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Lessons from Anderson localization highlight the importance of dimensionality of real space for
localization due to disorder. More recently, studies of many-body localization have focussed on
the phenomenon in one dimension using techniques of exact diagonalization and tensor networks.
On the other hand, experiments in two dimensions have provided concrete results going beyond
the previously numerically accessible limits while posing several challenging questions. We present
the first large-scale numerical examination of a disordered Bose-Hubbard model in two dimensions
realized in cold atoms, which shows entanglement based signatures of many-body localization. By
generalizing a low-depth quantum circuit to two dimensions we approximate eigenstates in the ex-
perimental parameter regimes for large systems, which is beyond the scope of exact diagonalization.
A careful analysis of the eigenstate entanglement structure provides an indication of the putative
phase transition marked by a peak in the fluctuations of entanglement entropy in a parameter range
consistent with experiments.

Many-body localization (MBL) is a paradigm shift in
out-of-equilibrium quantum matter. This novel phase
of matter is characterized by the absence of thermaliza-
tion1–6. An MBL system retains a memory of its initial
state and displays only a logarithmic growth of entan-
glement following quantum quenches7. By localizing the
excitations, MBL can also protect certain forms of topo-
logical and symmetry-breaking orders in excited states
and provides an opportunity to process quantum infor-
mation in a system driven far from equilibrium8–11. The
quantum phase transition separating the MBL and ther-
mal phases poses a major challenge for developing a the-
ory of dynamical critical phenomena described by many-
body entanglement in highly excited states12–18.

It is well-known that dimensionality of real space af-
fects single particle Anderson localization where in one
and two dimensions (without spin-orbit coupling and bro-
ken time-reversal symmetry), the entire spectrum of sin-
gle particle eigenstates is localized for arbitrarily weak
disorder19. Although the defining properties of MBL in
one dimension are firmly established both theoretically
and experimentally20,21, the existence of the phenomenon
in two and higher dimensions is much debated22–28. Ex-
periments in cold atoms measuring local and global equi-
libration have shown the persistence of quantum memory
for long times providing indications of an MBL-like phase
in two dimensions28–30. On the other hand, theoretical
criteria suggest that the lifetime of local memory is finite,
albeit extremely long22,23.

In this article, we evaluate the eigenstates of bosons
hopping in a disordered lattice in two dimensions with
on-site interactions. We generalize the tensor network
method developed earlier for one dimensional systems
to approximate the eigenstates in the localized regime31.
Because the system sizes accessible by our method are
much larger than those that can be currently achieved
with prior methods, we are for the first time able to lo-
cate the transition to the thermal phase32–34. We study
the model in parameter regimes directly relevant to the

experiments. The approximate eigenstates evaluated by
our method exhibit signatures of a phase with low en-
tanglement. By studying the distribution of entangle-
ment entropies of a single site, we probe the eigenstates
in the localized regime at large disorder. On lowering
the disorder strength, the distribution of entanglement
becomes bimodal with increasing weight at larger entan-
glement, indicating the transition into the thermal phase.
Furthermore, we evaluate the energy-resolved transition
point, which gives rise to a mobility edge, similar to the
thermal-to-MBL transition in one dimension35. We find
a critical disorder strength which is larger than the one
measured in optical lattice experiments using relaxation
of a half-filled harmonic trap29. However, more recent ex-
periments initialized with a charge density wave (CDW)
suggest that the transition might be at a higher disorder
strength than found in earlier work, and the extraction of
the critical point from the experimental data is a subtle
point30,36.

The approximate nature of our method prevents us
from drawing final conclusions on the existence of MBL
in two dimensions. However, due to the extremely
long lifetimes of local memories, strongly disordered two-
dimensional systems might be viewed as many-body lo-
calized for all experimental and technological purposes.
Our method is able to capture this MBL-like behavior on
the relevant time scales, as explained in the following.

