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a b s t r a c t

Inequality is typically measured as the degree of dispersion of a distribution of individual attributes,
say, wealth, as is captured for example by the Lorenz curve, and its associated statistic, the Gini
coefficient. But both the economics and social psychology of experienced inequality are better
expressed by differences between an individual and others. There is a natural way to do this using the
standard definition of the Gini coefficient as one half the mean difference among individuals, relative
to the population mean wealth. Here we show that reformulating the Gini coefficient as a measure of
experienced inequality on a complete social network yields a computational algorithm that, unlike the
conventional one, is consistent with this definition and irrespective of population size varies from 0 (no
differences among individuals) to 1 (one individual owns all the wealth). Our proposed measure also
avoids a downward bias in the standard algorithm, which for small populations can be substantial.
Because social networks are far from complete, the pairwise comparisons based on social interactions
in which people routinely engage may support a level of experienced inequality that either exceeds
or falls short of the Gini coefficient measured on a hypothetical complete network. We illustrate this
fact with empirical estimates for a farming community in Nicaragua.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Researchers find the Gini coefficient an appealing measure of
inequality for two reasons. First, like the coefficient of variation
and unlike the Lorenz curve and many other measures such as
the Atkinson index, it provides a single measure of the degree
of inequality based on the entire distribution and allows easy
comparisons across nations and time periods (Damgaard, 2018;
Dasgupta et al., 1973; Gini, 1914; Kendall and Stuart, 1969; Sen,
1997; Yitzhaki and Schechtman, 2013).

Second, what the Gini coefficient measures can be connected
in a Veblen-inspired intuitive way to show how we experience
inequality, that is by pairwise comparison of one’s own wealth
or income with that of someone else. This is because the Gini
coefficient, say, for wealth for example, is the mean difference in
wealth between all pairs in the population, divided by the mean
wealth, multiplied by one-half so that the measure varies (as Gini
specified that it should and as shown by Deaton (1997)) from
zero, if there are no differences among population members to
one if a single individual owns all of the wealth (Gini, 1914).

There are many questions for which a single scalar measure
of inequality is insufficient. The Gini coefficient, for example,
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fails to capture both important dimensions of economic class
polarization (Esteban and Ray, 1994) and the expected positive
relationship between greater wealth inequality and the extent of
polygynous marriage (Ross et al., 2018). But the more complex
multi-dimensional measures of inequality adequate for these and
similar questions do not allow either the simple intuitions un-
derlying the Gini coefficient or easily interpretable comparisons
across time and place.

The appeal of the Gini coefficient is that it is as Sen writes ‘‘a
very direct measure of income differences, taking note of differ-
ences between every pair of incomes’’ (Sen, 1997). To capture the
intuition that the Gini coefficient measures experienced pairwise
differences, we represent a population as a complete undirected
network. The fundamental data on experienced disparities, as
shown in the left panel of Fig. 1, are the edges of the network,
that is, the pairwise differences in wealth, not the nodes.

The conventional algorithm (and the equivalent Lorenz curve-
based geometrical measure) is illustrated by the right panel of
Fig. 1, where all of the nine edges (represented by the arrows)
represent ‘‘differences’’ in wealth, including the by-definition zero
‘‘self on self’’ differences. If there are n members of the population
then the total number of unique non-identical pairs relevant to
the study of inequality is (n2

− n)/2, shown as the three edges in
the left panel not the n2 ‘‘pairs’’ on the right.
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Fig. 1. Experienced differences (left panel) and the edges used in the
conventional Lorenz curve-based measure (right panel).

For finite populations (the only relevant case), the conven-
tional algorithm is a systematically downward-biased approxima-
tion. If the nodes A, B, and C in Fig. 1 have wealth 10, 4, and 3, for
example, the Gini coefficient using the network representation in
the left panel is 0.412, which is what one finds by using Eq. (3)
below. Using the network representation on the right (that is,
Eq. (1), below), however, the Gini is estimated as 0.274 which (as
we will see in Eq. (2)) needs to be multiplied by n/(n -1) or 1.5
to get the Gini coefficient based only on the differences among
actual pairs in the population (excluding the three ‘‘self-on-self’’
zero differences).

