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ABSTRACT
We derive Bayesian distances for all stars in the radial velocity sample of Gaia DR2, and
use the statistical method of Schönrich, Binney & Asplund to validate the distances and test
the Gaia parallaxes. In contrast to other methods, which rely on special sources, our method
directly tests the distances to all stars in our sample. We find clear evidence for a near-linear
trend of distance bias f with distance s, proving a parallax offset δp. On average, we find
δp = −0.054 mas (parallaxes in Gaia DR2 need to be increased) when accounting for the
parallax uncertainty underestimate in the Gaia set (compared to δp = −0.048 mas on the raw
parallax errors), with negligible formal error and a systematic uncertainty of about 0.006 mas.
The value is in concordance with results from asteroseismic measurements, but differs from
the much lower bias found on quasar samples. We further use our method to compile a
comprehensive set of quality cuts in colour, apparent magnitude, and astrometric parameters.
Lastly, we find that for this sample δp appears to strongly depend on σ p (when including the
additional 0.043 mas) with a statistical confidence far in excess of 10σ and a proportionality
factor close to 1, though the dependence varies somewhat with σ p. Correcting for the σ p

dependence also resolves otherwise unexplained correlations of the offset with the number of
observation periods nvis and ecliptic latitude. Every study using Gaia DR2 parallaxes/distances
should investigate the sensitivity of its results on the parallax biases described here and – for
fainter samples – in the DR2 astrometry paper.

Key words: astrometry – parallaxes – stars: distances, kinematics and dynamics – Galaxy:
kinematics and dynamics – solar neighbourhood.

1 IN T RO D U C T I O N

This paper presents the first statistical evaluation of parallax biases
for a general stellar sample and the first derivation of unbiased stellar
distances for the subsample of Gaia DR2 with line-of-sight velocity
measurements (Gaia Collaboration 2018a; Katz et al. 2019). Other
than most other approaches, our method tests the distances of all
stars in the selected sample and not just specific subgroups with
different physical properties.

Since the first release of Gaia DR2 data, there has been clear
evidence for offsets in the parallax measurements. In the data release
papers, Lindegren et al. (2018) found a general offset of Gaia
parallaxes by δp = −0.029 mas (in the sense that the quoted values
were too low) when studying known quasars in the Gaia catalogue.
In addition, the median offset of the quasars is patchy on the sky (see
also fig. 15 in Arenou et al. 2018), and thus we also have to expect
an error term σ p, which will in many aspects behave like a random
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error (as long as these patches are not resolved). The calibration
involved in the data analysis for the astrometric solution of Gaia
depends on both the effective wavelength (colour) and magnitude
(directly and through the ’window class’), so both offsets/biases
and random errors cannot be expected to be homogeneous along
the entire magnitude and colour range of the sample. The quasar
catalogue, which is the best direct benchmark for Gaia parallaxes,
is very faint (typically at apparent magnitudes G > 17), and the
colour distribution does not match the stellar colour distribution
very well. In contrast their internal checks between different parts
of the analysis show significant changes in behaviour in particular
at magnitudes G ∼ 16, 13, 10 (caused by their analysis windows;
see fig. 16 in Lindegren et al. 2018) and changes in their astrometric
measurement accuracy (likely near G ∼ 8; see their fig. 9). In
addition, sources in several remote objects, in particular the Large
Magellanic Cloud, display a finely structured pattern in the sky
position of mean offsets related to the scanning law of Gaia.

In the Gaia Collaboration (2018d) the same offset can be seen
when comparing the globular cluster mean parallaxes to the more
accurate (at small parallax) values from the Harris (1996) catalogue.
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The Gaia Collaboration (2018d) also shows that the Large and
Small Magellanic Clouds, and most of the satellite dwarf spheroidal
galaxies it studies, have negative average parallaxes. Consistent with
these general offsets, but differing in the magnitude of the effect,
Stassun & Torres (2018) found an offset of (−0.082 ± 0.033) mas
for a sample of 89 very bright (G < 12 mag) binary systems,
however with a large scatter of the single measurements. Yet, given
the patchiness of the offset, and the very different magnitude range
probed, these values could well be in agreement. Just when we
were about to submit this paper, the latest study of Graczyk et al.
(2019) found a value of δp = −(0.054 ± 0.024) mas, which by an
amusing coincidence is exactly our result, albeit with a much larger
uncertainty. We also note that binarity was not worked into the
astrometric solution, so it is to be expected that binary systems
carry a different bias from the main stellar sample. Similarly,
comparison with asteroseismic values points to significant parallax
underestimates (Zinn et al. 2018), though again for rather specific
subsets of stars in magnitude and colour/stellar evolutionary stage.
However, their result of δp = −0.05 mas bears high confidence,
and again differs from the quasar result. Sahlholdt & Silva Aguirre
(2018) looked at a smaller sample of dwarfs with asteroseismic data,
and the offset they found was closer to that of the quasar sample, but
with more significant uncertainty (−0.035 ± 0.016 mas). No test so
far has measured what we are really concerned about: the bias of
the full stellar sample and how it depends on the other properties of
the observation.

Unbiased distances are key to virtually every problem in modern
astrophysics, and given the large sample sizes, we now need these
distances at the 1 per cent level. For example the wave pattern
discovered by Schönrich & Dehnen (2018), which was confirmed
by Huang et al. (2018) and Kawata et al. (2018), and which is
likely related to the later findings of Antoja et al. (2018), has a total
amplitude of below 1 km s−1. To compare this: Even at a perfect
location towards the Galactic anticentre, the solar reflex motion
will translate to an ∼0.1 km s−1 bias for every 1 per cent in mean
distance bias. Larger and more complex bias patterns will arise at
other sky positions from cross-correlations between the velocity
component measurements.

This work offers a solution to this problem. We will derive
unbiased distances to the radial velocity (RV) subsample (about
7 million stars at magnitudes G � 15) using the method proposed
in Schönrich & Aumer (2017). By measuring the selection function
directly from the sample, we derive a data-informed, and thus nearly
unbiased, prior, which suits a sample better than model-based priors
(e.g. Astraatmadja & Bailer-Jones 2016; Bailer-Jones et al. 2018)
designed to fit pre-existing models of the entire Gaia sample (e.g.
Bailer-Jones et al. 2018). As discussed in Schönrich & Aumer
(2017), mismatch or neglect of the selection function will result in
systematic bias of a similar size to the measurement uncertainties for
individual stars (i.e. of order 20 per cent for the common parallax
quality cut of p/σ p > 5). Our previous results have established
that this method gives an unbiased translation from parallaxes to
distances. Consequently, with these distances we can now directly
measure and correct biases in the parallaxes using the statistical
method of Schönrich, Binney & Asplund (2012).

Our paper is structured as follows. We start with a short
description of the used data and coordinate system definitions in
Section 2, followed by a description of our statistical distance
estimator in Section 3. After this, we provide the formalism for
deriving Bayesian distances in Section 4, including a derivation
of the distance-dependent selection function S(s). In Section 5
we quantify the different parallax biases in Gaia DR2, which is

followed by a comparison to previous distance derivations and a
comment on the distance to the Pleiades. Section 8 provides a
summary of quality cuts necessary in Gaia DR2, followed by the
conclusions.

