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ABSTRACT
We derive unbiased distance estimates for the Gaia-TGAS data set by correcting for the bias
due to the distance dependence of the selection function, which we measure directly from
the data. From these distances and proper motions, we estimate the vertical and azimuthal
velocities, W and Vφ , and angular momentum Lz for stars in the Galactic centre and anticentre
directions. The resulting mean vertical motion W shows a linear increase with both Vφ and
Lz at 10σ significance. Such a trend is expected from and consistent with the known Galactic
warp. This signal extends to stars with guiding centre radii Rg < R0, placing the onset of the
warp at R � 7 kpc. At equally high significance, we detect a previously unknown wave-like
pattern of W over guiding centre Rg with an amplitude ∼1 km s−1 and a wavelength ∼2.5 kpc.
This pattern is present in both the centre and anticentre directions, consistent with a winding
(corrugated) warp or bending wave, likely related to known features in the outer disc (TriAnd
and Monoceros overdensities), and may be caused by the interaction with the Sgr dwarf galaxy
∼1 Gyr ago. The only significant deviation from this simple fit is a stream-like feature near
Rg ∼ 9 kpc (|Lz| ∼ 2150 kpc km s−1).

Key words: stars: distances – stars: kinematics and dynamics – stars: statistics – Galaxy: kine-
matics and dynamics – Solar neighbourhood – Galaxy: structure.

1 IN T RO D U C T I O N

The majority of spiral galaxies have at least some warps in their
outer gas disc (Bosma 1978, 1981). Similarly, the Milky Way has
a well-known warp both in its outer H I (Burke 1957; Kerr 1957;
Weaver 1974) and stellar disc (Djorgovski & Sosin 1989). Several
studies also indicate that the outer disc structure is likely more
complicated than a simple warp. Most point to a wave-like pattern,
which can reach amplitudes in excess of 1 kpc (e.g. Price-Whelan
et al. 2015; Xu et al. 2015).

Where the Galactic warp starts is still debated. Reylé et al.
(2009), fitting stellar profiles to 2MASS (Skrutskie et al. 2006)
data via the Besançon model (Robin et al. 2003), place the on-
set of the Galactic warp at or outside the Solar annulus, whereas
Drimmel & Spergel (2001) find the onset of the warp about 1 kpc
inside the Solar annulus, formally excluding an onset at or out-
side the Solar position. Dehnen (1998) found the signal of a warp
starting outside the Solar annulus from the velocities of Hippar-
cos stars; however, given the comparably small number of stars,
the feature was barely significant, and debated by Seabroke &
Gilmore (2007).

Theoretical studies consider galactic warps as a perturbation to
otherwise axially symmetric and flat discs. Starting with the pioneer-
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ing work by Hunter & Toomre (1969), most of such investigations
ignore diffusion in the disc plane and model the disc as vertically
thin (an exception is Weinberg 1998, who demonstrated the pres-
ence of stable oscillating modes in a thick disc). While the approach
of Hunter & Toomre allows arbitrary Fourier decompositions, al-
ready they concentrated on m = 1 warps. Based on evidence from
observations and simulations these appear to be the dominant mode
of excitation. Moreover, in linear perturbation theory these m = 1
modes do not mix with other wavenumbers, in particular m = 2, 3,
4 spiral waves.

Together with the above approximations, it was thus reasonable
to model warp structures as rigid, tilted concentric rings. With this
assumption, the model by Sparke & Casertano (1988) produced
stable warps, which fit extragalactic observations. However, Binney,
Jiang & Dutta (1998) demonstrated that this stability hinges on
the assumption of a static halo potential. With a disc composed
of rigid rings in a live halo, they predicted that any warp should
rapidly wrap up. This lets warps evolve into an interesting and
widely unexplored regime: at a radial wavelength smaller than the
typical stellar epicycle the above approximations break down, which
provides a rather strict lower limit for the radial wavelength of a
wrapped-up warp at a couple of kpc, either by Landau dampening,
or by stabilization of the pitch angle. Shorter wavelengths in the gas
should (at least in the inner disc) be damped out by the interaction
with the stars; in addition, turbulence in the gas disc will provide a
separate lower limit for the wavelength.
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The origins of the Galactic warp have been strongly debated.
Most options rely on an external torque on the disc, which affects
the outskirts more, yielding an increasing tilt with the decreasing
moment of inertia at larger radii. Three major candidates for such
external torques have been identified early on: accretion of fresh
gas with misaligned angular momentum (Ostriker & Binney 1989;
Quinn & Binney 1992; Jiang & Binney 1999; Roškar et al. 2010),
a torque exerted by a triaxial dark-matter halo, which can also tilt
the disc plane (Aumer & White 2013; Debattista et al. 2013), or
the impact or passage by massive satellite galaxies. For the Milky
Way, the most likely candidates to create and sustain a warped
outer disc are the Magellanic clouds (Weinberg 1995; Weinberg &
Blitz 2006; Laporte et al. 2018), or the Sagittarius dwarf galaxy
(Ibata & Razoumov 1998). It should be noted that the vertical tilt
of the Galactic stellar warp is likely detectable with Gaia (Earp
et al. 2017). Some divergent studies attempted to explain warps
and vertical oscillations also by stochastic interactions of the disc
with halo overdensities or subhaloes (Weinberg 1993; Chequers
& Widrow 2017), or interestingly by spiral patterns non-linearly
coupling with and driving warp waves near their outer Lindblad
resonance (Masset & Tagger 1997).

A more recent line of research has been opened by the discov-
ery of the Monoceros Ring (Newberg et al. 2002) and the TriAnd
streams (Majewski et al. 2004), ring-like overdensities at a bit more
than twice the Solar Galactocentric radius near the outer Milky Way
disc plane covering around 170◦ in longitude. Some earlier studies
(e.g. Peñarrubia et al. 2005) quite successfully matched these obser-
vations, in particular the presence of a kinematically warm structure
streaming roughly at the circular speed (Yanny et al. 2003), with an
accretion event near the disc plane. More recent studies, however,
tend to favour a picture of bending waves1 in the disc created by im-
pacts. Kazantzidis et al. (2008, 2009) demonstrated that in addition
to the known effects of minor mergers, namely warp and verti-
cal disc heating, their simulated host galaxies produced dominant,
very tightly wound spiral arms of high-density contrast, resembling
ring-like structures like the Monoceros stream. Later, Gómez et al.
(2013) showed vertical excitations wrapping up into a spiral, very
similar to the earlier predictions by Binney et al. (1998). D’Onghia
et al. (2016) found similar structures formed within a Gyr of a
Sagittarius-like impact, in particular a tightly wound spiral pattern
of vertical density oscillations and corresponding mean vertical ve-
locity oscillations with a radial wavelength of a few kpc. On the
observational side, Xu et al. (2015) developed a comprehensive
picture, providing evidence for vertical oscillations of the disc mid-
plane inwards of Monoceros and TriAnd, while far above the disc,
these features rotate fast and have velocity distributions as expected
for disc stars.

The goal of this study is to use the first Gaia-TGAS data release
(Gaia Collaboration 2016a,b; Lindegren et al. 2016) to investigate
the structural characteristics of the Galactic warp, and its extent in
the disc. Compared to the large-scale warp, the Gaia-TGAS sample
with its depth of ∼1 kpc probes a small region. However, stellar
kinematics will allow us to extend the reach of our analysis by the
size of the stellar epicycles to ∼3 kpc for the guiding centre radius
in either direction from the Sun. In the stellar kinematics, the warp
imprints a very small but systematic variation of the mean vertical

1Bending waves are (essentially undamped) vertical oscillations of the disc,
while breathing modes (not considered here) are symmetric around z = 0 in
density and antisymmetric in vertical velocity with vanishing mean (Wein-
berg 1991; Widrow et al. 2014).

velocity W with angular momentum Lz, and hence the azimuthal
velocity Vφ . Conversely, the measurement of a warp signal from star
counts is much more prone to systematics in the selection function:
reddening is systematically biased by the position of the Sun above
the plane and the patchy ISM making the southern galactic hemi-
sphere more reddened on average and thus breaking the symmetry
in star counts between north and south, which mimic a warp. How-
ever, when kinematics and not star counts are used, this problem can
only affect the population mixture in the sample. This can alter, but
not create a warp signal in velocity space. In Gaia-TGAS, we have
only 5D phase space information, since the line-of-sight velocities
from Gaia are not yet published; the largest data set combining
TGAS astrometry with line-of-sight velocity information, RAVE
DR5 (Kunder et al. 2017), has significantly fewer stars when we
apply the necessary quality criteria. Hence, for most of this paper,
we must do without radial velocities. The required correlation be-
tween W and Vφ can only be reliably inferred in relatively narrow
cones towards the Galactic centre and anticentre. Furthermore, dis-
tance errors may lead to correlations between the inferred W and
Vφ , requiring careful control.

