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ABSTRACT 
Recent advances in automation and digitization enable the close integration of physical devices with their virtual counterparts, facilitating the 

real-time modeling and optimization of a multitude of processes in an automatic way. The rich and continuously updated data environment 

provided by such systems makes it possible for decisions to be made over time to drive the process toward optimal targets. In many 

manufacturing processes, in order to achieve an overall optimal process, the simultaneous assessment of multiple objective functions related to 

process performance and cost is necessary. In this work, a multi-objective optimal experimental design framework is proposed to enhance the 

efficiency of online model-identification platforms. The proposed framework permits flexibility in the choice of trade-off experimental design 

solutions, which are calculated online—that is, during the execution of experiments. The application of this framework to improve the online 

identification of kinetic models in flow reactors is illustrated using a case study in which a kinetic model is identified for the esterification of 

benzoic acid (BA) and ethanol in a microreactor. 

1. Introduction 

With digitization of manufacturing currently at the forefront of a new industrial revolution, process industries are in the 

transition toward a smart manufacturing era, popularly called Industry 4.0 [1]. Industry 4.0 aims to create smart factories, 

wherein ① physical devices have virtual counterparts that are integrated with intelligent computing algorithms carrying 

models to mimic real processes; ② such devices are interconnected in real and virtual worlds and are connected to a 

centralized database; and ③ with limited human intervention, the connected devices will automate processes based on 

integrated decision-making using real-time information, thus driving production processes toward the optimal target values 

[2]. In order to materialize the aforementioned concepts of Industry 4.0, new continuously operated robotic devices have 

been developed in all sectors of engineering to guarantee faster transfer of reliable scientific information from first 

feasibility studies to pilot plants [1]. An example in chemical engineering applications is the use of automated continuous-

flow microreactor systems for understanding and modeling the kinetic phenomena of chemical processes from real-time 

experimental data. In the study of chemical conversion processes, automated microreactor systems with online analysis and 

feedback control loops for optimal experimental design have been successfully applied for ① online optimization of a 

performance criterion of the process, such as the percentage yield of a chemical reaction (referred to as “self-optimization”) 

[3–7]; ② discrimination between competing kinetic models [8,9]; and ③ precise estimation of the parameters of a kinetic 

model [7,10,11]. 

When the aim is to identify kinetic models online—that is, during the execution of experiments—the automated 

microreactor system employs sequential model-based design-of-experiments (MBDoE) methods in the feedback loop for 

designing new experiments. In sequential MBDoE [12], data from past experiments are used to gain information (Fisher 

information) about the system, which is related to the uncertainty in the estimation of parameters of a candidate model 

structure. The past information is then used to design future experiments in such a way as to maximize the expected 

information or minimize the uncertainty in successive parameter estimation. This process of designing experiments for 

minimizing parametric uncertainty is iterated until a desirable precision on the parameter estimates is achieved. In most of 

the previous studies [10,11] on model identification, the optimal experimental design problem was formulated as single 

objective optimization problem based on some measure of the expected Fisher information matrix (FIM). In the case of 

steady-state processes, the maximum amount of information gained per experiment is limited by the time and cost of the 

experiments. In such cases, it is worth analyzing the information gained per experiment and the associated economic and 

operational performance through multi-objective optimal experimental design approaches. This will help to design 

experiments for model identification in an overall optimal way and can answer questions such as what level of information 
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can be achieved given a certain expense or time. 

A typical multi-objective optimization problem involves the determination of a set of nondominated trade-off solutions, 

called Pareto-optimal solutions. The set of corresponding objective vectors is called a Pareto front [13]. The methods for 

solving multi-objective optimization problems can generally be classified into classical and evolutionary methods. In 

classical methods, a solution set close to the Pareto optimal is obtained by solving the multi-objective problem as a number 

of single-objective optimization problems in which either all the objectives are aggregated together (weighted sum method 

[14]) or all the objectives except one are constrained (ε-constraint method [15]). On the other hand, evolutionary methods 

produce a solution set that is close to the Pareto optimal in each single run of the optimization algorithm [16]. The choice of 

the algorithm is mostly problem-specific and is related to a compromise between the convergence and computational time. 

For a more detailed description of the various algorithms and their choices, the interested reader is referred to Refs. [13,17]. 

Previously, in the identification of kinetic models, a multi-objective optimal experimental design approach was employed 

to study the trade-off between different FIM-based criteria for improving the parameter estimation problem in bioprocess 

systems [18]. Other applications of multi-objective optimization in optimal experimental design for model identification 

include the joint model-based experimental design approach [19] for simultaneously improving parameter estimation and 

model discrimination, and experimental design approaches for improving parameter precision and minimizing parameter 

correlation [20]. For highly nonlinear systems, multi-objective optimal experimental design approaches for maximizing the 

FIM-based metric while minimizing the model curvature have been applied to improve FIM-based model identification 

procedures [21]. In addition, the implementation of multi-objective optimization with efficient decision-making steps in a 

software interface for process simulation is discussed in Ref. [22]. This method allows the efficient design of processes with 

conflicting objectives through the analysis of trade-off solutions with the help of a flexible decision-support facility. The 

advantages offered by multi-objective optimization in the optimal experimental design for model development is discussed 

in Ref. [23]; these scholars applied statistical design-of-experiment (DoE) methods in the most desirable regions of the 

Pareto frontier of conflicting objectives in order to design optimal experiments. Recently, a machine-learning-based multi-

objective optimal experimental design approach was applied to an automated flow reactor system for self-optimization [4]. 

This approach employs a Bayesian optimization algorithm to train and refine Gaussian process surrogate models that 

approximate the response surfaces of the objectives. In another recent study [24], a multi-objective optimal experimental 

design approach was applied to compare the information gained with the associated cost using different experimental design  

criteria for the design of carbon-labeling experiments. None of these previous works explored the possibility of applying 

multi-objective optimal experimental design frameworks in online model identification platforms. Such a framework will 

provide a flexible optimization platform that facilitates the analysis of different trade-off solutions between the information-

based objective function and other conflicting objectives in each iteration of the experimental design problem, and makes it 

possible to select the desired trade-off solution, leading to an overall optimal scenario for model identification. 

In this work, a multi-objective optimal experimental design framework is proposed to improve the efficiency of online 

model-identification platforms. In the framework, an optimal experimental design problem is solved as a multi-objective 

MBDoE (MBDoE-MO)  optimization problem using the ε-constraint method [15], in which one of the objective functions 

(process economics) is optimized while the other (information-based objective function) is constrained by different values. 

The framework is applied in a simulated case study to design optimal experiments for the identification of kinetic models in 

automated flow reactors operated at steady state. This case study is derived from a real system of kinetic model 

identification for the esterification of benzoic acid (BA) and ethanol in a microreactor operated at a steady state [25]. 

