadratic forms
which has been studied by a number of authors, including from
which we have drawn some of the following background material. Suppose that () is a positive
ternary quadratic form with associated theta function ¢ of level dividing 4N with N odd
and square-free. For instance, any diagonal form ax?+by?+ cz? with abe odd and square-free
satisfies these conditions. Then 0y = E'4U + S where £ is a linear combination of Eisenstein
series, U is a linear combination of unary theta functions, and S is a linear combination of
Hecke cusp forms. According to this decomposition, write rg(n) = cg(n) + cy(n) + cs(n)
where rg(n) is the number of representations of n by @), and ¢, (n) is the nth Fourier coefficient
of x = E,U, S. For ease of exposition, suppose that n is square-free and coprime to the level,
which implies ¢;7(n) = 0. If n is locally represented everywhere by @, then cp(n) =g nt/?7=.
Theorem implies cg(n) < g n*'2¢, which is an improvement over that derived from the
Burgess-quality subconvex bound of .

For some more advanced questions, one may desire to explicate the dependence on ¢ in
Theorem [[3 Blomer [B2] remarks that in general this is difficult, and that Mao [BHM],
Appendix 2] has done this but at the expense of relating the Fourier coefficients to twisted
L-values of an auxiliary form f ® ¢~1x*/2, which is of level dividing 16r2. Our results here
then may not apply to this auxiliary form .

However, if ¢ is in Kohnen’s plus space, then the constant of proportionality is given
explicitly by the Kohnen-Zagier formula, and our results apply, as we now explain. We gather
some notation from Kohnen’s paper [Ko|, paying careful attention to normalizations. Let g be
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as defined in this subsection, in Kohnen’s plus space, and write f(z) = > 7, n"T A r(n)e(nz)
with Af(1) = 1. Define the Petersson inner product by

1 dxdy
<f7 f>Kohnen = T 4N -~ / y“\f(z)F .
[To(1) : To(r)] Lo(r)\H y?
(For the rest of the paper we will mainly use a different normalization of the inner product.)
Using [ILS, Lemma 2.5] [HL] [[w1], we have (f, f)kohnen = V. Let D be a fundamental
discriminant with (—1)*2D > 0, coprime to 7. By [Kal Corollary 1], we have

(DD _ o (5 = 1! D|F L(1/2, f® XD>’
<gug>Kohn0n 77%/2 <f7 f)Kohncn

under the assumption xp(p) = n,(f) for all p | r (here n,(f) is the eigenvalue of the Atkin-
Lehner operator). If xp(p) = —n,(f) for some p | r then ¢(|D|) = 0 while the right hand side
may not vanish. As an aside, we mention that Baruch and Mao have generalized the
Kohnen-Zagier/Waldspurger formula by removing these conditions on D, relating the central
value to a Fourier coefficient of a different half-integral weight cusp form. By Corollary [[.2]
we have

lc(q)]?
<gu g>Kohn0n

It is also natural to inquire into the normalization of the form g. There is a slight difficulty
here in that we cannot scale g by taking ¢(1) = 1, since ¢(1) may vanish. There exists
a Dy, polynomially bounded in r, so that L(1/2,f ® xp,) > r°" (e.g., see [HK]). Then
we may choose the constant of normalization so that |¢(|Do|)|2 = |Do|*= . Then with this
normalization, (g, ¢)kehnen << 7°V, and hence

(1.8) le(q)] e 7872g T EHE

Theorem [Tl itself can be used to improve many exponents in the results of [LMY2]. In
particular, we improve the rate of equidistribution of the reductions of CM elliptic curves (see
[LMY?2] for a full description of this arithmetical problem). For brevity, we shall not repeat
any material from [LMY?2], but will instead indicate which exponents may be improved. The
bound ¢'/#+¢D7/16+¢ in [LMY2, (1.5)] may be replaced by ¢°D>12+¢. In Corollary
1.3], the bound D > ¢'®*° may be replaced by D > ¢'?*<. In [LMY2, (1.10), (1.12)],
the bound ¢7/*D7/16 may be replaced by ¢*/*D%12. All these changes result from a use of
Theorem [Tl to bound M, defined by (4.7), (3.1)] with

(1.7) &, ritegtTtate,

1/2+4¢ 5 1/3 5 /6
(1.9) M, < W< > L(1/2,f®xp) ) < ¢ DO/oFe.
feH;(q)

If one can generalize Theorem [[T] (and hence Corollary [[L2)) to allow f to be a Hecke-
Maass cusp form, then there are additional applications. This is the setting required for
equidistribution of integral points on ellipsoids [D1]. The various exponents appearing in
[LMYT] would be updated similarly to the improvements to [LMY2] described in the previous
paragraph. As another example in this vein, Folsom and Masri [FM] [M] have improved the
error term in the asymptotic formula for the partition function which requires subconvexity
for quadratic twists of a cusp form of level 6; the previous bounds of [CI] do not apply, and
so the methods developed in this paper pave the way for further improvements.
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The second-named author [Y1] generalized the [CI] method allowing for large weights
(or spectral parameters, in the Maass case) giving a Weyl-type hybrid subconvexity bound.
This had applications to equidistribution problems on shrinking sets. For simplicity, in this
paper we have kept the weight x fixed but it seems likely that the methods of could be
combined with those in this paper to allow k to vary.

1.3. Petersson formula for newforms. We begin with an expanded discussion on why a
newform Petersson formula is relevant for Theorem [[1]

One encounters a significant difficulty when attempting to generalize the [CI] method to
allow level structure of the base form, as we describe. One begins by using an approximate
functional equation of the L-function L(1/2, f ® x,), which has conductor r¢* when f is a
newform of level r¢’ with (r,q) = 1 and ¢’ | ¢. Next one would wish to apply the Petersson
formula to average over an orthogonal basis of cusp forms. The problem is that this basis
consists of oldforms as well as newforms, which causes a variety of problems. Firstly, it is
not clear what Dirichlet series to attach to f ® x, when f is an oldform. One could take this
to mean that if f is induced from a newform f* of lower level, then we take L(1/2, f*® x,).
However, with this definition the conductor of this L-function may be a divisor of rg?,
in which case there is some dependence on the level of f* in the approximate functional
equation. The classical Petersson formula is unable to distinguish between these forms.

It is plausible that there is some trick that lets one set up the problem to prove Theorem
[LIlusing the classical Petersson formula, but the authors are not aware of one (if the moment
was an even power, this would be easy because of positivity; the fact that the moment is an
odd power in this application makes this more difficult).

The robust solution is to prove a Petersson formula for the newforms only, similarly to
the existence of averaging formulas for primitive Dirichlet characters of a given modulus
(see [IK (3.8)]). Iwaniec, Luo, and Sarnak have proven a Petersson formula for newforms of
square-free level [ILS] Proposition 2.8], but with some coprimality conditions on the level and
the Fourier coefficients of the modular forms, which in our application are crucial to avoid.
When working with 1-level density of zeros of L-functions, it is easy to ensure coprimality
because the log derivative of an L-function is a sum over prime powers. However, the L-
function itself is not so easily treated, because altering a single Euler factor will ruin the
functional equation. For this reason, we have generalized the [ILS] formula to hold with
square-free level and arbitrary Fourier coefficients.

Suppose that N is a positive integer, and let B, (V) denote an orthogonal basis for the
space of weight x cusp forms for I'o(N). For f € B,(N), write f(z) = >~ ay(n)e(nz), and
af(n) = )\f(n)n%l. Let

Ap(m)As(n)
<.fa f>N 7

I(k—1)

where Cx, = W,

(1.10) Ay(m,n)=c, >

feBL(N)

and where

B . Z—Zd:cdy
(f. ghw = / PRREICTOR =
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Since the main interest here is in the level aspect, we often suppress the dependence on the
weight x in the notation. The Petersson formula states

Z S(m,n; C)J (47r\/%>‘

(1.11) An(m,n) = dpepn + 2w " . 1

¢=0 (mod N)
We have

Theorem 1.4. Let N be square-free, and let H(N) denote the set of Hecke-normalized
newforms on U'o(N) of trivial central character. Let

\ As(m)As(n)
(1.12) A% (m,n) = ¢, AT ALY
fegN) (f, Fin

Then with v(L) defined to be the completely multiplicative function satisfying v(p) = p + 1
for p prime, we have

(1.13) Ax(m,n) = Z é Z Z ce(dr)ce(da) Z (ZZ)%

ra=n " Z\LOO dl,dg\f u|(m,L) (u,v)?
v|(n,L)
md1 nd2
Z > Au(am )
ae2(u,v)’ b2e3(u,v)

7(1,{}v))61|(d17 a2 (u, v))

b|(%7(u’v)) 62\(d2,m)

Here cy(d) with d | £ is jointly multiplicative, and cyn(p’) = ¢, where

n - z
(114) Tr = ;CjﬂUj <§>,

and Uj(x) are the Chebyshev polynomials of the second kind.

The constants c¢;,, arise from repeated application of the Hecke multiplicativity relations
and we call them the Chebyshev coefficients. We describe some of their relevant properties
in Section [@ for instance, we shall show ¢;,, > 0, and derive sharp bounds on ¢;,,. Many of
the bounds on the Chebyshev coefficients appearing in Section [0l arose out of necessity for
the proof of Theorem [Tl

In Theorem [T} we give an approximate version of (LI3]) with the additional restriction
¢ <Y, which makes the right hand side a finite sum. For our application to the cubic
moment, we have found the approximate version most suitable.

The method of proof of [ILS] is to explicitly choose a basis By (V) (see [ILS, Proposition
2.6]) that relates the oldforms to the newforms, and thereby deduce an arithmetic formula
for Ay (m,n) in terms of A%, (m/,n')’s, with M | N. An inversion of this formula then gives
their formula for A% (m,n). As mentioned in [ILS], there are many interesting choices of
basis and it could be argued that their choice is ad-hoc. Other authors have also constructed
various bases. Choie and Kohnen |[CK| Proposition 2] use the same basis that we will use
here. Rouymi [R] gave a basis for prime power level and derived a newform Petersson formula
from it. Building on Rouymi, Ng and Blomer and Mili¢evi¢ [BIMil, (3.7)] gave a basis
for arbitrary level, and Ng and five authors have used this basis to give
newform Petersson formulas for arbitrary level (but with restrictive coprimality conditions
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on the level and the Fourier coefficients). It is important for our work that there is no
restriction on m, n appearing in Theorem [[4]

Nelson [Ne] has described a method for proving a Petersson formula for newforms without
explicitly choosing a basis, and gives such a formula when the level N is divisible by the
cube of each prime dividing it.

Our proof takes a different path from [ILS|R]NgBIMilBBDDM] in that we choose our
basis to be eigenfunctions of the Atkin-Lehner operators, which for square-free level is enough
to diagonalize the basis. This choice is natural and leads to many pleasant simplifications.
Our method of proof of Theorem [[L4] most naturally shows

(1.15) Apn(m,n) = Z Z Z ce(dy)ce(dz) Z (;ﬂ;)%

Lv=n" Z\LOO dl,dg ¢ ul(m, L) (u,v)?
v|(n,L)

Z Z AM(&?&U) 526:(% U))

) enl(dr, =2—)

(u'u
bl(ﬁv(u“u ) 62\(d27—m)

We deduce Theorem [[4] from (LIH) in Section @ below.

In this introduction, we have not presented the Petersson formula that is required for the
proof of Theorem [T What we need is a kind of hybrid formula for modular forms of level
rq that in the r-aspect restricts to newforms of level r, and in the g-aspect groups together
all the newforms of level dividing ¢, in accordance with the setup of Theorem [[LII This
formula appears in Section [5l

The newform formula of [ILS Proposition 2.8] has coprimality assumptions of the form
(m,N) =1 and (n, N?) | N, which on the face of it is rather restrictive, however, one may
reduce to this case as follows. Firstly, using that A\¢(d)Af(p) = Af(dp) for any d € N, and p |
N, one may write Ar(m ))\f( ) = Ap(m)Ap(n') where mn = m/n/, and (m’, N) = 1. Secondly,
we have Ay (p*d) = Af(p)?A;(d) = p~*A;(d) (see (BI)), which by repeated applications allows
one to reach the case (n, N?) | N It is not obvious how to use the [ILS] newform formula
to derive our hybrid version presented in Section [l below. The problem is that the above
factorizations of m and n depend on the ambient level, and so summing over different levels
introduces some complications.

1.4. Structure of the paper. Sections PH7 are devoted to proving a number of versions of
the Petersson formula with newforms as well as some estimates for the Chebyshev coefficients.
This part of the paper is self-contained.

In Sections BHIT], we prove the cubic moment bound, that is, Theorem [Tl

2. ATKIN-LEHNER THEORY

2.1. Construction of basis. We briefly review some of the theory developed by Atkin
and Lehner [ALe]. Throughout we assume that the level N is square-free. For a matrix in
GL3(Z), define

az—l—b)

f|(a b)(Z) = (ad — be)"?(cz +d)_“f<cz i)
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Atkin and Lehner showed that

- D EBSLf

LM=N feH: (M

where S, (L; f) is the span of forms fj4,, with ¢ | L, where A, =

/—\

) They call S,(L; f)

the oldclass associated to f. Observe fi4,(z) = ¢*/?f((z), so S, (L7 f) =span{f(¢z): (| L}.
Our goal here is to construct an explicit orthogonal basis of S, (L; f), in the case that N is
square-free.

We turn to the Atkin-Lehner operators W,. Suppose that d | N, N = LM, and let

_(dx oy
(2.1) Wa = (Nz dw) '

where z,y, z, w € Z are chosen so that det(W,) = d (such a choice exists because (d, N/d) =
1, since N is square-free, and the forthcoming properties of Wy are independent of the choices
of x,y,z,w). If d | M and f € H(M) then f is an eigenfunction of Wy (see [ALe, Theorem
3 (iii)]), so suppose now that d | L. Let

10
d
Note that taking z = z = 1 in the definition of W, we have
_ (4
VW, = (0 1) .
Therefore, if f € H:(M) and d | L, then
(2.3) Jwa = fviw, = fiyw, = AP f(dz+y) = JiAq-

This calculation easily shows that S, (L; f) is preserved by all W, with d | L, that each
Wy is an involution, and that the W, commute with each other. Therefore, the group of
transformations of S, (L; f) generated by the Wy is isomorphic to (Z/2Z)*"), where w(n) is
the number of prime divisors of n. Note 2°(*) = 7(L). Furthermore, the W, are Hermitian
with respect to the Petersson inner product (see [ALel Lemma 25]). By some simple character
theory, we can show that S, (L; f) has an explicit orthogonal basis of common eigenfunctions
of the Wj.