This paper is structured accordingly. In Section 2 we define our
coordinate system and describe the data sets we use. Distances for
RAVE-TGAS have been derived by Schönrich & Aumer (2017,
hereafter SA17), but the selection function in Gaia DR1 differs
significantly from RAVE-TGAS. Consequently, we derive new dis-
tances for the full Gaia-TGAS catalogue in Section 3. These dis-
tances are publicly available. Section 4 describes the measurement
of the kinematics demonstrates the reliability of the detected warp
signal. In Section 6, we map the dependence of the mean vertical
motion on Galactocentric radius, angular momentum and azimuthal
velocity. Finally, in Section 7 we discuss the relationship to previ-
ous conceptions of the warp and summarize our conclusions in
Section 8.

2 DATA A N D D E F I N I T I O N S

2.1 Coordinate frame and definitions

Galactic longitude and latitude are termed � and b with proper mo-
tions μ� = cos b �̇ and μb = ḃ, while stellar distances are denoted
by s, the line-of-sight velocity vlos = ṡ, observed parallax p0 with
uncertainty σ p, and the actual parallax p ≡ (pc/s) arcsec. We use the
standard right-handed Cartesian velocity vector (U, V, W), which
at the Solar position coincides with the velocities in directions to the
Galactic centre, Galactic rotation, and North Galactic pole, respec-
tively. We also use standard Galactocentric cylindrical coordinates
R, z, φ and velocities VR = Ṙ, Vφ = Rφ̇, W = ż (while VR = U
and Vφ = V only for stars at � = 0). We define the guiding centre
as Rg = RVφ /Vc, using the fact that the rotation curve of the Milky
Way is nearly flat in the region of interest (McMillan 2011; Piffl
et al. 2014). See also fig. 2 of SA17 for a graphical representation of
these coordinates (the Galactic azimuth φ coincides with the angle
α in that figure). Lz is positive towards the Galactic South Pole,
i.e. is negative for the disc. For the Solar motion and Galactocen-
tric distance to the Sun, we use the determinations from Schönrich
(2012), McMillan (2011), and Schönrich, Binney & Dehnen (2010),
also in concordance with Reid & Brunthaler (2004) and Reid et al.
(2014). We set the Solar Galactocentric distance R0 = 8.27 kpc,
its total azimuthal velocity Vφ, � = 250 km s−1, and motion with
respect to the Local Standard of Rest (U�, V�, W�) = (13, 12.24,
7.24) km s−1, implying a local circular velocity of Vc = 238 km s−1.
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Our analysis has to concentrate on cones around the Galactic centre
and anticentre directions. We define these cones by an acceptance
angle ε, where |b| < ε and |l| < ε or |180◦ − l| < ε. To denote Galac-
tocentric versus heliocentric stellar positions and velocities, we use
large versus small letters, i.e. heliocentric position r = R − R� and
velocity v = V − V�. We further split the stellar velocity into the
mean at R and the peculiar motion of the star,

V = V̄ (R) + Vp, (1)

such that the expectation value for Vp (at given R) vanishes. Anal-
ogously, v̄ and vp define for each star the expected and peculiar
motion, respectively, in the heliocentric frame. Here, we use the
simple model of a flat rotation curve, i.e.

V̄ (R) = −Vc êφ = (Y , −X, 0)t Vc/
√

X2 + Y 2. (2)

We split observable Heliocentric velocity v into the components
parallel and perpendicular to r ,

v = p + u, with u ≡ vlos r̂ = r̂ r̂ · v and p ≡ T · v. (3)

In the absence of vlos information, only the transverse velocity
p of the star is known, but not u. We also evaluate effects of the
different estimators on the measured angular momentum component
Lz = RVφ = XVy − YVx.

Note that a different choice of the parameters R0, Vφ, �, and W�
would proportionally shift the values of Lz, Vφ , and W derived for
all stars, but hardly affects the structures detected in our study or
its conclusions. Similarly, we expect that the Sun’s vertical offset
from the Galactic mid-plane |z�| cannot lead to a contamination of
the bending-wave signal with possible breathing modes, since their
scale (∼ disc scale height) is much larger than |z�|.

2.2 Data

We use two different subsets: for our main analysis the full Gaia-
TGAS catalogue, which has good parallaxes from Gaia DR1 for
most stars from the original Tycho catalogue, but no line-of-sight
velocities, and for control the RAVE-TGAS sample, which has
a smaller sample size, but combines RAVE line-of-sight velocity
measurements with the parallax and proper motion information
from Gaia DR1, and hence allows for full velocity measurements.
We take the distances for the RAVE DR5 sample from SA17, while
those for Gaia-TGAS are determined in Section 3.

2.3 RAVE

A full description of the RAVE sample is provided in SA17, where
we detail our quality cuts, removal of multiple entries, etc. The
total RAVE DR5 sample contains 520 701 entries. However, half
the entries drop out by cross-matching with TGAS, and by exclud-
ing cluster members as well as stars with problematic line-of-sight
velocity measurements [σ los, RAVE > 5 km s−1, no reasonable mea-
surement (indicated by σ los, RAVE = 0), or |vlos| > 500 km s−1]. De-
manding parallaxes better than p0/σ p = 5, only 88 516 stars remain.
We note that RAVE DR5 contains further information on abnor-
malities in the stellar spectra, which is communicated via the flags
from Matijevič et al. (2012). Those flags mark if there are particular
stars among the 20 closest matches to each RAVE spectrum. We
call stars with all ‘normal’ flags ‘unflagged’. The ‘flagged’ sample
contains in particular the identified binaries.

2.4 TGAS data

The TGAS sample from Gaia DR1 contains more than 2 million
stars. However, we require good and bias-free distance determina-
tions. Hence, we use the condition p0/σ p > 5, for which we have val-
idated our distance method in SA17. There are no direct kinematic
selections in the TGAS sample, but there is a bias against stars with
large proper motions. According to Lindegren et al. (2016) TGAS
loses the majority of stars with proper motions μ> 3.5 arcsec yr−1,
which corresponds to a transverse velocity of v⊥ ∼ 500 km s−1 at
s = 30 pc. However, some objects are likely lost at smaller proper
motions. In SA17, we had to exclude small distances, since a loss of
high-proper motion stars could feign distance underestimates. How-
ever, the correlation between vertical and azimuthal mean velocity,
which we discuss in this paper, should not be strongly impacted by
a loss of high-proper motion stars. The correlation between Vφ and
W can only be distorted if the lost stars themselves had a significant
correlation (e.g. by losing stars preferentially when they are mov-
ing along a direction that is significantly inclined against μ� and
μb). To test this, we measured the correlation between Vφ and W
when varying a distance cut excluding nearby stars, i.e. s > sinner.
For values between sinner = 0 and 100 pc there was no significant
change in our findings.

3 D I S TA N C E D E T E R M I NAT I O N S A N D
S E L E C T I O N FU N C T I O N FO R GAIA D R 1

For retrieving distances to single stars, we use the method of SA17.
Since we are dealing with first-order moments of the velocities,
which are linear in the distance given the measured proper motions,
we require expectation-true distance estimates, i.e. we need to find
the right priors for our Bayesian distance estimator. For a discussion
on deriving distances from parallaxes, we refer to Strömberg (1927),
Schönrich & Bergemann (2014), and Astraatmadja & Bailer-Jones
(2016). Like SA17, we do not model the stellar photometry, and
hence have to write the colour–magnitude-based selection function
S into the priors. We assume that this selection function is isotropic,
i.e. depends only on distance. We use equation (1) from SA17:

〈s〉 = N−1
∫

ds s3 G
(
p(s)|p0, σp

)
ρ(s, �, b) S(s), (4)

with normalization

N =
∫

ds s2 G
(
p(s)|p0, σp

)
ρ(s, �, b) S(s). (5)

Here, G(p|p0, σ p) is the observational likelihood of the parallax
p given a measurement (p0, σ p), while ρ(s, �, b) is the Galactic
stellar density. We employ the simple density model (Schönrich &
Bergemann 2014):

ρ(R, z) ∝ e− R−R0
Rd

[
e− |z|

z0 + ate
− |z|

z0,t

]
+ ah

(
r

R0

)−2.5

(6)

with a disc scale length Rd = 2.5 kpc, a relative thick disc normal-
ization at = 0.12, and disc scale heights (z0, z0, t) = (0.3, 0.9) kpc
in agreement with Ivezić et al. (2008). ah = 0.001 normalizes the
(unimportant) halo component.

