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Abstract

Rare earth oxides have shown great promise in a variety of applications in
their own right, and as the building blocks of complex oxides. A great deal of
recent interest has been focused on Sm2O3, which has shown significant promise
as a high-k dielectric and as a ReRAM dielectric. Experimentally, these thin
films range from amorphous, through partially crystalline, to poly-crystalline,
dependent upon the synthetic conditions. Each case presents a set of modelling
challenges that need to be defined and overcome. In this work, the problem
of modelling amorphous Sm2O3 is tackled, developing an atomistic picture of
the effect of amorphization on Sm2O3 from a structural and electronic structure
perspective.

Keywords: Sm2O3, rare earth oxide, sesquioxide, amorphous thin films,
non-glass forming amorphous oxides, DFT, structure prediction.

1. Introduction

Rare earth elements play a vital role in a plethora of current and emerg-
ing technologies, in applications as diverse as solid oxide fuel cells, through to
telecommunications. As a result of this interest, there are an increasing number
of technological applications that rely upon rare earth oxides (REO) and the5

related rare earth complex oxides. The focus of this work, Sm2O3, has shown
great promise in applications as diverse as a high-k dielectric[1, 2, 3, 4, 5, 6],

∗Corresponding authors
Email addresses: k.olsson@surrey.ac.uk (Emilia Olsson*), j.cottom.12@ucl.ac.uk

(Jonathon Cottom*)

Preprint submitted to Computational Materials Science June 30, 2019



ReRAM dielectric[7, 8, 9, 10], catalyst[11, 12, 13], sensors[14, 15], and as a
dopant in a number of optically important glasses[16, 17, 18].

The most promising electronic device applications for Sm2O3 have been10

found in metal-oxide-semiconductor (MOS) and ReRAM devices.[1, 2, 3, 4, 5,
6, 7, 8, 9, 10] Historically, silicon dioxide (SiO2) has been employed as a gate
oxide layer on silicon substrate for reasons of both performance and ease of
processing. The miniaturization of devices has driven the need for high-k di-
electrics, physically thicker layers with the same electrical equivalent thickness.15

This has resulted in the testing of a wide variety of potential high-k gate oxide
materials with HfO2, ZrO2, SiON, Al2O3, La2O3, TiO2, Ta2O5, and Y2O3
each being considered.[19, 20, 21, 22, 23, 24, 25, 26] This search has led to in-
terest in the REO offering as they do a raft of desirable properties. Sm2O3
exhibits a high dielectric constant (up to 15 for the amorphous films[27, 28, 29],20

and significantly higher in the polycrystalline films[30]), high breakdown electric
field (up to 10 MV/cm), large band gap, low leakage current, large conduction
band offset with Si, good thermal stability, low frequency dispersion, thermody-
namic stability on SiO2, and low trapping rates.[1, 2] The potential of Sm2O3
is clear, however, there are a number of challenges to be overcome before viable25

Sm2O3 devices can be realized.
Sm2O3 is typically deployed as a thin film in the above applications, and

the structure of these films shows a strong dependence on the substrate, growth
conditions, and annealing temperature.[5, 31, 30, 1, 28, 32, 33] In common with
a large number of non-glass forming metal oxides, Sm2O3 thin films are amor-30

phous as deposited and stable up to a given temperature, above which the
poly-crystalline film is observed.[5, 31, 30, 1, 28, 34, 8, 33] The amorphous film
is stable below 600◦C, with an apparent link between the growth technique
and the stability of the amorphous phase.[30, 1, 8, 33] The nature of this re-
lationship is not well understood, although it has been postulated that this is35

due to the inherent defect concentrations in the films induced by an oxygen
deficiency. However, this is far from clear as the available EDX, SIMS, and
EELS data describes stoichiometric films.[1, 35, 30, 36, 37, 6, 32, 33] Upon
annealing at temperatures greater than 600◦C, there is a gradual increase in
the degree of crystallization of the film, at temperatures above 900◦C the re-40

sulting film is entirely poly-crystalline.[30, 1, 35, 6] Stable amorphous films for
electronic applications have been successfully produced via physical layer de-
position (PLD)[30, 33], sputter deposition[8], spin coating[38], and pulse laser
deposition[6, 33].

