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Inspired by the creation of a fast exchange-only qubit [Medford et al., Phys. Rev. Lett. 111, 050501
(2013)], we develop a theory describing the nonlinear dynamics of two such qubits that are capacitively
coupled, when one of them is driven resonantly at a frequency equal to its level splitting. We include
conditions of strong driving, where the Rabi frequency is a significant fraction of the level splitting,
and we consider situations where the splitting for the second qubit may be the same as or different than
the first. We demonstrate that coupling between qubits can be detected by reading the response of the
second qubit, even when the coupling between them is only of about 1% of their level splittings, and
we calculate entanglement between qubits. Patterns of nonlinear dynamics of coupled qubits and their
entanglement are strongly dependent on the geometry of the system, and the specific mechanism of in-
terqubit coupling deeply influences dynamics of both qubits. In particular, we describe the development of
irregular dynamics in a two-qubit system, explore approaches for inhibiting it, and demonstrate the exist-
ence of an optimal range of coupling strength maintaining stability during the operational time.
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I. INTRODUCTION

Electrically gated quantum dots provide a promising
platform for realizing qubits serving as building blocks
of a quantum computer [1–5]. Two-level systems created
from one or a few electrons in quantum dots have been
experimentally isolated, initialized, and coherently manip-
ulated. Such qubits were fabricated from single [6–10],
double [11–14], and triple quantum dot [15,16] structures.
Reduction of decoherence is achieved by applying dynami-
cal decoupling techniques [17–19]. All techniques based on
a single quantum dot or double quantum dots require, for
performing two-axis rotations of the electron spin (or a
pseudospin) on the Bloch sphere, either high-frequency
magnetic fields or magnetic-field gradients (from micro-
magnets or dynamical nuclear polarization), or spin-orbit
coupling. Employing triple-dot qubits allows one to per-
form two-axis rotations by using the Heisenberg exchange
only and completely by electrical means, which allows one
to achieve fast performance by applying voltages to
the gates.
Such an approach based on coded qubits with the total

electron spin S ¼ 1=2 and its projection Sz ¼ 1=2 was pro-
posed by DiVincenzo et al. [20] and realized experimen-
tally by Laird et al. [15]. More recently, two-axis
rotations in such exchange-only qubits and their tomo-
graphic description were achieved [21,22]. A specific prop-
erty of these qubits, requiring nonstandard techniques for
their operation, stems from the fact that their natural

rotation axes are not mutually perpendicular but intersect
at an angle 2π=3 [see Fig. 1(a)]. This is also the case
for the three-electron double-dot qubits of Ref. [13]. For
single-qubit operations, this problem was resolved in
Ref. [24] by tuning the qubit into the resonant exchange
regime, which is defined in Sec. II below. Operations
performed on such a resonant exchange (RX) qubit are very
fast, at a scale of a few nanoseconds, with the Rabi nutation
frequency comparable to the qubit-level splitting. With the
relaxation times T1 ∼ 40 μs and T2 ∼ 1 μs (even without
applying CPMG pulse sequences) [24], this qubit is a
highly promising candidate for developing few-qubit
systems. We take advantage of this separation of time scales
between the operational and relaxation times and concen-
trate on the coupled dynamics of two qubits. For a reason-
able magnitude of interqubit coupling, the duration of
two-qubit operations is within the window of coherent
operation.
Similarly to single- and double-dot qubits [9,12,25], the

next step is achieving two-qubit entanglement, and the first
proposals for capacitively [26] and exchange [27] coupled
double RX qubits have already been made. Establishing
entanglement between two qubits is a demanding task,
and in this paper, we propose and pursue in depth a protocol
based on resonant driving of one of the qubits (qubit A) at
its level splitting and measuring the response of the second
qubit (qubit B) to the electrical signal produced by qubit A.
Therefore, qubit B serves as a detector of coupling between
the two qubits. In the discussion below, we examine several
models of capacitive coupling between qubits. This cou-
pling, in the absence of external mechanisms, keeps both
qubits inside their logical spaces.
First, our analysis shows that not only the magnitude of

the signal induced in qubit B but also a gross pattern of its
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dynamics depend critically on the specific geometry of
interqubit coupling and its strength. There is an optimal
range of the coupling strength because at stronger coupling
(albeit rather modest) dynamics of the two-qubit system
might become irregular. Second, the backaction of qubit
B onto qubit A, an essential part of entanglement,
profoundly influences its own dynamics. Third, the
crossed-axis geometry of both qubits, while not critical
for the single-qubit operation, significantly affects the cou-
pling between qubits and two-qubit dynamics. In particular,
a specific choice of the mechanism of interqubit coupling,
Figs. 1(b)–1(d), is critical for the spectrum of frequencies
dominating the dynamics of coupled qubits and avoiding
early switching to the irregular regime. While our analysis
was performed for capacitive coupling, it has implications
also for exchange coupling between qubits.
In what follows, we apply our protocol to three different

schemes of capacitive coupling between two exchange-
only qubits and demonstrate spectacular differences in their
dynamics.