We call the Gini coefficient for the network on the left the
difference-based Gini. The measure for the network on the right is
equal to the area between the Lorenz curve and the perfect equal-
ity line divided by the total area under the perfect equality line,
so we term it the Lorenz-based Gini coefficient. We denote the
latter measure, GL, and the difference-based measure, G, without
superscript as this is the unbiased measure of the correct quantity
– namely differences among population pairs – of which GL is an
approximation.

The Lorenz-based Gini coefficient is less than one when a
single individual owns all of the wealth. The reason is that, as the
figure illustrates, despite its common description in these terms,
the algorithm does not compute the average differences between
all pairs of members in the population relative to the population
mean.

The Lorenz-based coefficient when applied to some quantity,
y, gives

GL
=

∑i=n
i=1

∑j=n
j=1

⏐⏐yi − yj
⏐⏐

2n2y
(1)

which for the population in Fig. 1 counts all nine arrows in
the right panel (including the three ‘‘self-on-self’’ edges with a
zero difference by definition, namely |yi − yi|) as indicators of
the disparity in question. Using this Lorenz-based conventional
computation, a population size adjustment is required so that this
value will vary over the unit interval. Then the difference-based
Gini coefficient (Yitzhaki and Schechtman, 2013) is:

G = GL n
n − 1

(2)

Dasgupta, Sen and Starrett noted ‘‘there is some ambiguity
as to how we define Lorenz curves in the discrete case’’ (Das-
gupta et al., 1973). For finite rather than continuous populations
Gini (correctly) proposed that both the ‘‘perfect equality line’’
and the Lorenz curve are represented by a step function (Gini,
1914). Remembering that one must both use step functions in
the geometrical treatment and multiply GL by n/(n−1) to get the
correct measure seems like an unnecessary complication, which,
we will show, can be avoided by applying a consistent definition
of societal differences to measure G directly.

The population size bias in the unadjusted measure is sub-
stantial when the population under consideration is small. Recent
studies of wealth inequality in Western Eurasia from the begin-
ning of the Neolithic to the end of the Bronze age, for example,
demonstrate that Gini coefficients estimated from hypothetically
simulated small data sets are quite precise. But the bias associated
with use of the Lorenz-based measure (GL ) is substantial enough
to affect qualitative conclusions when comparisons are made
across data sets of substantially differing size. For observations
prior to 3000 BCE the Lorenz based measure understates the
difference-based Gini by sixteen percent; while for later popu-
lations the bias is only 2 percent (Bogaard et al., 2019; Fochesato
et al., 2019).

However, the main reason to substitute G for GL is not the
‘‘small numbers bias’’ but the fact that GL defined in Eq. (1) simply
is not a measure of inequality, if by this one means, differences
between individuals, because it includes the fictitious self-on-self
zero differences. Using the unique non-identical pairing setup in
the left panel of Fig. 1 we have an intuitive definition of G which
measures inequality among actual pairs in the population, and,
which, as a result, does not require a population size adjustment.

We first define the sum of the absolute differences among the
(unique non-identical) pairs, which we call ∆, or

∆ ≡

i=n∑
i=j+1

j=n−1∑
j=1

⏐⏐yi − yj
⏐⏐

The difference from Eq. (1) is that here the
⏐⏐yi − yj

⏐⏐ terms
count only the three edges in the left panel of Fig. 1. And the
difference-based Gini coefficient, then, is

G =
∆( n(n−1)
2

) 1
y
1
2

=
∆

n(n − 1)
1
y

(3)

from which we can see that it is the mean difference among all
pairs in the population (the first term in the expression in the
middle) divided by the mean value of y, giving us the ‘‘relative
mean difference’’ times one half.

This is what we consider to be the true Gini coefficient (men-
tioned in passing by Deaton (1997)) and is identical to the cor-
rected Gini coefficient in Eq. (2) which, noting that the sum of
differences from Eq. (1) is just 2∆, can be seen from:

GL
(

n
n − 1

)
=

∆

n2

1
y

(
n

n − 1

)
=

∆

n
1
y

(
1

n − 1

)
=

∆

n(n − 1)
1
y

= G (4)

Using Eq. (3), when a single individual owns all of the wealth,
G = 1 independently of population size. To see this, suppose
that a single individual in a group of finite size n owns the
entire wealth which is y. Then all the paired differences are zeros
except the (n − 1) edges connecting the ‘‘have nots’’ with the
single ‘‘have’’. The sum of the differences on these edges is thus
y(n − 1) = ∆. Inserting this value in Eq. (3) confirms that G = 1
for any n > 1.