We briefly describe a more abstract statement. Let G be a group isomorphic to (Z/27)",
and let ¢ be a character on G, which we denote by ¢ € G. There are 2" such characters. For
each g € G, suppose there exists an involution W, acting on some vector space of functions,

and such that W, W,, = Wy ,,. For each f in the vector space and character ¢ G, define
(2.4) fo=D_o(a)W,f.

geG
It is easy to see that

ngd> = (b(g)ffi)

Therefore, each fy is an eigenfunction of all the W,. Also, the f, are distinct because any
two choices of f, have a different eigenvalue for some W,. This also means that if the W,
are Hermitian with respect to some inner product, then all the f; are orthogonal. In the
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case of S,(L; f), which has dimension 2¢%) = 7(L), there are 2*(1) eigenfunctions f,, so by
dimension counting, the f, form a basis. Finally, we derive a useful formula for (f,, f,):

(25) <f¢>7f¢>: Z ¢(91)¢(92)<Wg1f,wg2f>

91,92€G
= > H992)(Wogt. ) = |G S(9)(Wef. f).
91,92€G geG
Returning to S, (L; f), by [ILS, Lemma 2.4] (which in turn follows closely a proof in [AU]),
we have
)‘f ( ) /2

<f\Wd7f>:<f\Ad7f>_ V( ) <f f>

We endow the set of divisors d | L with the group structure (Z/27)“*) and define characters
on it by ¢(d) = [[,4 ¢(p), where ¢(p) is chosen to be +1 or —1 independently for each prime
divisor of L. In this way, we obtain

1/2
26)  (foto) = 1GIE P Y o) 2D a2 = (s ) T (14 LRAITY

. v(d) or3 v(p)
All of the above inner products are (,)y.

2.2. Dirichlet series of the basis of oldforms. To lend some support to the assertion
that our choice of basis of S, (L; f) given above is natural, here we describe some pleasant
features of the Dirichlet series corresponding to these modular forms. Let Ay, (n) be the
Fourier coefficients of f, and define

(2.7) D(s.fo) =% A1)

nS

n=1

The reader should beware that this is not a character twist of f, because ¢ is not a Dirichlet
character (in fact ¢ is only defined on the divisors of L). We show here that D(s, f,) satisfies
a functional equation similar to that of a level N newform.

By a direct calculation with the Fourier expansion, we have

(2.8) Ar,(m) =Y d(wu!Ap(m/u),
ul(m, L)

Therefore, we have

_ ¢(p)
2.9) Ds, fy) = L(s, /) 1|I (1+ ).
p
Then define the “completed” Dirichlet series
s/2 _ s/2 ¢(p)
(2.10) N*2Ty(s)D(s, fu) = A(s, )L III (1+ =)
p

where

Ty(s) = 7T (S + (%2— 1)/2) r (s + (H2—|— 1)/2)
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is the gamma factor associated to L(s, f) and A(s, f) = M*/?T';(s)L(s, f). This satisfies the
functional equation A(s, f) = €fA(1 — s, f). Meanwhile, the secondary factor satisfies

o6 = P TL (14 200) =TT (2 + ot™=) = o191 - 5.

p|L p|L

Therefore, D(s, f,) satisfies the functional equation
(2.11) N3T(s)D(s, fy) = es¢(L)N T T4(1 = $)D(1 5, f).

3. MANIPULATIONS WITH SUMS OF FOURIER COEFFICIENTS

The goal of this section is to prove ([LIH).
We begin by describing (LI0) for the basis chosen in Section 2l We have

Ar, (m)A
(31) SCREED NP IDY f¢f¢ ff A A1),

LM=N feHz(M)

We therefore need to evaluate the inner sum over ¢, namely

ST
(3.2) T(m, )'_%: (fos fo)n

1 B(p)As ()P !
= D07 2 e T (1SRG

where we have used (2.6). We multiply and divide by [, (1 — M), giving that

v(p)
B ul(t (t)£1/2
T(m7n) - T(L) ZAJ% )\f¢ ﬂZL ’
where as in [ILS], we define
Ar(p)®
(33) prtt) =11 (1-r i)
The formula (2.8)) implies
1
TOmm) = Do Dy 2 2 2
ul/? (m/u o2\ (n /v U(t)ﬁb(t))‘f(t)tl/z
%}? Ap(m/u)o(v)o"As(n/v) o) ,

where we have used that Af(n) is real to remove the complex conjugate symbols. The sum
over ¢ detects if uvt is a square, precisely

S o(w)p(v)(t) = {T(L)’ vt =11,
1)

0, otherwise.



A GENERALIZED CUBIC MOMENT AND THE PETERSSON FORMULA FOR NEWFORMS 11

Since v and v are square-free, and so is ¢, the condition uvt = [J determines ¢ uniquely,
namely

uv u v
t = =

(u,v)2  (u,v) (u,v)

One may compare this with Lemma 2.4 of [ILS]. Therefore, T'(m,n) equals

71 ul/? (m/u)v 12) o (n/v ( :
(3'4) ( )<f f> Z Z >‘ / >‘f( /) I/( uv )

N w|(m,L) v|(n,L)

To check this against [ILS], suppose that (m,n, N) = 1. This means ((m, L), (n,L)) =
(m,n, L) | (m,n, N) =1, so in particular, (u,v) = 1. Hence

1 plwy plwo,
®9)  Tlmm) =gy, 2 Sy MM Z o) V(@A (n/0),
which equals
D, s 2 o)

as in [ILS p.76]. Since f is on I'o(M), we have (f, f)ny =

N1, foar = v(L)(f, are So, if
(m,n, N) - ]., then

(3.6) An(m,n) = ¢, Z Z Af As(n, L)

LA il <f,f>M'

From this we may quickly derive (2.48) of [ILS].
We continue with the calculation of Ay (m,n), without the assumption (m,n, N) = 1.
The formula (3.4]) shows

Avimmy=e > D, 5 <f,f>M

LM=N feH} (M
uv (u“;’z) m v
2. (u,v)ﬁ((uv) )Af<Z>Af<(u, ))Af< )Af<( ,v))'

u|(m,L)
v|(n,L)

Recall that the Hecke relation for a newform of level M with trivial nebentypus is

Af( - > M)

d\mn
(d,M)=
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In our desired application, u and v divide L and (M, L) = 1, so any divisor of u or v is
automatically coprime to M. Using the Hecke relation, we then deduce

(3.7) An(m,n) =cx
ol LMZNfeHz <f fu
uv U((u7v)2
2 o)

u|(m,L)
v|(n,L) bl

1

The tricky part of our analysis of Ax(m,n) is to express ps(L)~' in terms of Fourier

coefficients of f. We have
1 >\f(p)2 -1 A}i(ﬁ)z

3.8 — = 1-— = 1

o s - H0-rg5p) =25

where A%(£) is the completely multiplicative version of Af(n), that is,

0= 11w

e

Using only the weak bound |A¢(p)| < p? + p~? with some 6 < 1/2 shows that the product
and sum in (3.8]) converge absolutely.
Define the Chebyshev coefficients c;,, by

(3.9) Ar(p)" = Z s (1)

where p is coprime to the level of f. Let Ug(x) denote the degree k& Chebyshev polynomial
of the second kind (defined below). Then

n - x
o =3 anli(3)
=0

where the ¢, can be written in various ways using that the U; form a system of orthogonal
polynomials. Here the U; can be defined concisely by the generating function

(1 —2yx +2°)” :ZU]
7=0

For instance, since Uy(x/2) = 2% — 322 + 1, Uy(x/2) = 2* — 1, and Uy(x) = 1, we get
at = Uy(x/2) + 3Us(2/2) + 2Us(2/2).

An alternative formula is U;(cos(0)) = S2ULDY e orthogonality of the U; implies that

sin 0
(3.10) cjm:/ U;(cos 6)(2cos 0)"2 sin® 6.
0

We will develop some properties of the Chebyshev coefficients in Section [6l
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With this notation in hand, we have for f a newform of level M with (¢, M) = 1, that

(3.11) M0 = TTO ends@?) =Y cld)As(d),

prl|e §=0 d)e
where
co(d) = H Cin-
pI||d
p"[|e

Moreover, we have

(3.12) — Z Z ce(di)ce(d2)Ap(di)Af(dz).

Z\LOO d Jdall

Inserting (B12) into ([B.1]), we get
1
Anx(m,n) = c, Z Z ) Z ce(dy)ce(ds) Z 7. f
LM=N {1= " dy,dale feHz (M) M

uv ,u( (uu:,}p )

Af<d1>Af<d2>u%‘L) oo 2 M) )

v|(n,L) bI(2,

Now we can use the Hecke relations one final time (again the divisors are coprime to M), to
give

1
Mntmm) = s 32 3 oy 3 aldedd) 3
LM= Nz|Lo<> dl,d2|e rerg(a) VT IM
uv ,u( (uu;))2 ) mdl nd2
)l A < ))\ ( )
Z (Uﬂ)) 1/( uvz) Z Z d aze%(uvv) b2€2(u U>
ul(m, L) (w7 al (5,55 eal (@, 2 s
ol(n,L) B ) eal o, pptis)

This is precisely the desired formula (LI3]), after a rearrangement.

4. INVERSION

In this section, we show how to deduce ([LI3) from (LI3). We work in greater generality
than what is immediately required, which will be useful in Section Bl Suppose that F' and
G are two arithmetic functions that we write in the form F(m, N), G(m,N) where N is a

positive square-free integer, and m = (my,...,my) is a tuple of integers. We assume there
is a relation of the form
m
4.1 F(m,N) = A G — M
( ) (m> ) L]\;N %;o (CL, mL) (a(a, mL) mL’ )7

where: A is some multiplicative arithmetical function, m; denotes the part of m having
common factors with L, so my | L and (m/my,L) = 1, and « is some integer-valued
multiplicative function having the property that a(p™,...,p"*) | p* for all primes p. Fur-
thermore, @ is shorthand for some tuple (ay,...,as), and the condition a | L means that
a; | L® foralli=1,...,J.
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We can derive that F'(m,1) = G(m,1) for all m, by taking N = 1 in (@I]). The main
topic of this section is to prove

Lemma 4.1. For square-free N we have the inversion formula

(4.2) Gm,N)= 3" M(L)ZA(a,mL)F(a(a,mL)mﬁL,M).

LM=N a|lL>=

Lemma [£1] implies Theorem [[.4], since ({1l encompasses (LIH), as we now explain. The

tuple (my,...mg) in ([@I) takes the form (m,n) in (LI5). The tuple a appearing in (1)
is of the form (¢, dy,dy, u,v,a,b, ey, ey), Where note that all these entries divide L*°. The

arithmetical function A(a, mL) accounts for ( o V(ﬁ)g, T /%u 57 88 well as all the sum-

mation conditions in (LT3, in which (m,n) may be replaced by (mp,ny). Finally, we have
ala, (mp,ng)) = (4 nedr ) and Gz, y, M) = A%(z,y).

a2e?(u,v)’ b2e3(u,w)

Proof. If N =1, then (4.2) is true, by an easy calculation.
Now induct on the number of prime factors of N. We replace N by NP with P a prime
(whence (P, N) = 1), giving

m
F — .
(m, NP) = G(m,NP) E g A(a,mp)G (a,mL)mL,M)
LZ\%#]lVPa\LOO

Since M has fewer prime factors than NP, we can use the induction hypothesis to give

F(m,NP) = G(m,NP) + [Z S Ala,my)

LM=NP a|L>
L#1

S uC) Y A me)F bmc)%,D)].

CD=M blC>

Here we have used that m

(a(a, mL)m—L>C = mc,

which follows from (L, C') = 1. Next we put back L =1 and subtract it off again, giving

F(m,NP)=G(m,NP)— Y u(C)>  A(b,me)F(alb, m(;)— D)
CD=NP b|Coe mc
X T Aam) Ym0 Y Abme)E bmc)%,l))].
LM=NP a|L>® CD=M b|Co° mc

We need to show that the term in square brackets equals F'(m, N P), since we can then solve
for G(m, NP), giving ({L2). We have

Oé(CL, mL)mﬁL
[...]= Z ZAamL ZAbmc bmc)T,D).
CDL=NP al L b|C>®
Using multiplicativity of A and «a, and that (C, L) = 1, we get

L= S w0 Y Ale,men)F (c,mCL)mn;L,D).

CDL=NP cl(LC)y>=
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We can write this as

Z Z A(e,myp/p)F(ale,myp/p) o , D) Z w(C).

m
D|NP ¢|(NP/D)= NP/D CL=NP/D

The inner sum over C' gives D = N P, which simplifies as [...] = F'(m, NP), as desired. O

5. HYBRID FORMULAS

We desire a formula that is intermediate between Ay (m,n) and Ay (m,n), in order to
capture the weights appearing in Theorem [Tl See the discussion surrounding (L4]) for
motivation for this goal.

For square-free AB, define

- B 1 1 )\f(m))\f(n)
(5.1) zﬁAB(wun)——cH;%;BfE;;%D)V@j)pf«j) (f, flap

Note that &A,l(m, n) = A% (m,n). Provided (mn, B) = 1, we have A;(m,C) = As(m) for
m coprime to C, and then by B0) and we get Ay g(m,n) = Ag(m,n). Hence Ay p(m,n)
interpolates between A 4p(m,n) and A% z(m,n), provided (mn, B) = 1.