II. SINGLE EXCHANGE-ONLY QUBIT

An exchange-only qubit is a three-electron triple quan-
tum dot with Zeeman-split-energy levels operated in the
regime where the total electronic spin S ¼ 1=2 and its
projection onto the magnetic field is Sz ¼ 1=2 [15,20].
Its resonant exchange modification is operated in the

parameter range where the two-dimensional qubit space
is well separated from the other states of the system, includ-
ing all S ¼ 3=2 states and S ¼ 1=2, Sz ¼ −1=2 states [24].
In what follows, the three dots of each of the qubits are

designated asL,M, andR, for the left,middle, and right dots.
As outlined in more detail in Appendix A, basic pro-
perties of the qubit can be described in the framework of a
Hubbard model whose basis includes two states, (201) and
(102), with inhomogeneous charge distributions, and
two “neutral" (111) states; the numbers show populations
of ðL;M;RÞ dots. An electron pair in a doubly occupied
dot is inasinglet state since triplet statesareessentiallyhigher
in energy. The effective Schroedinger equation for this
Hubbard model is for a four-spinor ðvL; v0; v1; vRÞT defined
by Eq. (A5) of Appendix A; here, T stands for transpose.
Exchange-only qubits operate predominantly in the

(111) region, with (201) and (102) serving mostly for ini-
tialization and projective measurements. However, an
admixture of these states is critical for operation of the
qubit and the interqubit coupling. In the center of the
(111) region, the ground state of the qubit is j0i ≈
1ffiffi
6

p ðj↑↑↓i þ j↓↑↑i − 2j↑↓↑iÞ, and its excited state is j1i≈
1ffiffi
2

p ðj↑↑↓i − j↓↑↑iÞ when written in terms of the electron

spins on dots L, M, and R. Exact qubit states include small
admixtures of (201) and (102). Resonant exchange qubits
operate near the center of the ð111Þ region where the (201)
and (102) components are small and can be projected out.
Then, the effective 2 × 2 qubit Hamiltonian acting in the
ðj0i; j1iÞ space is

Ĥq ¼ − Jz
2
σz − Jx

2
σx; (1)

where ðσz; σxÞ are Pauli matrices of the qubit pseudospin
(for brevity, we use the term spin in what follows) acting
in the qubit space. The exchange integrals are

Jz¼
t2L

UþV
þ t2R
U−V

; Jx ¼
ffiffiffi
3

p �
t2R

U−V
− t2L
UþV

�
; (2)

where the tunneling matrix elements tL and tR connect the
(111) sector to (201) and (102) states, respectively, U > 0
is a single-site repulsion energy, and V and −V are poten-
tials applied to the left and right dots. The V terms in the
denominators reflect the effect of the j201i and j102i com-
ponents of the spinor. Equations (1) and (2) are applicable
when tL=U, tR=U ≪ 1; see Appendix A for details.
In our discussion, we set ℏ ¼ 1, and we refer to Jz as the

qubit-level splitting. The resonant-exchange qubit operates
in the regime tL ¼ tR near the point V ¼ 0, where Jx ¼ 0
and Jz is stationary, dJz=dV ¼ 0. For simplicity, we disre-
gard the dependence of tL and tR on V. As seen from
Eq. (1), matrices ðσx; σzÞ perform single-qubit rotations
about the axes orthogonal in the qubit space.

FIG. 1 (color online). (a) Bloch sphere of the exchange-only
qubit. êL and êR are unit vectors for the left and right rotation
axes. They are eigenvectors of the Hamiltonian of Eq. (1) with
tL ¼ 0 and tR ¼ 0, respectively. (b) R-L geometry: Nearest-
neighbor capacitive interaction between the right dot of qubit
A and the left dot of qubit B. (c) M-L geometry: Coupling be-
tween the middle dot of qubit A and the left dot of qubit B.
(d) M-M geometry: Coupling between the middle dots of qubits
A and B. Blue and green dots represent qubits A and B, respec-
tively. JAB is the interqubit coupling constant.
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III. INTERQUBIT COUPLING

Assuming the qubits are operated in a regime when tun-
neling between qubits A and B is negligible, the qubit-qubit
interaction is capacitive through the electrostatic charges.
The dots in qubits A and B are arranged in such a way that
exchange coupling inside each of the qubits exists only
between adjacent dots, but we consider three geometries,
as shown in Figs. 1(a)–1(c). They differ in the capacitive
coupling between qubits, and in all cases, we consider only
the capacitive coupling between two adjacent dots belong-
ing to different qubits. This provides us with three models
that show rather different two-qubit dynamics, as shown in
Sec. IV below. In each of the geometries, we use symbols
L, M, and R to numerate dots inside qubits.
We begin with a linear array of Fig. 1(b), where the right-

most dot of A is proximate to the leftmost dot of B. The
excess electron densities δnα at the edges of these qubits
are equal to jvARj2 and jvBLj2 and can be conveniently
expressed in terms of the amplitudes (v0, v1) of the corre-
sponding qubits using the first and fourth rows of Eq. (A6).
In terms of the unit vectors êL and êR of Fig. 1(a), defined
as êL ¼ ð− ffiffiffi

3
p

=2; 1=2Þ and êR ¼ ð ffiffiffi
3

p
=2; 1=2Þ by their

Cartesian coordinates in the xz plane, the excess electron
densities on the edge dots are

δnα ¼ 2
t2α
U2

jðêα · vÞj2; v ¼
�
v0
v1

�
; (3)

where α ¼ L, R. Because of neutrality, δnM ¼ −ðδnLþ
δnRÞ. Hence, charges on the outermost dots are proportional
to squares of projections of spin wave functions onto the
tilted axes. Even though the single-qubit gate operations
are immune to the nonorthogonality of ðêL; êRÞ axes, the
electriccharges, and therefore the interactionbetweenqubits,
are affected by it. The qubit-qubit interaction expressed in
terms of the wave-function amplitudes of qubits A and B
when it is dominated by excess charges on the right dot of
A and the left dot of B [see Fig. 1(b)] is