In SA17 we found that the selection function in distance s
can be reconstructed from the data by fitting an analytic function
S

′
(s) ∼ ρobs(s)/ρ(s) to the ratio between the observed density of

stars ρobs(s) to the simple model (6). The final approximation for
S(s) is gained by starting with a flat/constant S(s). We then iterate by
re-inserting the new fit for S(s) into equation (4) until the selection
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Figure 1. Deriving the selection function S(s) in distance. Crosses show
the ratio between observed stellar density, ρobs(s), and the expected density
ρ(s) from equation (6). Dashed and solid curves show the analytic fit (7) to
S(s) and its dominant exponential decline, respectively. The top plot uses a
linear, the bottom plot a logarithmic scale for S(s).

function converges. For Gaia DR1, S(s) is fitted almost perfectly by
a simple declining exponential:

S(s) ∝ exp (−bs)[1 − exp(−b2s)], (7)

where b = 5.51 kpc−1. The second term models a decline of stars
at the smallest distances with b2 = 47.5 kpc−1 and was inserted for
purely aesthetic reasons to account for the bright limit of the survey
at a magnitude G ∼ 6 mag. Neither the distance estimates nor any
of our findings are significantly impacted by this term.

The resulting selection function is shown in Fig. 1. The analytic
function provides an excellent fit. The breakdown for distances
s > 0.75 kpc is caused by an increasing fraction of stars dropping
out of the sample due to the parallax quality cut (which must not be
written into the selection function). We also confirm that the shape
of the selection function is the same in the Galactic plane (|b| < 10◦)
and towards Galactic poles (|b| > 70◦). The overall normalization
is different for stars at low latitudes, which is caused both by the
assumed density model not perfectly fitting the lowest altitudes |z|,
and by the loss of stars in the survey near the plane due to crowding
and extinction. However, since the shape of S(s) remains the same,
this does not significantly impact the distance estimates.

The distances derived with this method are available.2

4 ES T I M ATO R S FO R Vφ A N D W

Readers who are mostly interested in our measurement results are
recommended to continue in Section 5 and refer to Section 4.2.1
if needed. This Section derives and validates our method for the
expectation values for the azimuthal (Vφ) and vertical (W) velocity
components and their covariance for the observed stars, which is
relevant for the measurement of the galactic warp signal. In the
second half of the section, we will discuss three different meth-
ods to obtain less biased Vφ and W velocity components and their
detailed bias terms. Throughout this section, we will indicate esti-
mated quantities with primes. Our method to derive distances from
parallaxes has been tested in SA17 to be bias free at the detection
limit of the order of ∼1 per cent. Thus, for most of the discussion we
neglect the effects of distance bias (which is best assessed with the
same line of formalism; see Schönrich, Binney & Asplund 2012).
We have further evaluated (see Appendix) that the effects of random
parallax errors and error correlations with proper motions have no
significant effect on our results.

4.1 Method

In a full measurement, like RAVE-TGAS, we have proper motions
in the Galactic longitude and latitude (μ�, μb) directions, a dis-
tance estimate (s), and a line-of-sight velocity (vlos). The Cartesian
motions in the heliocentric frame are then obtained by⎛
⎝ U0

V0

W0

⎞
⎠ = M ·

⎛
⎝ sμb

sμ�

vlos

⎞
⎠ and

⎛
⎝ sμb

sμ�

vlos

⎞
⎠ = MT ·

⎛
⎝ U0

V0

W0

⎞
⎠ (8)

with the orthogonal (rotation) matrix

M ≡
⎛
⎝− sin b cos � − sin � cos b cos �

− sin b sin � cos � cos b sin �

cos b 0 sin b

⎞
⎠. (9)

However, as TGAS lacks any measurement of vlos, this relation
cannot be used to find the full velocities of individual stars in the
TGAS sample. The problem of missing vlos information becomes
apparent when we set vlos = 0 in our equations and relate the inferred
velocity components (U

′
, V

′
, W

′
) to the real heliocentric velocity

vector (U0, V0, W0):

v′ =
⎛
⎝ U ′

V ′

W ′

⎞
⎠ ≡ M ·

⎛
⎝ sμb

sμ�

0

⎞
⎠ = T ·

⎛
⎝ U0

V0

W0

⎞
⎠, (10)

where T ≡ M · diag(1, 1, 0) · Mt is the symmetric projection ma-
trix (Dehnen & Binney 1998; Schönrich, Binney & Asplund 2012).
We have

T = 1 − r̂r̂t =
⎛
⎝ ỹ2 + z̃2 −x̃ỹ −x̃z̃

−x̃ỹ 1 − ỹ2 −ỹz̃

−x̃z̃ −ỹz̃ 1 − z̃2

⎞
⎠ (11)

=
⎛
⎝ 1 − cos2b cos2l − 1

2 cos2b sin 2l − 1
2 sin 2b cos l

− 1
2 cos2b sin 2l 1 − cos2b sin2l − 1

2 sin 2b sin l

− 1
2 sin 2b cos l − 1

2 sin 2b sin l 1 − sin2b

⎞
⎠. (12)

2Please find them at http://www-thphys.physics.ox.ac.uk/people/RalphSc
hoenrich/data/tgasdist/tgasdist.tar.gz.
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Here,

r̂ := (x̂, ŷ, ẑ)t ≡ (cos b cos �, cos b sin �, sin b)t (13)

is the unit vector pointing from the Sun to the star and is identical to
the last column of M. In a sample with vlos information, T describes
the correlations between observed velocities and (�, b) arising from
biased distances, and so opens the way to precise statistical distance
tests. Here, it provides the bias caused by missing vlos. We denote
the components of T after the velocities they connect, i.e. Tvv is
the diagonal element for the azimuthal velocity component and
Tvw = Twv connects V and W velocity components. Good V and W
estimates require

Tvv = 1 − sin2 � cos2 b ≈ 1 and Tww = 1 − sin2 b ≈ 1. (14)

Obviously, this is satisfied only near the centre and anticentre di-
rections, i.e. (�, b) ∼ (0◦, 0◦) or (�, b) ∼ (180◦, 0◦). Near these lines
(assuming angles in radian)

T ∼
⎛
⎝ b2 + �̄2 −�̄ −b

−�̄ 1 − �̄2 −�̄b

−b −�̄b 1 − b2

⎞
⎠ (15)

with �̄ = � (centre) or �̄ = � − 180◦ (anticentre). While the diagonal
elements Tvv and Tww are quadratic in either �̄ or b̄, the off-diagonal
elements are linear, i.e. minimizing biases will demand a sample
symmetric in � and b, in order to cancel these terms.

4.1.1 A correct trend between V and W velocity

Our analysis requires not only unbiased expectation values for each
star’s V and W, but also the correct slope between the inferred V

′
and

W
′
, which in a linear regression is determined by their covariance

C(V
′
, W

′
). Inserting equation (10) into C(V

′
, W

′
), we have

C(V ′, W ′) = C(TuvU0 + TvvV0 + TvwW0,

TuwU0 + TvwV0 + TwwW0)

= C(TvvV0, TwwW0) + C(TvwV0, TvwW0)

+ C(TuvU0, TuwU0) + C(TvvV0, TvwV0)

+ C(TvwW0, TwwW0)

+ C(TuvU0, TwwW0) + C(TuwU0, TvvV0)

+ C(TuwU0, TvwW0) + C(TuvU0, TvwV0). (16)

Clearly, the first two terms on the right-hand side of equation (16)
are our main targets – the first term deviates from the desired value
C(V0, W0) by an amount O(ε2), where ε is the angular distance
from the Galactic centre or anticentre directions. However, we can
correct the expectation value by defining new velocity components
(U

′
, V

′
, W

′
):⎛

⎝ U ′

V ′

W ′

⎞
⎠ ≡

⎛
⎝ U ′/Tuu

V ′/Tvv

W ′/Tww

⎞
⎠, (17)

when

C(V ′, W ′) = C(V0, W0)

+ C(V0, Tvw/TwwV0) + C(Tvw/TvvW0, W0)

+ C(Tuv/TvvU0, Tuw/TwwU0)

+ C(Tvw/TwwV0, Tvw/TvvW0)

+ C(Tuv/TvvU0, Tvw/TwwV0)

+ C(Tuw/TwwU0, Tvw/TvvW0)

+ C(Tuw/TwwU0, V0) + C(Tuv/TvvU0, W0). (18)

The first term is exactly what we want. The remaining correction
terms in equation (18) have very different levels of expected impact
on our results. The mixed-velocity correlations in equation (18) are
in general orders of magnitude smaller than the covariance terms
with the same velocity component on both sides (second to fourth
terms on the right-hand side). From equation (15), we see that these
three terms are all O(�̄b), i.e. they are second order in the angular
offset ε from the centre or anticentre directions and are both north–
south and left–right antisymmetric at these directions. At vanishing
expectation values, and if the variance Var(y) = C(y, y) is indepen-
dent of other variables, we have C(xy, zy) ∼ C(x, z)Var(y). That
is, in this case, if terms like Tvw/Tww have non-vanishing sample
mean, they result in large deviations on the measured correlation.
Owing to the antisymmetries of Tvw, Tuv, and Tuw (see equation 15),
this problem is diminished if we keep our selection cones strictly
symmetric in �̄ and b, such that these terms average out at O(ε2),
leaving only terms O(ε3).

