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Abstract 

Background: Aromatic L-amino acid decarboxylase (AADC) deficiency is a severe 

pharmacoresistant neurological disorder due to inherited autosomal recessive loss-of-

function mutations in the DDC gene. The resultant impairment of AADC enzyme 

activity severely impacts on monoamine synthesis, leading to reduced levels of 

dopamine and serotonin. Affected patients present with marked neurodevelopmental 

delay, hypotonia, oculogyric crises and autonomic dysfunction. Currently, there are 

few truly disease-modifying therapies. 

Aims: To generate AADC patient-derived induced pluripotent stem cells (iPSC) for 

subsequent differentiation into midbrain dopaminergic (mDA) neurons, and to utilise 

this model to better define disease mechanisms and test novel therapeutic strategies. 

Methods: Patient and age-matched control fibroblasts were reprogrammed into iPSC 

using Sendai Virus methods. A modified dual SMAD inhibition protocol was then 

utilised for differentiation of all iPSC lines to day 65 of maturation. The generated 

neuronal model was then analysed for mature mDA neuronal identity and AADC 

disease-specific features. 

Results: iPSC lines were generated from skin fibroblasts derived from two patients 

with AADC deficiency. One patient harboured a homozygous missense mutation 

(p.R347G) and the other was a compound heterozygote for a nonsense variant 

(p.Arg7*) and missense mutation (p.C100S) in DDC. For the project two iPSC lines 

from one age-matched control subject were used that were previously reprogrammed 

in my host laboratory. Generated iPSC lines were confirmed as being truly pluripotent, 

then successfully differentiated into midbrain dopaminergic neurons, with 

characteristic neuronal morphology, expressing tyrosine hydroxylase (TH) and 

microtubule-associated protein 2 (MAP2). There was no evidence of 

neurodegeneration in the patient lines. A number of disease-specific features were 

identified, including significantly marked reduction of AADC enzyme activity and 

dysregulation of the dopaminergic system in patient mDA neurons when compared to 

the age-matched control. Preliminary data also shows successful lentiviral rescue of 

the patient-derived mDA cell model.  
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Conclusion: The iPSC-derived mDA neuronal model represents an ideal platform to 

further elucidate disease mechanisms, as well as to screen novel pharmacological 

agents for AADC deficiency. 
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Impact Statement 

The aim of this work is to generate a new in vitro disease model of aromatic L-amino 

acid decarboxylase (AADC) deficiency. There is urgent clinical need for a humanised 

disease model, to improve disease understanding and develop novel therapies for this 

medically resistant, often life-limiting disorder. The model is of significant importance 

as, to my knowledge, it is the first reported patient-derived in vitro disease model of 

AADC deficiency. It is an excellent base to further elucidate disease mechanisms and 

perform drug screening to find new effective treatments. Work in this field of 

translational medicine has the potential to benefit patients in the longer term, by 

improving their quality of life and long-term survival. 
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1.1 Introduction to AADC Deficiency 

Aromatic L-amino acid decarboxylase (AADC) has a pivotal role in brain monoamine 

synthesis, by converting L-3,4-dihydroxyphenylalanine (L-dopa) into dopamine and 

5-hydroxytryptophan (5-HTP) into serotonin (Lovenberg, Weissbach, and Udenfriend 

1962). Dopamine and serotonin are key brain neurotransmitters governing motor 

control, reward, affect and emotion. Dopamine is also essential for the downstream 

production of the catecholamines, norepinephrine and epinephrine. It is therefore not 

surprising that patients with AADC deficiency present with a complex 

neurodevelopmental syndrome characterised by abnormal motor and cognitive 

development with associated autonomic features. 