Hint ¼
e2

κR
δnARδn

B
L ¼ 4JABjðêR · vAÞj2jðêL · vBÞj2; (4)

where JAB ¼ ðe2=κRÞðtARtBL=U2Þ2. Here, κ is the dielectric
constant, andR is the distance between neighboring end dots
of qubitsA andB.Having inmind a complicatedgeometry of
thesystemandpatternsofscreening,Rcanalsobeconsidered
as an effective coupling constant that should be measured
experimentally.
Equation (4) includes both renormalization corrections

to single-qubit Hamiltonians and interqubit correlations.
Omitting the former contributions as described in
Appendix B, we arrive at the interaction Hamiltonian
in terms of the qubit-spin vector matrices σ A ¼
ðσAx ; σAy ; σAz Þ, and similarly for σ B,

Ĥint ¼ JABðêR · σ AÞðêL · σ BÞ: (5)

We note that Ĥint includes σx and σz matrices of both
qubits.
In the geometry of Fig. 1(c), the M dot of qubit A is

capacitively coupled to the L dot of qubit B. The density
δnAM contributes to the correlation Hamiltonian only by a
factor proportional to σAz because êL þ êR ¼ ẑ [see
Eqs. (B4) and (B5) of Appendix B]. Hence,

Ĥint ¼ −JABσAz ðêL · σ BÞ: (6)

There is one more geometry [see Fig. 1(d)] where two
qubits are coupled through their M dots. Its effective
Hamiltonian is

Ĥint ¼ JABσAz σBz : (7)

The implementation of the CPhase gate using the
Hamiltonian in Eq. (7) can be achieved by following stan-
dard protocols [27].
Three models of Eqs. (5–7) are based on the assumption

of capacitive coupling only between the two closest dots of
A and B qubits. The experimental fact that sensor dots
respond predominantly to charges on the qubit dots closest
to them can serve as a justification for using these models.
From the theoretical perspective, this regularity can be
ascribed to screening of the long-range Coulomb interac-
tion by metallic gates. We expect that the drastic difference
in spin dynamics of these models unveiled in Sec. IV below
will serve to choose optimal geometries of two-qubit
systems.

IV. DYNAMICS AND ENTANGLEMENT

We consider a protocol when both qubits are tuned to
JAx ¼ JBx ¼ 0, with an additional oscillating term JAx =2 ¼
ϵ cosðωtþ φÞ produced by an ac voltage applied between
the outermost dots of qubit A beginning at time t ¼ 0.
Qubit B responds only to a capacitive signal produced
by qubit A, and therefore, dynamics of qubit B is a direct
indication of the coupling between A and B.
To get an outlook of the signal produced by A, we choose

ω ¼ JAz . If the ac perturbation is small, we can solve
the problem analytically in the rotating wave approxi-
mation (RWA) with jψAirot ¼ exp ð−iσAzωt=2ÞjψAi [28].
Subsequently, we transform back to the laboratory
frame, and all the following equations are presented in this
frame.
In the zeroth order in JAB, the solution for qubit A

starting at the north pole of the Bloch sphere at the instant
t ¼ 0 is

vAðtÞ ¼
�

eiωt=2 cosðϵt=2Þ
ie−iωt=2e−iφ sinðϵt=2Þ

�
: (8)
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The components of the spin SA of qubit A on its Bloch
sphere are equal to the mean values of the components
of the σ A matrix, SA ¼ hσ Ai. Projections of the spin along
the ðêL; êRÞ axes give the electron densities entering the
interaction Hamiltonian according to Eqs. (5–7),

SAx ¼ vA0v
A�
1 þ vA�0 vA1 ;

SAy ¼ iðvA0vA�1 − vA�0 vA1 Þ;
SAz ¼ vA0v

A�
0 − vA1v

A�
1 : (9)

Calculation based on Eq. (8) results in

SAx ðtÞ ¼ sin ϵt sin ðωtþ φÞ; (10)

SAy ðtÞ ¼ sin ϵt cos ðωtþ φÞ; (11)

SAz ðtÞ ¼ cos ϵt: (12)

Now, we evaluate the response of qubit B due to the cou-
pling JAB at first order. Comparison of Eq. (12) with
Eqs. (5–7) demonstrates a critical effect of the interqubit
coupling mechanism onto the electric signal driving qubit
B. In the geometry of Fig. 1(b), the spectrum of the signal
includes three frequencies: two Raman frequencies ω� ϵ
coming from Eqs. (10,11) and the Rabi frequency ϵ coming
from Eq. (12). In the geometries of Figs. 1(c) and 1(d) only
the Rabi frequency is present. The dynamics of qubit A at
frequencies that differ from the driving frequency ω stems
from the fact that qubits are anharmonic systems, and it was
already observed in double-dot qubits [29,30].
It is a special property of the geometry of Fig. 1(d) that

qubits are coupled through their M dots, and therefore, the
ac perturbation experienced by qubit B is symmetric rather
than antisymmetric in its L and R dots. When qubit B is
tuned to the point JBx ¼ 0, its effective Hamiltonian is
ĤB

q ¼ ð−JBz =2þ ϵB cos ϵtÞσBz , where the time-dependent
term is a perturbation exerted by qubit A in the RWA (with
ϵB ∼ JAB), and for simplicity, we have chosen the phase
φB ¼ 0. Because ĤB

q commutes with σBz , the z projection
of the qubit spin SB is conserved, SBz ¼ const. Solving the
Schroedinger equation with the initial condition SBx ð0Þ ¼ 1,
SBy ¼ 0, and applying Eq. (9), we arrive at