MBL in one and higher dimensions
In one dimension, fully many-body localized systems are
characterized by an extensive number of quasi-local op-
erators, known as l-bits (τzi )37–40. These operators com-
mute exactly with the Hamiltonian and also with each
other. Therefore, all energy eigenstates are represented
as a string of eigenvalues of the l-bits. Locality of the
l-bits forces the eigenstates to satisfy the area law of
entanglement41. As a result, the unitary transforma-
tion (U) which diagonalizes the Hamiltonian can be ef-
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FIG. 1. a, Tensor network Ũ composed of two layers of unitaries ux,y,z represented by orange boxes, which act on blocks of
` × ` sites (in the picture ` = 4). The upper open legs correspond to the individual sites the unitaries act on, connected legs

indicate tensor contractions and the lower open legs correspond to the approximate l-bit basis. b, Evaluation of τ̃zi = ŨΣzi Ũ
†.

Σzi is represented by a violet sphere. All unitaries apart from the violet ones (causal cone) cancel, rendering τ̃zi non-trivial on
a plaquette of size 2`× 2`. For simplicity, we depict ` = 2.

ficiently approximated by a tensor network (TN)42–44

where all eigenstates can be represented as matrix prod-
uct states45–47. Throughout this work, we consider shal-
low quantum circuits, which are TNs which can be con-
tracted efficiently in any dimension. They are composed
of layers of local unitaries with each unitary acting on a
finite contiguous block of spins31. For the optimal set of
local unitaries, the TN transforms the Hamiltonian into
a predominantly diagonal form. This approach has been
successfully implemented for large systems to estimate
the location of the phase transition in one dimension31

and used analytically to prove the robustness of time re-
versal symmetry protected MBL phases48. This method
can also be used to construct the l-bits close to the MBL
transition49.

In dimensions greater than one, the l-bit phenomenol-
ogy can break down due to resonant interactions which
destroy the exact conservation of the set of quasi-local
operators22–24 τzi . As a result, for a finite-size system
thermalization can be restored at late times. However,
if local operators remain approximately conserved, the
system displays features analogous to MBL on experi-
mentally relevant time scales. Unlike in one dimension
where the l-bits are exactly conserved due to the suppres-
sion of resonances even for a finite system size, in higher
dimensions the proliferation of resonances is believed to
be exponentially sensitive to perturbations. Therefore,
MBL giving rise to a stable quantum phase may only be
well-defined as the system size tends to infinity, although
there are arguments in favor of instability of MBL even

in this asymptotic limit23,24. We use the semantics of
quantum phase transitions to describe the features in our
finite-size calculations, even though our numerical inves-
tigation may not capture this asymptotic limit. However,
the error in our approximation provides a lower bound on
the time scale over which local observables will decay in
this system. Hence, while not answering the question of
the existence of exact l-bits in two dimensions, we expect
our approach to describe the experimentally observed lo-
calization phenomena. Indeed, the conditions required
to confirm the breakdown of conservation of these quasi-
local operators likely require measurements for astronom-
ically long times for a physical choice of parameters29.

Tensor network ansatz
We propose a shallow TN capable of approximating the
two-dimensional localized phase. It encodes a unitary
Ũ which approximately diagonalizes the Hamiltonian H.
We consider an N × N lattice with periodic boundary
conditions. The TN is composed of two layers of smaller
unitaries ux,y,z acting on ` × ` sites (` even) as shown
in Fig. 1a. It is a natural extension of the ansatz in
Ref. 31. The approximately conserved operators τ̃zi are

given by τ̃zi = ŨΣzi Ũ
† (Σzi is the spin-z operator at site

i). These operators commute mutually by construction.
τ̃zi approximates τzi , which is itself expected to be only
approximately conserved, but acts as a local memory on
the experimentally relevant time scales. Hence, the TN
can be optimized by minimizing the (squared) trace norm
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FIG. 2. a, Quantum circuit used to approximate the unitary diagonalizing the Hamiltonian on a 4×4 lattice with open boundary
conditions. b, Probability density of the overlaps of the exact and matched approximate eigenstates. (p is normalized such
that it integrates to 1.) The inset shows the result for ∆ = 40.

of the commutator with the Hamiltonian,

f({ux,y,z}) =
1

2N2+1

N2∑
i=1

tr
(
[H, τ̃zi ][H, τ̃zi ]†

)
=

1

2N2

N2∑
i=1

(
tr(H2(τ̃zi )2)− tr((τ̃zi H)2

)
. (1)

τ̃zi corresponds to the TN contraction shown in Fig. 1b,
which is non-trivial only in the region covered by the
unitaries ux,y,1, ux,y,2, ux+1,y,2, ux,y+1,2, ux+1,y+1,2. As a
result, for a nearest-neighbor Hamiltonian, Eq. (1) de-
composes into local parts,

f({ux,y,z}) = const.