In the crystal phase, Sm2O3 can exists in the hexagonal (A-type), monoclinic45

(B-type), or cubic (C-type) crystal structures. For the lighter lanthanide ox-
ides, the hexagonal phase is favored, whereas the heavier oxides favor the cubic
phase. In the case of Sm2O3, sitting in the middle of the series, the cubic phase
is favored at low temperatures and the monoclinic at high temperatures.[39]
Under ambient conditions, the cubic phase is observed, unless during sample50

preparation high temperatures are employed. In these cases, a mixed cubic-
monoclinic phase is formed with the high temperature modifications persisting
under ambient conditions. As a result, the films observed are typically cubic or
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mixed cubic-monoclinic after annealing.[40]
Electronically, Sm2O3 is a wide band gap semiconductor or a narrow band-55

gap insulator, with a band gap of ≈ 5.0 eV, with an experimental range of be-
tween 4.70 and 5.10 eV for the crystal[41, 42] and 3 - 4 eV for the amorphous[28].
The band structure of the whole range of lanthanide oxides has attracted a great
deal of interest with the 4f -band forming a localized sub-band in a number of
these oxides (Ce, Nb).[41, 28] In Sm2O3 the f -band sits within the valence band60

and the localized 4f -states are hybridized with the extended oxygen p-states.
The complex nature of the electronic structure provides a significant modeling
challenge to capture this fine detail.[43] Jiang et al.[44, 45], Huang et al.[43]
and Gillen et al.[46] investigated the performance of a range of functionals in
describing the electronic structure for the full range of lanthanide oxides. The65

GW0, sX-LDA, and HSE06 approaches were shown to best reproduce the ex-
perimental results, albeit at a significant computational cost.[46] The two main
criteria used to judge functional performance were, firstly, the band gap (abso-
lute and the p-d gap) as this gives a coarse approximation of the ability of a
functional to describe the electronic structure of the system. Secondly, the abil-70

ity of a functional to reproduce the ionic charges, hybridization and position of
the localized 4f states. In these regards the performance HSE06 and GW0 well
reproduced the experimental results and corrected the incorrect ground states
from DFT+U. It was shown that while DFT+U can be tuned to achieve an ap-
propriate description of the band gap, the hybridization of the 4f states and the75

position within the valence and conduction bands remain poorly described.[46]
This work guided the choice of functional and gave a robust comparison set
before the a-Sm2O3 (amorphous Sm2O3) structures are considered.

Typically the structure of amorphous materials, both glass forming and
non-glass forming, are simulated via a molecular dynamics (MD) melt-quench80

procedure.[47, 48, 49, 50] In the case of glass forming oxides, this approach acts
as a reasonable mimic of the experimental glass production process, albeit with a
significantly higher cooling rate than achieved experimentally.[51] This approach
has been applied to a-SiO2 more than any other material, with a variety of ob-
jectives, such as structure prediction, defect characterization, kinetics of defect85

processes, and modeling of interfaces with other materials.[52, 53, 54, 55, 56, 57]
These approaches have produced structures that have been used to success-
fully identify defect centers, breakdown mechanisms, and many more atomistic
phenomena.[58, 59, 60]