Because of our application to the cubic moment problem, we are interested in the case

where ¢gN is square-free, and (mn,q) = 1. In ([B1) we substitute N — Ng, and factor
L =LyL, with Ly | N and L, | ¢, giving

Apng(m,n) = ¢, Z %

LN|N

2 m u
(0)* 7 a|(2, 25)
v|(n,LN) b|(7—L, (uvv))

)M (i)
a (uv b (uv)
LNLQZM queHZ*(M (L) py (L) F)m
Lqlq

Here we used that (mn, L,) = 1 to simplify the divisiblity conditions. Next we use (8.12)) on

m, and use the Hecke relation again, giving now
A d d uv ,U( (u?g)z)
MEXTED D) PEME S SPNISMIAND P aLci
Ln|N €|L°° dy ,dalt ul(m,Ly) ~ (u,v)?
v|(n, L)
Yy ey y el
Cr :
m _u « q V(LQ) ( q)<f7 f>&
|( ’(uv))el‘(dl’ ( )) Lq\‘]fEH (L T LynLq

bl(n7(uv11)) ezl(d27b2(u U))
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With A= N/Ly, B=¢q, C = L,, and D = q/L,, we can write the sum over L, | ¢ above as
ANy, q(m',n'), for m" and n' the obvious integers. Therefore, this shows

Ang(m,n) Z Z ( 2 Z ce(dy)co(dz) Z (ZZ)%

Ly|N Z|L°° dy,dal ul(m,Ly) (u,v)?
v|(n,Ly)

Y Y Aruadty me)
N

~, i \a2 (u,v) B3 (u, )

a|(77W)€1|(d17m)

b‘(%7ﬁ) 62‘@2,%)

At this point, we replace the condition Ly | N by LM = N (i.e. rename Ly by just L,
and then call M the complementary divisor). This gives

w1 u“f,’z)
(5.2) Apgy(m,n) Z Z Z co(dy)c(dy) Z %
LM= NZ‘LOO ) d17d2‘€ u|(m,L) (u7 U) V((u,v)2>
v|(n,L)
Z A ( md1 nd2 )
M\ 0262 (u, v)" b2e2(u, v)
) ex|(di, —~ ! 2
’(UU) eritaen, 2(uv))
b|(%’(u1,}v)) e2|(d27m)

Now we fix ¢, and suppress it in the following notation. Set F'(m,n, N) = Ay,(m,n), and

likewise G(m,n,N) = Equ(m, n). Then the relation (5.2) is essentially the same formula
as (LI5), and, more precisely, is encompassed by (41]). By Lemma [A.1] we therefore have
(recall (mn,q) =1, and Ngq is square-free)

(5.3) Ang(mn)= Y é Z 5 3 cldiald) 3 %%

m=n" Z|L°° dl,dzlé ul(m, L)
v|(n,L)

> > AMq(&%f,v) b%Z(d; v>)

al(2 ) enl(dr, o)
v (u, 11)) EQI(d27b2(u u))

—
\_/e
N2

6. FORMULAS AND ESTIMATES WITH CHEBYSHEV COEFFICIENTS

We begin with a combinatorial evaluation of ¢;,. From (8.I0), combined with the formula

Uj(cost) = W, we have

(6.1) Cjn = %/ sin((j + 1)0)(2 cos(6))" 2 sin 6df.
Writing everything in terms of ¥, we get

11 T (0 i0(n—2r)\ [ i(j+2)0 ij6 —ij6 (j+2)
cjm:%(%)Z/ (;(T)e )(UTD0 _ id? _ gm0 4 =il )d@

—Tr

At this point it is clear that ¢;,, = 0 if j # n (mod 2), so assume j = n (mod 2). We also
see that ¢;,, = 0if j > n. For j = n, it is easy to check that ¢, , = 1, since the only values of
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r for which the integral does not vanish are r =0, and r = n. If j <n — 2, then we deduce
that

n n
. o= (ai2) - (1)

which in fact agrees with ¢, ,, too, since (nil) = 0. One may find this sequence of Chebyshev

coefficients in the OEIS [O] which thereby leads to interesting connections. For instance, the
list (where we omit terms with j Z n (mod 2))

€0,0,C1,1,C0,2,C22,C1.3,C33,C0,4,C24,C4.4," " = 17 17 17 17 27 17 27 37 17 57 47 17 5...

is the same as Catalan’s triangle ordered along diagonals in reverse order.
From (62)), we deduce ¢;,, > 0 for all j,n, and we have

" (,7,) n even,
(6.3) Cin = { n/2/
j;o ’ ((n+1)/2)’ n odd,

since the sum telescopes. Let § € {0,1}, 0 =n (mod 2). Note that Stirling’s formula gives

Lemma 6.1. Let ¢,(d) be as defined in Section[3, and suppose v > 0. Then

S ety < [T+

dle p"l¢

Remark. For v = 0, this bound is slightly worse than that implied by (6.3]), in view of
©.4).
Proof. We have
(6.5) > cld)d =T D pcim.
dle p"|[€ 7=0

so it suffices to show for z > 0 that
(6.6) Zc] W < (7t 4 3)"

From (6.2), we obviously have that

n
2

From this, we shall deduce (6.0]), as we presently explain. On the one hand, we have from

(©7) that
n n
(6.8) Zc]n:c] <z"+ <n_1):)§"_2+---—|— (H__M)Ié,
2

7=0
and on the other hand, we have

(6.9) (:c_1+:c)":x"+< " )x"‘2+-~-+(L)x‘w(Mn_l)x6_2+-~-+x_".

n—1
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In words, the positive powers of x appearing in (69) precisely match the upper bound on
G.3). [
For later use, we require an estimate for the following expression:

(6.10) S(LY) =) V“; O c(dyd'/?).

2
o> (0) dj¢

Lemma 6.2. We have
(6.11) S(L,Y) <. Yer(L).

Proof. Without the restriction ¢ <Y, the estimate in Lemma would barely fail to show
the sum converges, since

p(p~V/2 + pl/?)?

(1+p)?
However, using Rankin’s trick and Lemma [6.1] we obtain

S(L,Y) < Z (%)E =Y* H(1 —p )t < Ce)Yer(L),

L| Lo p|L

=1

where we have used the following:

(6.12) [To-ro < (II2)(TIa-r7) <70)CE),

plL p€|zL2 p:g|<L2
where C(e) = [ co(1 —p7%) 7" O
We will additionally need the following bound.
Lemma 6.3. Let ¢;(d) be as defined in Section[3. Then

Zdw ce(d) < F% _ -05849...

(6.13) TR

Proof. By Lemma [6.1] we have

(614 e D (2w
e (p+1)

Let 0
x
fo(x) = oy
where z > 2and 0 <6 < 1. If § = lolg(g’éz) is such that fs(x) is decreasing for x > 2, and
f5(2) <1, then this will show that the product on the right hand side of (€.14)) is < 1, which
suffices to prove the desired bound. It is easy to check with basic calculus that the desired
properties hold for fs(x). O

Remark. The exponent occurring in (6.13) is mainly controlled by the powers of 2 dividing
¢ If £ = 2", and n is even, then in fact 3, c/(d) = (n72) = 2" /n'/2 while v(f) = 3", so

if £ = 2" then (G.I3)) is sharp up to the factor n=/2 = (log, ¢)~'/2. If ¢ has no small prime
divisors then the exponent can be improved.



A GENERALIZED CUBIC MOMENT AND THE PETERSSON FORMULA FOR NEWFORMS 19

Corollary 6.4. Let vy = % — % = 0.0849625 ..., and suppose € > 0 is small. Then

(6.15) Y =5 ald)? < YTTOrER(L),

2
oL (€) dj¢
Y

Proof. By Lemma [6.3] we have

f1+8

gl—i—a

v(0)? (D celd))? < =2

dje
Then, we have by Rankin’s trick and (6.12), that
Z €—2~/o+6 < Y—2~/o+2€ Z ¢ — Y—2’yo+2e H(l . p—€>—1 <. Y—2ﬁ/o+2€7_(L)'

oL oL p|L
>Y

7. APPROXIMATE PETERSSON FORMULAS

Our main Petersson formula, (LI3]), has a technical problem arising from the fact that
the sum over ¢ | L* is not a finite sum. Iwaniec, Luo, and Sarnak encountered a similar
difficulty in [ILS]. The idea is to truncate the sum at some large parameter Y, and estimate
the tail trivially.

To this end, we begin with some simple bounds. Throughout this section we assume the
weight k is fixed, and do not display any k-dependence in the error terms. First, we claim
the crude bound

(7.1) |An(m, n)| <, (m, N)Y2(n, N)Y2r(m)m5(n),
for fixed weight k.

Proof. We use ([B.]). Using (2.8]) and the Deligne bound, we have

A, (m)l < Y w!Pr(m/u) < (m, L) *r5(m) < (m, N)*r3(m).
ul(m, L)

Therefore, by the fact that Ay, (1) = Ay(1) =1, we have
[An(m,n)| < (m, N)Y?(n, N)2r5(m)ms(n) An (1, 1).

One can then apply the Kloosterman sum formula for Ay(1,1) to show (e.g. see [ILS,
Corollary 2.3])

An(1,1) =1+ o(j@ﬁjﬁ) < 1.

Now we state an approximate version of Theorem [I.4]
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Theorem 7.1. Let v, = 28/2) _ 5 =0.0849625. .., and suppose € > 0 is small. We have

log 2
(12) Ay(mn)= Y~ Z 5 > aldald) 3 w MG
. N ) 74 1 l 2 (u,'u) I/( uvz)
Lv=n" €|L°° d1 (ol u|(m,L) (u,v)
<y ol(n,L)
3 3 AM< md; nd ) + O((mnNY)*NY —20).
a?e?(u,v) b2ed(u,v)

al( ) el )
n v
v

bl ( (@,0) ) ea|(da,

' p2 (u,'u) )

Proof. Tt suffices to bound the tail of the sum over ¢, namely the terms with ¢ > Y. Using
(1)), we have that the difference between A% (m,n) and the main term sum on the right
hand side of (IEI) is

uv 1
< Z Z Z co(dy)ce(ds) Z (u,v) V(-2

Lv=n" €|L°° d,dae ul(m, L) (u,v)?
>y vl(n,L)
md1 1/2 ndg 1/2
YR S VA W S M A
Z Z ( a%e?(u,v) b2e3(u,v) Ts(md )7 (nds)

E’ %v y) el(dy, oo s)
b‘(g ? (u,v) ) 62‘(d2

bz(u,v))

We use the weak bound (M, m') < M (for any integer m’), and use 73(md;) < (mf)¢, and
similarly for 73(nds), and trivially estimate the sums over u, v, a, b, €1, €5 to give that (Z.3))
is

gl—i—a
(mn NZ Z V(W(Z co(d))?
v’ Z|L°° dje
oY
The desired bound then follows from Corollary [6.4] U

The same method of proof applies verbatim to A Ng(m,n):

Theorem 7.2. Suppose (mnN,q) =1. We have

(7.4) ﬁNﬂ(m,n): Z é Z Z co(dy)ce(dy) Z uv u ;

v=n" €|L°° d1 Jda|l ul(m ) wv (u,v)2
<y \ L)
md1
Ao ) NY)ENY ~20).
Z Z M\ g2e2(u, v)" b2e2(u, v) ((mnNY) )

In our desired application, we shall take Y to be a very large power of the level, in which
case the error term is very small. For this reason, we made no attempt to optimize the error
term.

8. INITIAL STRUCTURAL STEPS

8.1. Invariants of the twisted L-functions. We begin by calculating the root number and
conductor of L(s, f ® x,), which is apparently somewhat difficult to locate in the literature.
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Our proof of Theorem [[LT] does not require any formula for the root number of the twisted
L-function, but it is helpful for interpreting Corollary L2l

More generally, suppose that ¢ is a weight x newform of level N with trivial central
character. Also recall the definition of the Atkin-Lehner operators (2ZI). Then g is an
eigenform for the W,, and we write its eigenvalue as g|w, = 74(g)g. Then the sign of the
functional equation for A(s, g) is given by i"ny(g). Since the Atkin-Lehner operators satisfy
9lwa, lwa, = glwy, for (di,ds) = 1, it suffices to consider the eigenvalues of Atkin-Lehner
operartors 7¢(g) where @ is a prime power dividing the conductor of g.

Let x, be a primitive quadratic Dirichlet character of conductor ¢ = ¢,¢. with ¢, odd and

n

¢ a power of 2. Explicitly, x,(n) = (q%) Xq.(n) where (q—) is the Jacobi symbol and x,, (n)

is either 1, x4, or one of the two primitive quadratic characters of conductor 8. Recall we set
¢ = rad(q) the largest square-free divisor of ¢q. Let f be a newform of square-free level r¢/,
where (r,q) = 1 and ¢’ | g. We also take ¢" | ¢ to be such that ¢” | ¢ and (¢/q",q') = 1. Let
us write f@x, = (f®Xqg7) ® Xq/q7- We have by [ALi, Theorem 4.1] and e.g. [IKl, Proposition
14.20] that f ® x4 and f ® x, are newforms of conductors r¢”* and rq?, respectively.

We have by [De, (5.5.1)] that for each p | r that

Mo (f @ Xg) = Xq (P)0p(f)

where in Deligne’s notation a(V) = 1 by our square-free hypothesis on r and dim(V') = 2.
We found the exposition by Pacetti [Pa] particularly helpful for these calculations. For each
p | ¢" we write P for the power of p dividing ¢”. Now we have

nez(f @ xq) = xp(=1),

by Atkin-Li Theorem 4.1 [ALi], and where we have written x4 = [, xp. Therefore we
have shown that

Mrg2(f @ Xq) = 0 (F)Xq (1) Xqr (—1)-
Now by Section 3 of Li or Proposition 14.20 of we have since /4 is real that

N2 (f @ Xg) = Xq/q”(_rq//2)77rq”2(f ® Xq)
= Xq/q”(_rq/Q)Xq” (T>Xq”(_1)nr(f>
= Xq(=7)0-(f)-

Note 7, (f) is the eigenvalue of the Atkin-Lehner operator W, on f. In our case, f is of trivial
central character and square-free conductor r¢’. In this case one can compute for each p | r¢’
that

(8.1) m(f) = —p"* A (p),

for which see the proof of Theorem 2.1 of [ALi.
In summary, if we let €, denote the root number of a newform g, this shows

€oxg =1 Xg(=T)u(r)r' A (r)

8.2
(8:2) =Xa(—)(@)q" A (@ ey,

where recall Af(n) is normalized to be bounded by the divisor function of n.
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Now let
1

“v(q/d)pr(@/d) S Fre

where py was defined in (8.3), and wy in particular satisfies

(8.3) Wy =c

wy = (rq)~ W,

since by [ILS, Lemma 2.5] [HL] [Iwl] we have
(s Frg = (rg) o0,
Note that with these weights we have
D wdr(ms(n) = A, g(m, ).

feH(rd)
q'lq

where recall an(m, n) was defined in (G.)).

(8.4)

8.2. Approximate functional equation. Recall that our goal is the bound ([L1I), which
we write as

(8.5) M(riq):= Y wiL(1/2,f ® x,)* < (ar)"

feHE(rq)
q'|q

We have for Re(s) > 1 that L(s, f ® x,) = 2@1 Xa(mAr(m) angd

nS

s f oyt =3 3 A = Xq ZAJ‘(%)

m>1n>1 m>1n>1 d|(m,n)
(dygr)=
5 Y 3 - X S TR
7 .
(d,qr)=1 m>1n>1 (d,gr)=1n>1

Then we have by standard approximate functional equations that

L(1/2, f @ xg) = (L+ €poy,) Y )\f(:;)ligq(n)‘/l <q7\%) |

and

L(1/2, f ® x)* = Z> Xalm )Vz(dQTZ),

(dgry=1m rd

where V) and V5, are certain bounded smooth functions of rapid decay (see (8I9), (8:20)
below for formulas). Therefore,

(8.6)
r,q) = w1+ e A (m)7(m) Ay (n)xq(mn) n &m
M(r,q) 2f€;:(m 1+ f®xq)d’rgn:>1 NG Vi (q\/;) Vs ( poe ) .

r|R|rq (d,qr);l
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In ([8G), we may replace (1 + €fgy,) by 2, because if €;g,, = —1, then the other factor
L(1/2, f ® x,)* vanishes anyway. Using this and (84]), we derive

87)  M(rq) =4 Z ZZ anmn <qf)vz<d2 )Arq(m n).

(dyqr)= n>1 m>1

The contribution from m > 7"1+5c12+‘3d_2 or n > r'/2*e¢l*+e is very small by trivial bounds.