−
N/`∑
x,y=1

fx,y(ux,y,1, ux,y,2, ux+1,y,2, ux,y+1,2, ux+1,y+1,2).

(2)

The explicit representation of fx,y as a fully contracted
TN can be found in Methods (Sec. I). In the general case,
the length of the region within which τ̃zi is non-trivial
is of order `. Therefore, in the MBL regime, the error
in representing τzi is expected to decrease exponentially
with `.

Simulation of the experimental model
In the following, we use our TN approach to investigate
the MBL phase in a two-dimensional optical lattice29,36.
The phase transition was determined experimentally by
measuring the loss of memory of the initial conditions of
bosonic Rubidium-87 atoms in a random optical poten-
tial. The dynamics of the atoms can be modeled by the

disordered Bose-Hubbard Hamiltonian

H = −J
∑
〈i,j〉

(a†iaj + a†jai) +
∑
i

(
U ′

2
ni(ni − 1) + δini

)
,

(3)

where the nearest neighbor links 〈i, j〉 are counted once

for each pair (i, j), ai (a†i ) are bosonic annihilation (cre-

ation) operators and ni = a†iai is the particle number
operator. δi is a random variable chosen from a Gaus-
sian distribution with full-width half-maximum ∆, and
we fix the energy scale through J = 1. Note that we
neglect the trapping potential, as we are interested in
the phase transition in the bulk of the system, i.e., the
center of the trap. We truncate the on-site occupation
number to nmax, which is an approximation suitable to
describe the experiments where higher occupation num-
ber states are rarely encountered. (Experimentally, only
up to 17 % of atoms are in doubly occupied sites36.) We
perform calculations for nmax = 1 (corresponding to hard
core bosons or spin- 1

2 particles) and nmax = 2 (spin-1).
In order to benchmark our method, we compared the

optimized approximate eigenstates with the exact ones
for a 4 × 4 system with open boundary conditions for
` = 2 and nmax = 1 using 30 disorder realizations for
various ∆, cf. Fig. 2. In the thermal phase, but close to
the phase transition (which we will later determine to be
at ∆c ≈ 19), the overlap distribution has a double peak
structure of poorly approximated eigenstates and well
approximated eigenstates. This indicates the presence of
both delocalized eigenstates, which our TN ansatz fails to
capture, and localized eigenstates, which it approximates
well even in the thermal phase. This is the underlying
reason why we were able to obtain the mobility edge, as
outlined below. In the localized phase (∆ > 20), almost
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FIG. 3. a, b: Probability density of the on-site entropies for all eigenstates, disorder realizations and site positions for nmax = 1.
c, d: Probability density of the corresponding on-site occupations. The distributions are only shown for 0 ≤ ρ11 ≤ 0.5, as they
are symmetric around ρ11 = 0.5. The insets are enlargements to show the bimodal features more clearly.

all approximate eigenstates have more than 50 % overlap
with the exact ones.

Signatures of the MBL transition
Our calculations were all carried out using ` = 2 (which
in one dimension gives already a fairly good approxima-
tion of the critical point of the disordered Heisenberg
model31). A hallmark of the localized phase is the local-
ity of entanglement even in the presence of interactions.
A single site i is only weakly coupled to its environment
i and the reduced density matrix ρ = Trī (|ψm〉〈ψm|) of
an eigenstate |ψm〉 remains close to a pure state. On the
other hand, in the thermal phase, a single site is maxi-
mally entangled with its environment. We calculated the
on-site entanglement entropies (S) for 30 disorder realiza-
tions on a 10× 10 lattice (nmax = 1) for various disorder
strengths ∆. Those entropies can be computed efficiently