Despite being simple, experimentation in flow systems that are operated at steady state involves unnecessary material 

consumption [26–29], which is generally at its maximum during the most informative conditions, making the overall 

process economically suboptimal. The proposed multi-objective optimal experimental design framework makes it possible 

to overcome this limitation in kinetic studies by using an information-based objective function alongside a cost-based 

objective function that accounts for material consumption. 

2. Materials and methods 

2.1. System model 

An identifiable model (i.e., a model whose parameters can be uniquely estimated from sufficient experimental data) [30] 

for the system of interest is represented by a set of differential and algebraic equations (DAEs) in the general form given in 

Eq. (1). 

 

   

, , , , ,

ˆ , , , , ,

z t

z t z t

f x x u θ

y h x u θ
   (1) 

In Eq. (1), f and h are respectively the Nf × 1 and Ny × 1 set of equations forming the kinetic model, x is the Nx × 1 array 

of state variables, x  is a set of derivatives of the state variables in time and space (i.e.  d dx x t for  x t and d dx x z for 

 x z ), u is the Nu × 1 array of manipulated inputs, θ is the Nθ × 1 array of model parameters, t is the time, z is the axial 

domain and ŷ  is the Ny × 1 array of model predictions for the Ny variables that are measured in the process. 

The aim of the online model-identification task is to obtain the most appropriate form of Eq. (1) and to estimate the 

unique values of its parameter set θ using real-time data generated by automated devices. Once an appropriate model 
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structure is identified from the data, the model identification task is reduced to the problem of estimating the parameters θ 

of the model as precisely as possible. This is achieved by solving the parameter estimation problem and optimal 

experimental design problem sequentially until a unique estimation of the parameters is confirmed by a statistical 

hypothesis test. The experimental design problem is solved as an optimization problem to find the optimal set of Nφ-

dimensional experimental design vector φ = [y
0
, u, t

sp
, τ] that generally contains the Ny-dimensional set of the initial 

conditions y
0
 of the measured variables, the Nu-dimensional set of manipulated inputs u, the Nsp-dimensional set of the 

sampling times t
sp

 of the output variables and, potentially, the experiment duration τ. 

2.2. Proposed framework 

A multi-objective optimal experimental design framework is proposed to carry out the experimental design problem of 

online model identification platforms in order to identify the set of experimental design vectors that improves the parameter 

estimation with minimum experimental cost. The algorithm scheme for the proposed framework is shown in Fig. 1. 

 

 

Fig. 1. Proposed framework for the online multi-objective optimal experimental design in automated model-identification platforms. The 

framework is used to design experiments that improve the precision of online parameter estimation with minimum experimental cost. 

As shown in Fig. 1, the automated device initially performs preliminary experiments that are designed using statistical 

DoE methods [31]. The actual data from the preliminary experiments are stored in a digital database. From the digital 

record of actual data, the process performance is evaluated using predefined objective functions. The online model 

identification framework proposed here is based on two objectives: ① minimization of cost; and ② maximization of 

expected information. The process performance is evaluated during each sequence of the experimental design by calculating 

the experimental cost and the confidence region of the model parameters. This step is illustrated in Block 1 (performance 

matrix) in Fig. 1. Future experiments are designed to identify the conditions corresponding to trade-off solutions with 

respect to the two objectives. The trade-off conditions are obtained by solving the experimental design problem as a multi-

objective optimization problem for minimizing cost and maximizing information, as represented by Block 2 in Fig. 1. In the 

next step (Block 3 in Fig. 1), the appropriate condition for the next experiment is selected from the generated trade-off 

solutions and executed automatically. The entire sequence of operations is performed online and iterates until a termination 

criterion is met. Termination criteria are decided by the user. Common termination criteria include ① reaching the allowed 

experimental budget or ② a predefined threshold value for the primary objective of the study. In the present work, criterion 

①  is chosen as the termination criterion. The whole framework is implemented in Python [32] and operates as an 

independent module with a single function call. The multi-objective optimal experimental design framework constitutes the 

core part of the implemented algorithm; details on its formulation are explained in the following sections. The optimal 

experimental design problems for MBDoE methods for improving parameter estimation (MBDoE-PE) and MBDoE method 

for minimizing experimental cost (MBDoE-cost) are discussed first, which is then followed by the formulation of MBDoE-

MO and its solution method. 

2.3. MBDoE-PE 

The FIM, whose inverse provides an estimate of the lower bound of parameter variance-covariance by the Cramer-Rao 

inequality [33,34], has been commonly used to define the objective function in optimal experimental designs for improving 

parameter precision [35]. Conventional MBDoE-PE are formulated as an optimization problem of the form: 
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  PE PE ˆarg min ,

s.t.   Eq.(1) and       1, ,

θ

i i i

ψ

i N  



 



   

φ D

φ

φ V θ φ

    (2) 

In Eq. (2), ψ
PE

 refers to some measure of the predicted parameter variance-covariance matrix ˆ
θV , which is minimized to 

obtain the optimal experimental design vector φ
PE

 which  is an array with the dimensions N × Nφ corresponding to the N 

designed experiments. Commonly used choices for ψ
PE

 include the trace, eigenvalue, or determinant of the parameter 

variance-covariance matrix, which respectively form the alphabetic optimal design criteria called A-, E-, and D-optimal 

designs [36]. In the present study, the maximum eigenvalue of the parameter variance-covariance matrix was chosen as the 

metric of parametric uncertainty, and the E-optimal MBDoE for improving parameter precision was formulated by 

minimizing this objective function. The constraints of the optimization problem are the model equations and the N × Nφ 

dimensional bounds on the design variables that are allowed to vary within the design space D, defining the operational 

range for these variables. The predicted parameter variance-covariance matrix ˆ
θV  in Eq. (2)  is calculated from the 

observed FIM according to Eq. (3). 

    
1

1 1

ˆ ˆˆ ˆ ,
n N

θ i j j
i j



 

 
   
  

V H θ H θ φ  (3) 

 

In Eq. (3), Hi represents the observed FIM obtained from the ith performed experiment, and the summation represents the 

total observed information from all previous n experiments. Similarly, ˆ
jH  represents the expected FIM for the jth 

experiment to be designed, and the summation provides the total predicted information contained in N experiments to be 

designed. The observed FIM is evaluated at the maximum likelihood estimate θ̂  [34] of the model parameters. The 

expected FIM for the jth designed experiment is calculated using Eq. (4), as given below. 

   
sp

1
T

2

1 1

ˆ ˆ ˆ       1, ,
yN N

j kl j kl jkl j
k l

σ y y j N



 

 
       

 
H   (4) 

 

In Eq. (4), kl jσ  denotes the standard deviation of the measurement error associated with the measurement of the lth 

response variable in the kth sampling of the jth experiment, and  ˆ
kl jy  denotes the Nθ × 1 dimensional column vector of 

the first derivatives of the lth response variable in the kth sampling with respect to the model parameters, and represents the 

first-order sensitivities of the responses with respect to the parameter values,  
T

ˆ kl jy  is the transpose of  ˆ kl jy . 