4.2 Methods for velocity correction

4.2.1 Overview

To control systematic errors in the basic correction method, we
employ either of the three following strategies.

(i) The basic method, as described in Section 4.1.1 above, ac-
counts for the missing line-of-sight velocities by dividing all helio-
centric velocities by the respective diagonal elements of T.

(ii) The frame-corrected method indirectly accounts for vlos ex-
pectations by evaluating the motion of each star in a local frame
co-rotating with the disc at an azimuthal velocity 	 = 231 km s−1.
In this frame, the mean line-of-sight velocity will be close to zero.
The steps of this analysis are: (i) subtract the expected mean proper
motion resulting from the Solar and frame motions for each star,
(ii) evaluate the heliocentric cartesian velocities in that frame, (iii)
correct with equation (17), (iv) rotate back into the Galactocentric
cylindrical frame.

(iii) The inversion method relies on a local inversion of the V
and W parts of the matrix T. While T cannot be fully inverted due
to the missing vlos information – T maps on to a two-dimensional
plane in velocity space [dim(kern(T)) = 1] – a partial inversion
is appropriate near the centre–anticentre line. We hence obtain the
velocities by dividing U by Tuu and multiplying (V, W) with the
inverse of the corresponding 2 × 2 sub-matrix of T.

We will concentrate most of our analysis on the first two methods,
but show the most important statistics also for the inversion tech-
nique. A detailed discussion of biases in each method is provided
in Section 4.2.2 below, but first we consider the naive and common
approach of not correcting at all, i.e. using the proper motion part
only. This is equivalent to setting u = 0 such that

v′ = p = T(V − V�) = V − V� − r̂ r̂ · v, (19a)

V ′ = v′ + V� = V − r̂ r̂ · v (19b)

W ′ = W − z̃ r̂ · v (19c)

L′ = R × V ′ = L − R0(êx × r̂)vlos (19d)

L′
z = Lz + R0ŷvlos. (19e)

For the angular momentum terms, we used R × r̂ = (R0 + r) ×
r̂ = R0(êx × r̂) and r̂ · v = vlos.
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Figure 2. Effect of the velocity correction from equation (17). The error
bars in the top panel show W

′
using the basic correction, and the error bars

in the bottom panel show W
′

with a full frame correction, while the dashed
line shows W

′
(obtained without correction, i.e. assuming vlos = 0). The

horizontal line just gives a visual aid to compare the two plots. The small
offset in W between basic and frame-corrected methods for the entire sample
is explained [see equation (23d) and the last paragraph of Section 4.2.2.1]
by a small contamination (≈0.2 km s−1) of the basic method with the radial
component of the Solar reflex motion.

Since the expectation value for r̂ · v = 0, this method suffers a
systematic error (bias) in both W

′
and L′

z, which grows linearly with
angular distance (ỹ, z̃) from the centre or anticentre directions. The
error in W

′
is not fully eliminated by north–south symmetry, as both

z̃ and r̂ · v change sign when b does. Analogously, the bias in L′
z

has a non-zero expectation value even with east–west symmetry in
�.

We note further that accounting for the missing line-of-sight
velocity information u by using its expectation instead does not
resolve our problems, since we want to measure deviations from the
mean for subsamples in the survey: in this case W ′ = W − z̃ r̂ · Vp,
and similar to the above discussion, W

′
is still biased. In short, this

simple approach should be avoided.
These effects can be seen in Fig. 2, which shows the dependence

of W for the entire sample versus the cone opening angle ε. The solid
lines demonstrate how without corrections W already starts drifting
at small ε. Conversely, the stabilizing effect of the corrections on
the mean vertical velocity is evident from the data points with error
bars (top panel: basic method; bottom panel: frame correction).

4.2.2 Analysis of the correction methods

We now have two points of attack, of which we present three com-
binations throughout the paper:

(i) correcting the frame, i.e. move to a velocity frame where the
expected stellar velocity vanishes (which leaves only the peculiar
velocity part of the proper motion), and

(ii) scaling the proper motions to account for the missing in-
formation, which amounts technically to inserting a new map-
ping/matrix T̃.

For step (i) we first subtract the expectation

p̄ ≡ T · (V̄ − V�) (20)

from p, then in step (ii) correct for lack of line-of-sight velocity
in that frame, before adding V̄ − V� to convert back to the helio-
centric velocity frame. This corresponds to the following combined
correction:

v′ = T̃ · ( p − p̄) + V̄ − V� = T̃ · T · Vp + V̄ − V� (21)

V ′ = v′ + V� = T̃ · T · Vp + V̄ . (22)

We now consider two options for the correction matrix T̃:

4.2.2.1 Dividing by the diagonal elements of T This is the same
approach as in the basic method of Section 4.1.1 (only that here we
apply it in each star’s standard of rest rather than the local standard
of rest) and corresponds to

T̃ =
⎛
⎝ (ỹ2 + z̃2)−1 0 0

0 (1 − ỹ2)−1 0
0 0 (1 − z̃2)−1

⎞
⎠ (23a)

such that

T̃ · T =
⎛
⎝ 1 −x̃ỹ/(ỹ2 + z̃2) −x̃z̃/(ỹ2 + z̃2)

−x̃ỹ/(1 − ỹ2) 1 −ỹz̃/(1 − ỹ2)
−x̃z̃/(1 − z̃2) −ỹz̃/(1 − z̃2) 1

⎞
⎠.

(23b)

This gives for our frame-corrected method

W ′ = W − z̃

1 − z̃2
(x̃Vp,x + ỹVp,y) (23c)

= W − (βU,diagVp,x + βV ,diagVp,y) (23d)

L′
z = Lz + x̃ỹr

ỹ2 + z̃2
(ỹVp,y + z̃Vp,z) − ỹX

1 − ỹ2
(x̃Vp,x + z̃Vp,z),

(23e)

where we have replaced Y = y = ỹr . The β i coefficients are
implicitly defined by these equations and can be calculated from
the stellar sky positions. Thus, the error in W is harmless: not only
is it linear in angular distance from the centre or anticentre directions
(such that its average over symmetric samples vanishes), but also
only proportional to the star’s peculiar motion Vp. The error in Lz

is dominated by the first error term, which is again proportional
to Vp, but does not vanish in the limit (ỹ, z̃) → 0 of the centre or
anticentre directions (in contrast to the second term, which does).

The relations for our basic method are structurally identical and
can be obtained from equations (23c–e) by replacing the star’s
peculiar velocity Vp with its heliocentric velocity v = V − V�.
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4.2.2.2 Partially inverting T The idea here is similar, but instead
of merely dividing by Tvv and Tww, we invert the 2×2 sub-matrix
of T which relates to the y and z components:

T̃ =
⎛
⎝ (ỹ2 + z̃2)−1 0 0

0 (1 − z̃2)/x̃2 ỹz̃/x̃2

0 ỹz̃/x̃2 (1 − ỹ2)/x̃2

⎞
⎠ (24a)

such that

T̃ · T =
⎛
⎝ 1 −x̃ỹ/(ỹ2 + z̃2) −x̃z̃/(ỹ2 + z̃2)

−ỹ/x̃ 1 0
−z̃/x̃ 0 1

⎞
⎠ (24b)

is identical to unity in this 2×2 sub-matrix. This gives

W ′ = W − z̃

x̃
Vp,x = W − βU,invVp,x (24c)

L′
z = Lz + x̃ỹr

ỹ2 + z̃2
(ỹVp,y + z̃Vp,z) − ỹX

x̃
Vp,x (24d)

with similar error properties to the previous approach. In par-
ticular the error in Lz is random, but does not vanish in the limit
(ỹ, z̃) → 0 of the centre or anticentre directions.

4.2.3 Method comparison

Fig. 3 analyses the coefficients β i for the bias in W
′

given in equa-
tions (23d) (two values) and (24c) (one value), when we dissect the
sample in Lz calculated via the basic method.