as explained in Methods (Sec. V). Their distributions
are displayed in Fig. 3a,b. For ∆ ≈ 20, the distribu-
tion is bimodal with a sharp peak at S = 0 along with a
broad maximum at lower values of S. This provides evi-
dence for the phase transition from the MBL to the ther-
mal regime. The bimodality indicates the co-existence
of highly localized states with low entanglement and de-
localized states with larger entanglement in the critical
regime. This resembles the behavior around the critical
point of one-dimensional models exhibiting MBL50. In
contrast, for ∆ ≥ 40, the distribution is mostly concen-
trated in a single peak at S = 0, where delocalized states
are absent. Note that the peak at ln(2) ≈ 0.69 appears
because of a singularity in the map from the on-site oc-
cupation ρ11 = 〈ni〉 to the entropy S at ρ11 = 0.5. The
distribution of ρ11 is shown in Fig. 3c,d to provide data
which can be compared to time-averaged atomic micro-
scope measurements. It has no peak at ρ11 = 0.5.
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FIG. 4. Variance of the entropy as a function of ∆ for 30 dis-
order realizations. Blue circles correspond to the hard-core
limit nmax = 1 and the other data points to nmax = 2. For
nmax = 1, the entropies were averaged over all approximate
eigenstates and for nmax = 2 over 104 approximate eigenstates
per lattice site (symbols are bigger than the sampling error).
After evaluating the variance of the average on-site entropy
with respect to disorder realizations, the average over sites
was calculated to improve smoothness31. The inset shows an
enlargement of the maximum for nmax = 1 and a cubic fit,
indicating a transition at ∆nmax=1

c = 18.3. Fits with sim-

ple rationals of polynomials yield similarly ∆U′=2
c = 31 and

∆U′=8
c = 52.

We also computed the reduced density matrices ρ2×2

of all 2× 2 plaquettes and extracted their entanglement
spectra. They also display a double peak structure, which
for ∆ > 20 is consistent with a localized phase (see Meth-
ods, Sec. V).

In order to locate the critical point more precisely,
we evaluated the variance of the on-site entanglement
entropies with respect to different disorder realizations
shown in Fig. 4: For nmax = 1, it peaks at ∆nmax=1

c =
18.3. For nmax = 2, the entropy fluctuations using 30
disorder realizations and 6 × 6 lattices indicate MBL-
to-thermal transitions at ∆U ′=2

c = 31 and ∆U ′=8
c = 52,

respectively. Note that the maxima get broader with
increasing U ′ due to the separation of energy scales be-
tween hopping and interaction terms, making it harder
to track down the transition point numerically.

Yet another compelling evidence for MBL-like behavior
is the fact that the optimized quantum circuit displays a
mobility edge, which we calculated as follows: The on-site
entropies depend only on the (approximate) l-bit config-
uration in a 4 × 4 region around the corresponding site.
Local energy contributions behave similarly. In contrast,
by changing the l-bit indices outside the 4 × 4 region,
the overall energy can be changed while keeping the on-

site entropy invariant. We thus fixed those outer l-bits
by averaging the total energy expectation value over all
of them, giving rise to a local energy (up to an overall
offset). For each 4 × 4 region, those local energies were
rescaled such that they lie between 0 and 1, resulting in
the quantity εloc. This procedure is different from con-
ventional ways of calculating the mobility edge, where
the half-cut entanglement entropy is evaluated for cer-
tain total energy windows. For nmax = 1 we evaluated
the full set of l-bit configurations within the 4×4 regions
and for nmax = 2 we sampled over 104 configurations
for each one. Based on that, we calculated the entropy
fluctuation with respect to disorder realizations within
certain energy windows [εloc, εloc + dεloc]. The disorder
strengths ∆max with maximal entropy fluctuations yield
the mobility edges shown in Fig. 5.