2.4. MBDoE-cost 

To improve the process economics associated with performing the experiments, MBDoE-cost is formulated as follows: 

 cost cost

1

arg min ,

s.t.   Eq.(1) and       1, ,

N

j j
j

i i i

ψ

i N  

 

 

 

   

φ D

φ

φ φ γ
  (5) 

where j cost  represents the cost function associated with the execution of jth experiment, the summation is the total cost of 

performing N experiments, and γ represents the set of constant parameters in the cost function. The definition of the 

optimization decision variables and the constraints related to the model equations and design space remain the same as in 

the MBDoE-PE. 

2.5. Formulation of the multi-objective optimal experimental design problem 

The MBDoE-MO for improving the precision of the parameter estimation with minimum experimental cost is solved by 

the ε-constraint method, in which the cost function is minimized by restricting the FIM-based objective function within 

different values of ε. The MBDoE-MO optimization problem  is formulated as: 
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 

  

MO cost

1

PE
min max

arg min ,

ˆs.t.   ,       

s.t.   Eq.(1) and       1, ,

N

j j
j

θ

i i i

ψ

ψ ε ε ε ε

i N  

 

 

 

  

   

φ D

φ

φ φ γ

V θ φ   （6） 

The unique solution φ
MO

 of the MBDoE-MO optimization problem stated in Eq. (6) is Pareto optimal for any given Nk-

dimensional upper bound vector: 1 1, , , , , ,
kp p Nε ε ε ε

 
 

ε . It is possible to find different Pareto-optimal solutions 

using different ε values. Ideally, the ε vector must be chosen such that each ε lies between the minimum and maximum 

values of the objective function that is restricted to constraints. This means that ε1 and 
kN

 should respectively be the 

minimum and maximum values of the restricted objective function, which is the maximum eigenvalue of the parameter 

variance-covariance matrix ψ
PE

 in the present problem. Thus, the minimum value of ε, that is, ε = ε1, is the value of ψ
PE

 in 

the solution of the MBDoE for improving the parameter estimation, that is, ψ
PE

(φ
PE

) and the maximum value of ε, that is, 

kN  , is the value of ψ
PE

 in the solution of the MBDoE for improving process economics, that is, ψ
PE

(φ
cost

). 

2.6. Selection of the Pareto-optimal solutions 

The solution vector φ
MO

 obtained by solving Eq. (6) is an Nk × N × Nφ array, when N number of experiments are designed 

by solving the multi-objective optimization problem. In order to navigate within the online model-identification framework, 

it is necessary to select one solution from φ
MO

 as the condition for the next experiment. For this purpose, an algorithm based 

on a measure called the trade-off index (referred to herein as the “TO-index”)—which indicates the distance of any point on 

the Pareto curve from the point that corresponds to the minimum value of two objective functions if the functions were not 

mutually conflicting—is proposed to analyze the set of optimal trade-off solutions φ
MO

 and to select the desired trade-off 

solution for the next experiment. The TO-index is evaluated using the normalized values of the objective functions denoted 

by ψ
PE

' and ψ
cost

' contained in the normalized objective vectors ψ
PE

' and ψ
cost

'. The objective functions are normalized using 

the formula given in Eq. (7). 

 
   

obj obj

obj

obj obj

min ,  1, ,
      1, ,

max ,  1, , min ,  1, ,

                                                                                                                   

ki i

ki

k ki i

ψ ψ i N
ψ i N

ψ i N ψ i N


 

  
     (7) 

In Eq. (7), obj refers to PE or cost. The two-step algorithm for calculating the TO-index of each of the Pareto-optimal 

solutions is given below. 

2.6.1. Algorithm for calculating the TO-index 

(1) Normalize the two Nk-dimensional objective vectors to form the normalized objective vectors 

PE PE PE PE PE
1 1, , , , , ,

k
p p N

ψ ψ ψ ψ
    


 
  

ψ and cost cost cost cost cost
1 1, , , , , ,

k
p p N

ψ ψ ψ ψ
    


 
  

ψ  corresponding to the trade-off 

solutions, such that all values of ψ
PE'

 and ψ
cost'

 lie between 0 and 1. 

(2) The TO-index for each of the trade-off points in the objective space is evaluated as: 

   
2 2

PE cost
1 2TO-index        1, ,i i i kω ψ ω ψ i N

 
      (8) 

where ω1 and ω2 are weight factor 1 and weight factor 2, respectively, used to select trade-off solutions by acting on  ψ
PE

. 

(3) The Pareto-optimal solution with the smallest value of the TO-index is chosen as the condition for the next set of 

experiments. 

The whole solution procedure described above for solving a multi-objective optimal experimental design problem in each 

sequence of the optimal experimental design is illustrated in Fig. 2. 
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Fig. 2. Illustration of the decision-making step in the proposed multi-objective optimal experimental design framework. The set of trade-off 

points in the objective space obtained from the ε-constraint method are shown in the left panel. From the normalized trade-off points (shown in 

the right panel), appropriate conditions for the next experiment are obtained using different values of the weight factors ω1 and ω2; this facilitates 

a desired degree of trade-off solution to be chosen according to the user’s interest. 

 

The method is developed on the basis of geometrical interpretation of the Pareto front. As shown in Fig. 2, when the 

Pareto objective vectors are normalized, the worst trade-off points for the objective functions, which are mutually 

conflicting, can be represented by the coordinates (0,1) and (1,0). The distance between any point on the Pareto curve and a 

minimum point (0,0), which would have become the optimal point if the functions were not mutually conflicting, is 

indicated by the value of the TO-index. In the decision-making step involved in each run of the MBDoE-MO optimization 

problem, the algorithm selects the Pareto-optimal point from the set of nondominated trade-off points with the lowest value 

of the TO-index. The next experiment is carried out under the conditions corresponding to the selected Pareto point. When 

the weight factors ω1 and ω2 in Eq. (8) are set to 1, the algorithm selects the Pareto-optimal solution by giving equal 

importance to both objective functions. However, in each sequence of the multi-objective optimal experimental design 

problem, it is also possible to select the Pareto-optimal point with the desired degree of trade-off between the objective 

functions. This is achieved by changing the value of one of the weights within the closed interval [0, 1], while keeping the 

other equal to 1, thus providing a flexible platform to choose the desired trade-off solution at any sequence of the operation. 