8.3. Exercises with arithmetical functions. Equation ([8.7) gives

(88) 7" q =4 Z qu _'_ O((qr)_A>v

(d,gr)=

where

5) = Z amﬁnzr,d(m’n)a

with o
(3.9) o = T(m)ﬁb(m)%(i; ) = X(Q(g)vl(#)'

Now we work in more generality than what is required.

Proposition 8.1. Let o and [ be two sequences of complex numbers of rapid decay, and let
Y be some large power of qr. Then

(8.10) Byl B) = Z Z 7 2 cldi)er(ds) Z(%%

LR=r Z\Lw d1 Jdale (u,v)?
<Y v|L

> ) B+ O(llawmms || Banfl|1 (rg) '),

al u"fv) e1|dq

by c2l
where

d d
(8.11) ZZQ e By 2 ARq< ! “ m, — v n)
m>1 TL>1 (61 Ta(u, U)) (62 b( U)) 61 (u7 ael(“? U)) 62 (/U7 b€2 (u7 /U))

Proof. Using ((C4]), and pulling the sums over m and n to the inside, we obtain

wu(L) uv M(%)
Br,q(auﬁ> = Z L Z Z CZ dl CZ d2 Z (uﬂ))ﬁ

LR=r e\Lw d1 Jda|t (u,v)?
<y v|L
md1 ndg
> 2 > bl o i
o a’ei(u,v)’ b*e3(u, v)

a‘(Tu) e1]|d1 m=0 (mod auﬁ)

b‘ v 52‘ a(u v)

(u,v) n=0 (mod bv—2—

(62’b(u,v))

+0 ( Z Z ‘Ozmme‘ ‘57”7:6‘ (Tq)1+€Y_270+5) ’

m>1 n>1
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where we have used the following elementary observations: we have
al™
u

{u|m &m=0 (mod au)

and for any integers a, b, x we have axr = 0 (mod b) if and only if x =0 (mod ﬁ) so that

m m u

— =0 d & — =0 d
a?(u,v) (mod 1) au a(u,v) (mod 1)
ey (mod #)@mEO (mod au#).
au (o1, Zouay) (€1, Zuy)
We now make the change of variables
€1 €2
m = aU————<m N+ bv——"—"—n,
(e1, Zray) (€2, gury)
which gives the desired formula. O

Continuing with our more general set-up, let v, s, 01, 02 be positive integers that divide
L, and set

(8.12) o eb1ds = Z yymBranDrg(01m, dam).

m,n>1

In our application of interest, we have

(8.13) "= au#, Yo = bu 62U :
(€1 2w (€2, 5a.07)
and
dy (4 do v
14 H=—— §o— 2~
(8.14) " e (u,ae (u,v)) 27 ey (v, bes(u, v))

We now use the o and [ specific to our situation. In anticipation of some future ma-
neuvers, we use a Hecke relation on the divisor function implicit in «, namely 7(ym) =
> ntymy T(Y/B)T(m/R)p(h).  This gives (for an arbitrary function f such that the sums
converge absolutely)

o 7(ym)xq(ym) , (d*ym
> amflm) = 3 =8 V2< q% )f(m)
~ xq() T% Xq(m d*yhm .
LA i (),

With this, and by inserting the definition of £, we have

(8.15) / _ Xq(7172) Z T(%)M(%)Xq(%)lg,,
o \/W Y3l \/% ’
where
Xq(mn)7 2n d*yiysm
(8.16) B’ = Z g n V (qﬁ) V2<T)AR¢§(51’737”, 5271).

m,n>1



A GENERALIZED CUBIC MOMENT AND THE PETERSSON FORMULA FOR NEWFORMS 25

Applying the Petersson formula (ILTT), we obtain
B’ =D" +2m7i7"S,

where
1" Xq (mn)T(m) Yan d27173m
1 D' = AL i
(8 7) 5 Vg%;ézn \/ﬁ ‘/1 q\/; ‘/2( q2,r, )7
and
Xq(mn)T(m)  (yan Pyysm
.18) S = i \%
( ) mzn; . vmn ! q\/r 2( q*r )
S(Am, Bn;c) 47/ ABmn
X Z i c J”_1< c )’
¢=0(mod ¢R)
with

A:51’73, B:52

According to this, we write B = D’ + B, and similarly, B = D + Bs. It may be helpful to
record that ¢ =0 (mod ¢R), that (¢R, L) = 1, and that AB|L>, so that (AB,qR) = 1.
The main technical result proved in the rest of the paper is the following

Proposition 8.2. With a and 8 as above, we have

AB 3/t -
VAB | Ty
VR 4R

From Proposition B2, we deduce bounds on By, then Bs. We have

5<<(

1 1 /00 3/4 NI 3/4 €
st<< Z ( 10273 n 71"/2 )(qr)a<<< 102 n 7;/2 ) (qr) .
Ve 2 VN VR ¢/ R VR @R\

Therefore, we get the following bound on Bgs:

Bs < (qr)° Z Z Z co(dy)ce(dy)

LR=r e\Loo dy,da |0
<y
U (aw 5152 r3/4 1
2 T Z > (U5t gen) =
u|L (u,v)? a|(u 5 e1|d1
v|L bl s ez\dz
Note that .,
51 . dl U (61, M) . dl
v el (w,aei(u,v))  auey,  e2a(u,v)’

and so by symmetry
02 do

Y2 30(u,v)’
and thus
((5152)1/2 o (d1d2)1/2
Y172 €1€2ab(u> U)'
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We also use ( . With these observations, we have

( 5152 7“3/4) 1 < (qr)® ((d1d2)1/2+ r3/4 )
V2R e (w,v) N RY2 ‘R

’Yl’Y

MT

al e1|dr
(u v)

d:
bl (u v) 62| 2

The inner sum over v and v gives a divisor bound, so now we get

(d1d2)1/2 ,,,3/4
Bs < (qr)° Z Z Z co(dr)ee(da) ( R1/2 + q1/2R)'
LR=r e|L°° d1 ,da e
<y

By Lemma [6.3] we bound the second part of this sum by

3/4
() m 2 T o X aldald)
LR z)g/@ d1 Jdall

1/2 Z Z el < q_1/2+5r_1/4+8.

LR= Z\LOO
<y

Recalling the definition (G.I0) and using Lemma [6.2 we have

. S(L,Y) —1/4 —1/2 cl—1/2 | —1/4 —1/2
Bs < (qr) <L;TW+T q ) < (qr)°(r +r ).

Finally, we have from (838]) that
M(r,q) = Mo(r,q) + O((ar) (r/4q 712 4 771/2),

where My(r, q) is the contribution to M(r,q) from the diagonal term D. It is easy to see
that Mo(r, q) < (rq)®, following the proof of the bounds on Bg.
We summarize this discussion with

Corollary 8.3. Proposition[8.3 implies Theorem [11.

This is appealing because it lets us reduce the number of variables to consider from this
point onward.

8.4. Diagonal terms. In this section, we evaluate My(r, ¢) which along with Proposition

leads to (LH).
The functions V; and V5, are given explicitly by

(8.19) Vity) = 5 /(2) Wi(us)y™ dus,
where
(8.20) Wi (u) = (2@%%, Wa(u) = (M‘M%-

Then recalling (88), (810), (8I5), and (8I7) we have that

MO(T,Q) :/ / Wl Ul)WQ(Ug)(q 7") +u2C(1+2U2)C(1+U1+u2) quy(ul,u2)4dUIdu2

(2mi)?
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where
wu(L)
Frq, Ul,uz Z L Z 2 Z Cz dl Cé d2
LR=r |L<><>z< dy,dalt
o) e TG r()x ()

2 o) Z 2 Tt e 2

ulL u,v a| o eld N 72 Y3l 73

v|L bl ((:1}:) e2]dz

—1-2u
[ (1 —p ?) Z Xq(mn)7(m)
2 1/24u29y1/24uy’

C(1 4+ uy + ug) oL [2Huzpl/2tu
and where recall (8I3) and (8I4) for the definitions of i, 79, d1, 09, which depend on
a, b> u,v, ey, €, dla d2-

Our plan is to shift the contours past the poles. We claim F, ,y (uq, u2) is holomorphic in
the region Re(u;) = 0; > —1/2, for i = 1,2, and satisfies the bound

(821) |Fr,q,Y(u17 U2)| < (qr)a'
Proof. By a simple argument with Euler factors, it is not hard to see that we have the bound
_ Xq(mn)7(m) .
(8.22) C(1 4w + ug) 25 25 m1q/2+u2n1/2+u1 < (ar)%,
1Y3m=02n

and that the left hand side of ([8.22)), and hence £, ,y, is holomorphic in the desired region.
Using divisor-type bounds on the inner sums, we have

| By gy (U1, uz)| < (qr)° Z Z Z co(dy)ci(d).

LR=r e\Loo dl,dQ\z
<Yy

By Lemma [6.3] we have

Z ZC@dlcng <<L€

Z|L°° dl,dg\f
<Y

and hence ([B2I)) follows. O

The proof given above, combined with Corollary 6.4] shows that
FT»‘LY - Yhm Frquy + O((q/r)aY_2’YO+2E)’
—00

so for the rest of the calculation of My(r, ¢) we take Y = oo, and define F, ; = limy _,o F} ;v

Rather than attempting to obtain the strongest error term, we take the easiest path that
gives some power saving. We begin by taking o1 = 1/2 + ¢, and 03 = 1/2. Next we shift uy
to the line o9 = —1/2, crossing a double pole at uy = 0 only. On the new line, we have

/ / Wi (1 )W (u2) (¢%r) " 72 (1 + uy + 1) ¢ (1 + 2uz)

F o (uy, ug)||duydus| < (Tq2)_1/4+€_
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Some thought shows that
(8.23) ResuFOWg(ug)(qzr)“zC(l +uy + U2)2<(1 + 2u9) F) 4 (ug, uz)
= Frq(u1,0)Pr(log ¢*r)C?(1 4 uy) + ¢¢'(1 + u1)C(1 + 1) Fy g(us, 0)
+ (1 + ul)F}Z’l)(ul, 0),

where ¢, ¢ are constants and P; is a degree 1 polynomial.

The residue is now a single integral over uy, and we shift this contour to oy = —1/2 4 «.
The new integral is bounded by (¢%r)~"/**¢, again. The residue at u; = 0 takes the form
(8.24) Req:= Y Pyllogg’r)F579(0,0),

0<i<2
0<5<1

where P, ; is a polynomial of degree <i + j.
Gathering this discussion together, we have shown

Mo(r,q) = Rrg + O((¢r)"V/*F).
It would be better to study the main terms in the style of [CFKRS| using shifts, which for

the sake of brevity we leave for another occasion.

8.5. Dyadic subdivisions. We return to estimating S defined by (8I8). Next, we open
the divisor function 7(m) = >_ 1 and apply a dyadic partition of unity to the sums
over ny,Ng,n = ng, and c. This gives

1
S = SNy NoNs.c + O((qr)™19),
N1,J;,N3,C (N1 NoN3)t/2C s

where Ny, Ny, N3, C' run over dyadic numbers and where

(825> 8N1,N27N37C = Z wC(C) Z Xq(n1n2n3)
¢=0(mod ¢R) ni,na,n3>1
47'('\/ ABn1n2n3

C

S(An1n2, Bn37 C)Jn_l (

>wN1,N2,N3 (nh na, n3)-

Here the weight functions we(z) and wy, n, Ny (21, T2, 23) satisty

(9) —j (41,52,33) —j1,..—j2,.—7J3
We (I) <z 7, wN17N2,N3(x1’x2’x3) LT,

and are supported on x < C, z; < N;, i = 1,2, 3.
By the Weil bound, and using J,,_;(z) < x, the contribution to S from ¢ > C'is

(gr)° (WBM%MVW VABN; N, Ns

< NNy Ny =
VN NoN;C C 1t

qR Cl/2qR (qr) N

This is satisfactory for Proposition 82 for C' > %72}?73)2. Thus we may restrict the variables
by

N+ No N )2 2p\ e 7“1/2 1+e
(8.26) M«C«LLLQ NN, < 27 : M<@—Lf

¢*R d®v173 Yo
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Let us also write (825)) as

(827) SN1,N27N37C = Z wC(C)Sg\H,NQ,N(;,C'

¢=0(mod ¢R)
8.6. Poisson summation. Let [c,¢] = lem(c, ¢). We have

(828) ],V1,N2,N3,C = Z GA,B(mlam2>m3;C)K(mlam2am3;c)>

mi,ma,m3€”Z

where
1
(8:29) Gap(ma, mg,msz;c) = 3 Z Xq(T17223)
(¢, q]
z1,22,23 (mod [c,q])
S(A$1$2’ Bl’g; C)(E(xlml -+ oMo + l’gmg)’
¢, q]
and

J (471’ ABt1t2t3> (—mltl — m2t2 _ mt3>
r—1 e
¢ [c,q]
WN1,N2,N3 (tla ta, t3)dt1dt2dt3.

(8.30) K(ml,mg,mg,;c):/

R3

When A = B = 1 and ¢ is odd and square-free, this is precisely as in [CI] (though the reader
should be aware of our slightly different normalization of G by [c,q] ™), so this appears at
first glance to be a fairly minor generalization of their work, however the calculations become
rather intricate.

9. ARITHMETIC PART

Let (e1,€9,€3) € {£1}3, 0 = 1,2,4, or 8, and write ¢, for the even part of q. Let
(9.1)

Z Z cqG a,B(M1, Mg, M3; €)eAp[e,q /c2 (—M1mams)

(€1,€2,€3)
Z&Rq (8138278.?))84 |m1|51|m2|52|m3|53(

€im; >1 ¢=0 (mod Rq) Rq) !

1=1,2,3 (¢,qe)=0
One of the key ingredients of the Conrey-Iwaniec method (when A = B =1 and ¢ is odd)
is that the additive character e4pic g3/c2(—mimams) nicely combines with G(my, ma, ms;c),
allowing for an efficient decomposition into multiplicative characters.

To avoid over-burdening the already burdened notation we only give proofs in the case
(€1, €, €3) = (1,1,1) and denote this case simply Zs g ,, the other cases being treated similarly.
Note that we have (AB) < (qr)t for some fixed but possibly large L > 0 (see Proposition
BI) so that (AB)® < (qr).

The main goal of this section is the following proposition.
Proposition 9.1. For each choice of (€1,¢€2,€3) and & there is a decomposition Zsgr, =
Z(ge}z’z2’e3)(sl, So,83,84) = Zo + Z', where Zy and Z' have the following properties. Here Zy is
analytic in Re(s;)) > 1+ o fori=1,2,3,4, 0 > 0 and in this region it satisfies the bound

(qr)°

2 Zy Loe it
(9.2) 0 <o
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The function Z' is analytic for Re(s;) > 5+0 fori=1,2,3,4, any o > 0, and in this region
satisfies the bound

4
(9.3) |Z'| Ko ¢ (AB)(qr)e T (1 + [s;1)/4Fe.
7j=1

Moreover, if s; =1/2+ec+i(y; +1t) for j =1,2,3, sy =1/24+c+i(ys — t), and y; < (qr)°
for 7 =1,2,3,4, then we have

(9.4)
/ 1Z'(1/2 4+ +i(p +1),1/2+ e+ i(ys +1),1/2 4+ +i(ys +1),1/2 + &+ i(yy — t))|dt
lt|<T

< @PP(AB)YPT (qrT)e.