When comparing to experimental results, one has to
keep in mind that experiments so far were carried out at
half filling (or less)29,30,36. For the Hamiltonian whose
local boson number is truncated to nmax ≥ 2, eigenstates
with smaller filling have smaller energy. Experimentally,
any number of bosons can be located at a given site,
though such states are exponentially rare and will thus
not be discernible in the dynamics. This effectively in-
duces a maximal on-site occupation number. Hence, also
in the experiment, lower fillings correspond to lower en-
ergies and, due to the mobility edge, to lower measured
transition points29. Since our method yields an approx-
imation of all eigenstates at once, our transition points
are weighted averages over fillings. Those weights are
given by a binomial distribution, i.e., the vast majority of
eigenstates encoded in the unitary matrix Ũ have filling
fraction close to nmax/2. Therefore, our predicted tran-
sition points refer to experiments carried out at filling
fraction nmax/2. Thus, we have to compare the experi-
ments of Refs. 29 and 36 to our nmax = 1 results: Ex-
perimentally, ∆c = 5.3 was obtained first29, although the
measured equilibration times may depend significantly on
the wavelength of CDW initial states, which would thus
affect the location of the observed critical point30,36. Our
prediction of ∆c ≈ 19 at half filling will possibly be borne
out in experiments using initial CDW states with shorter
wavelengths, where the relaxation is dominated by local
equilibration. For such initial states, we expect the mea-
sured critical point to move to disorder strengths ≥ 50
(for U ′ ≥ 8) for filling fraction 1.

Finally, for nmax = 1 we calculated the density-density
correlation function C(r = |i − j|) = 〈ninj〉 − 〈ni〉〈nj〉,
which is non-vanishing within a 6× 6 region around site
i within the TN approximation. The results for the cor-
relation length ξ in the strong disorder limit are shown
in Fig 6. They indicate a slow decay, ξ ≈ a/ ln(∆) with
a = 0.93±0.07, the same as in one dimension. This find-
ing can be verified in optical lattice experiments with
strong disorder and half filling. To provide further data
which can be tested experimentally, we also calculated
the transition point for random disorder taken from a uni-
form distribution [−∆uni,∆uni]; we obtain ∆uni

c = 10.6
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FIG. 5. Mobility edge for nmax = 1 (a) and nmax = 2 (b) obtained as explained in the main text. The extremal points of the

mobility edges yield ∆nmax=1
c = 19.0, ∆U′=2

c = 33 and ∆U′=8
c = 52.

FIG. 6. Dependence of the correlation length ξ on the dis-
order strength ∆ for nmax = 1. The upper right inset shows
the eigenstate (100 samples), site and disorder averaged cor-
relation C for ∆ = 60 as a function of distance r. The sites
are separated along horizontal or vertical direction (indicated
by different colors; error bars are smaller than the symbol
size). The lower left inset displays the correlation length ξ as
a function of 1/ ln(∆). The dashed line represents a fit with
ξ ∝ 1/ln(∆) to all data points with ∆ ≥ 60.

for nmax = 1, see Methods (Sec. VI).

Conclusions
We have presented the first large-scale numerical study

of eigenstates in the MBL regime of the disordered Bose-
Hubbard model in two dimensions using shallow quan-
tum circuits. By characterizing the statistics of entangle-
ment as a function of disorder, the location of the tran-
sition into the thermal phase has been estimated. The
mobility edge displayed by our optimized tensor networks
reflects the characteristics of a thermal-to-MBL transi-
tion, which further supports our conclusions.

Our work has important consequences for experiments
with ultra-cold atoms studying quench dynamics in the
presence of disorder. It provides an estimate of the MBL
transition point in two dimensions for filling fraction 1
as a function of interaction strength, which can be veri-
fied in these experiments. We also presented quantitative
predictions for the strongly disordered regime, which are
expected to match experimental measurements to high
accuracy. Large-scale simulations with higher ` will fur-
ther elucidate the nature of the MBL regime in two di-
mensions.
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Appendix A: Decomposing the commutator norm
into local parts

Here, we describe the contraction scheme to evaluate
the commutator norm as defined in Eq. (1). We assume
that the Hamiltonian is a sum of nearest neighbor terms,
H =

∑
k hk. In that case, the two terms in the final

expression of Eq. (1) are

tr
(
H2(τ̃zi )2

)
=
∑
k,l

tr
(
Ũ(Σzi )