In the case of non-glass forming oxides greater care is needed when producing90

the amorphous structures via a melt-quench to ensure the structures produced
represent the systems of interest. The difficulties arise as for these materials the
amorphous structures only exist in thin films as the result of strain between oxide
and substrate. The structures of these films have successfully been produced
via the same approach, but the choice of potential and additional validation of95

the structures produced is required.[61, 62, 63, 64, 65, 66, 67, 68] This extra care
is required as the melt-quench procedure is no longer a mimic of the physical
process of amorphization.[65, 69] In both cases densities and structure factors
derived from X-ray or neutron data are typically used to judge the suitability
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of the structures generated.[61, 70, 71] For many technologically important thin100

films high quality data of this type is not available. Fortunately, there is a
wealth of experimental data characterizing a-Sm2O3 thin films from numerous
experimental perspectives over a number of technological generations. The main
techniques employed are XRD, XANES, Raman, FT-IR, dielectric, and TEM
measurements. From each of the experimental techniques employed, an insight105

into the electronic, structural, and mechanical properties of the thin film is
gained. These data provide important points of comparison between the models
generated via the MD melt-quench, and the experimentally observed films and
act as a validation set allowing the suitability of the structures produced to be
judged and refined.110

XRD, ellipsometry and TEM studies confirm the amorphous nature of the
films as deposited with no detectable crystal peaks in the XRD or a hint of
order in the TEM images.[43, 1, 33] Upon annealing at temperatures above
400 - 600◦C, dependant upon growth technique and substrate, the degree of
crystalline character increases forming cubic and or monoclinic crystalline re-115

gions within the film, which at elevated temperatures > 900◦C give the com-
pletely poly-crystalline thin film.[6, 72, 30] The picture given by the XRD peaks
is further confirmed when the partially crystalline and poly-crystalline films are
studied using TEM, showing crystal like islands at the low end of the temper-
ature scale. These structures expand as temperature is increased resulting in120

the high temperature poly-crystalline films. In addition to HRTEM and XRD
Goh et al.[1] performed EDX measurements confirming that the stoichiometry
of the a-Sm2O3 and poly-crystalline thin films are maintained. In addition, Ra-
man spectra of the cubic crystal have principle peaks at 152, 335, 424, and 457

cm-1.[38, 40, 1] For cubic Sm2O3, in accordance with group theory, 22 Raman125

active modes are observed.[40] These peaks are broadened, absent or shifted
in the amorphous films. In the polycrystalline films typically the peaks associ-
ated with the cubic crystal dominate, with a low concentration of the peaks of
monoclinic character.[1]

In this work, we predict the atomic structure of a-Sm2O3 and investigate130

its characteristics. This allows atomistic meaning to be given to the various
experimental observations. The calculated and experimental elastic properties,
thermal expansion coefficient (TEC), band gap as approximated by the HOMO-
LUMO separation, dielectric and vibrational spectra are compared as a test and
validation of our model system’s ability to capture the properties of the a-Sm2O3135

films. These models can then be used to study defect and interface effects that
are important in the context of Sm2O3-based devices.

2. Methodology

The molecular dynamics calculations were conducted using DL POLY 4,[73]
within the NPT ensemble with a Nose-Hoover thermostat and the Cherry et140

al.[74] potential parameterized by Olsson et al.[75] based on the general Buck-
ingham potential form. The melts were produced from 80, 270 and 640 atom
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Table 1: The effect of cooling rate on the density of the structures produced and the standard
deviation associated with each value. The densities generated are all extremely similar in the
selected range of cooling rates and cell sizes. The density for cubic crystalline Sm2O3 is 8.43

gcm-3.[76]

Cell Size 80 Atoms 270 Atoms 640 Atoms

Cooling Rate ρ (σ) ρ (σ) ρ (σ)

Kps-1 gcm-3 gcm-3 gcm-3

1 7.047 (0.088) 7.119 (0.075) 7.131 (0.020)
10 7.046 (0.087) 7.058 (0.082) 7.081 (0.023)
50 7.036 (0.082) 6.935 (0.083) 6.951 (0.029)
100 7.031 (0.079) 6.859 (0.095) 6.923 (0.034)
150 7.015 (0.076) 6.771 (0.085) 6.848 (0.034)
200 7.004 (0.077) 6.707 (0.081) 6.799 (0.064)
Melt 6.083 (0.215) 6.117 (0.093) 5.939 (0.091)