SBx ðtÞ ¼ cos

�
JBz t − 2

ϵB
ϵ

sin ϵt

�
;

SBy ðtÞ ¼ − sin

�
JBz t − 2

ϵB
ϵ

sin ϵt

�
: (13)

Therefore, SB precesses about the z axis with a phase
modulated by the interqubit coupling JAB.
In the experiments of Ref. [24], the Rabi frequency ϵwas

large and comparable to the qubit-level splitting JAz . Under
such conditions, the accuracy of RWA is reduced, and
Eqs. (10–12) provide only a qualitative outlook onto the

dynamics of qubit A. Therefore, in our simulations pre-
sented below, we solve for the dynamics of qubit A exactly.
These simulations are also necessary to account for the
backaction of qubit B onto qubit A, which provides the
entanglement mechanism.
The magnitude of JAB is highly sensitive to the ratio t=U;

we assume tL ¼ tR ¼ t. If to estimate t=U from JAz ≈
2t2=U with t ≈ 17 μev [24], then t=U ≈ 4 × 10−2, with
the qubit-level splitting ≈ 1.4 μev. JAB estimated with κ ≈
10 and R ≈ 200 nm is about JAB ≈ 10−3JAz . However, dif-
ferent estimates result in larger values of t=U [31], and our
simulations were performed for JAB=JAz of about 10−2,
which seems realistic. In practice, however, the coupling
JAB should be obtained from experiment. An important
purpose of the protocols proposed in this paper is to enable
a measurement of this coupling.
The RX qubit Hamiltonian for quantum dots in GaAs

includes, besides the dominant Heisenberg exchange,
two additional contributions from spin-orbit and hyperfine
interactions [26,32–34]. However, with JAz , JBz , ϵ ≫ T−1

1 ,
T−1
2 as in the experiments of Ref. [24], and a similar

inequality for JAB, we disregard dephasing and spin relax-
ation produced by these perturbations, which is a subject of
future work. Therefore, our results describe coherent
dynamics of two entangled qubits. Under these conditions,
a two-qubit system that starts at t ¼ 0 in a product state
evolves as a pure two-qubit state jψABi. Entanglement
between qubits manifests itself through the Schmidt
decomposition of jψABi in terms of single-qubit states [3],

jψABi ¼
X2
i¼1

cijψA
i ijψB

i i; (14)

with ci ≥ 0,
P

ic
2
i ¼ 1. Entanglement can be quantified in

terms of reduced density matrices ρA ¼ TrBρAB and
ρB ¼ TrAρAB, where ρAB ¼ jψABihψABj, and partial traces
are taken over the states of qubits B and A, respectively. The
von Neumann entropy associated with the reduced density
matrices is a measure of entanglement in the system
[35,36],

E ¼ −TrðρA log2 ρAÞ ¼ −TrðρB log2 ρBÞ
¼ −

X
i

c2i log2 c
2
i : (15)

The entanglement E takes its maximum value E ¼ 1
for c1 ¼ c2 ¼ 1=

ffiffiffi
2

p
.

Below, we present simulation results for the geometries
of Figs. 1(b) –1(d). We perform our simulation in the qubit
space where the interaction Hamitonian is given in terms of
Pauli matrices. The total Hamiltonian governing the qubit
evolution is Ĥq þ Ĥint. The ode15s function on MATLAB
was used to evaluate the results. It is a variable-order solver
that employs the Gear’s method for solving differential
equations and is suited for solving stiff problems.
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Dynamics of spin SB reflects the strength of the coupling
between qubits and intricacies of their joint dynamics,
while E reflects the degree of quantum entanglement.

A. Geometry of Fig. 1(b): R-L coupling

In this section, we present the results of simulation for
two qubits of Fig. 1(b) with the capacitively coupled R dot
of qubit A and the L dot of qubit B. Exact dynamics of both
qubits and the effect of interqubit coupling are consistently
taken into account. Qubit A is driven by a resonant voltage
ϵ cos ωt with the frequency ω ¼ JAz applied between its L
and R dots at t ¼ 0. At t ¼ 0, both dots are at the north
poles of their Bloch spheres. Dimensionless time τ ¼
JAz t=2π is measured in periods of the free precession of
qubit A. In Fig. 2(a), color reflects Rabi nutation of qubit
B driven by its coupling to qubit A with JAB ¼ 0.02JAz . The
ratio JBz =JAz is plotted along the vertical axis, and four res-
onances are seen. Three of these occur when JBz is equal to
JAz and JAz � ϵ, while the fourth one occurs when JBz equals
the Rabi frequency ϵ. While only JAz � ϵ bands of the upper

triplet are predicted by Eqs. (12,11), the strongest reso-
nance corresponds to JBz ¼ JAz ; it corresponds to the reso-
nant transfer of excitation between A and B [37]. The
modulation of SBz may be understood as a two-step process,
where, first, the oscillatory voltage at frequency ω mixes
the states SAz ¼ 1 and SAz ¼ −1 of qubit A, and then the
term JABσAx σBx leads to oscillations in SBz . Figure 2(b) gives
a similar plot but for the Rabi nutation of qubit A. It shows
pronounced anomalies near all four frequencies discussed
above. They provide direct demonstration of coupled
dynamics of the qubits.
Insets to Fig. 2(a) demonstrate a π=2 nutation of qubit B

from the north pole to the equatorial plane and back to the
north pole, and its fast precession about the z axis.
Observation of the nutation, by techniques of Ref. [24],
should prove the coupled dynamics of qubits and allow
one to evaluate JAB.
Figure 2(c) plotted for JAB ¼ 0.04JAz shows, in addition

to four strong resonances, a number of weaker features
which are due to anharmonicity of both qubits and are
not seen for JAB ¼ 0.02JAz . They increase quickly with