2Ũ†hkhl

)
. (A1)

and

tr
(
(τ̃zi H)2

)
=
∑
k,l

tr
(
ŨΣzi Ũ

†hkŨΣzi Ũ
†hl

)
, (A2)

respectively. Using the representation for τ̃zi shown in
Fig. 1b (which is non-trivial only in the region covered by
the unitaries ux,y,1, ux,y,2, ux+1,y,2, ux,y+1,2, ux+1,y+1,2),
the right side of Eq. (A2) can be evaluated as shown in
Fig. 7. The right side of Eq. (A1) can be written as a
similar tensor network contraction (this is most obvious if

one inserts Ũ Ũ† between hk and hl leading to an expres-
sion which is formally equivalent to Eq. (A2)). Therefore,
f({ux,y,z}) can be expressed as in Eq. (2).

The tensor network contraction of Fig. 7 is carried
out most efficiently as follows. First, one combines uni-
taries and their adjoints (shown in the same color in
Fig. 7) to new tensors. If there is no other tensor be-
tween them, this obviously results in the identity. In

contrast, ux,y,1 will be combined with u†x,y,1 and Σzi to
form a new tensor Z. The other tensors might have to be
combined with the Hamiltonian terms hk and hl, respec-
tively. The resulting tensor network is shown in Fig. 8.
A special case is the one of k = l with the two Hamilto-
nian terms being connected by a separate line if they do
not lie entirely within the region covered by the unitaries
ux,y,2, ux+1,y,2, ux,y+1,2, ux+1,y+1,2. This squares the di-
mension of the index contraction corresponding to one of

FIG. 7. Characteristic example of the tensor network con-
traction tr (τ̃zi hk τ̃

z
i hl) yielding a non-trivial contribution to

Eq. (A2), i.e., a contribution depending on the unitaries
{ux,y,z}. The figure is obtained by sandwiching two tensor
networks τ̃zi as shown in Fig. 1b with the nearest neighbor
terms hk (red ellipses). Due to the trace, the lines’ upper and
lower ends have to be pairwise contracted. Disconnected ver-
tical lines have been ignored. After taking the trace, each of
them leads to an overall prefactor of 2. For the computation-
ally most efficient contraction, one first combines unitaries of
the same color and includes hk and Σzi connected to them,
leading to Fig. 8. In the specific example in the picture, this
is achieved by tracing out the left index of the upper Hamil-
tonian term and by splitting the lower Hamiltonian term into
two on-site terms hL, hR using a singular value decomposi-

tion, hl =
∑
µ h

(µ)
L h

(µ)
R , and summing over the tensor net-

works indexed by µ. The strategy of contracting the tensor
network is thus the same as in Ref. 31.
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the lines in Fig. 8. The leading contribution to the com-

putational cost stems from the multiplication of 2`
2×2`

2

matrices, i.e., it scales as 23`2 . As the number of tensor
network contractions of the type shown in Fig. 8 is in-
dependent of the system size, each term fx,y contributes

23`2 to the overall computational cost, which is thus of

order N223`2 .
The derivative of our figure of merit can be calculated

easily by cutting out the unitary matrix ux,y,z with re-
spect to which the derivative is taken. Afterwards, one
contracts the tensor network of Figs. 7 and 8 in such
an order that the removed unitary would come last, cf.
Ref. 31. This comes at a subleading increase of compu-
tational cost.

Appendix B: Optimization method

We take advantage of the symmetries of the considered
model in order to reduce the number of parameters: The
Hamiltonian is real and possesses U(1) symmetry, i.e.,
particle number conservation in the experimental model
Eq. (3) and spin-z conservation in its spin representation,
[H,
∑
i Σzi ] = 0. In general, such global symmetries can

be imposed on the individual tensors which make up the
tensor network without much loss of accuracy51,52. We
do so by taking real unitary matrices ux,y,z, i.e., orthog-
onal matrices, which on top of that preserve the spin-z
component individually, [ux,y,z,

∑
i∈�`×`

Σzi ] = 0. Both

taken together imply that the unitaries must have a block
diagonal form (in the spin-z basis),

ux,y,z =
⊕
b

eA
(b)
x,y,z , (B1)

where A
(b)
x,y,z = −A(b)>

x,y,z, a skew-symmetric (real) matrix.
In each minimization run, the unitaries are initialized as
identities and optimized using a quasi-Newtonian routine
supplied by the derivative with respect to the parameters.
We optimize one unitary at a time and sweep alternately
over all the columns and all the rows of the N×N system
(starting each sweep at site (1, 1)).

