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Abstract
Traditional operating systems limit J?exibili@,

performance and utilization of hardware resources by

Jwcing applications to use inappropriate high-level

abstractions, uniform protection schemes and high-level

:ttatic resource management. This forced use of

inappropriate services results in poor application and

operating system performance. A radical new approach

[o operating systems design and construction is needed to

meet the requirements of modern applications. Within our

Centre, we are building BITS: the Component Based

Operating System, to address these issues.

To realize its full potential, BITS requires a radically new

resource management strate~. The operating system

design gives an environment for implementing
,%tensions, but a resource manager module is responsible

J& making them available. It allows system services to be

specialized, replaced or extended to better serve

fzpplication-speclflc needs.

In this paper we propose the MAGNET Resource

Manager enabling a free-market negotiation of

(application requests and server resources. It provides an

additional level of$exibility for application participation

in resource management. MAGNET also provide an ideal

,vlatjorm for an additional runtime level of extensibility:

dynamic modljlcation and replacement of its parts during

execution.

1. Introduction

Operating systems form the interface between system

resources and applications by providing abstraction of
hardware resources, protection of application and

resource management.

The role of operating systems has significantly

changed, with the ever increasing use of heterogeneous,

distributed systems offering enormous computational
power and new application requirements - higher

flexibility, extensibility and tailoring services to

application specific demands. Traditional operating
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systems, including microkernels, limit flexibility,
performance and utilization of hardware resources by

forcing applications to use inappropriate high-level

abstractions, uniform protection schemes and high-level

static resource management, This forced use of

inappropriate services results in poor application and

operating system performance. Applications really require

a platform where they can implement their own

abstractions, tailor existing servers to their needs, utilize

available hardware efficiently, define their own protection

schemes and participate in resource management policies.

A radical new approach to operating system design and

construction is required to enable these new requirements

to be met.

One recent approach to be introduced in all areas of

software design is “Components” [4], We believe that this

methodology can be adapted for use as the basis for an

operating system, enabling us to provide the desired

resource management flexibility and dynamic adaptation

of resource-application interfaces. Within our Centre, we

are building the BITS Component Based Operating

System, which aims to provide an environment that

meets the above application requirements more precisely.

By pushing the hardware abstractions to the lowest level

and by binding trusted applications to servers through

indirect calls, BITS ensures significantly better

performance. Untrusted applications pay a performance

penalty because of the additional protection overhead. By

enabling application defined protection schemes, BITS

provides an extra level of flexibility over classical

extensible systems. Through its component structure and

use of late binding, BITS allows a fmer-grained interface

to system services.

The operating system design provides an environment

for implementing application requirements for
extensibility, but a resource manager is the essential

component enabling system services to be specialized,

replaced or extended to better seNe specific application

requirements. This paper provides a detailed description

of the MAGNET Resource Manager. MAGNET utilizes
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a “Virtual Shared Tuplespace” (physically distributed

tuplespace presented by a Distributed Shared Memory

Server (DSMS) as a shared memory tuplespace), to

satisfy the resource requirements for the widest range of

applications, maximizing hardware utilization and

enabling application participation in resource allocation.

This brings an additional level of flexibility over

traditional resource managers. In addition to these

features, MAGNET; cooperating with applications to

ensure consistency; enables an additional level of

runtime extensibility: dynamic modification and

replacement of its parts during execution (e.g. plug and

play, hot swap). This allows failed elements to be

replaced with alternatives providing an equivalent service

level.

In this paper we give a detailed description of the

MAGNET approach, our motivations, the design issues

and discuss its features and potential. In Section 2 we

provide a more detailed case for MAGNET as an essential

part of BITS. Section 3 is devoted to a detailed

description of both BITS and MAGNET architectures.

Section 3.1 briefly discusses the BITS Component Based

Operating System approach, the system structure and its

computing environment, to give a brief overview of the

system MAGNET has been designed for. In Section 3.2.

we describe the MAGNET design issues in detail. Next,

Section 3.3. discuss our Virtual Shared Tuplespace

design, Problems and future work are discussed in

Sections 4. and 5, related work being presented in

Section 6 and, conclusions in Section 7.