cells of cubic Sm2O3. A temperature of 5000 K was found to produce a stable
melt, without any void formation. The melt was allowed to equilibrate for 100
ps after which time trajectories were taken at 100 ps intervals and cooled with145

rates of 1 Kps-1, 10 Kps-1, 50 Kps-1, 100 Kps-1, 150 Kps-1 and 200 Kps-1 to 1
K. This approach has been shown to be robust for a range of glass forming and
non-glass forming oxides, producing disordered structures with the appropriate
range and concentration of the structural motifs found in the amorphous thin
films. Table 1 shows the density variations as a function of cooling rate, as ex-150

pected slower cooling rates result in denser structures. The densities generated

are all extremely similar although at cooling rates of < 100 Kps-1 there is a small
increase in density. This increase in density corresponds to the introduction of
an increased number of crystal like motifs, matching both the site symmetry
and the packing order of the crystal phases, although without a crystal seed to155

propagate from the orientations are random. As a result the low cooling rates

< 100 Kps-1 were rejected as they contained both crystalline and amorphous
motifs with no clear means of testing whether these inclusions are representative

of the partially crystalline Sm2O3. By the same token cooling rates > 150 Kps-1

introduce melt like structures in low concentrations within the selected cooling160

rate range. For comparison the crystal density is 8.43 gcm-3 meaning all of the
structures produced represent a significant reduction in density of amorphiza-
tion (≈ 20%), in accordance with the shift in coordination (table 2) and in line
with the experimental observations.[2]

The 270 atoms cells were found to be structurally converged with respect to165

coordination number distribution. Therefore the 270 atoms cells were selected
and taken forward for production along with a cooling rate of 100 Kps-1 being
the lowest cooling rate that produces an amorphous structure free of any crystal-
like regions. The structural characterization is considered in detail in 3.1.1.

The calculated thermal expansion coefficient for cubic Sm2O3 of 8.11×10−6
170

K−1 is in good agreement with the experimentally measured TEC value for the
cubic phase (7.5 − 8.8 × 10−6 K−1).[77] Hence, the inter-atomic potential set
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does well describe the thermal expansion of the studied system.[75]
Density functional theory (DFT) calculations were performed using the Vi-

enna Ab Initio Simulation Package (VASP)[78, 79, 80, 81], and the functional175

selected for the calculations was HSE06[82, 83, 84]. This functional was uti-
lized with a converged plane-wave cutoff of 500 eV and PAW psuedopotentials
to describe the core electrons. The PAW psuedopotentials inherently take the
scalar relativistic effects into account. The supercells described above were
calculated at the Γ-point. The size convergence was tested using a 4x4x4 Γ-180

centered Monkhorst-Pack k-mesh[85, 86]. From the optimized structures, the
dielectric tensor was evaluated utilizing density functional perturbation theory
to determine the static dielectric matrix.[87, 88, 89]

Vibrational frequencies were calculated numerically in VASP from the second
derivatives of the energy gradient by applying small displacements of the cells185

in each Cartesian coordinate through the finite difference technique. From the
determined Hessian matrix, the elastic tensor consisting of the elastic constants
is utilized to determine the mechanical properties of Sm2O3. This is obtained by
distorting the optimized lattice, so the elastic constants can be calculated from
the stress-strain relationships. To save computational effort, only the nonequiv-190

alent symmetry displacements are considered. The elastic constants Cij are
then calculated from the total energy (E) of the distorted (stressed/strained)
simulation cell with volume V from eq. 1.[90, 91]

Cij =
1

V

∂2E

∂εi∂εj
(1)

with ε being the applied strain component. From a general perspective, the
elastic constants relates to the material response to a perpendicularly applied195

pressure to each cell face.[90, 91]

3. Results

3.1. a-Sm2O3 Properties

3.1.1. Structural

It is of vital importance during the initial model building to test a series200

of potentials, cell sizes, and cooling rates to ensure a stable melt coupled to
structural convergence is achieved in the final structures.[75] These structures
are then validated against the available experimental data ensuring that the
structures produced are representative of the systems of interest.