The top panel of Fig. 3 shows the mean values of β i in each bin.
Due to the good sample symmetry, the coefficients are quite small,
but explain the subtle differences between the basic and frame-
corrected methods in Figs 2 and 6. Since βU ≈ −0.02 across the
sample, accounting for the radial reflex motion of the Sun explains
the small ≈0.2 km s−1 difference we found in the overall vertical
motion between the two samples. Further, the larger βU near Lz ≈
1700 km s−1 exacerbates the dip in W for the basic method by an
order of 0.2 km s−1, explaining the mild difference. Any bias from
in-plane streams like Hercules (offset by ≈30 km s−1 for a small
sub-group of stars) will be of roughly the same size or smaller.

The bottom panel of Fig. 3 controls for a potential bias by Galactic
rotation correlating with the β i coefficients. For this purpose, we
multiply the βU coefficients with sin α, where α = tan −1(Y/X) is the
in-plane angle between the Sun–Galactic Centre and star–Galactic
Centre lines, and the βV coefficient with (1 − cos α). As we can
see, the resulting values are so small that even a multiplication with
300 km s−1 will not affect our results.

5 ME A S U R I N G T H E WA R P

We use equation (18) to assess the significance of the trend between
W and Vφ on the full TGAS sample. In Fig. 4 we show for the basic
and frame correction methods, the dimensionless slope of a linear
regression of W versus Vφ , γ VW = C(W, Vφ)/C(Vφ , Vφ), obtained for
different acceptance angles ε in galactic coordinates: Only stars with
|b| < ε and |�̄| < ε are selected. As detailed above, the covariances
C(W, Vφ) and C(Vφ , Vφ) cannot be directly measured. The blue error
bars show the favoured estimate via C(V

′
, W

′
). The green line shows

the same value after correcting for the dominant terms in equation
(18), which have the same velocity component on both sides. As the
mean velocities are comparably small, we can approximate them as
C(aU, bU ) ∼ C(a, b)σ 2

U , using for this plot (σ U, σ V, σ W) = (40,
35, 20) km s−1, and measuring the necessary covariances C(Tij, Tkl)
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Figure 3. The connecting coefficients between the error in W and the in-
plane components of Vp from equations (23d) and (24c), for the sample
separated in Lz calculated with the basic method. The top panel shows the
mean values of β i at each bin in Lz. To assess the risk from galactic rotation,
the second panel displays the mean values of βUsin α and βV(1 − cos α).

directly from the data. These corrections partly cancel each other, so
we show in addition the sum of their absolute values with a dashed
red line.

As explained in Section 4.1, the polluting terms in equation (18)
cancel out to lowest order if the sampling is symmetric in � and b
around the centre–anticentre directions. However, we expect minor
deviations from perfect symmetry in the Gaia-TGAS data set due
to the inhomogeneous scanning law, or due to patchy reddening and
crowding losses. These make smaller selections more vulnerable to
asymmetries than larger sizes, as exemplified by the excursion of
the correction terms near ε ∼ 14◦. However, for ε = 30◦ the sample
is almost perfectly symmetric. Consistent with that the difference
between the mean z and y coordinates of each subsample and the
Sun is less than 0.02 kpc.

In Fig. 4 the slope γ VW of W against Vφ remains stable up to
ε ∼ 30◦. The solid green curve demonstrates that the correction
terms capture most of the deviations, both for the excursion near
ε ∼ 14◦ and towards large ε. Consistent with the stability out to
ε ∼ 30◦, these corrections are negligible. Beyond ε > 35◦ the
approximation breaks down and the measured slope starts to deviate
from its well-determined value. This is correctly signalled by a rapid
increase in the first-order correction terms, which hold the slope
stable out to ε ∼ 40◦. The correction terms were calculated for the
basic derivation and hence work better than for the frame-corrected
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Figure 4. Slope γ VW of the mean vertical velocity W versus Vφ obtained
from the full TGAS sample for different acceptance angles εmax (x-axis) for
the basic method (top) and the frame correction method (bottom). Error bars
represent the blank statistics (no trend correction), while the green curve
shows the same trend corrected for the leading terms (covariances involving
the same velocity component on both sides) from equation (18). The red
dashed line shows the summed absolute values of these terms.

method (bottom). We also note that the basic method shows better
stability to large ε.

While dealing with a smaller number of stars, the danger of sys-
tematic biases for the RAVE sample is more benign: systematic
cross-terms between the velocity components would only arise un-
der systematic distance errors. However, SA17 have shown that the
distances we employ here are free of significant systematic biases.
This is confirmed by Fig. 5, where we plot W , averaged over bins
in Vφ , for all RAVE stars passing our quality cuts with blue error
bars, and all stars within ‘safe sightlines’ (selecting only stars with
small |Tvw| < 0.15) with red error bars. SA17 have also shown that
the RAVE vlos are basically free of systematic or unexpected ran-
dom errors. The green line shows a linear fit to the full sample. No
significant change is detected for the stars in ‘safe’ sightlines. The
differences at extreme velocities are still consistent with random
fluctuations.

To summarize: Fig. 4 and the stability of mean motions versus
epsilon (see Appendix) demonstrate that an opening angle near
ε ∼ 30◦ is optimal for our purpose. More importantly, we have
measured the slope in W versus Vφ , i.e. the signal of the Galactic
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Figure 5. Mean heliocentric W velocity in the RAVE-TGAS sample binned
by Vφ .

warp, to be ∼0.02 at better than ∼10σ formal significance, with a
comparable systematic uncertainty.

6 D ETAI LED KI NEMATI CS

Fig. 6 shows the mean vertical velocity of stars in the TGAS sam-
ple versus azimuthal velocity Vφ (top) and angular momentum Lz

(bottom), respectively. For this plot we sort the sample in either Vφ

or Lz and then let a mask of width 6000 slide over the sample in
steps of 2000, so only every third data point is independent and
at the extreme ends of the range samples contain only ∼4000 and
∼2000 stars. The data points show, for each bin, the mean vertical
velocity versus the mean value of Vφ or Lz along the abscissa. At
the lowest Vφ values, bins also contain halo stars; however, their
number is small in TGAS. The error bars are set by σW /

√
N , where

σ W is the measured dispersion in the vertical component and N the
number of stars in each bin. In each plot we show the statistics for
the full sample (dark blue), as well as splitting it into the outward
and inward cone. The sloping lines show linear fits to each the in-
ward and outward cone. In all samples, we find a highly significant
slope of the vertical velocity versus both Vφ and Lz. In light of
these findings we cannot fully trust the vertical Local Standard of
Rest determination from local stars. Hence, we plot with horizontal
lines the Galactic Standard of Rest that would be implied if we
assume Sgr A� to be at rest, using the proper motion from Reid &
Brunthaler (2004) and the Galactocentric distance from Schönrich
(2012). The errors are 1σ errors assuming full independence of the
proper motion and distance measurements. The motion of Sgr A�

actually indicates that the Local Standard of Rest as defined by stars
in the Solar Neighbourhood is moving upwards by ∼1 km s−1, i.e.
the Solar position is still affected by the warp signal. This is con-
sistent with the fact that the decrease of W towards smaller Vφ (top
panel of Fig. 6) continues all the way to Vφ ≈ 200 km s−1, which is
dominated by stars with guiding centres within the Solar circle.

If the trends in Fig. 6 are linked to a galactic warp with a linear
W–Lz relation, we expect Vφ to shear by about 20 km s−1 in W versus
Vφ , since the outward cone is at ∼10 per cent larger average Galac-
tocentric radius R than the inward cone. And indeed we observe a
clear hint that the slope of W versus Vφ starts at Vφ ∼ 215 km s−1 in
the inward cone, but at significantly lower Vφ in the outward cone.
Similarly, the mean W velocities at high Vφ are significantly larger
in the outward cone.
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Figure 6. Mean W velocity in the TGAS sample, restricted to an acceptance angle ε < 30◦, when binning the sample in azimuthal velocity Vφ (top) or angular
momentum Lz (bottom). Uncertainties are estimated from the velocity dispersion measured in each bin. Only every third data point is independent, since we
let a mask of width 6000 slide over the sample in steps of 2000. Each panel shows the statistics for the full sample (blue) or samples restricted to the outward
and inward cones (i.e. towards the anticentre and centre directions). Sloping lines are linear fits at Vφ > 100 km s−1 and −Lz > 800 kpc km s−1, respectively.
Horizontal lines indicate the vertical velocity frame defined by Sgr A� and its uncertainty, the vertical lines mark the Local Standard of Rest.

Remarkably, the differences between the inward and outward
cones largely disappear when plotting W against angular momentum
(bottom panel of Fig. 6), consistent with interpretation that we are
dealing with a large-scale structure, and not some influence of local
streams.