We begin by reducing the evaluation of G4 p into cases. First, write ¢ = c¢jco with
co|(AB)>®, and (¢1, AB) = 1. As r = RL is square-free and (r,¢q) = 1 we have (¢R, AB) =1,
hence (¢R,cy) = 1. By a calculation with the Chinese remainder theorem, we have

(95) GA7B(m1, Mo, M3, 0102) = Xq(AB)GLl(ml, ma, ABCng; Cl)

3
Ga,p(mi,ma, [c1,q] ms; ca),

where in the definition of G4 g(mi, ma, ms;c2) for ¢ | (AB)> we implicitly take ¢ = 1.
Write ¢ = ¢,q. where ¢, is odd and ¢. € {1,4,8}. We further decompose ¢; by ¢; = ¢,c,
where ¢, is odd and ¢, is a power of 2. Another short calculation with the Chinese remainder
theorem shows

3
(9.6) Gra(ly, o, U3; coce) = Gra(lr, la, [co, Ge) €235 ¢0)Gra(lr, ba, Colz; Co).

Next we evaluate the three types of G4 p sums in a form most relevant for our further
calculations. The case with modulus ¢, was derived by [CI, §10]. Following the notation
found in [CI], write

Co = GoSo-

Lemma 9.2 (Conrey and Iwaniec). We have for q,, s, € N with (q,,2) = 1 that

_ 1
(9.7) coqoe<m> G1,1(a1, ag, a3;C,) = Z
Co ©(Ds)
DlDzhk:qo
h:(qthsO)
k=(a1a2a3,q0)
(hya1a2)=1
Z 901D 1k (a102a3)0(8,) Ry (a1) Ry (a2) Ri(a3),
¥ (mod D2)

where R(n) = S(n,0;k) is the Ramanujan sum, and g is some function satisfying

(9.8) e Ry 2

and where in addition we must have (ag, s,) = 1, otherwise G vanishes. In case 1 is principal,
then |9, Dy | < D3

3/2+€

Conrey and Iwaniec in fact give a more precise formula that we describe within the proof.
Next we evaluate the case with modulus ¢;|(AB)>
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Lemma 9.3. Suppose c3|(AB)®. Suppose that aiasaz # 0 and write a; = wv; where
(u;, AB) = 1 and v;|(AB)>®. Then

—@10a20a3

(9.9) cze(m)GA,B(al, s, az; Ca) = 0((A, 2)|01)8((A, c2)|v2)3((B, ) |v3)
1

x Z Z —) Z %777(U1U2u3),

o
co coAB d D
9192 e2) Dl s ay2(ea.B) 7 (mod )

_ v1
N=(a ) Taren)

U C:
92:=((a.25) ar(Aeg))
WETE Yy = Yor vo,91,92,¢9,4,B,D,n 15 some function satisfying the bound

(91()) |701,v27917927027A,B,D,77| < (Av 62)(37 C2)D1/2'
In case n is principal then with A = (A, c2)A" and B = (B, c3)B’, we have
[ (@B A8
(911) f < (q,,,)s(A’ 02)(37 02) : A/é/ ’
Again the point is that we get a short linear combination of multiplicative functions.
Finally, we consider the case of c.. For this, we have

Lemma 9.4. Suppose c. is a power of 2. Suppose ajasaz # 0 and write each a; = e; f; where
e; 1s a power of 2, and f; is odd. Then

—Q1a920a3 ) . 1
(9-12) QeCee(m)Gl,l(ah@%a& Ce) = Z M Z QXX(flfzf?))a
Al64 X (mod A)

where gy = Ge1 eaes,qe,cex,A 15 bounded by an absolute constant.

As in the previous two cases, we have a much more precise formula for G;;, which we
shall describe within the proof.

Proof of LemmalZ.4. First we note that our Gy is scaled differently from G defined by [CI],
precisely G11(a1, a9, a3;¢,) = ¢;3G(ay,az,as;¢,), as in [CI, (8.2)]. In the notation of [CI],
make the definitions ¢, = ¢o50, b = (o, 50), k = (a102a3,¢,), D = {%. The sum G ; vanishes

unless (h,ajas) = 1 and (s, a3) = 1, in which case by |CI, Lemma 10.2], we have

a1a2a3> hxkp(—1)
CO Coq0¢(k)
We do not need the exact formula for H, but rather the fact that it essentially depends on

the variables as a block, and the decomposition into character sums. Specifically, Conrey
and Iwaniec [CI, (11.7), (11.9)] showed

(9.13)  Gii(ay,as,as;c,) = e( Ry(a1)Ry(az)Ri(as) H (s,hkajasag; D).

(9.14) H(w; D) = Z 1(D1)xp, (—1)H*(Dyw; Dy),
and

*(w; _ ! (1 w
(9.15) H (w7D2>—¢(D2)W§DZ) (D)g(xps )t (w).

The crucial fact about g(xp,,?) is that
(916) |g(XD2> w)| < D%+E>
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which requires the Riemann Hypothesis for varieties, i.e., Deligne’s bound.

From here it is a matter of bookkeeping to derive ([@0.7]).

In case 1) = 1y is the principal character, then |g(xp,,%0)| < d(D2) (the divisor function)
and 7(1g) = u(Ds). Indeed, one may show that if 1) = 1) is the principal character modulo
an odd prime p, then g(x,, ¢o) =2ifp =1 (mod 4), and = 0if p = 3 (mod 4). Furthermore,
9(Xg, Yo) is multiplicative in ¢ O

Proof of Lemma[9.3. We will evaluate G 4 g in precise terms. We will not use the assumption
arasaz = 0 until indicated later in the proof. Since ¢3|(AB)> and (¢, AB) = 1, the quadratic
character is not present in the sum, and specifically we have

Z Z e(AZL’lLUQﬂ‘i‘ BZL’gU‘i‘LElCLl + Zoao +x3a3>
Cy ‘

Ga,plar, a2, a3;c2) =

u (mod ¢2) x1,z2,23 (mod c2)

Summing over z;, we detect the congruence Azst = —a; (mod ¢y), while the sum over x3
detects Bu = —a3 (mod c¢g). Therefore,

) 1 * ToUo
GA,B(a1>a2aa37C2) = C—2 Z ) Z 6(0—2)-
Bu=—a3 (mod c2) Azou=—a1 (mod c3)
Note that Bu = —ag (mod ¢3) and Azyu = —a; (mod ¢y) are solvable if and only if
(9.17) (B, co) = (as, ca), and (A, c9)|ay.

By symmetry, we expect that in addition that we will require (A, ¢3)|as, and indeed we will
recover this condition later in the analysis. From now on, we assume the conditions (Q.17)
hold, otherwise the sum is 0.

Next we make the definitions

(9.18) A= (A c)A, B =(B,»)B, c2 = (B, c2)dh, az = (as, co)as.
Now the congruence Bu = —az (mod ¢y) is equivalent to u = —B’az (mod c). Next write
=_—A 1 A“Z U+ AC’QQ) (A, c9). Inserting this into the exponential sum,
we obtam

1 * az(—A’ aayut (ACQ_)t)
G ’ ’ : — ( ,C2 ,C2 )
A,B(al a2, ds 02) g E e o

C
2 u (mod ¢2) t (mod (A,c2))
u=—DB"a3 (mod c})

The sum over t vanishes unless (A, ¢y)|ag, in which case we obtain

A * A/ alc [li
Gaplar, a, az;¢2) = e Z 6( Aczz) e )
Co
u (mod c2) (A,c2)

u=—DB'a3 (mod c})

To proceed further, we make some additional definitions, namely

o aq Co o . o a9 Co
ne <(Aac2)’ (A7 02)>7 e gl(A,C2)a17 2= <(A7 02)7 gl(A7 02)>’

Co
(A> 02)9192'

ag = 92(147 02)6727 0/2/ =

'This corrects a claimed formula for g(xq,0) of [CI, p.1212].
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Thus (ay, m) =1, and (A'a1a3,cy) = 1, and with this notation the formula becomes

(4, ) . iy o
Gaplar,az, a3;¢c2) = . E \—w )
2 u (mod c2) 2
u=—DB’a3 (mod c})

The tricky part in the analysis is that there is no apparent divisibility relationship between
¢y = ﬁ and ¢ = (A,c;%’ and so it is necessary to proceed by cases. Although it is not
globally true that ,|c;, or vice versa, we may factor the moduli corresponding to which
prime power of ¢, or ¢j is larger, which motivates the forthcoming factorization. For p a

prime and n a nonzero integer, define v,(n) = d if p?||n. Then we set ¢, = c,cpc, where

= [ ¢ o= [ » ea=1I 7

P9 |le2 p|le2 PP|le2
1<vp(cy)<vp(cy) vp(cy)<vp(ch) vp(c5)=0
vp(cy)>1

According to this factorization, we also write ¢, = c,c}c; and ¢y = cjc] where ¢, = (c., )

and ¢ = (c.,cy) with * = z, f,g. Note from the definitions that c,, ¢y, ¢, are all pairwise
relatively prime, and also that c|c}, and ¢, = 1.
Using the Chinese remainder theorem, we factor G4 p as

(A, c2) Z* . ( —Edvl@“e(cfcg)%)

Ga,plar,az,as;c2) =

c i
2 ue (mod c¢z) E ]
ue=—DB'as (mod ¢.)
Z* (—A’oﬁ@uf(czcg)czcg>
(&
cidicy
uy (mod cy) 9
uy=—D"a3 (mod )

Z* (—A/c?ld}ug(cch)cch)
€ .
cicicy
ug (mod ¢g) 9
ug=—DB'az (mod cg)

Let us examine each of these three sums in turn. We begin by writing the sum over u, more
suggestively as follows:

_,~ ~ Cfcg -
A alagu(c,,—c,g,)cfcg

> =)
c ’
u (mod c¢z) z
u=—B’az (mod c)

For each prime p dividing c¢,, we have p|c,, and p| Z—:Z/ Therefore, we may write u = —B'az+c.t,
where t runs over all residue classes modulo ¢//c.. But then the sum over ¢ vanishes, because
the factor in the numerator is relatively prime to the denominator. Thus we obtain that G
vanishes unless ¢, = 1. We henceforth make this assumption in the next computations of

the ¢; and ¢, moduli sums.
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For the sum over uy (mod cf) since |, the congruence uniquely determines uy modulo
cf, so we get, using (c,/cy)cy = ci:

o Faguegy\ (AP aadd :
o (Fomes) (AP v,
u (mod cy) f f u (mod cy)

u=—B'a3 (mod c}) u=—B’az (mod c})

We also have

Z* 1= w(cr)

u (mod cy)

u=—B'a3 (mod c})

as can be checked as follows. Firstly, we see that both sides of the purported identity are
multiplicative, so it suffices to check this on prime powers. If ¢/ = 1, then the identity follows

easily. If ¢} = p%, and c; = p?, and B’ > 1, then the left hand side is p°~ B ((—5,)) as
desired.

Finally, we examine the sum modulo ¢,. We have ¢, = 1 (directly from the definition,
as remarked earlier), so the congruence condition is vacuous. The sum then simplifies as
RCQ(Z—Z,), using that ¢y and everything else in the numerator in the exponential is relatively
prime to ¢,.

Putting all these calculations together, we have shown that if c; = cscy, (B, c2) = (as, ¢2),
and (A, c) | (aq,az), then

(919) GA,B(a'laa2>a3;62) =

@A)

and otherwise G4 p vanishes. So far the assumption ajasas # 0 was not used.

To estimate this expression for G, we have ¢} = (cj,¢y) = ((BC,QCQ), z—z) and ¢, | (B, c2), so

Cc2

in fact ¢ = By = ¢5. Then
(C )@(Cf) o 80(02) S (3702).

(9.20) ‘ch (C//) ol oldy)  wlea/(c2, B))

Our goal now is to use Dirichlet characters to decompose

€e,(—ara2a3)Ga (a1, as, as; c2).

Switching to the new notation used in (@.I9), we have

(ﬂmww (—@@%)
e\———)=¢el——5->—
ABcy A'B'chey)”

and by reciprocity, we have

Ce(M)G (a1,az,as;¢c2) = (A, c2)Re, (Cg>¢(cf)e<_@@@c_;>
2 ABCQ A,B\t1, W2, 3, C2 2 CZ SO(C/f) CgA/B/ :

Let
g3 = (@azas, c; A'B').
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Then we have

c e(_a1a2a3)G (a1, az, ag; c2)
28| — 0 — ) Ga,Blar, a2, a3; ¢
ABC2 y U2, U3,

= (4R, (2) 2 (1_) > g e

C (p(c ////
g ) 1 (mod AB)

Finally, we argue that this expression is of the desired form for Lemma Recall we
write a; = u;v; where (u;, AB) = 1 and v;|(AB)>. As originally written, the g; depend on
the a;, but in fact they only depend on the v; since the g; are divisors of ¢y, and c¢,|(AB)>®
By writing the dependence of the g; on the v; explicitly as summation conditions, we see the
presence of the first sum in ([@.9). A careful scrutiny of the changes of variables throughout
the proof shows that the variables c,, ¢}, ¢y, ¢y, A', B', g3 are functions of ¢y, the v; and g1, ga,
and are independent of the u;. We may also extract from ajasasz the factor ujusuz. We
obtain the bound on =, by ([@20), and using the standard bound on the Gauss sum. We
note that

g3

C//A/B/ AB
g |cgA'B’',  and G A'B| __esP 5 ,
g3 (A702> (B702)
which gives the divisibility condition on D.
The only remaining statement to prove is (O.I1]). In this case, the Gauss sum is bounded

by 1, and by ([@.20) we have

(o] (2)| 4By < ()BT

' A B! // IR
By tracing back the definitions, we see that
V1V2V3 A ! V10203 1!
= ,crA'B’ —wn o AB),
9 (9192(/1, c2)%(B, c2) “ )< ((A c2)2(B, ¢y) )
which implies the bound (@.IT]). O

Proof of Lemma[9.7. Now we evaluate G 1(ay, as, as; c.). To do so we break into cases. First
assume that ¢. f c.. Under the condition ¢. t ¢, there are only finitely many possibilities for
(e, Ce, A1, a2, a3. A brute force computation with Sage [S] then shows that if ¢, = 1,2 then

1
(9.21) Gii(ar, as,a3;¢.) = ?qu(—l)T(qu)qu(a1a2a3)=

and if ¢, = 8 and ¢, = 4 then
1

32
Now we assume that ¢, | c.. We write ¢, = g.s. where s, is a power of 2. Following the same
steps as [CI, Section 10] we have that if ¢, | c. then

Y —1 a1a9a
(as,se) 21qu( >6< 172 3) Hse(al,az,a&%)a
que Ce

where H, is defined in [CI, (10.2)]. Assume now both ¢. | ¢, and ¢. | s. (so that in fact
q? | ¢.). Following the proof of Lemma 10.1 of [CI] we find in this case that

(9.22) Gii(ar, az,a3;ce) = =X (—1)T(Xge Xa) Xge Xa(@10203).