2 DATA A N D D E F I N I T I O N S

2.1 Coordinate frame and definitions

Throughout this paper, we will use the standard definitions for
Galactic coordinates and the local standard of rest. We employ
Galactic cylindrical coordinates (R, z, φ), where R is the in-plane
distance to the Galactic Centre, z is the altitude above or below the
Galactic mid-plane, and φ is the Galactic azimuth, with the Sun
placed at φ = 0. The distance of a star to the Galactic Centre
is termed r = √

R2 + z2; for the solar galactocentric distance,
we use the value R0 = 8.27 kpc from Schönrich (2012), which
is also in agreement with other determinations (Gillessen et al.
2009; McMillan 2017), and only slightly in tension with the latest
estimates from measurements of stellar orbits around Sgr A∗ from
the Gravity Collaboration (2018). The vertical displacement of the
Sun from the mid-plane, z� = 0.02 kpc is taken from Joshi (2007).
We also tested that it does not have any significant impact on our
results. The velocity vector in the heliocentric1 Cartesian frame
is defined as (U, V, W) with a right-handed set of components
pointing radially inwards, in the direction of Galactic rotation, and
upwards perpendicular to the plane. The velocity vector components
in the Galactocentric cylindrical frame are analogously termed
(Ug, Vg, Wg). To translate these velocity components, we use the
motion of the Sun against the local standard of rest as measured
in Schönrich, Binney & Dehnen (2010) and Schönrich (2012):
(U�, υ�, W�) = (11.1, 250, 7.24) km s−1, and if necessary, use the
azimuthal velocity of the Sun against the local standard of rest
(V� = υ� − Vc = 12.24 km s−1). For simplicity’s sake, we call p
the parallax of a star and σ p the effective uncertainty of the
parallax measurement assumed in that instance, which, depending
on the examined set of assumptions, may contain the additional
δσp = 0.043 mas added in quadrature to the Gaia pipeline value
σ p,g.

2.2 Data

Here we use the Gaia RV sample (Cropper et al. 2018; Gaia
Collaboration 2018c) from Gaia DR2 (Gaia Collaboration 2018a)
with more than 7 million stars that have both astrometric and line-of-
sight velocity measurements from the spectrograph (Sartoretti et al.
2018) onboard the Gaia spacecraft (Gaia Collaboration 2016). To
ensure the quality of the data, we apply, if not stated otherwise
for a specific task, a few quality cuts that were discussed in data
release papers (e.g. Lindegren et al. 2018), namely the number of
visibility periods nvis ≥ 5 to ensure a full astrometric solution, a
parallax quality cut of p/σ p > 5 and a lower limit p > 0.1 mas,
which translates to approximately demanding a distance s � 10 kpc,
an excess noise smaller than 1, and line-of-sight velocity limits
of |vlos| < 550 km s−1 and σlos < 10 km s−1. We usually remove
the Galactic mid-plane from our sample, i.e. require |b| > 10 deg.

1We use the somewhat negligent Galactic dynamicists’ term ’heliocentric’,
while in truth, Gaia is measuring quantities in the Solar system baryocentric
frame. With relative motions between the two frames below 0.1 km s−1, this
difference does not matter.
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For our statistics the Galactic mid-plane carries no signal and we
thus avoid problems with crowding and excessive reddening. We
checked, though, that the measurement of the distance prior from
low-|b| data is similar to our higher latitude main sample, and
provide distance estimates for these stars in the derived catalogue. In
previous papers (see Schönrich & Aumer 2017) we uncovered major
problems with vlos measurements, in particular with LAMOST.
Here, we just note that our tests of vlos accuracy and precision
looked very decent on the Gaia sample, and we will concentrate on
the more pressing issue of distances and Gaia parallaxes. We follow
the convention of Gaia papers to call their apparent magnitudes
in the three broad colour bands (GBP, G, GRP). Problems with
capitalization conventions do not arise, since we do not discuss
absolute magnitudes through most of the paper.

3 STATISTICAL DISTANCE ESTIMATION

3.1 General thought

For the determination of distance bias, we rely on the method of
Schönrich et al. (2012; hereafter SBA), which has been applied
to various samples. The method relies on correlations between
velocities, which depend on the position on the sky. The estimator
is readily derived by writing down an estimate of stellar kinematics
while allowing for a systematic distance bias f = 〈s′

/s〉, where s
′

denotes the estimated distance and s the real distance to a star.
This f affects both tangential velocity components simultaneously,
correlating them. To explain this with a simple example, imagine
approaching a mountain horizontally. Knowing your velocity, your
mind automatically has a clear estimate of the distance to the
summit. This is because any incorrect estimate would translate
your horizontal motion to a vertical component of motion of the
mountain; i.e., the top of the mountain would have to be growing
or shrinking (if you had over- or underestimated the distance,
respectively). Analogously, all parts of the mountain base below
your level would appear to be moving downwards (upwards). And
your brain knows this is not usually what mountains do. The SBA
method allows us to extend this intuition and make it more robust
against assumptions (i.e. we do not assume any mean motion or
fixed velocity ellipsoid) to stellar samples.

The strength of the SBA method now lies in directly using the
spatial dependence of this correlation of the heliocentric velocity
components on the galactic longitude (l) and latitude (b). As long
as we have a sufficient sky coverage, we do not depend on classic
assumptions of other methods: Think of our mountain example. Ob-
serving many mountains around us, we gain a significant advantage
in control of systematics over the use of just one single mountain. In
a simplified picture, we just measure the pattern of apparent vertical
velocities of all the mountain tops and mountain bases around us and
try to find the distance correction that makes the angular dependence
of this pattern disappear. Misjudging our own velocity, we would
equally bias the motion of all summits and mountain roots, leaving
the statistical distance evaluation unscathed. Similarly, we do not
care about our horizontal velocity, since it can (i) be measured
and (ii) would just affect our prediction for the strength of the
effect around us; however, we just seek the distance factor at which
the correlation of vertical velocity components with sky position
disappears, making our own horizontal motion irrelevant. Translated
to our real problem: Assumptions about the solar velocity do not
matter for our method.

Similarly, let us assume that we are sitting in the middle of an
orogeny (or reading Calvino’s Cosmicomics) and both mountain

summits and roots are rapidly rising and sinking into the ground.
Observing just one mountain in front of us, we would indeed infer
that distances are overestimated, but behind us, the correlation term
reverses sign; i.e., the apparent distance underestimate there cancels
out the distance overestimate inferred from the opposite direction.
We learn from this that typically modes of the disc cancel out in a
sample with large sky area. Analogously, a wide halo stream passing
through would cancel by the spatial terms. In short, galaxy physics
can only affect our statistical measurements if they vary across the
sky in a way that correlates with the angle terms of our method. In
most cases (e.g. global breathing modes, streams) they will cancel
out at first order.

Lastly, we note that other than our imaginary mountains, stars
move horizontally, so in addition to the spatial correlations, we
can benefit from two different horizontal velocity components with
different dependences on sky position.