For each of the cell sizes and cooling rates, 10 initial structures are produced.205

A full description of the structural, physical and elastic properties are included
in the supplementary information. In the discussion, the average structures
from these ensembles are considered, unless specifically highlighted. Table 2,
shows that there is little variation in coordination geometry as a function of cell
size with all of the structures showing very similar Sm-coordination, there is a210

greater distribution of O-coordinations. We note that all of these distributions
sit in a tight ≈ 5% range.
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Table 2: The average percentage coordination and the associated standard deviation (σ) of
Sm and O as a function of cell size to test the size convergence after a DFT cell and geometry
optimization.

Sm-Coordination 80 - % (σ) 270 - % (σ) 640 - % (σ)

4 2 (1.4) 2 (0.4) 2 (0.1)
5 39 (2.6) 40 (1.7) 40 (2.0)
6 53 (2.5) 53 (1.6) 53 (1.7)
7 6 (1.3) 4 (0.8) 5 (1)

O-Coordination

2 7 (5.2) 4 (2.0) 4 (1.5)
3 42 (6.3) 40 (2.4) 41 (2.1)
4 51 (5.0) 56 (2.9) 55 (2.7)

The structures that these coordination distributions relate to are shown for
the cubic crystal in Fig. 1, and in Fig. 2 for the amorphous system. In
the cubic crystalline phase, each Sm is 6-coordinated in a distorted octahedral215

configuration with a C2h point symmetry Fig. 1b. The O is 4-coordinated and
sits at a distorted tetrahedral site, as shown in Fig. 1c. The high temperature
monoclinic phase is based upon a distortion of the cubic crystal introducing 6-
and 7-coordinated Sm along with 3- and 4-coordinated O and is included in the
supplementary information for completeness.220

In the case of the amorphous structures, the single motifs of the crystal
structure are replaced by a variety of motifs from 7- to 4-coordinated Sm, and
4- to 2-coordinated O, Fig 2b-e. In addition to the new motifs introduced
on amorphization, their mode of tessellation is also modified. In the crystal,
all of the 6-coordinated motifs are edge sharing and equivalent, in the case of225

the amorphous structures a variety of edge and corner sharing connects are
introduced (Fig. 2a).

The structures are further analyzed through the calculation of the pair dis-
tribution functions for the 80, 270, and 640 atom cells. Table 2 shows negligible
variation of atomic coordination as a function of supercell size. For compari-230

son, pair distribution functions for all the individual systems are included in the
supplementary material.

The smaller cells show a greater variation as a result of incomplete sampling
inherent in the 80 atom cells, these statistical quirks are completely absent in
the 270 and 640 atom cells. Fig. 3 shows a comparison between the crystal and235

the amorphous PDF showing a clear correlation between the crystal and the
amorphous peaks. In the amorphous structures these features are spread out
compared to the crystal as they describe a variety of structures and distortions
inherent in the structure. The components of the total g(r) are shown in Fig.
4 where for each of Sm-O, Sm-Sm, and O-O distributions the sharp peaks of240

the crystal are broadened and longer range order of the crystal is completely
absent.

In addition to the pair distribution functions shown in figures 3, and 4, bond
angle distributions are included in the supplementary information for each of
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Figure 1: Structure of cubic Sm2O3 a) showing the edge sharing distorted octahedral net-
work. b) The 6-coordinated SmO6 distorted octahedral building block, the distortion of the
6-coordinated centers drops from Oh to C2. c) The 4-coordinated OSm4 tetrahedra the dis-
tortion to the Td symmetry is far less pronounced than for the Sm center.[92]

the structures generated along with the ensemble averages.245

3.1.2. Elastic and Vibrational Properties

Using the above structures, the elastic and vibrational properties were cal-
culated to facilitate comparison with the available experimental data. Elastic,
or mechanical, properties can be directly calculated from the obtained elastic
constants as described in the methodology. For low symmetry materials, such250

as the amorphous oxides investigated here, the bulk (B), shear (G), and Young’s
(E) moduli can be calculated according to the Voigt formalism from the elastic
constants (cij) eq. 1.[93]