For example, when setting the value of ω1 = 0, while keeping ω2 = 1 in Eq. (8), the algorithm becomes a single-objective 

one in terms of the minimization of cost (MBDoE-cost), and selects the condition with minimum cost as the condition for 

the next experiment. Similarly, when ω2 is set to 0, while keeping  ω1 at 1 in Eq. (8), the algorithm converges to the 

MBDoE-PE and proceeds with the most informative conditions regardless of experimental cost. In cases when  ω1 = 0 and 

ω2 = 1, or ω1 = 1 and ω2 = 0, that is, when the decision-making process becomes a single-objective one, if there are several 

possible trade-off solutions with the same TO-index value, then the algorithm selects the solution that is also a minimum for 

the objective function whose weight is set to 0. In order to ensure an efficient local search routine in the optimization 

algorithm, a stochastic initialization step using Latin hypercube sampling was included in all the optimal experimental 

design problems solved in the framework, and no numerical issues related to convergence were observed. The impact of 

initialization and upper bound constraints on the distribution and convergence of Pareto-optimal solutions is discussed in the 

supplementary information. The computational time required for the algorithm to solve each optimization problem is on the 

order of seconds. The scientific Python (SciPy) package was used for the integration of the system of ordinary differential 

equations in the model (using the odeint tool) and for solving optimization problems (parameter estimation and 

experimental design). All the array operations were performed using the NumPy library. The optimization problems of 

parameter estimation and optimal experimental design were solved using the Nelder-Mead and sequential least squares 

programming methods, respectively. 

2.7. Case study 

The proposed framework for multi-objective optimal experimental design is applied to a simulated case study related to 

the identification of a kinetic model for the esterification of BA and ethanol in a microreactor. The kinetic model, 

objectives, modeling assumptions, and methods used in the case study are described in the following subsections. 

2.7.1. Kinetic model 
The esterification reaction between BA and ethanol (E) produces ethyl benzoate (EB) as the main product, with water 

(W) as a side product [37], and can be represented as follows: 

BA E EB W     (9) 

The reaction is assumed to take place in a microreactor operated under steady-state and isothermal conditions. It is 

assumed that the microreactor behaves as an ideal plug flow reactor due to a large axial to radial dimension ratio, making 

the radial diffusion fast. The reactor length is assumed to be 2 m. The process is modeled as a first-order reaction with 
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respect to BA and forms a set of DAEs given by the equation. 

BA

4 4
a

d
      1, ,

d

( /10 )10
exp ln

i
i

C
v ν k C i N

z

E
k A

RT

  

 
  
 
 

φ

  (10) 

In Eq. (10)  Ci  is the concentration of the ith species, z is the axial coordinate along the reactor length, v is the axial 

velocity of the reaction mixture, vi is the stoichiometric coefficient of the ith species, and k is the reaction rate constant. The 

Arrhenius equation is written in the reparametrized form given in Eq. (10), where T is the reaction temperature and R is the 

ideal gas constant. This form of reparametrization reduces the parameter correlation and improves the parameter estimation 

and the quality of the statistical tests [38]. The parameters of the Arrhenius equation—namely, the activation energy Ea and 

pre-exponential factor A—form the set of model parameters that need to be estimated, and are estimated as lnA and a

410

E
, 

respectively; that is,   a
1 2 4
, ln ,

10

E
θ θ A

 
   

 
θ . 

2.7.2. Objectives, assumptions, and methods 

The objective of the case study is to estimate the kinetic parameters precisely by minimizing experimental cost. For this 

purpose, the proposed multi-objective experiment design framework is applied to design an optimal set of experiments. As 

the reactor is operated under steady-state conditions, for each experiment, the measured values correspond to the steady-

state concentrations of BA and EB sampled at the reactor outlet. Thus, each experiment involves one measurement sample 

denoted by ,C C 
 

out out
BA EBy . It is assumed that the measurement errors associated with 

out
BAC  and 

out
EBC  are normally 

distributed random variables with 0 mean and standard deviations of 0.03 mol·L
-1

 and 0.01 mol·L
-1

, respectively; that is, the 

standard deviation vector σ = [0.03,0.01]. 

The experimental design space D is a three-dimensional region bounded by the ranges of the operating conditions of the 

experimental design variables, which are the reaction temperature T (343–423 K), inlet stream flowrate f (7.5–30 μL·min
-1

), 

and inlet concentration of BA in
BAC (0.9–1.55 mol·L

-1
). When called upon, the experimental design problem identifies the 

optimum conditions within the design space D for the future experiments by solving either Eq. (2) or Eq. (6), depending on 

whether MBDoE-PE or MBDoE-MO is used. It is assumed that a maximum number of seven experiments is allowed in a 

campaign. The two preliminary experiments are designed using a factorial DoE method. This is to ensure that before 

starting the application of MBDoE, an estimate of the parameter is available and a minimum threshold on information is 

guaranteed. The conditions of the two preliminary experiments are T = 413 K, f = 20 μL·min
-1

, in
BAC = 1.5 mol·L

-1
 and T = 

393 K, f = 20 μL·min
-1

, in
BAC = 1.5 mol·L

-1
 respectively. The online multi-objective optimal experimental design is then 

employed to design the next five experiments sequentially in an automated manner in a loop that iterates five times. 

In real systems that are operated automatically for online model identification, if the reaction mixture analysis is not 

sufficiently quick, delays are introduced in accessing the information from the system after sampling. This delay can be 

overcome to an appreciable extent by overlapping the experiments such that every time the sample from the running 

experiment is sent to the analytical instrument, a new experiment is available to start. To incorporate this concept in the 

present problem, the first experimental design problem is solved for designing two experiments (i.e., N = 2 in Eqs. (3), (5), 

and (6) in the first sequence of the experimental design problem), so that when the steady-state concentrations from the first 

designed experiment are sampled, the second experiment is ready to start. In other words, this means that although five 

experiments are designed in sequence, only four optimal experimental design problems are solved. In order to perform the 

simulation study, in-silico measurements are generated by integrating the kinetic model in Eq. (10) using the parameter 

values of θ
*
 = [19.99,7.85]. Here, it is assumed that the parameter set θ

*
 represents the true value of the model parameters; 

the corresponding values of the pre-exponential factor A and the activation energy Ea are 8.0 × 10
6
 s

-1
 and 7.85 × 10

4
 J·mol

-

1
, respectively. 