One way to see why the Lorenz-based measure understates
inequality is that in the algorithm, a zero can mean either that
there are two individuals with identical wealth (relevant to the
measurement of inequality), or that the observation is based on
comparing a single individual’s wealth with itself (not relevant).
The idea of counting a person ‘‘paired’’ with herself is mathe-
matically familiar – ‘‘difference’’ here is the expected absolute
difference between two individuals randomly drawn (with re-
placement) from a population – but is not applicable to the study
of interpersonal differences in wealth or income.

Another clue that something is wrong with GL is that it is
invariant to population replication, which occurs because of the
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fictive zeros mentioned above. But experienced inequality clearly
decreases with replication because it increases the fraction of the
pairs in the population in which wealth differences really are ab-
sent. Consider an initial population of n with the Gini coefficient
G1 and construct a new population consisting of k (a positive
integer greater than one) copies of the initial population with
a conventionally measured Gini coefficient of GL

k. By invariance,
GL
k = GL

1, and from Eq. (2),

GL
k =

n − 1
n

G1

So, for the new population of kn individuals we have

Gk = GL
k

kn
kn − 1

= G1
n − 1
n

kn
kn − 1

= G1
k(n − 1)
kn − 1

< G1 (5)

which shows that replication reduces difference-based inequality.
Replication, by increasing population size, reduces the small pop-
ulation size downward bias of GL and this exactly offsets the real
decrease in the difference-based measure, as shown in Eq. (5).

Some of the dimensions along which inequality is measured
are best conceived as individual attributes, of which members
of a population simply have more or less, like height. But other
dimensions are best conceived of as differences between indi-
viduals in their relationships with others (Nettle, 2015). On both
descriptive and normative grounds, we think that economic in-
equalities are in this latter class. We have provided a method of
calculating the Gini coefficient motivated by intuitions about in-
equality as experienced by members of a population, and which,
in so doing, incidentally avoids the need for a population size
adjustment.

Because it is based on a social network, the difference-based
measure can readily be extended to better capture the sociolog-
ical and psychological dimensions of inequality that arise from
the comparisons people make with others whom they routinely
encounter. Using social network data we can provide a Veblen-
inspired measure of what we call experienced inequality (Veblen,
1934). Eq. (3) measures the degree of experienced inequality on a
complete network, which will differ from experienced inequality
on empirically observed often highly segregated social networks
(Jackson et al., 2017).

Consider, for example, the effect of a change in the relevant
social relationships from a complete network characteristic of
many hunter-gatherer economies to a star with the wealthiest
person at the center as in what anthropologists call a ‘‘big man’’
system or to a bipartite two-class network characteristic of farm-
ing economies with economic classes based on land ownership.
Assuming no change in individual wealth, experienced inequality
would have increased. To illustrate, if the three individuals in
the complete network of the left panel of Fig. 1 were instead
represented by a line with the richer person in the center—a land-
lord, for example with two isolated sharecroppers—then, with no
change in the wealth of the three individuals, the experienced
inequality would rise from 0.41 to 0.57.

As an illustration we have used empirically estimated social
networks to assay the experience of inequality in a community
of 25 horticultural households in lowland Nicaragua (Koster and
Leckie, 2014). If we confine pairwise comparisons to households

that are connected in the social network established on the ba-
sis of ethnographic evidence, the Gini coefficient for material
wealth is 0.65, considerably in excess of the measure estimated
on the entire hypothetical complete network (0.56). This occurs
because households tend to interact more with other households
of differing wealth than would occur by chance.

This opens up the broader question of the adequacy of the
Gini coefficient and other indices as measures of inequality, and
the potential for extensions of the mean difference approach to
take account of social network structure and the experience of
inequality.
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