B =
1

9
((c11 + c22 + c33) + 2(c12 + c13 + c23)) (2)

G =
1

15
(c11 + c22 + c33 + 3(c44 + c55 + c66) − c12 − c13 − c23) (3)

255

E =
9BG

(3B +G)
(4)

The calculated mechanical properties for Sm2O3 are summarized in table 3.
The calculated bulk moduli are in good agreement with experimental values

obtained from measuring lattice volume at different pressures and then applying
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Figure 2: Structure of a-Sm2O3 a) showing the disordered array of edge and corner sharing
motifs of varying coordination. b) The 4-coordinated SmO4 distorted tetrahedral building
block, based on a relaxation of the under coordinated 6-coordinated crystal center. c) The 5-
coordinated SmO5 unit the distortion and variation is wide enough that consideration of point
symmetry far from instructive, d) the 6-coordinated building block based upon the crystal
motifs with a range of distortions as a result of the packing environment, e) the 7-coordinated
building block represents a distortion of the monoclinic crystalline motif.

the Birch-Murnaghan equation.[40, 35] Examining table 3 it is seen that the val-
ues of the mechanical characteristics decrease moving from the cubic crystal to260

the amorphous. A decrease in B and G values have previously been attributed to
a decrease in material hardness and resistance to elastic shear strain. A smaller
E is also indicative of a material that is more receptive to physical changes to
its structure[90] suggesting that, upon amorphization, Sm2O3 becomes more
susceptible to structural changes from stress and strain.265

Following the elastic properties, the calculated vibrational frequencies were
compared to those obtained experimentally for the cubic crystal. As can be seen
in figure 6, the here calculated peak positions in the Raman spectra align with
the experimental Raman peaks. For the poly-crystalline sample, four major
Raman active peaks have been experimentally identified; 152, 335, 424, and 457270

cm-1.[38, 40, 1] Furthermore, Amaliroselin et al. reported a shallow peak at 528

cm-1 for cubic thin films in FT-IR spectra, which was assigned to stretching
mode of Sm2O3.[38] The same peak can be seen from the simulated vibrational

frequencies here at 530 cm-1 (Fig. 5). The overall good agreement between
the calculated and experimental data for both the Raman active modes and275

FT-IR modes provides some confidence that the simulation model employed
satisfactorily represents Sm2O3.

In the amorphous Sm2O3 models, a larger spread in vibrational modes is
seen with a broadening of the crystal peaks. In addition, broad shallow peaks

at ≈ 200 cm-1 present in the calculated amorphous structures result from the280
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Figure 3: Comparison between the principal peaks of total pair distribution function for the
cubic crystal Sm2O3 (red line), and the total pair distribution function of a-Sm2O3 (black
line).

interplay between 6- and 5-coordinated motifs; as there are a broad distribution

of geometries the peaks sit across a broad energy range (190 cm-1 - 300 cm-1).

This accords well with the Raman peaks observed by Goh et al.[1] at 245 cm-1.
The same study shows that the IR active modes are broadened beyond the point
where any signals can be reasonably assigned.285

3.1.3. Electronic Properties

The electronic structure calculations were performed using HSE06 as it has
been shown to perform well when calculating the hexagonal crystal phase, by
Gillan et al.[46], and discussed in section 2. Cubic, monoclinic and hexag-
onal phases of Sm2O3 have a measured band gap of 4.9, 4.7, and 5.1 eV,290

respectively.[41, 42] This is in excellent agreement with the calculated Kohn-
Sham band gap values (table 4). In the case of the amorphous phases, there
is a marked reduction in band gap from 4.77 eV for the monoclinic structure
and 4.91 eV for the cubic structures (Fig. 7), to ≈ 3.7 eV for the amorphous
systems (table 4). This decrease in insulating character going from crystalline to295