2.7.3. Evaluation of cost function 

In the kinetic study using flow reactors operated under steady-state conditions, the reaction mixture is flushed out until a 

steady state is achieved, and only the measurements made at a steady state are used for fitting the model and estimating the 

parameters. Thus, to evaluate the cost, the amount of material flushed out until a steady state is achieved must be 

determined, which in turn requires an estimate of the time needed to reach the steady state. The cost function for the flow 

reactor system was formulated by accounting for the cost of the materials flushed out in any experiment j as given by: 

  in
BAcost

6
unit cost

10

j
j j

j

τ f C

ψ



    (11) 
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In Eq. (11), τj  is the calculated time to reach the steady state for experiment j, the product   in
BA j

j jτ f C   represents the 

moles of BA in the volume flushed up to time τj, f and in
BAC  respectively denote the flowrate and inlet concentration of BA, 

and  unit cost is the cost of 1 mole of BA, which is assumed to be 59 GBP (about 74 USD). 

In order to calculate the approximate time τ to reach steady state for each experiment, an offline method using time series 

data (i.e., data collected at regular intervals during the transient period) generated during a previous campaign of steady-

state experiments for the esterification reaction (carried out in a real flow reactor system identical to the simulated system) 

was employed. The previous campaign consisted of factorial experiments with the same experimental design variables and 

ranges described in the previous section. All the experiments in the campaign were run for 1 h in order to guarantee steady-

state operation. During this time, samples were taken every 7 min, yielding 7–8 samples for each experiment. This process 

resulted in time series data. An expression for the time needed to reach a steady state in terms of the experimental design 

variables was obtained from the time series data through the following steps: 

Step 1: Estimation of the time to reach a steady state. In this step, the approximate time τ to reach a steady state for each 

experiment was calculated from the time series data. An algorithm based on a fixed window (window size = 3 in the present 

study) moving average method was used to calculate the standard deviation of the measurement error in the time series data. 

The fixed window size corresponds to the number of consecutive samples used to calculate the standard deviation of error. 

If the calculated value of the standard deviation of error is less than the assumed standard deviation of the measurement 

error, then it is concluded that the system has reached a steady state and the algorithm stops. For each experiment, the 

algorithm becomes active after a residence time equivalent to 1.5 times the combined volume of the reactor and the analysis 

loop divided by the volumetric flowrate, which is a recommended rule of thumb for achieving a steady-state condition [26]. 

Step 2: Development of empirical model for the time to reach a steady state. In this step, an empirical model with the 

steady-state time as the response variable and the experimental conditions as the factors was developed by fitting the data 

generated in Step 1. It is assumed that the inlet concentration has a negligible effect on the time required to reach a steady 

state. A polynomial function was used to describe the relationship between the time needed to reach a steady state and the 

experimental conditions, which is given in Eq. (12). 

1 2 past

Δ
      1, ,

j
j

j j

T V
τ γ γ j n

T f
        (12) 

In Eq. (12), τj represents the time to reach a steady state for the jth experiment with temperature Tj and flowrate fj, ΔTj is 

the temperature difference between the jth and (j-1)th experiment, V is the total volume of the reactor and the analysis loop 

(i.e., the section between the reactor outlet and the HPLC sampling valve), npast is the number of steady-state experiments 

belonging to a previous campaign of experiments, and γ1 and γ2 are parameters of the empirical model and are related to the 

length of time that the system would require to reach the steady state after a change in temperature or flowrate, respectively. 

The parameters were estimated by fitting the polynomial model to the data generated in Step 1 using the maximum 

likelihood estimation method [34]. The estimated value for the parameter set is    1 2, 18.38,1.83γ γ γ . 

3. Results and discussion 

Two experimental design campaigns are compared below. 

(1) MBDoE-PE: This is an optimal experimental design for improving the parameter estimation by minimizing the 

uncertainty of the estimated values of the model parameters. 

(2) MBDoE-MO: This is a multi-objective MBDoE for designing optimal experiments to improve the parameter 

estimation with a simultaneous reduction of experimental cost. 

The results are reported in Section 3.1 (MBDoE-PE) and Section 3.2 (MBDoE-MO). 

3.1. MBDoE-PE: An MBDoE for improving parameter estimation 

The designed experimental conditions and the corresponding value of the parameter estimates with a 95% confidence 

interval in each sequence of the execution of the designed experiments are reported in Table 1. The approach involved the 

solution of four parameter estimation and experimental design problems (Eq. (2)) sequentially in the online platform. As 

shown in Table 1, the parameter estimates quickly converged to the assumed true value of the model parameters θ
* 

= 

[19.99,7.85] after the two preliminary experiments. This shows the close agreement of the selected model to the data. 

However, the 95% confidence interval (CI), which is a measure of the variance of parameter estimates [34], suggest that the 

uncertainty in parameter estimation is large at the beginning. In order to improve the confidence in the estimated parameter 

values, five more experiments with the objective of minimizing the uncertainty in the parameter estimates are designed 

online. In the first experimental design problem, two experiments are designed simultaneously using the parameter 

estimates obtained from the preliminary factorial experiments. The remaining three experiments are then designed each time 

a new experiment is executed and the parameter estimates are updated. The designed experiments and the corresponding 

value of parameter estimates with 95 % confidence interval are given in Table 1. 
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Table 1  

Results of the online MBDoE-PE campaign, including experimental settings, posterior statistics on parameter estimates, and experimental cost 

for each designed experiment. 
Experiment  Temperature  

(°C) 

Flowrate  

(μL·min
-1

) 

Inlet conc.  

(mol·L
-1

) 

Parameter 1 

 1
ˆ CIθ   

Parameter 2 

 2
ˆ CIθ   

Cost 

 £  

E1 (factorial) 140.0 20.0 1.50 — — 0.0277 

E2 (factorial) 120.0 20.0 1.50 20.05 ± 11.85 7.87 ± 4.11 0.0285 

E3 (MBDoE-PE) 140.0 17.1 1.55 19.14 ± 7.03 7.56 ± 2.44 0.0279 

E4 (MBDoE-PE) 114.4 7.50 1.55 22.29 ± 3.03 8.65 ± 1.05 0.0266 
E5 (MBDoE-PE) 114.3 7.50 1.55 20.47 ± 2.07 8.02 ± 0.71 0.0238 

E6 (MBDoE-PE) 115.8 7.50 1.55 19.87 ± 1.70 7.81 ± 0.58 0.0239 

E7 (MBDoE-PE) 140.0 15.4 1.55 19.75 ± 1.51 7.76 ± 0.52 0.0283 

Conc.: concentration. 

 

It is clear from the results that the uncertainty in parameter estimation has been greatly reduced over the course of the 

designed experiments. The experimental cost for the preliminary experiments and for each of the designed experiments for 

comparing the conventional MBDoE to improve the parameter estimation with the proposed multi-objective MBDoE have 

been calculated and are reported in Table 1. 

3.2. MBDoE-MO: A multi-objective MBDoE for improving parameter estimation while minimizing cost  

In the MBDoE-MO, experiments are designed to improve the parameter estimation with minimum experimental cost. 