(9.23) Gia(ar, as, az;ce) =

(924) Hse (a'la a2, a3, qe) = Xge (&1@2@3)27()((16)2-
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Having dealt with this case, we may now assume that ¢, | c. and ¢. t s.. Now there are only
finitely many choices for g, c., a1, as, az which permits us to conclude the following lemma
by another Sage computation.

Lemma 9.5. Suppose that q. | c. and let s, = c./qe. If se =1 we have

%RQG (a'l)RQe (a'2)RQe (a'3) Zf Qe - 4
iRQE(al)RQE(CLz)RQE(ag) Zf qe = 8 a’nd 4|a17 a27 a37

9.25 H, (ay,a9,a3,q.) = ) :

( ) e( b 42, 43,4 ) 16’LX4 (al%zag) Zf Je = 8 and 2||CL1,CL2,CL3,
0 otherwise.

If2 | s, then
XQe(a’la'2a3)2T(XQe)2 Zf qe | Se

(9.26) Hy(a1, a2, a3,q.) = < —xq (a1a2a3)*7(x0.)?  if 25. = qe
iT(Xq )2 Xa(a1a2a3) if ¢ =2 and q. = 8.

If ¢. | c. then the additive character on the left hand side of Lemma [0.4] cancels identically
with the additive character appearing in (@.23]). On the other hand, if ¢. t ¢, then the additive
character ef, q.13/c2(—a102a3) = €43/c2(—a1az2a3) must be expressed in terms of multiplicative
characters. Recall, if ajasaz # 0 we factor a; = e; f; with e; a power of 2 and f; odd. We
have

(9.27)

1 i 10203
2= = 90 - )
Catyd(~00203) = L B, arana) 2 7 ( <q3/cz,a1a2a3>)

3
0 (mod ———Jde
( c2(q2/c2,araza3)

where by convention we take # (mod 1) to be identically 1.

Having computed Gy (a1, as, as; c.) we now argue that the resulting expressions are of the
desired form for Lemma In similar fashion to the proof of Lemma [0.3, note that for
each fixed g, c. we have that c.q.G'(a1, as, as; c.) is of the form (Q.I2)) by inspecting ([@.27]),

@21), @22), (@.25) and ([@.26). Now allowing the function g to depend on ¢, ¢, and seeing
3
that q—) | 64 in all cases, we conclude the statement of Lemma U

e
c2(g3/c2,a1a2a3

Proof of Proposition [l Let

—Mmimams )

G’y p(m1,my, ms;c) = GA7B(m1,m2,m3;C)6<AB[C’ /2

Then by ([@5) and (@.0) we have

—_ 3
CqG/A,B(mla My, m3; c) = XII(AB)COQOG/LI(mla ma, ABcylce, qe) ¢ims; c,)

- 3 I—
! —_— 2 . / .
X CQGA’B(ml, ma, CO[Ce, qe] Cc,Mms3; cz)ceqeGLl(ml, ma, ABCQCOm37 Ce).
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Now we factor m; = mim], where (m}, AB) = 1 and m/ | (AB)>°, and then further factor
m, = m¢m¢ where m¢ is odd and m¢ is a power of 2. By Lemmas 0.2 03] and [0.4 we have

(9.28) ch'A,B(mh Mg, M3; C) =

0((A, c2) | (my,m5))6((B, ca) | my) > > ;

Dy Dahk=q SO(D2)

m’l’ co h:(QO7SO)

Sty Ty MlmingdD
m c ARG R P

92:((A,c22)’gl(A2c2)) (m§,co/q0)=1

1
¢<n§m>§4mx(g 2 —D >, G

| coAB 1 (mod D)
(c2,4)2(cg,B)

(¥xn) (mimsmsss) By (m7) Ry, (ms) Ry (m3),

where GG, is the product of the ¢,7, and g arising in Lemmas 0.2, 0.3] and along with
various miscellaneous factors of unit size, such as y,(AB). The exact form of G, is not
important. Rather, all that matters is a bound on its absolute value, and the fact that it
does not depend on m{, m3, m$, s,, qo, ¢,. Specifically, we have it is of size

9192|(,4i—262)

(9.29) G. < DV?(A, ¢)(B, ;) D3

and if ¢, x, and 7 are all the principal character then with A = (A, ¢y)A" and B = (B, ¢3) B’

M JA'B
9.30 G. . <<A c2)*(Bica) )
( ) %) < (qr)° (A, c2) (B, c2) A'B’

Now we are ready to sum Gy p over the m; and c¢. We must break into two cases to handle
the condition (¢, g.) = 0.

First suppose that ¢ is odd i.e., ¢ = 1. Then since (¢, q.) = 1 we have that the sum over
c is empty unless § = 1, and if 6 = 1 the the condition (¢, g.) = 0 is true for all ¢. We factor
R = R.R, where R, is odd and R, is a power of 2 and write ¢, = t,qR, and ¢, = t.R.. Then
for any function f for which the sums converge absolutely we have

Yo fle) = B DD DS f(CztothR)

¢=0 (mod ¢R) cg\ (AB)>®  te|2%° (to,2AB
(qufi):& (te,AB)

Now we suppose that go = 4 or 8. Then R must be odd as (R,q) = 1. Recall that
(AB,qR) = 1 so that (ce, RG) = 1, and also that G/q, = 2. Then we write ¢, = t,q,R and
¢, = 2t,. Then we have

Yoo fo=06061e) Y, D>, D> f(202toqut)

¢=0 (mod ¢R) c2|(AB)>®  te|2%° (to,2AB
(¢,qe)=0 (te,AB)=
0|2t
(%51

for any f for which the sums converge absolutely. We treat only this last case for the
remainder of the section, as the other cases are strictly simpler. Applying this decomposition
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to G’y p we find if § | g. that

031 Zing=| > Y 3 >

c2|(AB)>®  te|2°  mf mi m{|(AB)*> mg,ms,mg|2>°
(teg?2€3—l (m§m§m$§,AB)=1
(. 5)=1
Z Z CqG;LB(mlu My, M3; C)
mitms2ms® (catet, )5t ]

to,2AB)=1 (m9mgmg,2AB)=1
1779213

- zzz

ca te,my ;ml mf m§,mg ms 9192 A|64 mod A
(A,e2)l(my ,my), (B,e2)|my, (-..)

(A c9)

g1= ((:Lé) Gy

g2= ((A,cg) olhez)

1 1

) L v,
Z (D2) Z Z SO(D) 77(rgd:D)

D1 D2hk=q, ¥ 1 (mod D3) D‘&
(c2,A4)2(cg,B)

where G/, satisfies (0.29) and (@.30), the conditions (...) in the first (large) summand fol-
lowing the second equals sign are the same conditions as on the first line of ([9.37]), and

Y = 3 () (m§mgmat,) R (m) Ri(mg) Ry (m3)
(m1m2m3t0,2AB) (mg)®1(m3)*>(mg)*sts*
h=(qo0,Roto)
k:(m?m3m§7%)
(hmgm3)=1
(mg 7Roto):1

Our next goal is to obtain meromorphic continuation of Y inside the critical strip, and a
bound on Y both slightly to the right of the critical lines, and slightly to the right of the
edge of absolute convergence. First we note the following formal combinatorial identity:

Z f(nb na, n3 Z Z Z Z f(k‘lnl, kana, k3n3)-

(n1n2n3,q0)=k kikaks=k (n1,{2)=1 (n2, g1%5)=1 (n3, 55 )=

With this, we have (with some minor simplifications arising from (¢,, AB) = 1 which means
for instance that (k, AB) = 1)

(Vxn) (k1kaks)
32) Y =
(9.32) kll;:k kS kS (tmk;g):l
(to,q0)=h

T (xm) (mymomst,)

() (mg) () 5"

Rk(k‘lmf)Rk(kgmg)Rk(kgmg)
(ml,hAqu) 1
(m3,hAB qo )=
(m§ ,RotOAB qo )

m

The condition (k1ks, h) = 1 is automatic, because kikoks = k, (So,q0) = h, hk | ¢o, and ¢, is
square-free, so (h, k) = 1.
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Now let a,b € N and suppose that a” | @’ | a, with a’ square-free, and x is a Dirichlet
character mod a. Then for Re(s) > 1 we have

(9.33) S Bl _ gy blany (s, ),

ns
(n,b)=1

where Ly(s,x) is the Dirichlet L-function with Euler factors at primes dividing b omitted.
To see this, observe that if @’ is square-free then u(a’)Ry(n) is a multiplicative function of
n, and that the summand on the left side of (@.33]) vanishes whenever (n,a”) # 1 because
a” | a. One can then factor out a Ramanujan sum from the left hand side and use the fact
that p(a’ )Ry (n) = 1if (n,d) = 1.

From this, we easily get the meromorphic continuation of Y to, say Re(s;) > 1/2, i =
1,2,3,4. Moreover, Y is analytic except for possible poles at s; = 1 in case nyx is the
principal character (which then implies all of x, 7, and 1 are principal, since their respective
moduli are coprime). Assuming Re(s;) =0 > 1/2 for all i = 1,2, 3,4, and o # 1, we have

(9.34) Y| <o k' =7h77(qr)*|L(s1, xn) L(s2, hxn) L(ss, xn) L(ss, vxn)|.

Now let Zsp, = Zo + Z' where Z, corresponds to the terms with 7yt principal, and Z’
corresponds to the terms with 7y nonprincipal.
Taking 0 = 1 + ¢, we bound Z as follows:

1
€ -
| Zo| < (qr) E : (m'mlmlics) Z Z

m/1/7ml2l7mg762‘(AB)oo D1 D2hk=q0 9192| (Ac% )
(A7C2)‘(m//7mll) 1" 2
! 4 2 _ (. ™M c9
(B,c2)|my 91=(tey) )

77lll C:
_ 2 2
92=(H 3y 1A e))

" 1 "

1 (Tesp B A'B)
x A, 63)(B, ¢y) e B Al g
oy, 2y, e
|(02»A)2(02»B)

Next we change variables m/ = n;(A, cp) for i = 1,2 and mf = (B, c2)n3. We have

(9.35) y @ _my (p;’j@ < (ABQY-.

n
n|(AB)> p|AB j=0

Using this successively on ni, no, n3, and trivially summing over g, go, D, we obtain

1 1 (Aa Cg)(B, C2) 1 107 —
| Zo| < (qr)° — E'=7he.
' 02|(§;)°° 2 D1D§;€=qo SO(D2) (A’ 02)2(3’ 02) AL’

We use the estimate (@.35]) again on the sum over ¢, to get

(qr)° -7 —0 -1 (qr)°
Zo) < S > KTTRTDY < S
AB | = AB

This proves the bound (@.2)), as desired.
Next we turn to Z’. For this, we use the large sieve inequality to give a bound on the 4th
moment of Dirichlet L-functions. Following e.g. [Petl Lemma 8| we find that for o = 1/2+¢,
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we have

1
(9.36) Y L(s. ) < @ (1 + [s])'*=.
Q2

Using Holder’s inequality, we have for o; = 1/2 + ¢ for i = 1,2, 3,4, that

1
! 15
R D D o o D DD

mimg myca| (AB)% D1 Dzhk=q 9192 ‘(A‘Czcz)
(A,c2)|(mf 7m2) "
(Bicz)|my g1= ((A < (A @z

m

_my
92=(tmep) (A,c9)’ 91(A’62) )

4
ST (Ae)(B.e) DYDY R T (1 + Isy]) 4.

coAB 7j=1

Dl a2

Using similar methods to estimate the sums over the m} and ¢y as in the bound on Zj, we

obtain
4

127 < ()@= (AB) T+ [sgl) 4+
j=1
Finally, we show (@4]). The proof is essentially the same as before, except we use a hybrid
large sieve in place of ([0.30), as in [Gal, namely

/|<T SO IL(1/2 + it )|t < (7).
t

=7 x(mod g)

O

We conclude this section by studying G 4 g(my, ms, ms; ¢) when some m; = 0. The formulas
greatly simplify.

Lemma 9.6. Suppose some a; = 0. If a; # 0 write a; = aa, where af | (2AB)>™ and
(a;,2AB) =1, and if a; = 0 write a = a, = 0. Then

cqd(q)G a.plar, az,as;c) = g(a, ay, ay, A, B, ¢, q) Ry, (a}) Ry, (ay) Ry, (a}),
where g is a function satisfying the bound
|9(al, a3, a3, A, B, ¢, q)| < 64(A, c)(B,c).
Proof. We have according to (@.5) and (©.6]) that

—
Gaglar,as, az;c) = x,(AB)Gy1 (a1, as, ABcy[ce, q.] cas;c,)

3
x G1(ay, az, ABcyc,az; c.)Ga play, ag, [c1,q] clas; ).

3
We treat each of these in turn. Let us begin with G (a1, a2, ABes[ce, q.| c?as;c,). The
evaluation (O.I3) of G, did not require ajasas # 0. Inspecting (@.13]), and noting h = 1,
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k = g, under the assumption ajasaz = 0, we have

- 3
G1,1(a17@27ABC2[Ce7Qe] Cga?);Co) =

{ Xao(—1) Rqo(al)Rqo(a2)RQO(a3) if (Z—Z, a3) =1 and (qm Z_Zv a1a2) =1

Co‘lo¢(qc)
0 else.

Next consider Gy (a1, as, ABcacoas; c.). An inspection of the proof of Lemma shows
that when ajasas = 0 that

qeceiﬁ(qe) Xqe (_I)Rqe (al)RQe (a2)Rqe (a'3) if Ge = Ce
1

Gri(ar, ag, ABCyCots; o) = § g Olas.co=1 if ge =1

0 else,

where note that in the case ¢ = c. = 8, ajasaz = 0, the third case in (@.25) may be
discarded, and in the second case of ([@.27]), the condition 4|a;, as, a3 may be dropped since
the Ramanujan sum vanishes otherwise. This function only depends on ¢.,c., and the 2-part
of ay,as,as and is bounded above by 64/g.c.®(q.), since each Ramanujan sum is bounded
by 4 in absolute value.

—3
Lastly, consider G4 (a1, as, [c1,q| c?az;cy). As mentioned in the proof of Lemma [.3]

3
([@.19)) is valid without the assumption that a;asaz # 0. We have that G4 g(ay, as, [c1, q] as, c2)
only depends on af,ay, a3, A, B, and c¢,. In particular, by (@.20) we have

— 3 A,C B,C
Gaplar, as, [cr, 4] clagi o)| < w.