FIG. 2 (color online). Rabi nutation of two coupled qubits in the geometry of Fig. 1(b), where both qubits are initialized in their j0i
states. Qubit A is driven at its level splitting JAz with a Rabi frequency ϵ ¼ 0.3JAz , and qubit B is coupled to A with a coupling constant
JAB. Time τ is in periods of the free precession of A. Color scales are values of SAz or SBz between −1 and 1. (a) JAB ¼ 0.02JAz . Color:
Nutation of SB. Insets: SBx and SBz for JBz ¼ 0.3JAz . (b) JAB ¼ 0.02JAz . Color: Nutation of SA. Inset: Entanglement E vs time τ for
JBz ¼ 0.3JAz . (c) JAB ¼ 0.04JAz . Color: Nutation of SB. Inset: Entanglement E vs time τ for JBz ¼ 0.3JAz . (d) The same, but for
JAB ¼ 0.2JAz . Inset: Entanglement E vs τ for JBz ¼ 0.3JAz . Notice the development of irregular behavior. See text for details.
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JAB, and for JAB ¼ 0.2JAz [Fig. 2(d)], patterns are highly
irregular. The period in τ varies significantly with changes
in JBz =JAz .
All panels of Fig. 2 were plotted under the condition of

exact resonance, ω ¼ JAz . To figure out whether this con-
dition played an essential role in developing an irregular
pattern of Fig. 2, we recalculated the figure for ω ¼
1.1JAz and found no drastic changes to it. While details
changed, the basic pattern did not. This stability may be
attributed to the width of the resonance of about ϵ, which
was rather large, equal to ϵ ¼ 0.3JAz in our simulations.
It is worth mentioning that a large Rabi frequency

ϵ ¼ 0.3JAz , while maintaining fast operation of qubit A,
contributes to the multifrequency irregular dynamics.
With ϵ ¼ 0.03JAz and JAB ¼ 0.02JAz , Rabi nutation of B
is dominated by a resonance at JBz ≈ JAz that developed
by merging the JBz ¼ ω and JBz ¼ ω� ϵ triplet of
Fig. 2(a) into a single feature [see Fig. 3(a)]. It is accom-
panied by a weaker feature at JBz ≈ 0.04JAz , which we attrib-
ute to slow nutation of qubit B controlled by its JAB
coupling to qubit A. Despite of weak driving, entanglement
reaches the value E ≈ 0.95 at τ ≈ 50 (for JAz ¼ JBz ). With
JAB increasing to JAB ¼ 0.2JAz , Fig. 3(b), the JBz ≈ JAz res-
onance disappears while the low JBz feature grows stronger,
propagates to the region of higher JBz ∼ 0.2JAz , and experi-
ences pronounced oscillations of the Rabi nutation of B
with a period Δτ ≈ 5. It may also be noted that the time
scale of entanglement generation is unaffected by the
decrease in Rabi frequency. Therefore, coupled nonlinear
dynamics of two qubits shows high multiformity dependent
on the specific choice of parameter values.
While irregular behavior is not surprising given the inter-

play of a number of frequencies and nonlinearity of the sys-
tem, the fact that such a behavior sets in [Fig. 2(d)] at the
values of the coupling constant as small as JAB ∼ 0.04JAz
and at the time scale of a single nutation of qubit B has
important experimental implications. It suggests that estab-
lishing a well-controlled entanglement of two qubits
imposes restrictions on the coupling strength not only from

below but also from above. With increasing JAB, develop-
ment of volatile behavior forestalls the increase in the oper-
ation speed. We note that early set-in of volatile behavior is
related to the presence of three frequencies in the responses
δnα of the L and R dots, and the geometries of Secs. IVB
and IVC show lesser volatility.
While the above discussion focuses on coupled dynam-

ics of spins SA and SB, insets to Figs. 2(b)–2(d) display a
purely quantum quantity, entanglement E between qubits.
Remarkably, while nutation of B in Fig. 2(c), for ϵ ¼ 0.3JAz ,
reaches its maximum at τM ≈ 14, the entanglement E is rep-
resented by a two-humped curve with a maxima on both
sides of τM and a deep minimum near τM. The same is true
for insets to Figs. 2(a) and 2(b) with τM ≈ 32. Such a behav-
ior can be understood at a qualitative level because the nuta-
tion of B is entirely due to its coupling to A, while the
nutation of A is primarily due to the driving. Hence, it
is nutation of B that reflects the entanglement. Near the first
maximum of irregular nutation, the dynamics of SBz is slow,
and this indicates that SA and SB are nearly decoupled;
hence, entanglement E is small. On the contrary, a fast
change of SBz indicates strong correlations between SA

and SB; hence, E is large. The inset to Fig. 2(d) demon-
strates strong, while irregular, entanglement with a pro-
nounced peak E ≈ 1 at τ ≈ 1.5, near the first maximum
of the nutation of SB.
We note that despite quite a moderate coupling strength,

JAB ∼ 0.04JAz , strong nutation of B and entanglement E
develop at a scale of time τ ∼ 10, still before the effects
of dephasing and decoherence are expected to manifest
themselves. Therefore, we envision the existence of a con-
siderable time scale where nonlinear dynamics dominates
over dephasing.