Similar to the MBDoE-PE, this approach involves solving four parameter estimation and optimal experimental design 

problems (Eq. (6)) online to design five optimal experiments. In the first experimental design problems, two experiments 

are designed using the parameter updates obtained from preliminary factorial experiments. In the subsequent experimental 

design problems, one experiment was designed each time the parameter estimates were updated from a new experiment. A 

set of seven trade-off solutions corresponding to seven different upper bound values of ε (i.e., setting Nk = 7) was obtained 

during each experimental design problem, from which a Pareto-optimal point was chosen by the decision-maker. The set of 

trade-off points and the selected point in each experimental design problem are illustrated in Fig. 3. 

 

 
Fig. 3. MBDoE-MO procedure for the design of five experiments. (a) Design of the first two experiments of the campaign, where each point of 

the curve corresponds to two optimal experimental conditions; (b) MBDoE-MO procedure for the design of the third experiment; (c) MBDoE-

MO procedure for the design of the fourth experiment; (d) MBDoE-MO procedure for the design of the fifth experiment of the campaign. (The 

black squares are the different trade-off points (nondominated/dominated) corresponding to different values of the upper bound variable ε. The 
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green diamond is the selected point from the set of trade-off points, such that the solution at this point is chosen as the conditions for the next set 

of experiments. In all the cases, the selected point is Pareto optimal.) 

 

As indicated in the figure, a multi-objective optimal experimental design problem involves the solution of Nk (here, Nk = 

7) optimization problems corresponding to Nk different values of the upper bound variable ε; this was solved online in the 

proposed platform. The appropriate solution for the next experiment is selected from the set of trade-off solutions by 

assigning appropriate values to the weight factors ω1 and ω2  (see Section 2.5). In the present problem, both ω1 and ω2 were 

set at 1 in Eq. (8) in order to select the best trade-off solution (giving equal importance to both objectives). By assigning 

appropriate values to the weights, it is possible to select Pareto-optimal solutions according to the required degree of trade-

off between the two objective functions. The results of the multi-objective MBDoE are summarized in Table 2. As shown in 

the table, a significant reduction of the experiment cost has been achieved with only a slightly lower precision of parameter 

estimation, compared with the results of the MBDoE-PE campaign. 

 
Table 2  
Results of the online MBDoE-MO campaign. Optimal settings of experiments, posterior statistics on parameter estimates, and experimental cost 

for each designed experiment are shown. 
Experiment Temperature (°C)   Flowrate (μL·min

-1
) Inlet conc. (mol·L

-1
) Parameter 1 

 1
ˆ C.Iθ   

Parameter 2 

 ˆ2 C.Iθ   

Cost 

 £  

E1 (factorial) 140.0 20.0 1.50 — — 0.0277 

E2 (factorial) 120.0 20.0 1.50 20.26 ± 11.93 7.95 ± 4.14 0.0285 

E3 (MBDoE-MO) 118.2 7.5 1.21 18.23 ± 4.27 7.29 ± 1.46 0.0187 

E4 (MBDoE-MO) 128.7 21.3 0.90 18.94 ± 3.49 7.49 ± 1.19 0.0155 

E5 (MBDoE-MO) 140.0 12.3 1.03 21.03 ± 3.17 8.19 ± 1.09 0.0169 

E6 (MBDoE-MO) 140.0 14.3 1.07 21.51 ± 3.08 8.37 ± 1.07 0.0164 
E7 (MBDoE-MO) 140.0 17.9 0.95 21.29 ± 2.93 8.29 ± 1.01 0.0147 

3.3. Comparison of results 

The results of both the campaigns of experimental design (MBDoE-PE and MBDoE-MO) are compared. In terms of 

precision in the estimation of the model parameters, both the MBDoE-PE and the MBDoE-MO improve the estimation of 

the model parameters in the successive experimental design problems. This is illustrated in terms of the confidence intervals 

of the parameter estimates in Fig. 4 and using the parameter statistics (95% t-value) in Fig. 5(a). The confidence interval for 

any parameter estimate ˆ
i  with significance level α can be computed as: 

ˆ ,
iii yt n N N 




 
   

 2
V     (13) 

In Eq. (13), , yt n N N
 

  
 2

 is the two-tailed t-value of a t-distribution with nNy–Nθ degrees of freedom and α 

significance, and 
iiV  represents the standard deviation of the ith parameter estimate ˆ

i . The t-value for any parameter 

estimate is computed as the ratio between the parameter estimate and the confidence interval: 

ˆ

,
ii

i
i

y

t

t n N N 






 
  

 2
V

    (14) 

The reference t-value is the t-value of a t-distribution with nNy–Nθ degrees of freedom and α significance; that is, t(α, 

nNy–Nθ). For any parameter estimate, a t-value higher than the reference t-value indicates a statistically precise estimation of 

that parameter. As expected, the MBDoE-PE produces a more precise estimation of both model parameters in comparison 

with the MBDoE-MO. This is evident from the width of the confidence intervals for the parameter estimates shown in Fig. 

4, which indicates the margin of error around the estimated value. As shown in Fig. 4, in the MBDoE-PE campaign, both 

parameters have approached to the true values with a minimum uncertainty defined by the narrow confidence interval. The 

small fluctuations of parameter estimate around the true value can be attributed to the random noise added in the simulated 

experiments. Compared to the MBDoE-PE campaign, in the MBDoE-MO campaign, the parameter estimates are relatively 

far from the true values and the confidence intervals are wider. The higher t-values of the parameter estimates obtained in 

the MBDoE-PE campaign compared with the MBDoE-MO campaign also indicate that the parameters are estimated more 

precisely in the MBDoE-PE campaign. This is shown in Fig. 5(a). In contrast, the information-rich experiments designed by 

the MBDoE-PE are more expensive than those designed by the MBDoE-MO. A comparison of the cost of each of the 

experiments designed through both approaches is given in Fig. 5(b). 
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Fig. 4. Parameter estimates with 95% confidence intervals for the model parameters in each experiment of (a) the MBDoE-PE campaign and (b) 

the MBDoE-MO campaign. 

 

 
Fig. 5. A comparison of the results from the MBDoE-MO and MBDoE-PE campaigns in terms of (a) parameter statistic (95% t-value) and (b) 

the cost of materials in each experiment. In (a), a t-value greater than the reference t-value indicates a precise estimation of the model parameter. 

A higher t-value indicates more precise estimation. 