3.2 Formal argument and specific implementation

The formal derivation of our method (see SBA for a stringent
treatment) is done by simply writing down what happens in the
measurement. The vector of observed values is (s

′
μl, s

′
μb, vlos),

where s
′

is the observationally inferred distance and μl and μb are
the proper motions in Galactic longitude l and latitude b. This vector
is translated into the measured velocity components (U, V, W) by a
matrix M depending on l and b. Since this is an orthogonal matrix,
the inverse mapping (i.e. from the original velocity components) is
done with the transverse Mt. If we now assume that distances are
changed by some relative bias

f = (s ′ − s)/s, (1)

where s is the real distance, we can relate:⎛
⎝ U

V

W

⎞
⎠ = M(I + fP)Mt

⎛
⎝ U0

V0

W0

⎞
⎠ (2)

where the index 0 indicates the real values, and P is diag(1, 1, 0),
which projects to the two proper motion components. Now, we see
that the observed velocity components are correlated by f via the
matrix T = MPMt. Since the equations are linear, the average f can
thus be gained by a similar linear regression of any target velocity
component vi on to the other velocity components vj multiplied
with Tij, the components of the matrix T.

As discussed in SBA, using the in-plane velocity components
(U, V) mixes the statistics with a Galactic rotation estimate, and
given the very large sample size here, we make the choice to avoid
this possible source of systematic bias. We thus limit this study to
using the correlation of both U and V velocity components with the
vertical motion W. The relevant part of T is thus⎛
⎝ Tuw

Tvw

Tww

⎞
⎠ =

⎛
⎝ cos l sin b cos b

sin l sin b cos b

1 − cos b2

⎞
⎠ . (3)

Our method applies corrections for the following biases of this
measurement:

(i) vlos determination errors, σ los, which would appear as distance
underestimates (typically negligible due to the excellent precision
and accuracy of the Gaia vlos estimates),

(ii) proper motion determination errors, σ±, which would appear
as distance overestimates, but are again negligible by more than an
order of magnitude,
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(iii) the tilt of the velocity ellipsoid, which is of some importance
for the statistics. This term is important, as the radially elongated
velocity ellipsoid produces a locally changing correlation between
the heliocentric velocity components, which can partially line up
with the Tuw and Tvw angle combinations.

We have to add the systematic uncertainties from these terms to
our error budget, assuming that the uncertainties in these terms are
statistically independent of each other. As already done in previous
studies (SBA) we assume a systematic uncertainty of 10 per cent
of the calculated correction value for the first two terms, and an
uncertainty of 30 per cent for the turn of the velocity ellipsoid
correction.

As stated above, due to the unprecedented precision of Gaia,
the exact values of proper motion errors do not matter here as
long as the order of magnitude of the uncertainty estimates in
the Gaia pipelines is correct. Similarly, the error correlations are
mostly inconsequential: Two team members did independent tests
on independently calculated mock samples, where we folded the
mock measurements with the full error matrix between parallaxes
and proper motions as given for each star in the sample. In these
tests, the effect of error correlations on our statistics is more than
one order of magnitude less than our systematic and formal error
budget for whole-sky measurements. On pencil beams, like in tests
of high β stars, it contributes of order one-tenth to the residual bias
(see analysis below).

For the velocity ellipsoid correction, we assume that the velocity
ellipsoid points to the Galactic Centre at every position. Other
than in previous applications of the SBA method, the Gaia sample
spans a large volume throughout the disc, and when we select by
distance, stars in each sample will cover regions with vastly different
values of the velocity dispersion. To optimize the estimate for this
correction term, we directly measure the velocity dispersions in the
Galactocentric spherical coordinate frame weighted by their impact
on the distance estimator.

As described in Section 3.1 the method does not assume any
velocity ellipsoid, and does not even require knowledge of the
correlations between the velocity components (e.g. U and W). The
only important requirement is that Galactic structure does not infer a
correlation between this velocity correlation and Galactic position.
Realistic structure (e.g. a stream passing through the survey, or disc
breathing modes) might produce a local velocity correlation (and so
distance statistics on small patches of the sky are uncertain; see the
β issue below), but cancels out to first order with large sky coverage.
We have already tested and confirmed this on realistic simulations
in the appendix of Schönrich & Aumer (2017).

4 D I S TA N C E D E T E R M I NAT I O N S A N D
S E L E C T I O N FU N C T I O N FO R GAIA D R 2

Before we can test distances/parallaxes with the SBA method, we
have to derive distance expectation values for all stars, using the
method of Schönrich & Aumer (2017). From parallax measure-
ments we calculate the probability distribution in distance P(s) for
each star by

P (s) = N−1s2G(p, p0, σp)ρ(s(p), l, b)S(s(p)), (4)

where

N =
∫

dss2G(p, p0, σp)ρ(s(p), l, b)S(s(p)) (5)

is the normalization, s is the distance from the Sun, p denotes a
parallax, G(p, p0, σ p) is the (Gaussian) observational likelihood

distribution in parallax, given the measurement p0 and effective
uncertainty σ p, and ρ(s(p), l, b) is the assumed density model.
S(s) denotes the selection function, i.e. number of stars detected
in the sample divided by the number of stars actually there. As in
previous papers, we use the simple density model from Schönrich &
Bergemann (2014), which contains a thin-disc, thick-disc, and halo
component (we can neglect the bulge because we only select stars
with |b| > 10 deg). All calculations are done with a self-adaptive
trapezoid integration, where we start from the suspected maximum
of the probability distribution function (PDF) and integrate to both
sides in distance simultaneously, adapting the step length upwards
when the relative contribution of each segment to the integrated
value falls below a threshold. We tested that our results are the
same when lowering the initial step length and threshold by a factor
10, or when using a simple step-wise integrator.

We tested by cutting the sample in Galactic latitude and longitude
that this model is sufficiently close to the underlying distribution to
ensure a good distance measurement. The most important quantity
in the above equation, however, is the distance-dependent selection
function S(s(p)), which arises from the magnitude-dependent cuts
of the sample. Predicting S(s) directly would require a full chemo-
dynamical galaxy model including a three-dimensional reddening
map. With this choice, we would be vulnerable to systematic
uncertainties of the model choice, stellar evolution models, and
the reddening map.

Here, we instead measure S(s) from the data themselves. Never
the less, it is useful to formulate a model-based expectation, which
acts as a sanity check to our results. The top panel of Fig. 1
shows the selection function S

′
(s) calculated from simple population

synthesis using the machinery of Schönrich & McMillan (2017)
using B.A.S.T.I. stellar models (Pietrinferni et al. 2004, 2009) and a
simple Salpeter (1955) initial mass function (IMF). The shown S

′
(s)

expresses the number of stars per solar mass (at birth) of a stellar
population at a given distance s. Since the normalization factor here
is irrelevant for our purposes, we multiplied S

′
(s) with an arbitrary

factor 80 to facilitate direct comparison with the measured S(s) in
the bottom panel. For this figure, we suppose a simple magnitude-
dependent selection, setting the selection probability constant below
Johnson V-band mV < 12.8 mag and then going linearly to zero
for mV ≥ 13.5 mag.