B. Geometry of Fig. 1(c): M-L coupling

Coupled dynamics of qubits A and B in the geometry of
Fig. 1(c) was calculated similarly to Sec. IVA but with a
Hamiltonian of Eq. (6) rather than of Eq. (5). Because cou-
pling of qubit B to qubit A is represented by a single matrix
σAz , the input from A is dominated by Rabi frequency ϵ, as
follows from Eq. (12). Correspondingly, the response of
qubit B at JAB ¼ 0.01JAz is dominated by a single fre-
quency ϵ ¼ 0.3JAz , as seen from Fig. 4(a); satellites origi-
nating from nonlinearities are visible but very weak.
Figure 4(c) demonstrates a π=2 nutation of qubit B and
its precession. Figure 4(b) shows that patterns of the nuta-
tion of qubit B remain basically regular even for
JAB ¼ 0.1JAz , with four oscillations occurring in the illus-
trated time period; however, detailed patterns show more
features, as seen from Fig. 4(d). This demonstrates that
purification of the signal coming from qubit A preserves
stability of entangled two-qubit dynamics and suppresses
transition into the irregular regime. Purification can be
achieved by a proper choice of geometry or by using
cavities similar to Josephson qubits [39].

FIG. 3 (color online). Rabi nutation of two coupled qubits in
the geometry of Fig. 1(b), where both qubits are initialized in
their j0i states. Qubit A is driven at its level splitting JAz with
a Rabi frequency ϵ ¼ 0.03JAz , and qubit B is coupled to A with
a coupling constant JAB. Time τ is in periods of the free preces-
sion of A. The color scale is the value of SBz between −1 and 1.
(a) JAB ¼ 0.02JAz . (b) JAB ¼ 0.2JAz .
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The insets to Figs. 4(a) and 4(b) display time dependence
of entanglement E for JBz ¼ 0.3JAz , where the nutation of
qubit B experiences pronounced oscillations, as seen in
the main panels. Similarly to the inset to Fig. 2(c), the first
two maxima of E develop on both sides of the first peak of
the nutation. Therefore, for reasons explained in Sec. IVA,
peaks of EðτÞ correlate with extrema of dSBz =dτ rather than
with extrema of SBz .

C. Geometry of Fig. 1(d): M-M coupling

Figure 5 presents dynamics of two coupled qubits in the
geometry of Fig. 1(d). External resonant driving is
applied to qubit A, and interqubit coupling is of σAz σBz type
and described by the Hamiltonian of Eq. (7). This system
possesses one integral of motion, σBz , and therefore,
the only dynamics of SB is precession about the z
axis. Figure 5 displays precession of qubit B with
the initial conditions SBx ðt ¼ 0Þ ¼ 1 and SAz ðt ¼ 0Þ ¼ 1.
It is seen that with the exclusion of small values of
JBz ≲ ϵ=JAz ¼ 0.3, precession of SBx is very regular.
Gross features of the column structure of the plot are
described by the phase modulation of Eq. (13), while a
gradual change of the color of the columns should be
attributed to backaction. Fast precession of SBx is an intrin-
sic property of qubit B controlled by JBz , but the columnar
structure of Fig. 5 [distinctly reflected in the SBx ðτÞ plot of
the left inset] originates from the interqubit coupling and
is controlled by JAB.

Entanglement EðτÞ calculated for JBz ¼ 0.3JAz is shown
in the right inset of Fig. 5. It is shaped like a dome, on
which oscillations correlated with the columnar structure
in the main panel are superimposed. Remarkably, the maxi-
mum E ≈ 1 is achieved simultaneously with the node in the
oscillations of SBx ðτÞ, seen in the left inset. Therefore, near
the maximum of entanglement, the precession of SB

becomes nearly frozen.

FIG. 4 (color online). Rabi nutation of two coupled qubits in the geometry of Fig. 1(c). Qubit A is driven at its level splitting JAz with a
Rabi frequency ϵ ¼ 0.3JAz , and qubit B is coupled to Awith a coupling constant JAB. Time τ is in periods of the free precession of A. The
color scale in (a) and (b) is the value of the Rabi nutation of SB between −1 and 1. (a) JAB ¼ 0.01JAz . Inset: Entanglement E vs τ for
JBz ¼ 0.3JAz . (b) JAB ¼ 0.1JAz . Inset: Entanglement E vs τ for JBz ¼ 0.3JAz . (c) SBx and SBz for JBz ¼ 0.3JAz and JAB ¼ 0.01JAz . (d) SBx and
SBz for JBz ¼ 0.3JAz and JAB ¼ 0.1JAz . See text for details.