 

By analyzing Figs. 4 and 5, it is clear that in situations of critical constraints on cost, the multi-objective optimal 

experimental design framework can provide the best trade-off solutions with respect to improving the parameter estimation 

and minimizing cost. The profiles of the experimental design variables (temperature, flowrate, and inlet concentration) in 

the designed experiments by both approaches are compared in Fig. 6. The differences in the experimental conditions of the 

designed experiments by both approaches are more apparent in terms of the flowrate and reactant concentration. This is due 
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to the fact that the amount of reagent used is directly related to the inlet concentration, whereas the flowrate is the most 

significant factor affecting the time required to reach a steady state. The profiles of the reaction temperature and flowrate 

follow a similar trend in the MBDoE-PE campaign, such that the combinations of high temperature (T ≈ 140 °C) and low 

residence time (high flowrate; f  ≈ 17 μL·min
-1

) as well as low temperature (T ≈ 115 °C) and high residence time (low 

flowrate; f  ≈ 7.5 μL·min
-1

) appear to be favorable conditions to gain information about the reaction system. In the case of 

the MBDoE-MO campaign, the optimal conditions shift to a high flowrate and low concentration in order to minimize the 

material consumption. 

 

 
Fig. 6. A comparison of the optimal sequence of the experiments designed using the MBDoE-PE and MBDoE-MO methods. (a) Optimal 

temperature profiles; (b) optimal flowrate profiles; (c) optimal concentration profiles for both MBDoE-PE (solid lines) and MBDoE-MO (dash 

lines). 

4. Conclusion 

The emergence of robotic devices with real-time data-based feedback loops provides a suitable environment for the 

online modeling and optimization of chemical processes. Optimal experimental design can play a significant role in such 

modeling and optimization, since it acts as an approach to plan future process conditions based on current data and desired 

objectives. When the optimal experimental design problem involves mutually conflicting objectives, a fair compromise can 

represent the best solution. In this work, a framework was proposed for online multi-objective optimal experimental design 

that makes it possible to find the best trade-off solutions for designing experiments when the process is subjected to 

multiple constraints. A solution strategy composed of a decision-making step is proposed to solve the multi-objective 

optimization problem online. This strategy, which uses a FIM-based metric to analyze the degree of trade-off solutions, 

makes it possible to select the desired Pareto-optimal point from the vector of trade-off solutions as the condition for the 

next experiment. The benefits of the application of this framework were demonstrated using a simulated case study on the 

identification of a kinetic model for the reaction of BA esterification. The results from the case study suggest that optimal 

experimental design using the MBDoE-MO represents an improved way of conducting reaction kinetic studies in flow 

systems operated under steady-state conditions. This approach makes it possible to identify the best trade-off conditions to 

improve the information gained from the reaction system, while minimizing the cost of the materials consumed. This 

framework was implemented as a general function in Python, and can be extended to a large variety of real online multi-



A. Pankajakshan et al. / Engineering 5 (2019) 

13 

 

objective optimization problems. 
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Nomenclature 

Latin symbols 

A              pre-exponential factor 

Ci             concentration of species i 

iC in
         concentration of species i at the reactor inlet 

iCout       concentration of species i at the reactor outlet 

Ea             activation energy 

f               volumetric flowrate 

k              kinetic constant 
n              number of designed experiments already performed 

N             number of experiments designed in one sequence of MBDoE methods 
Nf                  number of differential and algebraic equations constituting the model 

Nk            number of upper bound variable in one sequence of MBDoE-MO optimization problem 

Nu            number of manipulated inputs 

Nx            number of state variables 

Ny                 number of measured variables 
Nφ            number of design variables 

Nθ            number of model parameters 

Nsp              number of sampling points 

R             ideal gas constant 

t              time 

T             temperature 

v             flow velocity along the axial coordinate of reactor 

V             volume of reactor 

z              axial coordinate 

Matrices and vectors 

D              Nφ dimensional experimental design space that bounds the admissible range of values of design variables 

f               array of functions in kinetic model [Nf × 1] 

h              set of relations between the measured response variables  ˆ ty and the state variables  tx  

Hi                observed Fisher information matrix from the i-th performed experiment [Nθ × Nθ] 

ˆ
jH            predicted Fisher information matrix for the design of j-th experiment [Nθ × Nθ] 

t
sp                  

 array of sampling times [Nsp × 1] 

u               array of manipulated control inputs  [Nu × 1] 

Vθ                 parameter variance-covariance matrix [Nθ × Nθ] 

x               array of state variables  [Nx × 1] 

y               array of measured output variables  [Ny × 1] 

y
0           

      array of initial conditions of measured response variables [Ny × 1] 

ŷ              array of model predictions for the measured output variables [Ny × 1] 

θ               array of model parameters [Nθ × 1] 

θ̂               maximum likelihood estimate of model parameters [Nθ × 1] 

θ
*  

            array of true model parameters [Nθ × 1] 

ε               upper bound vector in MBDoE-MO optimization problem [Nk × 1] 

φ               experimental design vector  [Nφ × 1] 

φ
cost

          optimal experimental design vector for MBDoE-cost problem [N × Nφ] 

φ
PE

            optimal experimental design vector for MBDoE-PE problem [N × Nφ] 

φ
MO 

          optimal experimental design vector for MBDoE-MO optimization problem  [Nk × N × Nφ] 

ψ
cost

'          normalized objective vector from MBDoE-cost problem  [Nk × 1] 

ψ
PE

'           normalized objective vector from MBDoE-PE problem [Nk × 1] 

Greek symbols 

θi               ith model parameter 
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ˆ
i              maximum likelihood estimate of the ith model parameter 

vi                stoichiometric coefficient of the ith species 

ε                upper bound variable in MBDoE-MO optimization problem 

τi                time to reach steady state in ith experiment 

               gradient operator 

ω1              weight factor 1, used to select trade-off solutions by acting on  ψ
PE

 

ω2                 weight factor 2, used to select trade-off solutions by acting on ψ
cost 

γ1,γ2            parameters of empirical model for estimating time to reach steady state 

ψ
PE       

       objective function in MBDoE-PE problem 

ψ
cost  

          objective function in MBDoE-cost problem 

ψ
PE

'            normalized value of objective function in MBDoE-PE problem 

ψ
cost

'           normalized value of objective function in MBDoE-cost problem 

Acronyms 

BA             benzoic acid  

DAE          differential and algebraic equation 

DoE           design of experiments 

EB             ethyl benzoate 

FIM           Fisher information matrix 

MBDoE     model-based design of experiments 

MO            multi-objective 

PE              parameter estimation 

References 

[1] Reitze A, Jürgensmeyer N, Lier S, Kohnke M, Riese J, Grünewald M. Roadmap for a smart factory: a modular, intelligent concept for the production 

of specialty chemicals. Angew Chem Int Ed Engl 2018;57(16):4242–7. 

[2] Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of industry 4.0: a review. Engineering 2017;3(5):616–30. 