amorphous phases in binary oxides has previously been seen in Al2O3, where the
band gap reduction is far more pronounced (≈ 30%).[95, 61] Experimental stud-
ies of Sm2O3 thin films measure band gaps between 3.15 eV to 4.0 eV[28, 38],
with poly-crystalline films showing a larger band gap of 4.0 - 4.6 eV.[1, 30] This
is in accordance with the observation of Gillan et al. for the hexagonal crystal300

phase, and has been extended here to the monoclinic (supplementary informa-
tion) and the cubic phases with the agreement maintained. It should be noted
that in the case of the amorphous structures produced, while sitting in the ex-
perimental range, the calculated values tend towards the middle-high end of
the experimental range. However, both the decrease in band gap and dielectric305

from crystalline to amorphous are consistent with the experimental work, with
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Figure 5: Comparison between the amorphous (grey) and the crystalline (red) IR active
modes illustrating the broadening of the crystal features beyond recognition. The amorphous
peaks are a combination all of the simulation cells with the individual contributions included
in the supplementary material. This helps explain the lack of observable features in the as
deposited films and the resultant broad peak. The crosses indicate the experimental peak
positions.[40, 38, 92]

all of the calculated values sitting comfortably within the experimental range.
From figure 7 the character of the valence and conduction bands can be

seen to be more defined for the crystal than the amorphous phase. The valence
band maximum (VBM) of crystalline Sm2O3 is composed of O 2p-states, with310

hybridization between O p- and Sm f -states seen further down the valence band
(≈1 eV below the Fermi level). In the cubic crystal, the valence band is split
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Table 3: Calculated bulk moduli (B), shear moduli (G), and Young’s moduli (E) for the cubic,
and amorphous bulks.

Structure B (GPa) G (GPa) E (GPa)

Cubic 137.26 75.34 191.06
Experimental 130 - 149[40, 35, 90] - -

Amorphous
1 131.65 68.77 175.70
2 129.81 68.16 174.02
3 131.90 70.02 178.48
4 126.73 65.58 167.79
5 133.99 69.53 177.82
6 135.05 71.11 181.49
7 130.82 68.46 174.88
8 130.12 67.61 172.89
9 133.54 69.55 177.79
10 130.75 69.31 176.70
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Figure 6: Comparison between the principle peaks of the Raman spectra for the disordered
film (black line)[40, 38], and the calculated peak principal peaks (red lines), finally the crosses
indicate the single crystal peak positions[94, 92].

into two regions of Sm f -, O p-character near the band edge, and Sm d-, O
p-character from ≈ -2 eV below the VBM (Fig. 7a). These clear divisions are
smeared out in the amorphous case with contributions from d- and f -states315

seen across the valence band (Fig. 7b). The conduction band minimum (CBM)
shows Sm f -character at the band edge, with d-character from approximately
0.2 eV into the conduction band, as verified in experimental studies[28]. On
amorphization, the sharp states are smeared out as a function of distortion and
shift in coordination and by extension hybridization. The DOS for each of the320

structures produced are included in the supplementary information.
Sm2O3 has gained attention within the gate dielectric community due to

its large band gap and tune-able dielectric properties. Depending on crystal
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Figure 7: Total and projected density of states for a) cubic, and b) amorphous Sm2O3 calcu-
lated with HSE06, the DOS is an average of all structures, with the individual contributions
included in the supplementary material. Black lines show total density of states, whereas
green, blue, yellow, pink, purple, and red are projected density of states.

structure and crystalline character, different experimental dielectric constants
(ε) have been reported, with higher ε indicating a more cubic crystalline charac-325

ter. The calculated dielectric constant for cubic Sm2O3 is 30.2, which compares
well with the experimentally determined ε[96]. Examining the literature, a wide
range of ε exists, especially for thin films as the ε is directly dependent on film
thickness, structure, and quality[29, 97, 27]. This spread is clearly seen for the
different amorphous bulks modelled here (table 4), which have captured a wide330

range of the experimentally reported ε. This gives confidence that the models
produced in this work have reflected the characteristics of the experimentally
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synthesized thin films.