Co
Therefore
1
GA,B(alv Qz, a3; C) = g(a/1/7 CL/2/, CL/3/, A7 Bv ¢, q)qu(all)Rq(a;)RQ(ag%
cqd(q)
and |g(a/1,7a/2,7a/3,7147 B,C, Q)‘ S (A,CQ)(B,CQ). |:|

10. WEIGHT FUNCTIONS

10.1. Imert functions. We begin this section by quoting a definition of :
Let F be an index set and X = Xy : F — R>; be a function of T € F.

Definition 10.1. A family {wr}rer of smooth functions supported on a product of dyadic

intervals in R ) is called X -inert if for each j = (j1,...,j4) € Z‘éo we have
(10.1)  C(j1,...,ja) :==sup  sup X777 77a g, ~xfﬁw¥1"“’jd) (T1,...,xq)| < 00.

TEF (1,...aa)eRL,,

We often abbreviate the sequence of constants C'(j1, ..., jq) associated to a family of inert
functions by C'r. We will most often use the definition of X-inert with X = X = 1,
although occasionally (e.g., in the proof of Lemma [[0.5]) X will be slightly larger than 1,
with X < (¢r)°.

The purpose of this definition is to encode natural conditions on a weight function that lets
us separate variables efficiently. For instance, if wr satisfies (I0T]), then by Mellin inversion,

1

(10.2) wr(ry, ..., 1) = ) /d wr(ity, .. .itg)xy™ . oxy Mt . dtg,
R
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where J J
_ x x
wT(sl,...,sd):/ wT(xl,...,xd)xil...xzd—l...—d
(0,00)4 1 La
Integrating by parts shows for any choices of j1,...,j4 =0,1,..., we have
d Ja—1
—~ —1 (J15-57a) s1+j satia 4T dxg
wTsl,...,sd:< >/ wp Y (L xg) T S ——
( ) 11115m+b VL )ai ity

Therefore, by ([I01), we have

Xr

. . g1 Xpr\dd . .
mﬂm,wnmg(ﬁﬁ ”(Eﬁ Cljs- -, ja) (log 2)".

If |t;| > X7, then we take j; as unspecified (arbitrarily large), while if |¢;| < X7, we choose
7; = 0. In this way, we obtain

— . ) til\ 7 tal\ I . .
(10.3) MWWWMKQ+%)ﬂ@+¥)WWWW%
T T

where C’ is some other sequence depending only on C. Our interpretation of this estimate
combined with ([I0.2) is that wy can have its variables separated “at cost” X<, meaning that
each integral has essential length < X7p.

10.2. Integration by parts. Often an integral can be shown to be small by repeated inte-
gration by parts. For this, we quote Lemma 8.1] with some slight changes of notation
and terminology.

Lemma 10.2 ([BKY]). Suppose that w = wp(t) is a family of X-inert functions, with
compact support on [Z,27], so that w9 (t) < (Z/X)™9. Also suppose that ¢ is smooth and
satisfies ¢V (1) < % for some Y/X? > R >1 and all t in the support of w. Let

I:/ w(t)e O dt.

o0

If |¢'(t)] > % for all t in the support of w, then I <4 ZR™ for A arbitrarily large.

10.3. Stationary phase. Now we quote the main theorem from [KPY] which extends [BKY],
Proposition 8.2].

Theorem 10.3 ([KPY]). Suppose wr is X-inert in ti,...tq, supported on t; < Z and
t; < X; fori=2,....d. Suppose that on the support of wr, ¢ = ¢ satisfies
ortazt+aq Y 1

10.4 —————0(l,lg, ..., 1) K ol

(104) ot .. ot Ot 2 1) <o 7 Xg X%

for all ay, ... ,aq € Z>o. Suppose ¢ (t1,ta, ... 1) > %, (here and below, ¢’ and ¢" denote
the derivative with respect to t1) for all ti,ts,... ty in the support of wr, and there exists
to € R such that ¢'(to,ta,...,tq) = 0 with some ty € R depending on to, ... ty (note ty is
necessarily unique). Suppose that Y/X? > R > 1. Then

) 7 .
(105) I = / e"z’(“""’td)wfp(tl, e ,td)dtl = —6Z¢(t0’t2""’td)WT(t2, R ,td) + OA(ZR_A),
R

VY
for some X -inert family of functions Wr, and where A > 0 is arbitrarily large. The implied
constant in ([I00) depends only on A and Cx.
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10.4. The integral transform. Here we obtain useful expressions for K, which was defined
in [830). The key is not an exact formula for K, but rather a Mellin formula with the
variables separated. Throughout the remainder of this section, ws will denote a member of
a l-inert family of functions, which may change from line-to-line without explicit mention.

We also recall that [c, q] = c(cq—;e), where (cq;) takes the possible values 1,2, 4.

Lemma 10.4 (Oscillatory Case). Suppose that |m;| < M; for i =1,2,3, and ¢ < C, with
G|c. Suppose that

VABN; Ny N3

(10.6) -

> (qr)°.
Then

C3/2(N1N2N3)1/2€( —nIZan[zCQ’ZTgCZ )

(10.7) K (mq,ma,ms, c) = (M, M M) 1/?

L(mh mag,ms, C)

+O0((qr) V¢ H(l +[mal) %),

where L has the following properties. Firstly, L vanishes (meaning K is very small) unless

(ABN; NyN3)'/2
N, ’

(10.8) M; = i=1,23,

and all the m; have the same sign. Moreover, we have with

My My M
10. P=—"7"FJ"H-—.
(10.9) ABC

that

1 |m1m2m3|02 1y
(10.10) - L(m1,m2,m3,c) = —/ / F(u; y)(—)
P2 Ju<(ary i<y [, q?

()" ()7 ()

where F' = Fa B c Ny, No,No, My Mo My 35 €ntire in terms of u, and satisfies F(0;y) < pgeu)
(1+ [a))= (1 + |y|))=7, for J arbitrarily large. Here F additionally depends on the choice of
signs of the m;, and on the values q., (¢, qe).

Lemma 10.5 (Non-oscillatory case). Suppose that |m;| < M; fori=1,2,3, ¢ < C, and

VABN, N, N
(10.11) <)
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Then
(10.12) K (my,mg,mg,c) =

e _ 2
NlN?N?’(@) 16(%> /|u<<(qr)5 e /t|<<(qr>s+P
2. it u1 u2 3 b
f(t)(‘mlﬁq??‘c) (éﬁ) (%_;) (%_;) (%) dtdu

3
+O((gr) T+ Imal) ™),
i=1
where P is given by (03, f(t) < (14 |t))~"2, and F(u) < J, Re(u) H;}:l(l + %)‘J.
Moreover, f vanishes (meaning, K is small) unless
My Ny My N M3 N3
C C C
If P> (qr)¢, the function f may be chosen to have support on |t| < P.

Lemma 10.6 (Other cases). Suppose some m; = 0. If ([I0.0) holds, then K is small. If
(@OII) holds, then K is small unless |m;| < N%_(qr)6 for j =1,2,3, in which case

VABN;NyNs
C
If say mz = 0 but mymso # 0, then with N = N1 Ny N3, we have a Mellin formula

r—1 U1
(10.15) K (my, ma, 0;¢) = (VABN> N/ / ( ¢ )
¢ for < (ar) Jfosl<(gr)e NV

3

() ™ R(w o, )dondvs + O((qr) ™ [T (1 + i),

Na|m| i=1

(10.13)

< (qr)",

< (qr)5,

< (qr)°.

Kk—1
(1014) K(ml,mQ,mg;c) < < ) NlNQNg.

where R(vy, vy, ¢) is analytic in Re(v;) > 0 fori = 1,2, and satisfies the bound
2

R(Ulv V2, C) <<J,Re(v1),Re(v2) H(l +
j=1

Here R depends on the choices of sign of the m;, but we suppress it from the notation. Similar
formulas hold when my; =0 or mg = 0.

If two m; = 0 but the other m; is nonzero, then a formula similar to (I0I5) holds, but
with one of the integrals omitted.

Proof. We prove all three lemmas.
Truncations. As our first step, we integrate by parts three times in each of the t; for
which m; # 0, allowing us to obtain a crude bound of the form
3
K(m1> mg, Ms, C) < P(q7 r, Nla N2a N37 C) H(]' + |mi|)_3a
i=1
where P is some fixed polyomial (which may as well be taken to be some polynomial in gr by
(820)). This bound is sufficient for the lemmas when some |m;| is > (gr)*" for some large
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A’ depending polynomially on 1/e. For the rest of the proof, suppose that |m;| < (gr)? for
some A’, and each 1.

In the oscillatory case (i.e., if (I0.6) holds), then using the fact that J,_;(x) = e“ W (z)+
e “W_(x) where W4 (x) have controlled derivatives (cf. Watson [Watl, Page 205]), we see
that repeated integration by parts (Lemma [[0.2]) shows that K is very small unless (I0.8])
holds, and moreover, all the m; must have the same sign. Similarly, in the non-oscillatory
case where (I0.I1)) holds, then repeated integration by parts shows that K is small unless

(I0.13) holds.
Proof of Lemma 0.4l Now we show the expression (I0.7), with L given by (I0.I0).

Using the Fourier integral (valid for n an odd integer)
+1 [7/? -
Jn — : :I:wvsmvd ’
(x) Ei — /0 sin(nv)e v

we have

K = I%T(7Tll7 Mo, M3; C) =
+1 [/ +2./AB
= / sin((k — 1)v) / e(ﬂ sinv) )
n T 0 R3 C

(—m1t1 — m2t2 — m3t3
[, d]

> ’LUT(tl, tg, tg)dtldtgdtgdv.

N1N2
ti1to

K=Y % /Oﬁ/2 sin((x — 1)) /Ooo (22 Af“NlNQ sinv) ) 1(u)dud,

Next we change variables t3 = u , giving

where
ulN1No

—maty — Moty — M
[(u) :/ 6( s 2 3ty )wT(tl,tg,u)dtldtQ.
R2 e, q]

The conditions (I0.6) and (I0.8) imply that
M;N; _ VABN,N,N; )
o= e > (qr)°.
Recall that we already showed, in the paragraphs following the statement of Lemma [10.6]
that under the assumption of (I0.6), K is small unless (I0.8) holds. The conditions are now

in place to analyze the inner t;, {5 integrals using stationary phase. Evaluating the ¢;-integral
first, we find a stationary point at t = (%1\?2%)1/ 2. Following this, the stationary point in

terms of ¢, occurs at t = m2_2/3(m1m3uN1N2)1/3. We therefore deduce

C —3(m1m2m3uN1N2)

1/3
(N1N2M1M2)1/26< [Cv Q]

(10.16) I(u) = >wT(U7m17m2am370)

3

+0((qr)™ [T+ Imal) =),

i=1
where wr is 1-inert in all variables and T stands for the tuple
(A4iaA4éaA4S7]Vi7jvéajvs7(j7qea(CaQE))
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and supported on u < N3. The condition that my, ms, m3 must all have the same sign may
be encoded in the support of the inert function. If all three terms are negative, we naturally
interpret the expression (mymoms)'/? as —(|mymams|)'/3. Therefore

w/2
(10.17) K = [Z %(NlNQJ\ZMQ)W /0 sin((k — 1)v)

o <:|:2\/ ABUN1N2 . —3(um1m2m3N1N2)1/3
e sm(v))e(
0 C

¢, q]

>wT(u, -)dudv]

3

+O0((qr) T+ [ma) ™).

1=1

Here we use the notation wr(u,-) to denote a function where we are currently focusing on
the variable u only, and so do not display the other variables.
Finally, we study

0 T (N1N2M1M2)1/2 0 &
_ N, N,)1/3
e( 3(um1,n’EZTqu]3 1 2) >'UJT(U, )du
We will presently show that
(10.18)
03/2(N1N2N3)1/2 —m1m2m302 . —1/e ’ —
5) = =73 e T gy ) )+ Ollar) ™ [T+ o)),

i=1

where wr(sinwv, ) is part of a l-inert family of functions of sin v, my, mg, m3, ¢, with T' as
before but in addition depending on the choice of + sign.

This integral defining Ky(v) is small unless there is a stationary point (by Lemma 0.2
again), which occurs at

(mymgoms)?c®

NNy (AB)3sin®vle, q]6”
under the additional assumption that the choice of + sign matches the sign of miymaoms
(which in turn has the same sign as each individual m;). Note that for this stationary point
to lie inside the support of the inert function, we need

(M My M)'/?
(AB)12(N, Ny Ny )1/6

Thus we obtain, in both cases of + sign, that

U = Ug =

(10.19) sinv < =V

3

3>wT(sinv, )+ O((ar) ™ T+ Imal) ™)

i=1

—myMamsc?

AB sin®vle, q]

Ko(v) = (scaling factor)e(

. . s 03/2(N1N2N3)1/2
A short calculation shows the scaling factor is =< TN e

sion for Ky(v).

, proving the claimed expres-
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Thus we obtain
03/2(N1N2N3)1/2 /2 . —m1m2m302
— ¥ sin((k — 1)21)6( — S
(MlMgMg) 0 AB S1n ’U[C, (J]
plus an error of size O((qr)~Y¢T],(1 + |m;|)~2), where the support of the inert function is

given by (I0.19).

Next we factor out the desired exponential, giving now

)wT(Sinv, dv,

% (—m1m2m302) C3/2(Ny Ny N3)'/?
=e
ABle.q* /(M1 MyMs)'/?
« /W/2 sin((x — 1)v) <m1m2m302 (1 ! ))wr(sinv, -)d
in((k — v)e(| —=—(1 - —— ) Jwr(sinv, -)dv
0 ABlc, q]? sinfv// " T
plus a small error term. Define
w/2 1
(10.20) Koo(x) ::/ sin((k — 1)1))6(1’(—1 + — ))wT(sinv,-)dv.
0 sin“ v
Note that for our particular values of the parameters, we have
T €
Ve > (qr)°.