S(s) has three main regions: (i) a quite steep roughly exponential
decrease of S

′
(s) with distance s in the near field, stemming from

the magnitude limit moving up through the main sequence and
turn-off region with increasing distance modulus. The exponential
behaviour is expected, since the magnitude scale is logarithmic,
the luminosity of stars is roughly the fourth power of the mass,
and the IMF is close to a simple power law (as we can neglect
the impact of stars below ∼0.5 M� where this is no longer
true). This decrease is followed by (ii) a weakly inclined plateau
associated with the subgiant branches and red clump, followed by
a downward knee and somewhat shallower decline at the largest
distances due to (iii) the red/asymptotic giant branch stars. There are
some differences between different ages and metallicities: Metal-
poor stars are somewhat more luminous on average, shifting the
features to the right; older populations have their subgiant branch
at fainter magnitudes and less stars overall on the giant branch
(the lengthening of stellar main-sequence lifetimes outweighs the
increase in the IMF). However, the common features let us predict
the functional shape for the selection function rather well, when
averaged over all stellar populations. We choose

S(s) = aA(s)B(s)C(s) (6)
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Figure 1. Top panel: selection function S(s)model in distance from a simple
population synthesis for populations with fixed metallicity and age and
a simplified magnitude-dependent selection function resembling the Gaia
DR2 subset with vlos measurements. The normalization is irrelevant, so
we multiplied with an arbitrary factor to match the bottom panel. Bottom
panel: selection function measured from the data after several iterations
with different quality cuts on the relative parallax quality. The least tight
cut (p/σ p > 2.5) should not be used in stellar sample selections as it will
comprise a large number of catastrophic distance errors. It can, however,
serve to educate us on the real shape of the distance-dependent selection
function S(s). Note that the normalization is irrelevant and here comprises
amongst other effects a geometric factor 2π.

where a is a normalization constant, and the three multipliers are:

A(s) = exp (−bs) + c exp (−ds)
1.0

1.0 + exp −h(s − j )

B(s) = 1.0

0.5π + k2
(tan−1 (l(l2 − s)) + k2)

C(s) = 1 − exp (−zs),

The rationale behind this is to capture in A(s) the general shape
with two exponentials of scale length b−1 and d−1 for the short-range
(out to ∼1 kpc) and long-range behaviour (beyond 3 kpc) and model
the step in S(s) with tan −1 in B(s), as well as the (unimportant) drop-
out of luminous or otherwise too close stars (potential loss due to
proper motions) with C(s).

We proceed as in Schönrich & Aumer (2017), iterating the
distance calculation with the adapted prior. However, due to the
good nominal quality of Gaia parallaxes, the general appearance of

Table 1. Parameters of the selection function (equa-
tion 6).

Parameter Value Unit

a 97.9594 –
b 4.102 28 kpc−1

c 0.015 964 2 –
d 0.15 kpc−1

l 2.222 79 kpc−1

l2 2.975 47 kpc
k2 2.0704 –
j 0.956 364 kpc
h 4.911 93 –
z 0.024 kpc−1

the measured S(s) is already present from the first iteration using
a flat prior. A fit of the function to data corrected for a mean
parallax offset of δp = −0.048 mas (see following below) after
several iterations of the prior fitting is presented in Fig. 1 (the values
are provided in Table 1). The shape matches the prediction from the
population synthesis. We also checked that the selection function
does not vary strongly with galactic latitude, which signals that the
spatial prior is sufficient and population differences throughout the
galaxy will not strongly bias our distance estimates.

Apart from d, which sets the scale length of the long exponential
component, all parameters are well constrained in the fit. The latter
suffers from the fact that we cannot fit beyond the point where the
parallax quality cut affects the sample. This cut must not enter S(s),
since the stars are culled after they have passed the magnitude limits.
Inspection of Fig. 1 shows that given the relative drop-out rates of
stars at different quality cuts, the fit must be close to the real shape.
Extensive further tests of the far-distance end favoured an additional
flattening of S(s) by multiplying with exp(−(s ′/ kpc − 4)/0.07),
where s ′ = min(s, 10 kpc). The difference can be inspected between
the top panel of Fig. 2, which does not contain this factor, and the
bottom panel, which does include it. It mostly serves to improve
a slight kink in the distance statistics. The latter factor only has
a minor effect on very remote stars beyond s > 3 kpc, and we
will apply it to all data shown from Fig. 3 onwards. Both the model
expectations and the derived distance statistics for very remote stars,
which react strongly to the prior, support this choice.

5 D I STANCE BI AS V ERSUS D I STANCE:
EVI DENCE FOR THE PARALLAX O FFSET

5.1 Scanning versus distance: detection of the parallax offset

Fig. 2 measures the relative distance bias 1 + f when using the
SBA method for the stellar sample when ordered and binned in the
measured distance s. The top panel shows this scan of 1 + f versus s
for two different quality cuts in the relative parallax error, allowing a
maximum σ p/p as given by Gaia DR2 of 10 per cent or 20 per cent,
respectively. It is apparent that 1 + f increases nearly linearly with s,
reaching a relative distance bias in excess of 5 per cent at s ∼ 1 kpc
and errors in excess of 25 per cent near s ∼ 5 kpc. Such a bias
precludes a precision measurement of galactic kinematics even in
the relative near field. The comparison of different σ p/p cuts proves
that this cannot be an issue with the distance priors or other parts
of our measurement method. Otherwise, a tighter quality cut would
drastically reduce the bias 1 + f at a given distance. This leaves only
one culprit: a bias in the Gaia parallaxes.
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Distances and parallax bias in Gaia DR2 3573

Figure 2. Relative distance error 1 + f in the Gaia DR2 RV sample when
binning the sample in distance. In each panel, we sort the sample in distance
s and then let a mask of 15 000 stars width slide by steps of 5000; i.e., every
third data point is independent. The 1 + f shown on the y-axis, measured
with the SBA method, denotes the factor by which the average distance in
each subsample is wrong. E.g. 1 + f = 1.1 means that stellar distances are
on average 10 per cent too large. The top panel shows that the result does
not depend on the value of the quality cut in the relative parallax error p/σ p.
The bottom panel (using a sample size of 90 000 in steps of 30 000) uses
p/σ p > 5 and varies a fixed parallax offset, i.e. incrementing all measured
parallaxes by δp, which reduces the estimated distances.

In fact, as we can see from the bottom panel in Fig. 2, this
linear trend is a signature imprint of such a parallax bias. When
we apply the correction δp to all parallax measurements, we can
minimize the trend for δp = −0.048 mas with an uncertainty of
about 0.006 mas. The most distant bins beyond s > 3 kpc are in
line with this estimate within the uncertainties. Small differences
at these distances should be ascribed to uncertainties in S(s) as
discussed above. The offset is about double the amount found by
Lindegren et al. (2018), but exactly in line with the asteroseismic
evaluation of Gaia DR2 (Zinn et al. 2018). We note again that we
do not believe the evaluations in Arenou et al. (2018) and Lindegren
et al. (2018) on quasars to be applicable to our case, since those are
in different apparent (magnitude) window classes with separate
astrometric calibrations, and have all different kinematics/zero
intrinsic parallax.