2. Motivations

Contemporary operating systems research has focused

on the design of extensible kernels. These are designed to

overcome the main microkernel limitations of poor

performance, centralized, inflexible resource

management, and the inability to specialize or extend

high-level abstractions to application demands [3].

One of the major factor limiting both system

flexibility and performance is fixed high-level

abstraction. It has become clear that requirements of all

applications cannot be met by any operating system in

advance [2]. It is for this reason current research explores

better structured abstractions [3] to enable freer

granularity in system services. [1] shows that presenting

real hardware to applications that require low-level access

allows them to tailor their specific abstractions enabling

better performance. BITS’ abstraction approach is to

implement just the protection schemes necessary for
system security, and leave the implementation of high-

level abstraction to servers which applications can use, if

appropriate. Applications can also implement their own
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abstraction at all levels including the raw-hardware level,

This approach brings both flexibility and offers enhanced

performance,

Another observation made by research on current

microkernels is that cross-domain control transfers and

protection checks hurt system efficiency. BITS supports

application defined protection schemes, In this

environment trusted applications can access services

through indirect calls giving them shared library

performance. Untrusted applications communicate
through standard protection checks. We term this binding

mechanism the “Glue”.

The goal of resource management in distributed

environments has been extended from satisfying

application demands and resource allocation to enabling

sharing of resources and supporting reconfigurability and

fault tolerance. The resource manager actually supports

extensibility, such as tailoring policies to given hardware

configurations and application specific requirements.

This cannot be simply implemented by heavyweight

user-level servers as demonstrated by microkernel

research. The following two enhancements enable large

improvements in flexibility and extensibility:

. Separation of kernel services from resource

management policies, Microkemel research has

shown that moving servers to the user level ensures a

level of flexibility, but does not support extensibility.

● Separation of resource protection from resource

management policies allows extensibility and

application specific customization.

BITS implements these techniques providing an

environment to enable the MAGNET Resource Manager

to further improve flexibility by encouraging applications

to influence resource allocation strategies. A Virtual

Shared Tuplespace introduced above is used to implement

a free-market for the efficient matching of application

needs with available system resources. Although the

tuplespace is distributed across system physical memory,

BITS enables DSMS to tailor the implementation to

MAGNET’s requirements. An additional level of

flexibility is added by presenting a framework for

dynamic modification of services at run-time (hot swap,

plug and play) and by enabling the run-time replacement

of failed components by equivalent ones with application

agreement.

3. BITS and MAGNET Architectures

In order to present the MAGNET architecture design

we briefly discuss BITS’ design as a framework for the

resource manager.
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43.1. BITS: the Component Based Operating

System Approach

The BITS Component Based Operating System [4]

consists of a set of independent Components representing

system elements. From an application point of view, all

components are treated equally, each providing some

different level of service. Figure 1 shows a typical

application view of the system.

Server
Components

m
\ m

Hardware I

Components
rl

CPU

I I

Figure 1. Component Based System Structurefiom an

application point of view

From the operating system point of view, components

Ican be divided into two significant groups:

● Hardware Components representing

hardware devices, and

● Server Components representing user-level

abstraction servers.

This restructuring of abstraction enables applications

to choose the abstraction level and model they want to

access the hardware through. The raw hardware devices

in Figure 1 (CPU and Disk) provide the base level

Hardware Components. These components implement

their own protection schemes in order to control access

and prevent starvation. We term the protected hardware

elements Virtual Hardware.

The second group of components, the Server

Components, represent diverse services such as tile

systems (FS), distributed shared memory (DSM), TCP/IP,

Database Management System (DBMS), etc. providing
high-level abstractions of the hardware components.

Typically, user applications will use components which

provide value added services (with an associated
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performance penalty) rather than the hardware

components. However, when speed is essential or an

application requires a specific service, these can be

bypassed, replaced or customized.

The component system structure is illustrated in

Figure 2.

Applications &

Server

Components

El IJU’II!ETT3
Physical HW

Figure 2. Component Based OS Structure

3.2. The MAGNET Resource Manager

MAGNET has the following goals:

● to satisfy resource requirements for the widest range

of applications

● to support flexibility, extensibility (tailoring policies

to given hardware configurations and to specific

application requirements) and reconfigurability

. to utilize hardware resources efficiently.