Both panels show a local peak in the mean W motion near the
Solar −Lz ≈ 2150 kpc km s−1. It is not yet clear if this is a statistical
fluctuation, caused by a local stream, a potential issue with proper
motions, or a physical feature of the warp. Inspection of the de-
tailed Vφ–W velocity planes in Fig. A1 does not reveal any obvious
streams. Similarly, when we plot the residuals from a Gaussian fit
in Fig. A2, we still do not see any structures appear (apart from
the fact that a Gaussian is poor fit to velocity distributions). On the
other hand, there is no firm expectation for the warp signal to be
smooth in Vφ . This question will have to await better statistics from
Gaia DR2.

Having established the firm trend of W with Lz, one may of
course ask if the same effect cannot be detected in Galactocentric
radius R directly. This comparison is shown in Fig. 7, where we
plot the mean vertical motion W versus Galactocentric radius R on
the abscissa for the ‘basic’ method. Similar to Fig. 6, we order the
samples in either R or Rg, respectively, and then let a selection bin of
width 6000 move in steps of 2000 each over the sample. Due to the
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Figure 7. We show the direct correlation between mean W motion and
Galactocentric radius R of the stars, shown for the basic method. Just like
in Fig. 6, we order the sample in the R or respectively Rg and then use
overlapping bins of 6000 stars in steps of 2000 across the sample. The green
error bars show the guiding centre radius Rg, whereas the dark blue error bars
display the sample separated in Galactocentric radius R. The line depicts a
linear fit to the latter and has a slope (0.34 ± 0.12) km s−1 kpc−1.
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small extent of the Gaia DR1 sample, the short baseline in R makes
it hard to reliably detect any signal. Also, the region covers mostly
the downward slope of the short-wave component in Rg, so no firm
trend is expected. Formally, an uptrend in radius is detected using
the ‘basic’ and ‘inversion’ methods with about 0.3 km s−1 kpc−1,
but no significant result is obtained in the frame-corrected data.
The results are consistent with the dependence of W on Lz. One
should not overinterpret the detection of this weak trend of less
than 3σ . In particular, dissecting the sample directly in R breaks the
symmetry of cos �. Also, the different slopes should differ to some
extent, because at each R the local stellar populations originate from
a wide distribution of guiding centre radii. Nevertheless, it offers
some additional indication for a large-scale structure, and will be of
interest in Gaia DR2.3

6.1 Stability tests and comparison with RAVE-TGAS

As discussed in Section 4, the most important source of bias is the
missing vlos information in Gaia-TGAS; we can test for resulting
biases by varying ε. However, random distance errors can have
some impact when selecting/binning the sample in Vφ : in our ob-
servational cones, the estimates of both V and W relative to the Sun,
i.e. V − V� and W − W�, are nearly proportional to s/s0, the ratio
of measured to true distance. Random distance errors let stars with
overestimated distances concentrate in the wings of the estimated V
distribution, while stars with estimated V ∼ V� more likely have un-
derestimated distances. Since the Sun is moving towards the North
Galactic Pole with � 8 km s−1, both wings of the Vφ distribution
should have a negative bias in W (due to the prevalence of distance
overestimates), whereas the centre of the distribution should have
a positive bias in W . Using mock sample tests, described in Ap-
pendix B, we estimated the size of this effect to be only ∼0.1 km s−1

in both tails, much less than the signal we observe. None the less,
we perform further checks by varying the cut of p0/σ p.

Fig. 8 compares the W–Lz relationship to smaller subsets with
tightened cuts either in the acceptance angle ε (top panel) or in
parallax quality p0/σ p (bottom panel). As expected, variation of ε

does not yield any significant effect. We further tested that the shape
of the selection cones does not matter. Our simple cut in � and b
keeps the symmetry conditions for T. As expected, selecting a truly
circular cone of width ε did not significantly alter our results.

When we increase the minimum parallax quality to p0/σ p > 10,
most of the relationship remains identical. However, at very large
|Lz|, there is a strong increase in W . At first glance this appears con-
sistent with a removal of distance overestimates, which could sup-
press the increase in W towards larger Vφ . On second glance, how-
ever, this is a shaky argument: since the Sun has W = 7.24 km s−1, if
the real W of those stars was ∼5 km s−1, the average distance over-
estimate required to lower W to ∼2 km s−1 for the ∼8000 stars at the
highest |Lz| is ≥100 per cent, more than an order of magnitude larger
than expected from our mock sample tests. The feature is similar to
the structure seen in the Hipparcos sample (e.g. Dehnen 1998). This
may be just a statistical quirk, or it could be caused by the kinematic

3Our results, e.g. in Fig. 7, are quite different from those presented in fig. 16
of Poggio et al. (2017), who analyse 758 OB stars from the Hipparcos cat-
alogue (van Leeuwen 2007) with Gaia DR1 astrometry. While the problem
with distances is shortly discussed in their text, the figure in their paper does
not account for distance biases or quality cuts. In particular, large distance
overestimates (of ∼100 per cent) should dominate their result at |R − R0| �
1kpc, which explains the large negative W found in their study.
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Figure 8. We test the effects of varying the acceptance angle ε for the
observational cone (top) at values ε = 30◦, 20◦, 10◦, and of varying the
parallax quality cut p0/σ p = 5, 10, 15 (bottom), shown for the basic method.
In each case we show the full sample with the usual sliding 6000 stars wide
bins, but the restricted samples with 2000 stars per bin, still moving in steps
of 2000.

selection bias in Hipparcos surfacing because Hipparcos stars have
better astrometric solutions than the Tycho sample. Real or not, the
deviation would physically make sense. We cannot assume that stars
at all locations follow a simple tilted ring model pertaining to their
guiding centres. Near their peri- and apocentre, they move directly
through the gravitational potential of components with a different
tilt, and thus should deviate from the simple picture, in particular in
resonant cases when one of the frequencies of the orbit is similar to
the frequency of the perturbation by the warp.

Fig. 9 shows a comparison of the W–Lz correlation for different
subsamples in RAVE. The RAVE sample has very different system-
atics, but is significantly smaller (only up to 60 000 stars pass the
quality criteria, compared with 180 000 objects in the ε < 30◦ cone
in Gaia DR1). The survey is asymmetric in b, pointing predom-
inantly southwards, and due to the comparably small number of
stars we cannot select stars in a small cone. This results in a poten-
tial contamination of our signal with disc breathing modes (which
are symmetric in z). Moreover, the asymmetry increases the risk
of cross-contamination between velocity components, if there is a
residual distance bias (Schönrich et al. 2012; Carrillo et al. 2018).
On the other hand, RAVE vlos are excellent, and our distances are
statistically very well tested. Fig. 9 shows different selections on
RAVE: the subsample of unflagged stars (purple, excluding pe-
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Figure 9. W versus Lz for RAVE stars. To resolve any structures in the
smaller sample size, we have reduced the bin size to 2000 stars. Each bin is
independent. The different colours indicate sample selections for low altitude
|z|, for unflagged stars, and for ‘safe’ sightlines. The observed structure is
consistent with Fig. 6.

culiar stars and identified binaries), a low-altitude sample (light
blue, |z| < 0.25 kpc), and the very small sample with |Tvw| < 0.15
(green), which limits cross-contamination of V and W velocity com-
ponents. Each subsample of RAVE-TGAS shows consistently the
same pattern as the Gaia-TGAS sample. RAVE points inwards in
the Galactic disc, so does not have good coverage at large |Lz|, but it
hints for a mildly different structure near a −Lz = 2150 kpc km s−1

region, where Gaia-TGAS shows one or two narrow spikes
in W , adding to the suspicion that this feature is a local
stream.

In short, the trend and wave-like pattern found in W versus Lz

prove robust against the opening angle ε and the parallax error,
apart from a deviation at very high Lz, which we interpret as a local
deviation, consistent with the steeper warp-related trend observed
previously on Hipparcos. The RAVE-TGAS sample is an important
comparison due to its very different suspected biases, and confirms
the trend and wave-like pattern on Gaia-TGAS.

7 D ISCUSSION AND COMPARISON
TO SIMPLE MODELS

We can think of three (not mutually exclusive) ways to interpret
Fig. 6:

(i) The classic approximation of the Galactic warp, where the Sun
is placed close to the line of nodes, and hence the warp appears as
a systematic vertical motion of stars, depending on Lz. This feature
appears to be overlaid by one of the following two options:

(ii) The notion of a wave-like structure in the disc, where vertical
waves might be propagating radially.

(iii) The possibility that the observed signal could be a wrapping
up perturbation by a merger, e.g. with the more massive halo of the
Sagittarius dwarf galaxy.