We further note that there is a significant positive bias f ∼
5 per cent for the distances of the nearest stars or, equivalently,
brightest parts of the sample (seen in the left-most green data point in

Figure 3. A quantification of the parallax bias δp in the sample. Here, we
evaluate f(s) for different values as in Fig. 2. These values we fit in the
interval 0.1 < s/kpc < 3 both with a constant value and with a linear
regression f (x) = a + df

ds
s and show the results with the red and blue

lines (including their formal 1σ error intervals depicted with short-dashed
lines). For comparison, we show the same evaluation, but now increasing

the parallax error σp =
√

σp,g
2 + (δσp)2 by adding δσp = 0.043 mas in

quadrature (long-dashed without error bars).

the top panel Fig. 2). This bias is near impossible to explain with bad
vlos measurements, which would feign a negative f. This bias is for
these nearby stars orders of magnitudes larger than the previously
discussed parallax offset, which for these stars is negligible. Some
of this may be traced back to the magnitude-dependent deviations
(see below, Fig. 9), some to misidentifications in the near field.

So far, we simply applied a parallax offset. However, from
Lindegren et al. (2018) a position-dependent variation in the parallax
bias is expected. There has been discussion in the Gaia collaboration
whether such a bias should be added to the error budget or not. Now,
in our case, we are interested in the uncertainty for each single star. A
priori, we do expect a random but spatially correlated fluctuation of
the parallax offset to enter single-star parallax uncertainties just like
an additional term that has to be added in quadrature to the formal
uncertainty given by the pipeline, setting σp = √

σp,g
2 + (δσp)2.

We thus quantify the correction δp on two versions of the sample,
once with and once without systematic δσ p, which we take to be
0.043 mas following the quasar analysis of Lindegren et al. (2018,
table 4). One can argue for two ways of measuring the parallax
bias: On one hand, we could demand that the average f in the
safe region 0.1 < s/kpc < 3 should be exactly 0. While we have
high confidence in the accuracy of the distance statistics in this
area, one might still want to get rid of the need for a correct zero-
point. Indeed, since a parallax offset gives an almost linear f(s)
dependence, we can alternatively demand that the estimated slope
df/ds should be zero. However, within our systematic uncertainties,
both methods, shown in Fig. 3, yield the same values for δp.
Drawing a mean estimate from the shown results and further tests
of varying quality cuts, we conclude that δp = −0.048 mas with
a negligible formal uncertainty and a systematic uncertainty of
∼0.006 mas. The systematic uncertainty is a cautious estimate. The
systematic uncertainties on the velocity ellipsoid and measurement
uncertainties are already priced into the formal errors, but we
priced in a correlated systematic error between evaluation bins,
and performed a variation of fit parameters (region in s to fit on),
changes in quality cuts (see below), and comparison of the different
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3574 R. Schönrich, P. McMillan and L. Eyer

Figure 4. Relative distance error in the Gaia DR2 RV sample when binning
the sample in parallax quality p/σ p. We use the same binning scheme as in
the previous figures. In addition we remove all stars with s, p−1 > 10 kpc
from the sample. Again the y-axis shows the distance bias factor measured
with the SBA method. Both panels reveal a strong increase. The top panel
shows the two possibilities of adding an additional parallax measurement
uncertainty of 0.04 mas in quadrature versus not adding it; the bottom panel
displays the same statistics for different cuts in the maximum value of p−1.

methods. These would advise a mildly smaller number, and we
added a budget for effects that we may have missed. Separate from
these effects, accounting for δσp = 0.043 mas further increases the
|δp| estimate by about 0.006 mas to δp = −0.054 mas. The small
difference between the f and the df/ds estimation for δp can be
ascribed to bad luck as it is within ∼2σ . We think, however, that
it has contributions by one or several of the secondary problems
identified below.

5.2 Quantifying parallax offset versus uncertainty

Could we make different assumptions for the parallax error visible
with our distance method? In principle, yes – the background is
that the expectation value of a single star’s distance shifts system-
atically with the assumed error. Consequently, a misjudgement of
uncertainties will typically show as a distance bias. However, as
we saw in Fig. 3, this effect is subordinate to the other problems
in the sample. Never the less, assessing the right value for the p/σ p

quality cut requires a sample scan in this quantity. This is done in
the top panel of Fig. 4. We remind the reader that apart from stars
at very small distances (corresponding to large p/σ p) in this plot,
the distance scan (see Fig. 2) shows no significant deviations after

Figure 5. Top panel: distance bias versus the the parallax error σ p as
provided in the Gaia DR2 data set. The bottom panel displays the distance
bias versus distance to uncover the nature of the trends/biases observed in the
top panel. The subsample with large parallax uncertainty, σ p > 0.1, shows
the typical signature of a larger parallax offset; i.e., the distance bias rises
almost linearly with distance. The other subsamples have a weak indication
of the same trend.

correcting for δp. Yet, the red line in the top panel of Fig. 4 reveals
an impressive increase in 1 + f towards lower p/σ p. Note, however,
that we have extended the sample to stars beyond our usual quality
limit, admitting all stars with p/σ p > 1; below p/σ p < 4 there will
definitely be a sizeable fraction of stars with catastrophic distance
misestimates. Also, the large parallax uncertainty allows for major
parts of the probability distribution P(s) to cover highly uncertain
regions of S(s). However, extensive experimentation with S(s) could
not rectify the abnormalities in Fig. 4. One could now be tempted
to argue that the suggested inclusion of δσp = 0.043 mas removes
the problem, but this is a deception caused by the left shift of the
graph, since we increased σ p. The S(s) uncertainty can be resolved
by limiting the p−1 range to contain the PDFs of even uncertain
parallax measurements within the safe region s < 3.5 kpc. The
result of this is shown in the bottom panel of Fig. 4: There always
remains a spike in 1 + f on the left-hand side. Something else is
going on here.

We now restore the parallax quality limit and plot 1 + f against the
pipeline parallax error σ p itself in the top panel of Fig. 5. For σp >

0.12 mas distance bias sky-rockets, even for the rather conservative
cut p−1 < 1.5 kpc applied here. This suddenly clarifies the tension
in the plots of 1 + f against p/σ p, because we were just moving
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Distances and parallax bias in Gaia DR2 3575

Figure 6. Studying the hypothesis that the parallax error predicts the
parallax offset. The top panel shows a scan of distance bias versus parallax
error when assuming that the parallax offset equals the parallax error, i.e.
δp = −σ p, and attempting to correct the error by adding σ p to the parallax
before evaluating the distance. The two versions of doing this are shown
with green errorbars (adding δσp = 0.043 mas in quadrature to σ p) and the
blue line (not adding a parallax error). It is striking how well the data set
is constructed when assuming this, instead of the constant parallax offset
discussed previously (and shown for comparison with the purple line). In
the bottom panel, we show a scan in distance of the sample, again showing
that the method of first adding δσp = 0.043 mas in quadrature produces a
near-perfect outcome.

the region of large parallax errors via the distance/parallax cut. A
further unsettling observation is the uptrend of the distance bias with
parallax error between σp = 0.045 mas and σp = 0.06 mas, turning
from a negative to a positive distance bias of order 2 per cent.

The bottom panel of Fig. 5 attempts to qualify the nature of this
failure. One could argue that stars with large parallax uncertainties
noted by the pipeline should be binaries, affecting their proper
motions, and thus our distance statistics. However, we see a clear
increase of the distance bias with distance, putting the blame at a
parallax offset exceeding by far the ∼0.05 mas of the entire sample,
for which we already correct in the shown data. Given the displayed
results, the only viable explanation is that δp is at least to some
extent proportional to σ p.