We verified numerically that no significant loss of ac-
curacy occurs compared to a full parameterization of the
unitaries.

Appendix C: Increasing the system size

As the figure of merit decomposes into a sum of local
parts, the expectation is it increases linearly with the
system size on average. We confirmed this by studying
30 disorder realizations at ∆ = 40 for nmax = 1 as a
function of system size for periodic boundary conditions,
see Fig. 9a.

FIG. 8. Tensor network obtained after blocking matrices of
the same color in Fig. 7 together (note that most of those new
tensors will be identities). The lines’ upper and lower ends
have to be thought of as connected. One way of contract-
ing the tensor network is by first contracting the tensors A1

and A2, B1 and B2, C1 and C2, D1 and D2, resulting in new
tensors A12, B12, C12, D12, respectively. The involved compu-

tational cost is of order
(

2`
2/2
)2
·23`2/2 = 25`2/2. Thereafter,

one combines adjacent tensors (e.g., A12 and B12, C12 and
D12) and contracts one of the resulting tensors with the lower
Z and the other tensor with the upper Z. Afterwards, the
two obtained tensors are contracted, giving the desired over-
all contraction result. All those contractions have a compu-

tational cost of order
(

2`
2
)2

2`
2

= 23`2 .



9

a

b

FIG. 9. a, Average optimized figure of merit as a function of
system size N2 for ` = 2, disorder strength ∆ = 40 and 30
disorder realizations for each size. The dashed line indicates a
linear fit. The errors of the mean are smaller than the symbol
size. b, Average figure of merit as a function of disorder
strength ∆ for a 10 × 10 lattice using ` = 2 and 30 disorder
realizations. The errors of the mean are smaller than the
symbol size.

In the MBL regime, eigenstates can be described by
effective spin degrees of freedom22 τzi , which have expo-
nentially decaying non-trivial matrix elements as a func-
tion of distance and commute approximately with the
Hamiltonian. Therefore, for sufficiently large systems,
we gain the following picture: All effective spin degrees
of freedom which are located at a distance r from a given
region contribute to local properties of that region by
an amount of order 22πre−r/ξL . Hence, their contribu-
tion vanishes exponentially with distance r and the er-
ror made by approximating the eigenstates in terms of
strictly short-range tensor network l-bits is independent
of the system size. In other words, local observables can

be approximated with a constant accuracy using our TN
if the system size is increased. Note that at the same
time the computational cost grows linearly with system
size.

Appendix D: Accuracy as a function of disorder
strength

We also investigated the accuracy of our approxima-
tion as a function of disorder strength ∆ for 30 disorder
realizations. For different ∆, only the overall strength
of the random magnetic fields was adjusted to enhance
comparability. The optimized figure of merit is shown in
Fig. 9b. We find a strong, monotonic increase of the error
with decreasing ∆, especially below ∆ = 50. Notwith-
standing, a concrete picture of the phase transition can
only be gained from the distribution of entanglement en-
tropies.

Appendix E: Calculation of the entanglement
entropies and spectra of 2× 2 blocks of sites

In the following, we explain how the reduced density
matrices of 2 × 2 plaquettes of approximate eigenstates
given by our tensor network can be calculated efficiently.
The computation of single-site reduced density matrices
is a special case thereof. We will focus on the case of 2×2
plaquettes connecting four unitaries of the upper layer,
which is the hardest one to evaluate. Other positions of
the 2× 2 blocks can be treated in a simplified way.