[3] Bédard AC, Adamo A, Aroh KC, Russell MG, Bedermann AA, Torosian J, et al. Reconfigurable system for automated optimization of diverse 

chemical reactions. Science 2018;361(6408):1220–5. 

[4] Schweidtmann AM, Clayton AD, Holmes N, Bradford E, Bourne RA, Lapkin AA. Machine learning meets continuous flow chemistry: automated 

optimization towards the Pareto front of multiple objectives. Chem Eng J 2018;352:277–82. 

[5] Cherkasov N, Bai Y, Expósito AJ, Rebrov EV. OpenFlowChem—a platform for quick, robust and flexible automation and self-optimisation of flow 

chemistry. React Chem Eng 2018;3(5):769–80. 

[6] Holmes N, Akien GR, Savage RJD, Stanetty C, Baxendale IR, Blacker AJ, et al. Online quantitative mass spectrometry for the rapid adaptive 

optimisation of automated flow reactors. React Chem Eng 2016;1(1):96–100. 

[7] Echtermeyer A, Amar Y, Zakrzewski J, Lapkin A. Self-optimisation and model-based design of experiments for developing a C–H activation flow 

process. Beilstein J Org Chem 2017;13:150–63. 

[8] Schaber SD, Born SC, Jensen KF, Barton PI. Design, execution, and analysis of time-varying experiments for model discrimination and parameter 

estimation in microreactors. Org Process Res Dev 2014;18(11):1461–7. 

[9] Hone CA, Holmes N, Akien GR, Bourne RA, Muller FL. Rapid multistep kinetic model generation from transient flow data. React Chem Eng 

2017;2(2):103–8. 

[10] Reizman BJ, Jensen KF. An automated continuous-flow platform for the estimation of multistep reaction kinetics. Org Process Res Dev 

2012;16(11):1770–82. 

[11] McMullen JP, Jensen KF. Rapid determination of reaction kinetics with an automated microfluidic system. Org Process Res Dev 2011;15(2):398–

407. 

[12] Robbins H. Some aspects of the sequential design of experiments. Bull Am Math Soc 1952;58(5):527–35. 

[13] Burke EK, Kendall G, editors. Search methodologies: introductory tutorials in optimization and decision support techniques. 2nd ed. Boston: 

Springer; 2014. 

[14] Marler RT, Arora JS. The weighted sum method for multi-objective optimization: new insights. Struct Multidiscipl Optim 2010;41(6):853–62. 

[15] Mavrotas G. Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl Math Comput 

2009;213(2):455–65. 

[16] Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications. Zurich: Swiss Federal Institute of Technology; 1999. 

[17] Hwang CL, Masud ASM. Multiple objective decision making—methods and applications. Berlin: Springer-Verlag; 1979. 

[18] Telen D, Logist F, Van Derlinden E, Tack I, Van Impe J. Optimal experiment design for dynamic bioprocesses: a multi-objective approach. Chem 

Eng Sci 2012;78:82–97. 

[19] Galvanin F, Cao E, Al-Rifai N, Gavriilidis A, Dua V. A joint model-based experimental design approach for the identification of kinetic models in 

continuous flow laboratory reactors. Comput Chem Eng 2016;95:202–15. 

[20] Maheshwari V, Rangaiah GP, Samavedham L. Multiobjective framework for model-based design of experiments to improve parameter precision 

and minimize parameter correlation. Ind Eng Chem Res 2013;52(24):8289–304. 

[21] Manesso E, Sridharan S, Gunawan R. Multi-objective optimization of experiments using curvature and fisher information matrix. Processes 

2017;5(4):63. 

[22] Burger J, Asprion N, Blagov S, Böttcher R, Nowak U, Bortz M, et al. Multi-objective optimization and decision support in process engineering—

implementation and application. Chem Ing Tech (Weinh) 2014;86(7):1065–72. 

[23] Forte E, von Harbou E, Burger J, Asprion N, Bortz M. Optimal design of laboratory and pilot-plant experiments using multiobjective optimization. 

Chem Ing Tech (Weinh) 2017;89(5):645–54. 

[24] Nöh K, Niedenführ S, Beyß M, Wiechert W. A Pareto approach to resolve the conflict between information gain and experimental costs: multiple-

criteria design of carbon labeling experiments. PLoS Comput Biol 2018;14(10):e1006533. 

[25] Quaglio M, Waldron C, Pankajakshan A, Cao E, Gavriilidis A, Fraga ES, et al. An online reparametrisation approach for robust parameter 

estimation in automated model identification platforms. Comput Chem Eng 2019;124:270–84. 



A. Pankajakshan et al. / Engineering 5 (2019) 

15 

 

[26] Valera FE, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral JT, et al. The flow’s the thing...or is it? Assessing the merits of homogeneous 

reactions in flask and flow. Angew Chem Int Ed Engl 2010;49(14):2478–85. 

[27] Mozharov S, Nordon A, Littlejohn D, Wiles C, Watts P, Dallin P, et al. Improved method for kinetic studies in microreactors using flow 

manipulation and noninvasive Raman spectrometry. J Am Chem Soc 2011;133(10):3601–8. 

[28] McMullen JP, Stone MT, Buchwald SL, Jensen KF. An integrated microreactor system for self-optimization of a Heck reaction: from micro- to 

mesoscale flow systems. Angew Chem Int Ed Engl 2010;49(39):7076–80. 

[29] McMullen JP, Jensen KF. An automated microfluidic system for online optimization in chemical synthesis. Org Process Res Dev 2010;14(5):1169–

76. 

[30] Audoly S, Bellu G, D’Angiò L, Saccomani MP, Cobelli C. Global identifiability of nonlinear models of biological systems. IEEE Trans Biomed 

Eng 2001;48(1):55–65. 

[31] Montgomery DC. Design and analysis of experiments. 8th ed. Hoboken: John Wiley& Sons.; 2012. 

[32] van Rossum G, Drake FL. Python language reference manual. Bristol: Network Theory Limited; 2003. 

[33] Cover TM, Thomas JA. Elements of information theory. 2nd ed. Hoboken: John Wiley& Sons; 2006. 

[34] Bard Y. Nonlinear parameter estimation. New York: Academic Press; 1974. 

[35] Franceschini G, Macchietto S. Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 2008;63(19):4846–72. 

[36] Pukelsheim F. Optimal design of experiments. New York: John Wiley & Sons; 1993. 

[37] Pipus G, Plazl I, Koloini T. Esterification of benzoic acid inmicrowave tubular flow reactor. Chem Eng J 2000;76(3):239–45. 

[38] Buzzi-Ferraris G, Manenti F. Kinetic models analysis. Chem Eng Sci 2009;64(5):1061–74.  

 