With such an unusual finding, it is natural to point the search for
an honest error at our own code. For example, there could be a typo
in our distance integral creating the dependence on σ p. Apart from
controlling and testing our code, Fig. 6 investigates this by checking
different assumptions for the distance error. The purple line displays

Figure 7. Top panel: distance bias versus additional parallax error δσ p.
Like in Fig. 3 we bin the sample in distance and measure both the average
distance bias (red lines) and the trend of the distance bias with distance for
distances smaller than 3 kpc. To ensure a clean sample, we removed all stars
with β < −55 deg, which, however, has only quite a minor impact on our
statistics. Bottom panel: the same statistics as the top panel, now plotted
against the parameter q when we assume that δp = −qσp.

the original trend as found with a constant δp = −0.048 mas. The
blue line corrects this to setting δp = σ p and the green line in
addition adds δσp = 0.043 mas in quadrature. If we had made a σ p-
dependent error ourselves, the green line and the blue line should
deviate in the same way (as the distance estimates depend very
weakly on the assumed σ p). In contrast, we see that only with the
full correction and assuming that δp = −σ p can we rectify the trend
in the sample.

While we do not want to adhere to the notion that the parallax
offset is perfectly equal to the parallax error, we do in Fig. 7 attempt
to show a quantification of this dependence. In both panels we use
our usual quality cuts in colour, g-band magnitude, and p/σ p > 4.
In addition, we removed the parts of the sample with β < −55 deg,
which, however, has a very minor effect. The top panel demonstrates
that if we assume that δp = −σ p, both the average distance error and
the trend of distance error with distance are within the systematic
uncertainties, in line with assuming the usual additional parallax
error δσp ∼ 0.043 mas added in quadrature. The bottom panel tests
different values of the proportionality constant q, when we set δp =
−qσ p after adding the additional term to σ p. Both statistics are in
line with a value very close to 1.
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3576 R. Schönrich, P. McMillan and L. Eyer

Figure 8. Distance bias 1 + f versus parallax error σ p. Using the usual
quality cuts, we probe different assumptions for changing δp and σ p. The
plot uses samples of 90 000 stars, moving the mask in steps of 30 000.

While the notion of δp = −σ p is simple at first hand, it is rather
unreasonable to believe that there should be such a perfect equality.
To this end we tested a third option: While leaving q free again, we
added the offset found for the quasars to the parallax, i.e. set −δp =
0.029 mas + qσp. Since about half the offset in parallax needed is
now again captured by a constant term, we can expect that a good
solution will be found for q ∼ 0.5 mas. This result is shown in
Fig. 8, where we plot the distance bias against σ p for both q = 1
and q = 0.5 plus the constant term. However, various experiments
show that we cannot get rid of the trend of f at small σ p if q is not
close to 1 in this region. The equality is definitely not perfect, since
we would require a q closer to 0.5 in all possible assumptions near
σp ∼ 0.09 mas and a larger q > 1 for σp > 0.012 mas.

To summarize this: The best choice for the sample is to add
δσp ∼ 0.043 mas in quadrature, and to add ∼1 times the parallax
error σ p to the parallax. When concerned about precision, we further
advise to remove all stars with σp > 0.08 mas, and recommend to
separately test stars with σp � 0.047 mas for anomalies.

5.3 Bias versus colour and magnitude

After these more complicated considerations, the derivation of safe
limits in colour and magnitude for the sample is quite straightfor-
ward. We simply order our sample by G- or GRP-band magnitude
(for an overview of the photometric instrumentation and calibration
in Gaia, see Evans et al. 2018; Riello et al. 2018), as well as by the
given GBP − GRP colour, and then iteratively tighten the quality cuts.
The results after a first round of clean-ups is shown in Fig. 9. The
top panel shows the distance bias versus G magnitude after removal
of all stars with G > 14.5 mag and GBP − GRP > 1.5 mag, while
the bottom panel shows a scan in GBP − GRP colour after removal
of all stars with G > 14.5 mag. If we had not censored the faintest
stars in the top panel, they would be shown with 1 + f ∼ 0.8, i.e.
a very strong distance underestimate. Since we recall line-of-sight
velocity measurement errors (even if unbiased) look like distance
underestimates, by far the most likely explanation for the decline
in 1 + f is not a failure of Gaia parallaxes, but a much larger
than indicated error from the vlos measurements. It would remain
to be explored if the mild decline around G > 13 mag may also be
related to a change of magnitude window in the Gaia astrometry.
Of course, the change of colour range implies a change in the

Figure 9. Top panel: distance bias versus G magnitude of the stars. Here we
assume the GBP − GRP < 1.5 mag quality cut. The figure displays different
sampling sizes (100 000 moving in steps of 50 000 versus 12 000 moving in
steps of 4000), and gives one comparison where we recalculated the prior.
Bottom panel: scanning the sample in a similar way in GBP − GRP colour.
Here we assumed a G < 14.5 mag quality cut and used the assumption
(δp = −0.048 mas, δσp = 0).

selection function. We thus devised an automated measurement of
the selection function S(s), where we use about 40 base points for
s < 4 kpc, on which we remeasure S(s) and then calculate a grid of
relative factors between which we interpolate linearly on log s/ kpc.
As the reader can easily see from the difference between the red
and blue points in the top panel of Fig. 9, this more appropriate but
far more costly calculation does not significantly change the results.
The largest change is around G ∼ 8 mag, where the recalculation
shortens all distances a little, since S(s) drops more steeply with
s, and thus exacerbates a little the negative bias in this area. We
also note that the relatively sharp and borderline significant feature
just below G ∼ 11 mag resembles a lot what was shown in the
recalibration comparisons in Lindegren et al. (2018). However,
the sample size and small amplitude of the effect preclude further
investigation.

5.4 Bias versus astrometric parameters

After discussing the main problems with the sample, it is worth
looking at the sample quality versus the different astrometric
parameters. Fig. 10 shows the distance bias against the number of
visibility periods nvis (top panel) and the ecliptic latitude β (bottom
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Figure 10. Examining the dependence of the residual distance bias on
measurement geometry. In the top panel, we order the sample by the number
of visibility periods, nvis, using a sliding mask of width 200 000 moved in
steps of 100 000, finding a significant downtrend when using a constant
parallax offset (red line). This trend disappears (blue line) when we assume
−δp = σ p and limit σp < 0.12 mas. The last data point contains only
20 000 stars and is likely an outlier. Similarly, the bottom panel shows the
systematic distance bias against ecliptic latitude, β, using a sliding mask
of width 100 000, moved in steps of 50 000. The general improvement is
as in the top panel. The ecliptic poles imply pencil beams and are thus not
reliably measured.

panel). In both the top and bottom panels we compare the results
obtained with the simpler assumption of a constant parallax offset
δp = −0.048 mas (red lines) versus setting δp = −σ p and limiting
σp < 0.12 mas (blue lines). The σ p limit does not significantly alter
the results. We were first rather astounded by the strong dependence
of the distance bias on nvis in the naive evaluation (red lines).
However, most of this effect is readily explained by the dependence
of δp on σ p. First, we note that due to the scanning law of Gaia,
nvis very strongly correlates with β, so both trends have a common
explanation. The culprit is easily found when we correct for the
apparent dependence of δp on σ p (blue lines), which diminishes
the trend. Consistently with the top panel, most of the dependence
of 1 + f on β in the bottom panel disappears when we apply this
correction, with a mild failure of order f ∼ 5 per cent remaining
around the ecliptic south pole. This is far less concerning than it
looks since the ecliptic poles imply a pencil beam, where our method
loses most of its advantages, and furthermore, the ecliptic poles are
in a near-worst-case location, since they are close to the Galactic
plane almost exactly in the azimuthal direction: This implies weak
statistics, and only the V − W correlation term, which carries some