Now we asymptotically evaluate Koy(z). First we dispense with the case where the support
of the inert function is so that the integrand vanishes unless v < 7 — 75, say. Thus cos(v) < 1
and sin(v) < v < V in the support of the integrand. We claim that Kgo(z) < (¢r)~* in this

case. To see this, we first note that it suffices to bound

[ wrtinn e, e ofs) — £5 Lo+ 2O

- 2T sin“ v

We have

k—1 x
d(v) = £ v+ 2(1+021)2—|—c4v4+...),

2w v2
for certain constants ¢;. Then we have
2 2
x/v , x/v ,
s =1L g« oo

using =3 > 5 > (qr)° > k — 1, since & is fixed. By Lemma yet again, the integral is
very small. If the inert function has support on an interval containing 7 /2, then the above
argument breaks down. So now suppose that the inert function has support on v > /4, so
in particular V' < 1 and x > (¢r)®. Change variables v = 7/2 — u, giving

2

(10.21) Ko (z) = (—1)%2 /07r/4 cos((k — 1)u)e<zsm u)wT(cosu, du.

cos? u

Next we argue that the main part of this integral comes from u < x~/2(qr)®, provided
we use a smooth truncation. Let us apply a partition of unity, and consider the portion of
the integral with v < U (with U < 1), which we denote K{(z). By Lemma 0.2 yet again,
if zU% > (qr)¢, then K{(x) is small. We may also use that the integrand is even to extend
to —m/4 to w/4, giving

w/4
Koo(z) = W (u)e(z tan® u)du,
—7/4



48 IAN PETROW AND MATTHEW P. YOUNG

plus a small error term, where W has support on |u| < U with U = z~/2%¢,

We may now derive an asymptotic expansion of Ky, with leading term coW (0)ax~1/2,
where ¢ is some absolute constant. By developing this expansion carefully, we have that for
x> (qr)5, K (z) < 271277 and so by Mellin inversion, we have that

Kun(a) = 27 / " et

plus a small error term, where |f(t)| <4 (1 + [¢t])™, with A > 0 arbitrarily large. In our
application, we may thus truncate at |t| < (gr)°.
The previous discussion gives a formula for K of the form (I0.7), where L takes the form

1 |mymams|c?\
L 9 9 ) = 5H1/9 t> ) ’ ; <—> dt>
e, e 10,©) = i Af«(w wrltsm, s O e

where wr is 1-inert in the variables my, my, m3, ¢ and has rapid decay in ¢, uniformly in all
other parameters. We may then write

wr(t,my, mg, m3, ) = /F(u; t)( M )m( M, >u2< Ms >u3 <€>U4du,

[ | [ma| || C

where the integral is over four vertical lines in the complex plane, one for each of the w;,
i =1,2,3,4. By the rapid decay of F' beyond (gr)¢, due to the fact that wy is inert, we may
truncate the integrals at |u| < (gr)?. This expression gives (I0.I0), and so completes the
proof of Lemma [10.4]

Proof of Lemma Now suppose (I0.IT]) holds. As previously mentioned in the
paragraphs following Lemma [0.6, K is small unless (I0I3) holds, a condition that we
assume henceforth. Assuming z < X =1+ 7“‘31\81\72]\’3, we have that J,_;(x) = 2" W (x)
where W is a smooth function satisfying /W (z) < X7. That is, W satisfies the same
derivative bounds as an X-inert function, and so it may be absorbed into the definition of
the inert function. Therefore, by the separation of variables discussion from Section [T0.1]
we have

\/7 K— u u
(10.22) K:NlNgNg(w) 1/ F(u)( Ml) ( MQ) ’
lu|<(qr)®

C 1] [y

( s ) (Q)Mdu +0((gr) 4 ﬁa + a2,

s ¢ i=1

where F(ll) <<L]7Re(u) H?:l(l + ﬁ)_‘].
We also want to factor out the exponential term epjc s /02(—m1m2m3>. It is not clear
whether

MMM
~ABC

is > 1 or < 1, so we treat both cases separately.

P
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If P < (qr)®, then essentially the exponential term e4pic g3 /.2 (m1mams) is not oscillatory,
so by Mellin inversion there exists a simple formula of the form

(10.23) e(

m1m2m3c2> (:l:mlm2m3c2/(AB[C> Q]g)) _
ABle, q)3 P B

2\ it
A«( )e <%) F(t)dt + O((qr)~1%),

where fa p.oan v () = f(t) < 1 and w(t) is a smooth function of compact support on
(0, 00), that is identically 1 on the support of the inert function wy in the definition of K.

If P> (gr)°, then we claim that a formula like (I0.23)) holds, but with |t| < P and
f(t) < |t|~"2. For this, we argue as follows. By Mellin inversion, we have ¢®w(x/P) =
[ f)atdt, where f(t) = o= [;° €®w(x/P)adx. Since the support on w causes z < P,
repeated integration by parts shows f(¢) is very small except when |t| < P. A standard
stationary phase bound gives f(t) < |t|7/2.

In either case, we obtain (I0.12]).

Proof of Lemma The claims that if (I0.6) holds, then K is small, and that if
(I0IT) holds, K is small unless |m;| < %(qr)6 for 1 = 1,2,3 have already been shown in
the previous analysis. It remains to show the integral formula.

Suppose that mz = 0, my, mo # 0, and (I0.I1)) holds. The idea is to apply an analog of
(I0.22), but only in the m;, my variables. This case is easier because the exponential factor
simplifies as 1, so there is no need to separate out e AB[Qq}S(mlmgm:ng). By taking a Mellin
transform in the my, my variables, we get

VABN; Ny N3
C

K (ma, ma, 0; ¢) = ( )K_lNlNgNg,

(o) (o)
| <(ar)e sl <(gr)e NVLmal/ \Name]

3
R(vy, vy, ¢)dvidvy + O(q~ H(l + |mi|)7?),
i=1
where R(vy, v, ¢) is analytic in Re(v;) > 0 for ¢ = 1,2, and satisfies the bound

T L)
R(01, 03, €) € e Refw) Refon) | [(1+ o )~
j=1 J

This bound on R is precisely analogous to the bound on F'(u) in the proof of Lemma [[0.5
This completes the proof. O

11. RECOMBINATION

Now we prove Proposition B2l Recall formulas (828), (827), and (828). Let us write
S = 8y + &1 where Sy corresponds to the terms with some m; = 0, while §; corresponds to
the terms with all m; # 0.

11.1. Bounding Sy.
Lemma 11.1. We have Sy < R™Y(qr)®.

Proof. From Lemma [[0.6] we see that K, and hence Sy, is small unless (I0.I1]) holds. By
(I0II) and (B26) we have that A, B, and C' are each bounded by (qr)°, say. This allows
us to replace several factors of (AB)® and C® by (¢r)® in the following.
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Let us further decompose Sy = Spg + Sp1 + Sg2 where Spo corresponds to the terms with
exactly two of the m; # 0, So; corresponds to the terms with precisely one of the m; # 0,
and Sy corresponds to the terms with m; = my = msz = 0.

We first bound Spy. Suppose for the sake of argument that mz = 0, and mq, my > 1, the
other cases being similar, and let S, denote these terms. For i = 1,2, let m; = m/m! where
(m},2AB) =1 and m! | (2AB)>. Then by Lemmas [0.6] and we have

VN (vaBn )"
> )

(1L1) IS5 <
Ni1,N2,N3,C

1 /
S | D glmiom 0,4, B q) Ry, () Ry, (mh)

¢=0(mod ¢R) mi,ma>1

c=C
c \" C \*
/ / ( ) < ) R(vy, v2, ¢) dvy dvy|,
[v1|<(gr)e vz <(gr)® Nymy Name
plus a small error term.

The goal is to form Dirichlet series over m/,m). Since ¢, is square-free and coprime to
2AB, we have that

Quis) = 3 Tl ceam ) TTa - o).

mS
(m,2AB)=1 Pldo

Then factoring m; = m}m}, and using the bound on ¢ from Lemma [0.6] we have

(11.2) [Shl< Y W( ABN) > AIB. >

N1,N2,N3,C ¢ ¢ ¢=0 (mod GR) ac mY ,mY|(2AB)>
c=<C
U1 C U2
/] ycior () () Q) () R01 v )l

lv2|<(gr)

plus a small error term.

We may assume without loss of generality that ¢ > 8, so that g, > 1. Note that under the
assumption that ¢, > 1, the function @,,(s) is holomorphic in Re(s) > 0. On the Re(s) =
line, it satisfies Q,, (s) < (1+1s])/26(q,)(q7). So we can move the vertical contour integrals
to the lines Re(vy) = Re(ve) = €. The short horizontal segments created in doing so are
extremely small by the bounds on R(vy,ve,¢) from Lemma From the vertical lines of
integration we obtain Spa (N1, No, N3, ¢) < (qr)°¢(q)*(A, ¢)(B, ¢). Therefore we have

113 Shl<@)r Y m(“‘”) v 20 s,

C C
N1,N2,N3,C =0 (mod ¢R)
exC

plus a small error term.
Using (¢R, AB) = 1, Cauchy’s inequality, and

(11.4) Z(d, n)? < o7(d)d,

n<x
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we derive o
> (A0B.0) < (4B Ay
¢=0 (mod ¢R) q
c=xC
Therefore by (8.20) and (I0.11])
NAB _ (gr)
(11.5) Shl< Y- (ar) on < po

N1,N2,N3,C

which is sufficient for the bound in the statement of the lemma. By a symmetry argument,
this shows the desired bound on Sps.
Similarly to the method used to bound Syz, we have in analogy with (IT.2]), the bound

‘SSH < Z (qr>e ( v ABN)H_IN Z (A7 C)(Bv C)(b(Q)
N1,N2,N3,C \/NO C c=0 (mOC(’i GR) “q
C v
2z ] () Qat) ]

where (), (v)R(v, c) is analytic in Re(v) > 0, and satisfies the bound

Q4 (V) R(v, ) Kre(w) (14 [0])2(ar)* (o).
We move the contour to the line Re(v) = €. The short horizontal segment created in doing

so is extremely small by the bounds on R(v, ¢) from Lemma[I0.6l From the vertical segment
we get

(qfr’)€ v ABN \#-1 (A> C) (Ba C) 2
(11.6) Shl < — NoOY S ()
N1,N3,N3,C NC ( C ) ¢=0 (mod ¢R) “q
c=C

plus a small error term. This is precisely the same bound as (I13]), and so our final bound
on Sy is identical to the bound on Sps.

Finally, we bound Sy, which is the easiest case. Using only the upper bound (I0.I4]) and
the upper bound from Lemma [0.6] we obtain a bound on Sy, of the exact same shape as

(I13), so the proof is complete. O
11.2. Bounding &;. Here we show the desired bound

. (AB)1/2 7,3/4
(11.7) S < (qr) ( i+ qu).

S1V where this sum is restricted to e;m; > 0 for i = 1,2, 3.
St

Let us write §; = 261,62,636{1}

The same method will apply to each of these terms, so for simplicity we estimate
which we denote with shorthand by S;".

We have
1
+ __
St= > wime 2 2. wel
Ml,MQ,Mg miXMi c=0 (mod (jR)
Ni,N2,N3,C

(e(%)GMQ(mI, Mo, M3; c)) (e(%) K(mq, ma, ms; c))
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There are two main cases to consider, depending on if ([I0.6]) holds, or if (IO.IT]) holds, and
we correspondingly write S = T + U.
Case 7. By Lemma [[04] we have (with shorthand M = M;M;M;, and M; satisfying

@I0.8))

C3/2 N'1/2
re y |omr s
2
Ni1,N2,N3,C ¢ q MN ¢=0 (mod ¢R)
My, Mz, Ms3 c=C

Z (e( —Mmymams )ch (my, ma, m -e)) 1 / /
TS ENI) A,B(M1, M2, M35 C) ) 775
mi,ma,ms3 AB[C’ q]3/c2 P2 lul<(gr)e  |y|<(qr)®
Fugy) (s y o My My Moy Gy,
¢, q]? my me mg c

plus a small error term. Assume that Re(u;) =1+ ¢ for all i = 1,2,3,4. Then by (@), we
have

Z 1/2 Z 53 1y
T < / / ( )
lu|<(gr)s J y|<(gr)® qRq}

N17N27N3,C (61762763)€{i1}3
0e{1,2,4,8}

€1,€2,€ : 1 C N
Zé}l%’,q% 3)(u1 — 1Y, Ug — 1Y, U3z — 1Y, Uy + zy)MflM§2M§3 ( ~R)

plus a small error term. Now we decompose further by Z = Zy + Z’, as in Proposition [@.1]
and write 7 = 7o + T'. For Ty we have

T c? M .
O < a2 erAB ")
Recall P = -, M =< (AB)**N'? C < V/NAB(qr)?, and N < (¢*r)**"* giving
C 1/2 1 3/4
11. —_— ° —_—
(11.8) To < ZR(AD)? (gr)” < —p(ar)” < i R (qr)°.

For 7', we move the contours to Re(u;) = 1/2 + ¢ for ¢ = 1,2,3,4. The short horizontal
segments created in doing so are extremely small by the bounds on F(u;y) from Lemma
M0.4l Then we obtain

Cc-12 C\1/2 VAB
/ € 3/2./ 12 >~ €
T <) g(PM)2Y ABM (qR> <) ) PIERI2
N1,N3,N3,C N1,N2,N3,C

Since P > 1, we have
-(AB)'?
T < (qr) TRiE

as desired.
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Case U. Here we obtain from Lemma the bound

C
(11.9) U < N /
vazv%;vg,c C2qVN  Jui<ar)s Jyi<ars+p

My, Mz, Ms3

vaBn \" !
N< ) F(u)fp(y)

53 iy €1.€9.€ . . . .
Z (@ng) Zé,zlz’,qz’ Dy — iy, uz — iy, uz — iy, ug + iy)
€1,e2,e3)E{£1}3 e

( 1662{13,)2,4{,8} )

Mul Muz MuB (£>U4dud ’
1 g i3 iR Yl
plus a small error term. As in the case of T, write Y = Uy + U'. Consider first the case U'.

As in case T, we move the contours to Re(u;) = 1/2 4+ . The short horizontal segments
created in doing so are extremely small by the bounds on F'(u;y) from Lemma [[0.5 Using

@), we get

NV AB C\1/2
U < (qr)° iy /—ABq3/2M1/2<q_R) (1+ PY2)
_NABM'/? M \1/2
R1/2C’5/2< (ABC) )

Now M <« CWg(qr)e, and (I0.IT]) holds, so after simplification this leads to
U < (AB)2R 2 (qr)”

< (gqr)

as desired.

Finally, we turn to the case of Uy. To start, we suppose that Re(u;) = 1+¢ fori = 1,2, 3, 4.

Consider the case where P > (qr)® with sufficiently large implied constant. Then we
shift contours to Re(u;) = 1/2 + ¢, for all i. No poles are encountered in doing so, since
|u;| < |y| throughout the integral (IT9) if fp(y) has support |y| < P. The short horizontal
segments created in preforming this contour shift are extremely small by the bounds on
F(u) from Lemma[I05l The contribution to Uy of the integral along the vertical segments is
certainly bounded by the same bound we obtained on U’, since the bound on Z, appearing
in Proposition is much stronger than the bound on Z’. Therefore, U, is bounded in a
satisfactory way for P > (qr)°.

Now suppose P < (gr)¢. Then by (@.2]), we have

(11.10)
r—1
A
) N(—‘ cBN> MC ) o (VABNY M
Up < (ar) ) oo orAR <) > N ( C )ABC R
Nivense  CRAVN N1,N2.N3.,C q
My ,Ma2,M3 My ,M2,M3

Since P = 2~ < (gr)® now, and ¥22% < (¢r)° too, we obtain

3/4

&€ — — I3 — _ e — T
Uy < (qr)°NY2q 2R < (qr)* (¢*r**) 2 R™ < (qr)°q 1/27.

This is the same bound as (II.8]), which completes the proof of (I1.7).
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