Table 4: Calculated band gap (Eg) and dielectric constants (ε) for cubic crystal, and the
amorphous structures.

Structure Eg (eV) εxx εyy εzz εmean

Cubic 4.91 30.2 30.2 30.2 30.2
Experimental[96, 41, 42] 5.0 30.5 30.5 30.5 30.5
Amorphous
1 3.75 4.28 4.27 4.30 4.28
2 3.63 4.63 5.13 5.83 5.20
3 3.72 4.20 4.24 4.27 4.24
4 3.66 4.22 4.19 4.18 4.20
5 3.85 9.85 9.83 6.68 8.79
6 3.58 7.74 6.94 8.71 7.80
7 3.74 6.60 7.82 5.68 6.70
8 3.64 4.35 4.38 4.36 4.36
9 3.75 6.30 4.57 7.78 6.22
10 3.70 4.32 4.28 4.31 4.30
Experimental[28, 29, 27] 3.15-3.9 - - - 4 - 11

4. Conclusion

The method for preparing a-Sm2O3 models presented here provides robust335

means of model generation and validation to allow the study of a-Sm2O3. This
approach ensures that the available experimental data, both structural and elec-
tronic, are tested against the models produced, hence directly applicable to the
system of study. This is not to suggest that there are not still challenges re-
maining from a structural perspective, the models produced in this work relate340

to the low temperature regime < 600◦C where the produced films are clearly
amorphous. At higher temperatures, 600◦C - 900◦C, the produced films have
characteristics of both the crystalline and amorphous, and are typically viewed
as being made up of crystalline domains linked by disordered regions. These
features are not captured by the amorphous systems presented and present a345

formidable modeling challenge.
The calculated elastic properties show excellent agreement with the crys-

talline and the amorphous structures. The shift in coordination and the evolu-
tion of the point symmetry associated with each of the structural motifs gives
a level of detail that is impossible to obtain by other means. This presents a350

picture of 6-coordinated Sm in the cubic crystal phase, and 4-coordinated O in
the crystal phase are replaced by a range of coordinations. With 4-, 5-, 6-, and
7-coordinated Sm, and 2-, 3-, and 4-coordinated O, within each of these coor-
dination environments a variety of symmetry groups are accessible along with
their distorted variants. Direct consideration of the point groups associated355

with these coordination environments is not particularly illuminating, as would

14



be the case in the crystal, given the large variation and inherent distortions in
the motifs. These variations are a result of the local steric packing and gives
rise to a range of Sm-O bond length (and angles) centered around the crystal
value.360

The change in coordination has a dramatic effect on the observed vibrational
spectra with a smearing out of the strong features observed in the cubic crystal,

peaks at 152, 345, and 424 cm-1, and the introduction of broad features at ≈
200 cm-1 that are absent in any of the crystal phases. The elastic properties,
bulk modulus, shear modulus, and Young’s modulus, all show a small reduction365

when compared to the cubic crystal phase. This is in good agreement with the
observed softening in the amorphous as deposited films.

The structural modifications on amorphization have a marked effect on the
electronic structure of the thin films when compared to the crystal phases. This
is observed in a significant contraction (≈ 24 %) of the HOMO - LUMO separa-370

tion when compared with the crystal phase. This is the result of a reduction in
density on amorphization and a change in hybridization. These two effects to-
gether lead to the observed contraction in the HOMO-LUMO separation. With
5-coordinated Sm-states introduced at the CBM, inside the 6-coordinated states,
by the same token 2- and 3-coordinated O states are introduced at the VBM.375

Further study is required to confirm how this change in electronic structure on
amorphization effects the performance of Sm2O3 as a gate dielectric and the
observation of intrinsic charge trapping and the performance limitation inher-
ent with this behaviour. The structures generated show excellent agreement
with the available experimental results and allow an atomistic understanding of380

a-Sm2O3 to be developed.
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