Figure 11. Top panel: distance bias versus excess noise. Few stars have
a positive excess noise, so we scan in subsamples of 9000 stars, moving
the mask on the ordered sample by 3000. Excess noise correlates strongly
with the Gaia pipeline’s parallax error, so in this plot we use the assumption
δp = σ p with δσp = 0.043 mas. The blue line relaxes the cut on parallax
quality, which in turn allows us to show the tail of large-excess-noise values.
Bottom panel: distance bias versus RUWE. No significant trend can be
detected when we use the δp = σ p assumption; a mild trend exists when
δp = −0.048 mas, since the RUWE is correlated strongly with σ p and thus
high values of RUWE imply a large σ p.

mild signal from the galactic warp, and no information from the
U − W term. We thus ran a few checks. The distance method
did not reveal anything else than near-perfect distance bias when
scanning along Galactic l and b (which would have argued against
a failure here), but in turn, we did not see the apparent dip in the
bottom panel of Fig. 10 when limiting the sample to the more robust
stars with low Vg. We further compared the locus of the lower main
sequence in absolute G-band magnitude for stars with β � −55 deg
with equivalent fields in Galactic latitude and longitude, finding no
significant difference. To summarize this paragraph: Assuming the
dependence of −δp ∼ σ p makes all problems in nvis and β go away,
with some possibility for a problem at β � −55 deg, so in sensitive
studies, one might want to touch these stars with a long pole.

Fig. 11 shows the distance bias 1 + f versus the astrometric
excess noise (top panel) and versus the RUWE (a quantity based
on the chi-squared of the astrometric fit and stellar colour). To
create these plots we used the usual limits in colour and magnitude,
and waived the excess noise limit in the top panel. We note that
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3578 R. Schönrich, P. McMillan and L. Eyer

Figure 12. Distance bias 1 + f versus the bp–rp excess noise factor. We use
the assumption δp = σ p with δσp = 0.043 mas and scan the ordered sample
with a mask of width 12 000 in steps of 4000 stars each.

only a very minor fraction of our stars have a non-zero excess
noise value. These stars were censored from the sample. One could
expect that at least some stars with larger excess noise should be
binaries. In the discussion of Schönrich & Aumer (2017), the Gaia
DR1 sample had a far larger temporal baseline for the astrometry
compared to the vlos measurements, which raises the expectation
of an apparent distance underestimate in the statistical distance
estimator, since the vlos measurements would carry the additional
velocity dispersion from the binary. Here, the case is less clear-cut.
However, we can still note that stars with a positive excess noise
have a slight tendency to distance underestimates in our method
(understandable, since the astrometric effect is not clear-cut and
we still have some binary dispersion affecting the estimator). If
we admit stars with very large σ p (which correlates with the excess
noise), we find that the sample shows clear signs of a break-down for
excess noise values larger than ∼1. Thus, we recommend applying
a cut at this value. Further we note, the excess noise measurement
is limited to stars with very good signal to noise in Gaia and thus
leads to a concentrated sample in distance; neglecting this effect
should cause slight distance overestimates in our selection, so the
true distance bias on the large-excess-noise stars is likely slightly
underestimated.

The bottom panel of Fig. 11 provides our two suggestions for
distance evaluation versus the RUWE as defined in the additional
release notes from Gaia. The usual argument is that stars with
a large RUWE value are bad and should not be used. However,
as we see from the figure, the only trend of 1 + f that we can
detect is in the evaluation where we hold the parallax offset fixed at
δp = −0.048 mas. However, large values for RUWE (which is an
expression for the quality of the astrometric fit) duly correlate with
a larger σ p given by the Gaia astrometric pipeline. If we correct
for the trend in the Gaia parallax offset (green line), this slight
bias versus RUWE vanishes. In short, we cannot see any reason
for applying a quality cut in RUWE – of course, stars with large
RUWE have worse measurements, but the Gaia pipeline appears
to be perfectly fine in not producing any bias versus RUWE and
mirrors the larger uncertainties in larger σ p values.

Fig. 12 finally shows 1 + f versus the BP/RP flux excess factor
Ebprp. The quantity is often cited as an important quality measure for
Gaia data. It compares the flux in the BP+RP bands to the total flux
in the Gaia G band and relies on their very similar coverage. Due

Figure 13. Distance bias 1 + f versus distance for the distance sets of
Bailer-Jones et al. (2018) and McMillan et al. (2018). We use a sample size
of 60 000 stars each, stepping by 20 000.

to the Gaia passband definitions, Ebprp increases on average for red
stars, but primarily expresses contamination by neighbouring stars
and background, or misidentifications. We note that here we only
measure the average distance error; i.e., we are not concerned with
single outliers. The result is quite clear-cut: Both very low values of
Ebprp < 1.172 and large values of Ebprp > 1.3 signal compromised
stars. We also note, however, that we needed to scan the sample
with a very fine sample size mask of 12 000 stars moved in steps of
4000 stars each, since the number of compromised stars is so low in
the sample with b > 10 deg. The error distribution within the bulk
of the sample shows the usual number of outliers. Scanning with a
larger sample size (100 000) on the centre of the distribution shows
that all subsamples there have |f | < 2 per cent, with a slightly
suspicious region almost exactly at Ebprp ∼ 1.2.

6 C O M PA R I S O N TO PR E V I O U S D I S TA N C E
D E R I VAT I O N S

It is appropriate to ask how our distances differ from the two
previous distance derivations by Bailer-Jones et al. (2018) and
McMillan et al. (2018), so Fig. 13 shows a distance scan of
1 + f versus their distance s. In both cases the distances were
estimated under the assumption that the Gaia DR2 parallax zero-
point is −0.029 mas, based on the quasar results from Lindegren
et al. (2018), which was the best available estimate at the time
they were computed. We have shown that this is an underestimate
for these stars. It is therefore no surprise that Fig. 13 shows that
both studies overestimated stellar distances substantially, with the
typical increase of 1 + f with distance. In short, due to the parallax
offset these distances are compromised and should not be used.
The reason why the bias in the Bailer-Jones et al. (2018) distances
is somewhat smaller than in the McMillan et al. (2018) distances
is predominantly the fact that we do not have proper expectation
values for Bailer-Jones et al. (2018). Instead, we have only the mode
(maximum) of their posterior distance probability distribution,
which, due to the skew probability distribution, is significantly
smaller, for usual distance PDFs, than the expectation value. While
this compensates for some of their intrinsic distance overestimate,
the mode infers a difficult-to-predict and variable bias relative to the
expectation value of a distribution; also, one should not rely on two
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opposite biases to partly cancel. A longer discussion of this issue
can be found in Schönrich & Aumer (2017).