The following list summarizes the design approaches used

in MAGNET:

● separation of kernel services from resource

management policies

● separation of resource protection from resource

management policies

● encouraging applications to take part in the resource

allocation negotiation process

● enabling dynamic modification of services at run-

time (hot swap, plug and play)
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● enabling a run-time replacement of failed

components by equivalent ones with application

agreement, and

● using late-binding to allow applications to form their

requests without previous knowledge of current

system service characteristics, configuration, or

availability.

Physical distribution of MAGNET Virtual Shared

Tuplespace improves reliability and ensures faster access.

Although the original idea came from the Linda based

tuplespace, MAGNET system does not stick to the Linda

based system semantics (as used in a system such as

IOSPREY [7]) but offers a more flexible tuple matching

environment.

3.2.1. MAGNET Structure. MAGNET provides

dynamic component binding. It treats all BITS

components (Hardware Components, Server Components

and applications) equally. Each component acts as a black

“box providing services for, and requiring services from

other components. Services are described as an interface.

For component interaction we use Darwin, a well-defined

‘language [13] supporting representation of these

:structures.

Figure 3. Component binding described in Darwin

In Figure 3, circles represent component interfaces,

filled circles represent services provided by a component

and empty circles represent services required by other

components. Further formal description of component

binding - not necessary for MAGNET presentation - is

‘beyond the scope of this paper. It can be found in [13],

[14] and [15].

‘Tuplespace and MAGNET Structure

‘The MAGNET tuplespace keeps all information on

system components (defined by their interfaces) in the

form of tuples. A simple example of an application and

servers configuration is illustrated in Figure 4.
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&
printer

memory

Figure 4. Example of application and servers interaction

As we are not dealing with a general binding situation, we

have split the tuplespace into several smaller tuplespaces

called Resource Tuplespaces, each one dedicated to a

particular resource (e.g. printer, disk etc.) This approach

enables logical parallelization of the binding process.

Figure 5 illustrates corresponding simplified tuples placed

into the relevant Resource Tuplespaces.

Prov I Printer I Characteristics

Printer Tuplespace

IlReq lMemory,Characteristics ~ I
I J

Memoiy Tuplespace

Prov I Memory I Characteristics

Figure 5. Example of relevant Resource Tuplespaces

Resource Tuplespaces are physically distributed, but to

ensure the separation of the physical memory location

from the binding algorithm, DSMS presents each

Resource Tuplespace as a global namespace located in a

virtual shared memory (for fbrther discussion on

distributed shared memory see section 3.3.)

3.2.2. Matching. Application demands and component

offers, described as their interfaces, are placed into the

relevant Resource Tuplespace. At this level, the cost to a

binding process is very high but, apart from a few

exceptions (component crashes and handling of faults),
this matching process takes place only once, before the

application starts executing. MAGNET is distributed

across the system nodes so that the matching can be
 (c) 1998 IEEE



performed in parallel to improve reliability and prevent

MAGNET being a system bottleneck.

Once all components are selected and “plugged

together”, fast indirect calls provide efficient inter-

component communication ensuring good overall

:performance.

For rebinding purposes all changes are statefil. (see

the field “State” below).

A general tuple format defining the component

interface consists of the following items:

[

Prov/ ID State Time- Fea- Min. Time-

Req stamp tures match out

●

●

●

●

●

●

●

Prov/Req - indicates if the service is provided or

required.

ID - component type ID (e.g. printer, memory etc.)

Timestamp - the time the tuple was inserted in the

tuplespace.

Features - provided/required resource characteri-

stics (e.g. amount of memory providedh-equired,

printer type, CPU performance, etc.).

Min. match - Minimum requirements the applica-

tion can work with. This is used when negotiating

for a resource when the ideal is not available (not

applicable to server components).

Timeout - The time period ( 0< Timeout< ~) the

application is willing to wait for the tuple to be

satisfied. If a match cannot be found in this time,

the application is notified (not applicable to server

components).

State - The resource’s state (e.g. available, failed,

disconnecting, bound to, etc.).

The tuple formats are designed to provide additional

flexibility, to support the negotiation process, and to best

utilize available resources.