A 2 × 2 reduced density matrix of a given approxi-
mate eigenstate can be graphically represented by taking
the tensor network in Fig. 1a, fixing its lower indices
according to the l-bit configuration of that approximate
eigenstate and contracting it with its adjoint from above,
leaving only the legs in the chosen 2×2 region open. After
cancelling unitaries with their Hermitian conjugates, one
obtains the tensor network contraction shown in Fig. 10a
(for ` = 2). Even though this tensor network is non-
trivial in a Hilbert space of dimension d36 (d : Hilbert
space dimension of a single site), its tensors can be con-
tracted in such an order that the computational time is
only of order d16, cf. Fig. 10b.

In Fig. 11 we present the data for the distribution of
entropies and on-site occupations for U ′ = 2. Finally, we
calculated the distribution of the entanglement energies
for 2 × 2 plaquettes and nmax = 1 as well as nmax = 2,
U ′ = 2: The entanglement energies are the eigenval-
ues λk of the entanglement Hamiltonian Hent defined
via ρ2×2 = exp (−Hent). The corresponding distribu-
tions are shown in Fig. 12. They have a double-peak
structure throughout with a narrow maximum at small
entanglement energies and a broad maximum at higher
entanglement energies {λk}. The former moves towards
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a b

FIG. 10. Calculation of reduced density matrices of 2 × 2 plaquettes for ` = 2. We show the computationally hardest case,
where the 2× 2 region connects four unitaries of the upper layer of the tensor network. a, The indices of the lower and upper
open legs are identical and given by the approximate l-bit configuration of the specific state under consideration. The thick
open legs in the middle are the indices of the reduced density matrix. We first contract the red and green unitaries of the lower
layer with their counterparts in the upper layer, resulting in the tensor network shown in b. After that, we contract every
green tensor with the respective orange unitaries it is connected with. Then, we contract each of the resulting tensors with
one of the red tensors leaving four big tensors. Thereafter, one contracts two pairs of such big tensors and the resulting two
tensors first with the blue tensors and finally the new big two tensors with each other. The last step of the contraction is most
expensive, corresponding to the multiplication of a d4 × d8 matrix with a d8 × d4 matrix (computational time ∼ d16).

zero and the latter towards infinite entanglement energies
with increasing ∆. The behavior of the narrow maximum
is consistent with findings using exact diagonalization in
one dimension53. However, in that reference, the broad
maximum is observed only in the MBL phase and close
to the transition. It is also found to move to larger entan-
glement energies with increasing disorder strength. It is
thought to be a remnant of the critical regime even deep
in the localized phase. We obtain a broad maximum for
small ∆, too, presumably because the optimized tensor
network does not fully capture the delocalized phase, and
instead displays critical features there also.

Appendix F: Transition for random potentials
chosen from a uniform distribution

We carried out a series of tensor network optimizations
for the Hamiltonian of Eq. (3) and nmax = 1 with the
random disorder potential δi given by a uniform distri-
bution from the interval [−∆uni,∆uni]. We used 30 disor-
der realizations per disorder strength ∆uni for a 10× 10
lattice and calculated the entropy fluctuation and mo-
bility edge in the same way as in the main body. The
results are shown in Fig. 13. They indicate a cirtical dis-
order strength of ∆uni

c = 10.6. This value is smaller than
what one might anticipate after acounting for the dif-
ferent variances: The variances are σGaussian = ∆

2
√

2 ln(2)

and σuniform = ∆uni
√

3
. Hence, one would expect a transi-

tion at 1
2

√
3

2 ln(2)∆c = 0.736 × 19 = 14 for the uniform

distribution. The probability density of on-site entropies
has again a clear bimodal distribution near ∆uni

c (not
shown), consistent with an MBL-to-thermal transition.
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a b

c d

FIG. 11. a, b, Probability density of on-site entanglement entropies for U ′ = 2, nmax = 1 and 30 disorder realizations. c,
d, Probability density of the corresponding on-site occupation 〈n〉 = ρ11 + 2ρ22 (where ρ is the 3 × 3 on-site reduced density
matrix). The only discernable feature is that with increasing ∆, the occupation expectation values tend to integer values, i.e.,
the sites increasingly disentangle from each other.
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