Albarelli, F;
Shackerley-Bennett, U;
Serafini, A;
(2018)
Locally optimal control of continuous-variable entanglement.
Physical Review A
, 98
(6)
, Article 062312. 10.1103/PhysRevA.98.062312.
Preview |
Text
Serafini_Locally optimal control of continuous-variable entanglement_VoR.pdf - Published Version Download (527kB) | Preview |
Abstract
We consider a system of two bosonic modes each subject to the dynamics induced by a thermal Markovian environment and we identify instantaneous, local symplectic controls that minimize the loss of entanglement in the Gaussian regime. By minimizing the decrease of the logarithmic negativity at every instant in time, it will be shown that a nontrivial, finite amount of local squeezing helps to counter the effect of decoherence during the evolution. We also determine optimal control routines in the more restrictive scenario where the control operations are applied on only one of the two modes. We find that applying an instantaneous control only at the beginning of the dynamics, i.e., preparing an appropriate initial state, is the optimal strategy for states with symmetric correlations and when the dynamics is the same on both modes. More generally, even in asymmetric cases, the delayed decay of entanglement resulting from the optimal preparation of the initial state with no further action turns out to be always very close to the optimized control where multiple operations are applied during the evolution. Our study extends directly to “monosymmetric” systems of any number of modes, i.e., to systems that are invariant under any local permutation of the modes within any one partition, as they are locally equivalent to two-mode systems.
Type: | Article |
---|---|
Title: | Locally optimal control of continuous-variable entanglement |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1103/PhysRevA.98.062312 |
Publisher version: | https://doi.org/10.1103/PhysRevA.98.062312 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/10083848 |
Archive Staff Only
View Item |