FIG. 5 (color online). Precession of qubit B starting at SBx ¼ 1
in the geometry of Fig. 1(d). Qubit A is driven at its level splitting
JAz with a Rabi frequency ϵ ¼ 0.3JAz , and qubit B is coupled to A
with a coupling constant JAB ¼ 0.05JAz . Time τ is in periods of
the free precession of A. Color in the main panel and left inset:
SBx ðτÞ. Right inset: Entanglement EðτÞ for JBz ¼ 0.3JAz . See text
for details.
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This observation deserves more detailed comments. As
has been mentioned below Eq. (15), E ¼ 1 is only possible
for c1 ¼ c2 ¼ 1=

ffiffiffi
2

p
; hence, the reduced density matrices

ρA ¼ ρB ¼ σ0=2, where σ0 is a unit matrix. Therefore,
SB ¼ TrðρBσBÞ ¼ 0 because traces of Pauli matrices van-
ish, and similarly, SA ¼ 0. For qubit B, SzB is conserved and
equals identically to 0 due to initial conditions, SBx ≈ 0 at
the maximum of E, as seen in the left inset to Fig. 5, and it
has been checked that SBy ≈ 0 there (not shown). We
checked that the same is true for SA.
The results of this section, especially the data of

Fig. 4(d), prove the efficiency of the proposed protocol
for producing entanglement of two qubits and evaluating
coupling JAB between them. They also provide a warning
against irregular dynamics in a two-qubit system, Fig. 2(d).
It is typical of (i) the regime of fast operation, with com-
parable values of Rabi frequency and qubit-level splitting,
and (ii) an interaction Hamiltonian with multiple noncom-
muting terms. In such a regime, efficient control of a two-
qubit system bounds the magnitude of JAB not only from
below but also from above.

V. DEPENDENCE ON INITIAL CONDITIONS

In Sec. IV, we investigated the effect of geometry on
coupled two-qubit dynamics. The next problem is sensitiv-
ity of the dynamics to initial conditions. It is important both
from the practical and from the conceptual point of view.
First, it is difficult to control with high accuracy the initial
state of a two-qubit system. Second, there is an open ques-
tion of whether dynamics of such a system is stable or cha-
otic at a large time scale. Indeed, dynamics of a two-qubit
system is described by four nonlinear differential equations
for two polar angles, θA and θB, and two azimuths, ϕA and
ϕB, on their Bloch spheres. Because, generically, solutions
of systems of nonlinear differential equations, beginning
from three equations, are prone to deterministic chaos,
such a behavior is also expected for two coupled qubits.
To be specific, we have in mind a deterministic classical
Lorenzian chaos [40] rather than quantum chaos typical
of mesoscopic systems [41,42] or the quantum chaotic bor-
der on the number of qubits [43]. Deterministic chaos man-
ifests itself as a high sensitivity of solutions to small
changes in the initial conditions.
To this end, we solved dynamic equations for a set of

initial conditions as applied to the parameters of
Fig. 2(d), where the dynamics was most irregular. The
results, for ϵ ¼ 0.3JAz , are presented in Fig. 6 for five values
of θ0B ¼ θBðt ¼ 0Þ, the polar angle of qubit B at t ¼ 0. In all
cases, ϕBðt ¼ 0Þ ¼ 0 and θAðt ¼ 0Þ ¼ 0. It is seen that
while each of the curves shows a rich pattern, with a num-
ber of minima and maxima, these pattern are rather similar
for all five curves plotted for values of θ0B ranging from
θ0B ¼ 0 to θ0B ¼ 480. In particular, positions of all major
features and even their magnitudes (in units of their initial
values) remain very close. Therefore, we conclude that, at

least at this time scale (which is important for experiment),
the complexity of dynamics is dominated by nonlinearities
of both qubits and their crosstalk and shows no signatures
of chaotic behavior.

VI. CONCLUSIONS

We proposed a protocol for producing entanglement
between two qubits and studied it analytically and numeri-
cally as applied to three geometries of capacitively coupled
exchange-only qubits. The protocol is based on driving
qubit A at its level splitting JAz and reading the response
of qubit B. We found that the protocol generates entangle-
ment when the coupling JAB between qubits is only about
1% of JAz . We have also found that the patterns of the entan-
glement are highly sensitive to the double-qubit geometry
and the mechanism of interqubit coupling. For fast qubits
with Rabi frequency ϵ comparable to JAz , dynamics shows
early switching to irregular behavior if qubit B experiences
a multifrequency signal from the harmonically driven qubit
A. Because anharmonicity is inherent in two-level systems,
we compare various coupling schemes and select geom-
etries allowing the inhibition of early transition to irregular
dynamics. To be specific, the geometry of Fig. 1(c) is more
promising than the geometry of Fig. 1(b). We note that the
requirement of stable entanglement of two qubits (i) may
impose not only a lower but also an upper bound on the
interqubit coupling constant JAB and (ii) is more easily sat-
isfied when the interqubit coupling is dominated by a
single frequency. Therefore, using cavities can facilitate
entanglement not only through (i) enhancing the interqubit
coupling and (ii) establishing a connection between spa-
tially separated qubits, but also through (iii) purification
of the frequency spectrum of interqubit coupling. While
our calculations were performed for capacitively coupled

FIG. 6 (color online). Nutation of qubit B for five values of θ0B,
the initial values of the polar angle θB of qubit B. All parameter
values are the same as in Fig. 2(d), JBz ¼ 0.3JAz . Complexities
of dynamics are due to the nonlinearity of both qubits and the
crosstalk between them. See text for details.
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qubits, basic conclusions are also applicable to exchange
coupled qubits because both charge and exchange densities
are bilinear in the wave-function amplitudes.
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APPENDIX A: DERIVATION OF THE
QUBIT HAMILTONIAN

Basic properties of the exchange-only three-electron
triple-quantum-dot qubit are described by a Hubbard
Hamiltonian