A simple warp model assumes that the mean vertical component
of stellar motion W follows approximately the large-scale warp in
Lz (Dehnen 2000). In this simplistic picture the vertical motion in
each subsample is given by

W ∼ A(Lz)(�(Lz) − �p) cos(γ ), (25)

where A is the vertical amplitude of the warp, �(Lz) is the orbital
frequency of a circular orbit with Lz, �p is the angular frequency at
which the warp pattern moves, and γ is the difference in galactic
azimuth between the line of nodes (i.e. where each tilted annulus
intersects the Galactic plane) and the position of the star. Drimmel
& Spergel (2001) find that the line of nodes of the warp is almost
perfectly at the Solar position. While they raise questions about the
technical robustness of their fit, we can quite safely assume that
cos (γ ) ∼ 1. For small �p, W = 1 km s−1 corresponds to a vertical
amplitude of about 35 pc.

Fig. 6 demonstrates that a smooth warp according to equation
(25) cannot explain the data. However, discs can oscillate vertically
with (near) radially propagating waves (Hunter & Toomre 1969). In
this case, the radial wavelength should be at best constant, or rather
decline towards larger radii, since the vertical restoring force, and
thus phase velocity of the wave, decreases. We naively fit this by

W (L′
z) = b + aL′

z + A sin(L′
z2π/c + d), (26)

where we moved the zero-point of the abscissa by −L′
z = −Lz −

1600.0 kpc km s−1 towards the onset of the observable warp for con-
venience. The alternative is to think of a warp-like feature created
by, say, the impact of the Sagittarius dwarf (Ibata & Razoumov
1998), or the Magellanic Clouds on to the Milky Way halo (Wein-
berg 1995; Weinberg & Blitz 2006). In this case, we could expect
the warp to start wrapping up due to the difference in (vertical)
oscillation frequencies, which can be expected to decrease towards
larger radii. We just test a naive fit with

W = b + aL′
z + A sin(−2πc/Lz + d). (27)

We plot the fits to equations (26) and (27) in Fig. 10 for all
three approximations. The best-fitting parameters to the (unbinned)
data are shown in Table 1. Neither of the two interpretations can
be trusted, and the fact that both naive models fit strikingly well
demonstrates that the current sample extent is too small to detect
radial changes of wavelength.

All analysis methods agree in their fit parameters (see Table 1)
and the observed patterns. The basic method shows slightly lower
W around −Lz ∼ 1600 kpc km s−1, which is expected from a slight
increase in sample asymmetry and a small contamination with radial
velocities (see equation 23d and Fig. 3 in the Appendix). In all cases
both the warp and the vertical oscillation are detected at better than
10σ , in particular all methods agree very well on the amplitude of
the oscillation of about 0.8 km s−1. The wavelength of the oscillation
is mildly longer in the inversion method, but translates to about 2–
2.5 kpc in Rg. The phase differences (parameter d in equations 26
and 27) are caused by the small changes in the wavelength, and are
irrelevant to the interpretation.

The wavelength of the observed pattern resembles the simulations
by D’Onghia et al. (2016), though we notice that the simulations
by de la Vega et al. (2015) do not show such a clear pattern in the
vertical velocity versus in-plane position. In particular, their waves
appear to show near-zero net vertical velocity in the disc plane. We
also stress again that the observed pattern is consistent with bending
waves and very different from the breathing modes associated with
spiral arms (see Weinberg 1991; Monari, Famaey & Siebert 2016),
for which indications have been found in the RAVE survey (Siebert
et al. 2011; Williams et al. 2013; Faure, Siebert & Famaey 2014).
Breathing modes are even functions around the disc mid-plane with
zero vertical mean motion and are filtered out by the north–south
symmetry of our analysis.

One should also note the pronounced spike at −Lz ≈
2150 kpc km s−1, corresponding to a guiding centre radius of 9 kpc
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Figure 10. Testing three naive models for describing W versus Lz or guiding
centre radius Rg, respectively. The lines show linear fits and the fits from
equations (26) and (27); the parameters are given in Table 1.

(assuming a flat rotation curve). It is statistically highly signifi-
cant in our outward cone in Gaia-TGAS. Our favoured explanation
is the presence of a stream with either some minor vertical mo-
tion, or contamination from strong radial motion. However, res-
onant interactions of stellar orbits with a warp are unexplored,
and might give rise to similar features. We also note that in the
RAVE-TGAS sample the strong rise in W versus |Lz| sets in at

around these values of angular momentum, i.e. a bit earlier than
for Gaia-TGAS. However, the RAVE comparison could be af-
fected by breathing modes owing to the asymmetry of the survey
volume.

8 C O N C L U S I O N S

In this paper we have derived distances to TGAS stars in Gaia DR1,
which, unlike most previous attempts, are by construction unbiased
in the mean estimated distance. We have used these distances in
conjunction with the TGAS proper motions to measure the kine-
matic signal of bending modes (including the warp) of the Milky
Way disc in the mean vertical stellar motions. To derive unbiased
distances for Gaia-TGAS stars, we have measured an effective spa-
tial selection function for this sample, which is very well described
by a simple declining exponential with a scale length 0.2 kpc. The
derived distances are freely available.4

Since the line of nodes of the Galactic warp is close to the Solar
position, it imprints on stellar kinematics as an increase of the
mean vertical velocity, W , with orbital angular momentum |Lz|
(or azimuthal velocity Vφ at fixed Galactocentric radius R). In a
sample lacking line-of-sight velocity information, like Gaia-TGAS,
these two velocity components can only be accurately determined
in the Galactic centre and anticentre directions. To allow for the use
of sizeable cones, we have developed and analysed a set of first-
order correction strategies, which provide an unbiased correlation
between Vφ and W and stabilize W for cone opening angles ε �
30◦.

The kinematics obtained in this way show a correlation be-
tween W and either Vφ or |Lz| at more than 10σ formal signifi-
cance, with a mean uptrend dW/d|Lz| = (3.05 ± 0.25)10−3 kpc−1

or dW/dVφ ∼ 0.02 (Fig. 6), and systematic uncertainty of the same
order. The RAVE-TGAS sample, which contains line-of-sight ve-
locities, shows a consistent trend (Fig. 5).

In contrast to previous studies, which placed the onset of the warp
mostly at or outside the Solar Galactocentric radius R0, we find that
the vertical mean motion associated with the warp commences at Lz

corresponding to guiding centre radii inside the Solar circle at Rg �
7 kpc, similar to what has been found from near-infrared photometry
(Drimmel & Spergel 2001).

We find that a smooth, monotonous warp pattern cannot satisfac-
torily describe the data. Instead, both the inward and outward cones
show a significant wave-like pattern on top of the warp signal. Strik-
ingly, while the inward and outward cones do not match in velocity
space, the patterns perfectly agree in W versus Lz, demonstrating
that the wave-like pattern directly connects W to Lz of the stars.
The pattern is well described by a simple sinusoidal wave with a
wavelength of about 2.5 kpc in guiding centre radius Rg, see Fig. 10.
It is natural to assume that the observed vertical oscillation links to
the Monoceros ring and TriAnd overdensities in the outer disc, but
detailed studies in the larger upcoming Gaia samples are required
to confirm this.

Using the proper motion of Sgr A� to indicate the galactic stan-
dard of rest, there is a negative mean vertical motion at small |Lz|,
thus another deviation from the simple warp picture.

This pattern discovered in W–Lz is stable against parallax accu-
racy and the size of the acceptance angle ε. There is a tendency
to more extreme W values for very large |Lz| when restricting to

4The distance data set is online at: http://www-thphys.physics.ox.ac.uk/pe
ople/RalphSchoenrich/data/tgasdist/tgasdist.tar.gz.
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Table 1. Best-fitting parameters of the functions (25–27) fitted to the data in Fig. 10. a is the slope of the linear trend, b is the W value at −Lz = 1600 kpc km s−1,
c sets the length-scale of the sinusoidal pattern (for the simple sinusoidal fit, c is the period, and 500 kpc km s−1 in Lz translates to 2.1 kpc in Rg), d is the phase,
and A is the amplitude of the wave-like pattern. All fits are performed for 1400 < −Lz/( kpc km s−1) < 2400, excluding a 60 kpc km s−1 wide region around
−Lz = 2140 kpc km s−1.