The matching process is initialized when a tuple is

:placed in the tuplespace. MAGNET runs its Matching

algorithm concurrently. If the required binding according

to the “Features” description is found, then the

communication is established using the Glue. If the

required component is unavailable MAGNET can

negotiate less optimal tuples, and/or notify the component

about non-availability when its “Timeout” expires. The

combination of “Timeout” and “Min. match” provides an

additional level of flexibility impossible in traditional

resource management schemes. A full description of the
matching algorithm and negotiating procedure is beyond

the scope of this paper.
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3.3. Virtual Shared Tuplespace

Communication in a distributed environment can be

based on either message passing or virtual shared

memory, Implementations of virtual shared memory

systems such as in Angel [12] showed better flexibility

and performance than message passing systems.

BITS does not hide its physical memory distribution

from all applications enabling the DSMS to tailor the

implementation to MAGNET tuplespace requirements.

This approach supports a separation of the physical

memory distribution from the binding algorithm. The

alternative solution would be to make the distribution of

the tuples visible but this is more complex, causes

implementation difficulties and provides no functional

advantages [5].

3.3.1. DSM Design, The major decision when designing

DSM is to choose the appropriate consistency model,

which suits the character of application (although BITS

can tailor this to specific applications), otherwise

performance may be poor.

Generally consistency models can be divided into two

groups [16]:

1. consistency models not using synchronization

operations (strict, sequential, causal, processor,

PRAM)

2. consistency models with synchronization operations

(weak, release, lazy release, entry)

All consistency models not using synchronization

operations are too strict for MAGNET’s purposes, This is

also discussed in [17] which argues, that namespaces

usually require only weak consistency model.

The lazy release consistency model [19] (which

differs from the normal consistency model by delaying

the propagation until the next “acquire” requests it) has

been chosen for MAGNET because it offers:

1.

2.

3.

significant performance advantages over the weak

consistency model (does not distinguishes if the

critical region is entered or left)

performance advantages over the normal (eager)
release consistency model (propagates after every

“release” operation even when the same data is to be

accessed by the same processor again)

programming simplicity over the entry consistency

model (gives good performance results, but

management of the list of synchronization variables

is extremely complex). For a large number of
components this model will also be considered.
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A DSMS runs on each CPU, connected to others to

form a single circle enabling easy communication among

all DSMS. In our system we have a small number of

lprocessors so this arrangement is adequate. For large

systems other communication structures could be used.

This DSM enables the sharing of the tnplespace

between the physical nodes. However, due to the structure

and distribution of MAGNET there is no need to provide
uniform shared memory among all Resource Tuplespaces.

In addition to the flexibility provided by the DSMS,

MAGNET itself can choose between blocking and

nonblocking access to tuples which provides another level

of flexibility for waiting applications.

Example

‘To show the performance advantage of the lazy release

~model, we start our description at the moment when a

(component is inserting its tuples into the appropriate

Resource Tuplespaces. It then initiates a “release”

operation. As yet, nothing is propagated. MAGNET then

“’acquires” and the DSMS must determine if it has the

most recent data. If not, the propagation is performed.

MAGNET then matches the tuple with the most

appropriate one and selects the suitable Glue to connect

those components and changes the “State” field of their

tuples. Once these matching and updating operations are

performed, a “release” is initialized to resume the

application. Again nothing is propagated until the data is

“acquired”.

Lazy release consistency is efficient not only because

it combines more tuple updates into a single operation,

but also because it delays the propagation until the

updated data is requested. A sequence of operations

performed on the same processor cost nothing (assuming

no competition).

4. Discussion

The MAGNET system has the potential to provide

more than just flexible resource management. Because of

its ability to bind components “on-demand” we can

provide a framework for dynamic rebinding and crash

recovery services such as hot swap and plug and play.

Because components act as black boxes, MAGNET

cannot be responsible for ensuring consistency. In the

case of application initiated rebind (not forced by a

crash), the rebinding is not performed until both

components involved are in a safe state to do so.
MAGNET does not perform rebinding transparently.