7 TH E D I S TA N C E TO T H E PL E I A D E S

Since there has been so much discussion about the distance to
the Pleiades, let us quickly analyse the effect that the offset has
on their distance estimate. Historically, there has for a long time
been a tension between a low-astrometric-distance estimate by
Hipparcos (van Leeuwen 2009), placing the distance of the Pleiades
at s = 120 pc with a formal uncertainty of 1.5 per cent, and results
from isochrone fits to their photometry (Meynet, Mermilliod &
Maeder 1993; Stello & Nissen 2001), as well as eclipsing binaries
(Zwahlen et al. 2004; Southworth, Maxted & Smalley 2005), which
placed their distance in the range ∼(130 − 137) pc with similarly
small uncertainties. The Gaia DR2 release (Gaia Collaboration
2018b) estimates the Pleiades’ distance at 135.8 ± 0.1 pc. Applying
our parallax offset to this estimate brings the distance moderately
down to 134.8 ± 0.2 pc, and back towards the average of the stellar-
physics-based estimates.

8 SUMMARY OF SUGGESTED QUALITY CUTS

Since the previous discussion was rather lengthy with many details,
we provide here our suggestions for quality cuts on the Gaia sample,
to ensure a minimization of the detected kinematic biases:

(i) A colour cut GBP − GRP < 1.5 mag. To be entirely safe, we
suggest 0.5 < GBP − GRP/ mag < 1.4.

(ii) A magnitude cut for G < 14.5 mag, and GBP, G, GRP > 0.
A safer limit is G < 12.5 mag and GRP < 13.7 mag.

(iii) p/σ p > 4; safer is p/σ p > 10.
(iv) σp < 0.1 mas with σ p as given by the Gaia pipeline; safer

is σp < 0.07 mas.
(v) nvis > 5 as pointed out in Lindegren et al. (2018) and excess

noise <1.
(vi) For the BP–RP excess flux factor, use 1.172 < Ebprp < 1.3.

Tighter cuts might apply if the number of outliers is important.
(vii) s > 80 pc for studies that need assurance of distance

systematics < 4 per cent.

Some notes: The σ p dependence of the parallax offset is com-
parably well controlled as long as we choose a safe limit on σ p. If
one needs to use a looser limit on σ p, we strongly advise to control
for the dependence of δp on σ p. If needed, the upper limit on the
excess flux factor Ebprp can be relaxed a bit with proper caution (see
Fig. 12). As detailed in Section 5.4, we find no reason to test or cut in
RUWE, when applying our set of quality cuts on this sample. Note
further that the faint magnitude limit and likely the colour limit are
an imprint of the vlos measurement quality in the Gaia RV subset;
i.e., these should be validated separately for different samples.

9 C O N C L U S I O N S

We have used the methods of SBA and Schönrich & Aumer (2017)
to derive bias-free expectation values for stellar distances in the RV
subset of Gaia DR2.2 While Gaia parallaxes have been extensively

2Please find the data sets with the derived distances and simple estimates of
stellar velocities and positions in Galactic coordinates either in the MNRAS
online materials or at https://zenodo.org/record/2557803.

tested in Lindegren et al. (2018), their quasar sample has no overlap
with our study in magnitude; thus the quasar sample is inadequate
for testing distances in the important Gaia RV subset for two
reasons: Quasars have all p = 0 – i.e. differences in the astrometric
pipeline for p > 0 cannot be tested – and basically none of their
quasars shares the same evaluation cohort as the stellar sample.

We derived Bayesian distances for all stars in the subset and
validated the distance expectation values for stars with p/σ p > 4,
the minimum justifiable quality requirement for relative parallax
error. All distances and derived kinematics will be made available
with this work.

Our study provides clear proof for an average parallax offset
δp = −0.054 mas (Gaia parallaxes are too small) with negligible
formal uncertainty and a systematic uncertainty of ∼0.006 mas. The
parallax offset is clearly identifiable as such as it results in an almost
perfectly linear uptrend of distance bias with distance s that reaches
values in excess of f > 30 per cent for s > 3 kpc. This offset is
comparable to the findings of Zinn et al. (2018) using asteroseismic
data. It is significantly larger than the value of −δp = 0.029 mas
found by Lindegren et al. (2018) for quasars. This also advocates
a reanalysis of cluster distances. Even the very nearby Pleiades
are pulled back by this offset by ∼1 pc. Similarly, even a compa-
rably benign bias of 10 per cent creates larger deviations of mean
velocities, than found e.g. for the warp/wave pattern in the local
Galactic disc. Every study using Gaia DR2 parallaxes/distances
should investigate the sensitivity of its results on the parallax biases
described here and − for fainter samples − in the DR2 astrometry
paper.

We evaluated different assumptions for the parallax error in the
Gaia pipeline and found that our estimate for δp is nearly unaffected
by changing the parallax error. Not adding the additional error δσ p =
0.043 to the astrometric pipeline value σ p in quadrature decreases
our estimate for −δp by about 0.006 mas.

As we used a self-informed prior for the distance-dependent
selection function S(s), the method provides a good approxima-
tion for S(s), which we provide in equation (6). Assuringly, S(s)
displays the behaviour expected from population synthesis and the
magnitude limits of the RV sub-sample of Gaia: an almost perfectly
exponential decrease for s < 1 kpc related to the main sequence, a
knee at intermediate distances, when the magnitude cut passes the
level of the subgiant branch, and a slower decrease of S(s) towards
large s.

After correction for a constant parallax offset we still found a
highly significant correlation of the distance bias f with σ p. While
this could point to a problem with the assumptions in our Bayesian
distances, this explanation is unlikely since S(s) can be measured
to high confidence from the data. To the contrary, our results
suggest that −δp is roughly proportional to σ p (best-fitting value
q = 1.05) after adding the 0.043 mas additional error to the Gaia
parallaxes, and further show that stars with σp � 0.1 mas should be
discarded from analysis. It is unreasonable to think that the parallax
uncertainty is added to the parallax value in a simple way, and so it
is no surprise that the required factor is not constant in parallax: q
depends significantly on p and around p ∼ 0.09 mas, it is closer to
q = 0.5.

Resolving this dependence of p on σ p also removes a highly
significant trend of our measured distance bias with the number
of visibility periods nvis, and consequently with ecliptic latitude
β. We note that our method would still flag a distance problem at
the ecliptic south pole. However, when used on a very narrow area
on the sky, we lose most of our statistical corrections and do not
trust the evaluation. In fact consistent with this expectation, when
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limiting the sample to the more robust stars with low azimuthal
velocity, this dependence was not confirmed, consistent with an
evaluation of the derived HR diagram.

We further used the method to evaluate safe limits to be imposed
on both apparent magnitude and stellar colour, finding that red
stars at GBP − GRP > 1.5 are compromised as well as that stars
with G � 14 mag are flagged for distance underestimates. The most
likely explanation is a decline in quality of the otherwise very well
determined vlos.

We further tested for astrometric parameters, finding no biases
related to RUWE (after removal of the aforementioned problems),
and no strong correlation of f with astrometric excess noise values
smaller than 1. At least for getting distance expectation values in
the Gaia RV sample, this strongly argues for not using RUWE as a
quality indicator. A mild decrease in distance estimates could point
to stellar binaries.

A summary of all quality cuts is provided in Section 8.
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