Fit a × 103/kpc b/ km s−1 c/ kpc km s−1 d A/ km s−1

basic
linear 3.05 ± 0.25 −1.721 ± 0.091 – – –
simple sin. 3.28 ± 0.26 −1.846 ± 0.094 526 ± 21 − 1.56 ± 0.18 0.719 ± 0.070
wrapping 3.92 ± 0.27 −2.011 ± 0.097 6955 ± 259 3.03 ± 0.86 0.764 ± 0.072
frame corrected
linear 2.64 ± 0.25 −1.267 ± 0.091 – – –
simple sin. 2.83 ± 0.25 −1.381 ± 0.092 499 ± 17 − 1.74 ± 0.16 0.817 ± 0.068
wrapping 3.46 ± 0.27 −1.534 ± 0.097 7433 ± 229 1.37 ± 0.76 0.848 ± 0.069
inversion
linear 3.21 ± 0.25 −1.800 ± 0.092 – – –
simple sin. 3.67 ± 0.28 −2.024 ± 0.103 600 ± 27 − 1.08 ± 0.18 0.811 ± 0.072
wrapping 4.32 ± 0.28 −2.188 ± 0.100 5723 ± 246 0.73 ± 0.83 0.834 ± 0.076

very small relative parallax errors, which also limits the sample to
smaller distances. This is similar to a strong uptrend of W versus
|Lz| observed in the RAVE-TGAS sample, and originally in Hip-
parcos by Dehnen (1998). The difference to the full sample is far
larger than can be expected by distance errors. It is likely caused
by local streaming motion in the Solar neighbourhood, although a
mild kinematic bias by the kinematic selection in the Hipparcos
sample (which gains weight at stricter astrometric quality cuts) is
also possible.

Inspection of the V–W distribution does not indicate any streams
relevant for this analysis (Fig. A1). The only significant deviation
in the W–Lz relation from our naive sinusoidal fits in Fig. 10 is
an upward spike in W near −Lz ∼ 2150 kpc km s−1 (corresponding
to a guiding centre of 9 kpc) and is also visible in W–Vφ plots at
|Vφ | ∼ 260 km s−1. The feature is far too narrow in Lz to belong to
a bending mode and is likely a stream, which may even be mostly
in the disc plane with the W motion contaminated by large in-plane
radial velocity. A remote possibility would be a resonance between
stellar orbits and the galactic warp.

More than showing for the first time at high significance both the
stellar warp and vertical disc oscillations in local stellar kinematics,
this study gives a first glimpse at the clarity with which Gaia will
allow us to map out even delicate structures in the Galactic disc.

We hope that these observations will trigger a new effort to a con-
sistent theory of disc warps and vertical oscillations. We have here
presented a very naive picture in which the mean vertical motions
are linked to and mostly explained by the stellar angular momen-
tum. This comes very close to the usual assumptions in classic
modelling of disc waves and warps. However, resonant effects in
this picture have to be explored in depth. In this sample, most of
our measurements rely on stars that are 1–2 kpc away from their
guiding centre radii. These stars cannot be treated as moving along
tilted rings at their guiding centre, since they feel the vertical po-
tential of the radius at which they are moving, where in the naive
picture, they would be on average above or below the plane. Some
resonant effects can be expected between the perturbation by the
warp and the orbital motions.

What we call ‘warp’ throughout this paper, addressing the long-
scale rise in W versus Lz in contrast to the short-wavelength bending
mode, should be interpreted carefully. We chose to use the word to
match the previous literature, but due to the modest extent of our
sample, one could equally choose to believe that this is just the
shoulder of a much larger wave. How exactly both patterns link up

to the outer disc oscillations remains to be explored in future data
sets.
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Reylé C., Marshall D. J., Robin A. C., Schultheis M., 2009, A&A, 495, 819
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A P P E N D I X A : SE A R C H I N G FO R
SUBSTRUCTURE

Dominant streams in the data could cause some localized devia-
tions in W . Now, we know that most disc streams have very small
W velocities, and even if 10 per cent of the stars in one angular mo-
mentum bin have a W of the order of 10 km s−1, they would merely
bias that bin by ∼1 km s−1. In addition, streams or stream-like fea-
tures tend to be very well localized at a single Lz value, so they
should be very narrow in Lz. The only feature we could identify
with some confidence this way is the stream-like deviation around
−Lz ≈ 2140 kpc km s−1.
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Figure A1. Mapping the Vφ–W plane for the TGAS sample. We have folded the estimates for Vφ and W from each star with a 2D Gaussian kernel of width
2 km s−1. The panels show all stars within an acceptance angle ε = 30◦ (top left), 15◦ (top right), as well as stars in the outward (bottom left) and inward
(bottom right) cones with ε = 30◦.
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Figure A2. Logarithmic density in the Lz−W plane. We again used a 2D
Gaussian kernel with an equivalent of 2 km s−1 in W and Vφ to reduce the
shot noise.

APPENDIX B: MOCK SAMPLE TESTS

To check the correctness of our three different evaluation methods,
we created mock samples for the Gaia-TGAS catalogue. For each
star in the real sample, we took over the position and randomly drew
a set of velocities, calculated the proper motions for the new set of

velocities, and then re-estimated the velocity with each method. For
the sake of simplicity, the velocities are drawn from two Gaussian
distributions, which have a mean azimuthal velocity of 225 km s−1

and a velocity ellipsoid with (σ U, σ V, σ W) = (50, 40, 30) km s−1,
and with 0.01 per cent likelihood a zero mean velocity and (σ U, σ V,
σ W) = (140, 90, 90) km s−1.

The results of these mock sample tests are shown in Fig. B1. As
expected, the mock samples neither show any appreciable spurious
trend, nor any pattern that remotely resembles the signal we measure
in the data. To enhance any possible biases, we have chosen an
unreasonably large velocity dispersion in the mock samples, which
leads to a bit enhanced scatter in each single value. This way, the
figure also demonstrates how much larger the measured signal is
compared to noise expected for the sample. As a second test, we
also varied the parallaxes for the samples, but the resulting distance
biases only lead to a very minor (of the order of 0.1 km s−1) tendency
of both the high- and low-Lz tails to have slightly slower W than
the centre of the distributions, since distance overestimates tend to
accumulate in the tails.

Another important consideration is the correlation between dis-
tance and RA/DEC proper motion errors in Gaia-TGAS. Since the
cones in which we observe have a relatively small opening angle,
and since the correlation matrix in Gaia-TGAS varies systemati-
cally and quite smoothly with position on the sky, there could be
a residual effect on the sample. However, given the agreement be-
tween the inward and outward cones in Fig. 6, it is already highly
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Figure B1. Mock sample tests for each method (lines) plotted together with
the real result for the mock sample.
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Figure B2. Mock sample tests as in Fig. B1, but now using the full error
correlation matrix between (p, μRA, μDEC). The error bars depict the sample
when cutting for σ pm < 2 mas yr−1, and the additional line shows another
mock sample for the frame correction method with σ pm < 15 mas yr−1.
The same pattern of trend + wave remains in the data with this quality cut,
although the cut likely afflicts a kinematic bias by removing preferentially
Tycho stars that are not in the Hipparcos set.

unlikely that the observed wave pattern is created by measurement
uncertainties, but it would in principle be possible that errors con-
tribute to the general trend of W versus Lz. To examine this possi-
bility we created mock samples as in Fig. B1, and draw the mock
measurements from the full covariance matrix, i.e. incorporating
the reported correlations between (p, μRA, μDEC).

The result is shown in Fig. B2. To dispel any concerns that
the error correlations could have anything to do with the observed
wave pattern, we now show the actual data with error bars for all
stars with a total proper motion error σ pm < 2 mas yr−1. While

this subset should not be used due to the contamination with the
Hipparcos selection function (Hipparcos stars have better proper
motion measurements, but are kinematically selected), we can see
that the general structure does not change. In the mock samples,
two of the three full samples show a very slight uptrend, so we
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Figure B3. Slope in a linear fit of W versus Lz when varying the proper
motion quality cut σ pm, max in the real versus the mock sample. We note that
this trend in the real sample is almost perfectly stable when varying the cut.

also show the equivalent mock catalogue for a very generous cut of
σ pm < 15 mas yr−1, which does not have any trend.

Fig. B3 shows an evaluation of the trend γLz,W between W and
Lz, using the basic method, i.e. the slope in a linear fit of W versus Lz

for samples with different proper motion quality cuts σ pm, max, both
for mock samples and the data. The horizontal line shows the trend
in the full sample, and the dashed line depicts the trend in the full
mock sample. While the slight trend in the full mock sample could
have been taken as a suggestion that a very small amount of the trend
in the data might stem from correlated proper motion errors, there
is no decrease in the observed trend when we start applying cuts to
the data in σ pm. The stronger deviations at σ pm, max < 2 mas yr−1 in
the data are not consistent with trends in the mock catalogues, and
likely result from a lucky sample selection at this small sample size
or the increasing importance of the Hipparcos selection function.

Distance errors could also provide a very small contribution:
While most of the usual baseline effect (distance overestimates
carry larger weight due to their position on the x-axis away from the
mean; see Schönrich et al. 2012) is compensated because distance
overestimates have a negative W bias both for large and small Lz,
there could be a minor effect due to the different base lengths (in
Vφ − V�) on both sides. However, no significant trend is detected
either, with the mean mock sample trend γLz,W,mock = (0.000 11 ±
0.000 13) mas yr−1. This level is about a factor of 20 below our
detection.
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