When a device crash is detected, it is reported to

MAGNET which determines whether the device needs to
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be restarted or if it must be replaced. In the former case

the application will only be delayed, but in the latter a

new device must be found to replace the failed one. To

do this the application tuple has its “State” changed and a

new negotiation is initiated. The resulting component is

then “swapped” for the faulty one in the application. The

application can then be restarted. MAGNET supports a

hot swap and easy recovery environment with post crash

application participation strategies. We believe we have

the ideal platform to support such a facility, especially in

distributed systems designed for 24x7 operation.

5. Problems

Not all the problems with the MAGNET system have

been resolved. One problem still to be addressed is one of

trust. MAGNET has to cope with problems of

untrustworthy tuples in the tuplespaces, either by

restricting who can insert, modify and delete tuples or by

providing a mechanism to check the reliability of the

tuple information. Without this, it would be possible for a

malicious application to place misleading tuples in the

tuplespace.

An enhancement would be to add a priority scheme to

the tuples to provide extra flexibility to applications and

components.

Another problem that needs resolving is that of

resource revocation, which requires MAGNET and the

BITS Virtual Hardware layer to cooperate. Our current

approach is that MAGNET allocates the resource and

“glues” the application to the server. BITS Virtual

Hardware layer is responsible for preventing starvation,

taking a resource back from an application which ignores

the revocation request by force.

Another potential problem is MAGNET’s performance

for a system with a large number of components. For a

small number of components, the implementation of the

global Resource Tuplespaces is suitable, presenting the

best component available at the time with satisfactory

performance. For large systems, a more complex system

of tuplespaces may be required. This will be addressed in

our fiture research.

6. Related Work

The construction of systems using components, and

the use of flexible communications mechanisms are
approaches that are being examined by much

contemporary work.

A lot of work has been done in the area of dynamic
component binding formalism in distributed systems. As

discussed, Darwin [13] together with Regis [11] give an
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(excellent environment for the dynamic building of

(distributed systems.

Standard communications schemes such as message

:passing and the popular remote procedure calls (RPC)

;provide a method of binding components, but are too

inflexible, and do not support parallelism. Interface

Definition Language (IDL) is a standard solution to the

‘binding problem and is implemented in various systems,

including CORBA [10], It describes the communication

interfaces using a standard language from which the

relevant interface code is generated.

The alternative solution is to use a tuplespace scheme

:such as that found in Linda. Linda was the first system to

support a generative communication model [8], but its

fixed tuple format and semantics do not provide the

flexibility we require. An alternative system called

(OSPREY [7], a question based system, uses the Linda

iapproach applied to application-server level coupling. It

adds a level of flexibility by a result-based tuple naming

:scheme and by replicating tuples to many nodes.

24x7 operation support for dynamic data object

{communication has been explored in “The Information

Bus Architecture” [9] which is based on principles such

as self-describing, anonymous communications and

minimal semantic communication protocols.

Dynamic binding and rebinding have also been

(explored in Kea [18], based on RPC generated entirely by

the Kea kernel. It allows the destination of the RPC to be

changed independently of the caller.

7. Conclusions

In this paper we have presented a flexible, adaptable

:resource manager called MAGNET designed for use with

the Component Base Operating System BITS. MAGNET

is based around a Virtual Shared Tuplespace using a lazy

release consistency model for implementing DSM.

MAGNET administers the tuplespace having a goal of

finding the best available application-server match. This

satisfies the demands of a wide range of applications and

provides good resource utilization in a flexible and

dynamic way. In addition, the presented MAGNET

design shows how the system provides support for

dynamic component selection, reconfiguration and

exchange at run-time, such as plug and play and hot

swap, in order to support 24x7 operation.

MAGNET is an essential component specially

designed for the BITS operating system. BITS’

component based design ensures good performance by

moving abstraction closer to the hardware level and by

binding tmsted applications to servers through indirect

calls. Its component structure and late binding ensures

flexibility and a freer granularity interface to system
1060-3425/98 $10.0
services, BITS separates kernel services and protection

from resource policies providing additional flexibility and

extensibility.

MAGNET is being implemented as a part of the BITS

project. The BITS environment together with MAGNET

offer a radically new approach to achieve good

performance, increased flexibility, extensibility of system

services and dynamic resource allocation fulfilling the

high demands of current applications.
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