Ĥ ¼
X
hiji;σ

tijðc†i;σcj;σ þ c†j;σci;σÞ

þ
X
i;σ

Vic
†
i;σci;σ þ

U
2

X
i

niðni − 1Þ; (A1)

where ti;iþ1 are hopping matrix elements between adjacent
sites i and iþ 1, Vi is the electrostatic potential at the site i,
andU is the on-site Hubbard repulsion. The Hamiltonian Ĥ
acts in Hilbert space spanned by four S ¼ 1=2, Sz ¼ 1=2
states. We choose two states of the “charged" sector as

j201i ¼ c†L↑c
†
L↓c

†
R↑jφi;

j102i ¼ c†L↑c
†
R↑c

†
R↓jφi; (A2)

where jφi is the vacuum state. In the (111) region, the
states are

jψ rl
111i ¼

1ffiffiffi
2

p ðc†L↓c†M↑c
†
R↑ − c†L↑c

†
M↑c

†
R↓Þjφi;

jψ lm
111i ¼

1ffiffiffi
2

p ðc†L↑c†M↓c
†
R↑ − c†L↓c

†
M↑c

†
R↑Þjφi;

jψmr
111i ¼

1ffiffiffi
2

p ðc†L↑c†M↓c
†
R↑ − c†L↑c

†
M↑c

†
R↓Þjφi: (A3)

The states in Eq. (A3) are not mutually orthogonal, and
only two of them are linearly independent. We choose
the linear combinations that are symmetrical in the central
basis,

j111i ¼ 1ffiffiffi
3

p ðjψ lm
111i þ jψmr

111iÞ;

j111i ¼ jψ rl
111i: (A4)

We choose qubit states as j0i ≈ j111i and j1i ≈ j111i. In
the basis ðj201i; j111i; j111i; j102iÞ, the total wave
function is

jψi ¼ vLj201i þ v0j111i þ v1j111i þ vRj102i: (A5)

In the above basis, the eigenvalue equation takes the form

0
BBBBBB@

U þ V tL
ffiffi
3
2

q
− tLffiffi

2
p 0

tL
ffiffi
3
2

q
0 0 −tR

ffiffi
3
2

q

− tLffiffi
2

p 0 0 − tRffiffi
2

p

0 −tR
ffiffi
3
2

q
− tRffiffi

2
p U − V

1
CCCCCCA

0
BB@

vl
v0
v1
vR

1
CCA ¼ E

0
BB@

vL
v0
v1
vR

1
CCA;

(A6)

where components of the vector v ¼ ðvL; v0; v1; vRÞT are
amplitudes of the states j201i, j111i, j111i, and j102i,
respectively.
This Hamiltonian can be projected into the 2 × 2 qubit

space by eliminating the ðvL; vRÞ components

�− 3
2
ðJL þ JRÞ

ffiffi
3

p
2
ðJL − JRÞffiffi

3
p
2
ðJL − JRÞ − 1

2
ðJL þ JRÞ

��
v0
v1

�
¼ E

�
v0
v1

�
;

(A7)

where

JLðEÞ ¼
t2L

U þ V − E
; JRðEÞ ¼

t2R
U − V − E

: (A8)

The qubit is operated under the conditions tL, tR ≪ U, and
therefore, E dependence of JLðEÞ and JRðEÞ is important
mostly during the preparation and measurement cycles
when jVj ∼ U [15,21]. In the central region of jVj ≪ U,
the energy is small, E ∼ t2=U ≪ U, and can be omitted
in the denominators of JLðEÞ and JRðEÞ. Then, after shift-
ing the origin of the energy in Eq. (A7)by JL þ JR, we
arrive at Eqs. (1) and (2).

APPENDIX B: DERIVATION OF THE
INTERACTION HAMILTONIAN

For capacitively coupled qubits, the interaction
Hamiltonian between excess charges on nearest-neighbor
dots of the two qubits originate from the Coulomb interac-
tion given by Eq. (4). The excess charge on each dot can be
expanded in terms of the wave-function amplitudes. For a
symmetric system (tL ¼ tR ¼ t), the charges on the dots
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expressed in terms of the amplitudes ðv0; v1Þ, after using
the normalization condition jv0j2 þ jv1j2 ¼ 1, take the
form

δnL¼
t2

U2

�
1þ1

2
jv0j2−1

2
jv1j2−

ffiffiffi
3

p

2
ðv�0v1þv�1v0Þ

�
. (B1)

δnR ¼ t2

U2

�
1þ 1

2
jv0j2 − 1

2
jv1j2 þ

ffiffiffi
3

p

2
ðv�0v1 þ v�1v0Þ

�
;

(B2)

δnM ¼ − t2

U2
ð2þ jv0j2 − jv1j2Þ: (B3)

The charge operators acting on the qubit space are given in
terms of Pauli matrices,

δn̂L ¼ t2

U2

�
σ0 −

ffiffiffi
3

p

2
σx þ

1

2
σz

�
; (B4)

δn̂R ¼ t2

U2

�
σ0 þ

ffiffiffi
3

p

2
σx þ

1

2
σz

�
; (B5)

δn̂M ¼ − t2

U2
ð2σ0 þ σzÞ: (B6)

In evaluating the dynamics of two coupled qubits, the con-
tribution of σ0 to Eqs. (5–7) has been neglected. It only
contributes to renormalizing the coefficients of the sin-
gle-qubit terms in the Hamiltonian originating from the
Coulomb interaction. We assume all such effects to be
absorbed in the chosen values of Jz and Jx. Substituting
the expressions from Eqs. (B4–B6) into Eq. (4) gives us
the form of the interaction Hamiltonian for the different
geometries in Eqs. (5–7).
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