The first human patients with AADC deficiency were published in 1990 by Hyland 

and Clayton. They reported monozygotic male twins presenting in infancy with 

abnormal eye movements consistent with oculogyric crises, hypotonia and 

developmental delay. Plasma AADC enzyme assay confirmed AADC deficiency in 

both siblings. Treatment with a monoamine oxidase inhibitor (Tranylcypromine), 

dopamine agonist (Bromocriptine) and the cofactor of AADC (Pyridoxine) led to 

significant clinical improvement. Both patients showed amelioration of tone and 

development of spontaneous voluntary movements. By the age of 17 months, both 

children had resolution of their oculogyric crises, could feed themselves from a bottle 

and showed better head control (Hyland et al. 1992; Hyland and Clayton 1990). Since 

this original disease description, 123 patients with AADC have been reported, with a 

wide phenotypic spectrum from virtually asymptomatic individuals to those with 

severe disability and neurodevelopmental delay (Himmelreich et al. 2019; Wassenberg 

et al. 2017). 

1.2 The Human Brain: Important Motor Networks and Neuro transmitter  

Pathways 

1.2.1 Motor Control  

Motor control in humans requires the systematic regulation of movement through 

coordinated muscle contraction and relaxation. It is achieved through integrated 

function of virtually all of the major divisions of the central nervous system: multiple 
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cortical areas (including the primary motor area, supplementary motor area, and 

premotor cortex) are involved in the preparation and execution of motor commands; 

the cerebellum in learning and motor task coordination; the spine and brainstem in 

processing of sensorimotor information, as well as complex circuitry involving 

cortical/basal ganglia/thalamocortical and cerebellar/cortical/subcortical networks 

(Figure 1-1 below). It is therefore not surprising that structural, metabolic or genetic 

disruption of these finely tuned pathways can cause aberrant motor control leading to 

reduced voluntary movement or excessive involuntary movement. 

 

Figure 1-1: Motor control in the human brain.  

 

The basal ganglia have a key role in movement and are involved in a number of 

important motor networks that govern physiological motor control. They are 

composed of the striatum, globus pallidus, substantia nigra and subthalamic nucleus 

(Figure 1-2). 
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Figure 1-2: Anatomy of the basal ganglia with putamen, subthalamic nucleus, hypothalamus, 

substantia nigra, globus pallidus, thalamus, and caudate nucleus. 

 

Cortical and thalamic structures project glutamatergic excitatory inputs to the striatal 

complex. In the striatum, medium spiny neurons (MSNs), with GABAergic output 

represent 95% of striatal neurons (Dubé, Smith, and Bolam 1988), but aspiny 

GABAergic neurons and large cholinergic interneurons are also present (Lapper and 

Bolam 1992). The striatum receives dopaminergic input from the substantia nigra pars 

compacta (SNpc) (Pickel, Chan, and Sesack 1992). Projections that are glutamatergic 

and dopaminergic merge onto dendritic spines from the same MSN (Bouyer et al. 

1984). Striatal interneurons receive input from dopaminergic and glutaminergic 

neurons, synapsing to MSNs (Kawaguchi et al. 1995). 

1.2.1.1 The Role of the Direct and Indirect Pathway in Motor Control  

The direct and indirect pathway have a key role in motor control (Albin, Young, and 

Penney 1989; Calabresi et al. 2014; DeLong 1990). 

In the direct pathway (Figure 1-3 A), cortical activation results in release of glutamate 

which activates MSNs of the striatum. These MSNs project to the substantia nigra pars 
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reticulata (SNpr), as well as the globus pallidus pars interna (GPi). As MSNs are 

GABAergic cells, they inhibit neurons of the SNpr which are also GABAergic. The 

inhibition of SNpr leads to a disinhibition of glutamatergic neurons of the thalamus. 

The thalamus neurons project to the cortex. The direct pathway thus results in 

activation of movement. 

In the indirect pathway (Figure 1-3 B) cortical activation results in release of 

glutamate which activates MSNs of the striatum. The striato-pallidal MSNs project to 

the SNpr through the globus pallidus pars externa (GPe). The MSNs also project to the 

subthalamic nucleus (STN). The GPe GABAergic neurons are inhibited, which leads 

to disinhibition of the STN glutamatergic neurons. The activated STN neurons activate 

the GABAergic neurons of the SNpr. These neurons project to the thalamus and inhibit 

its activity, leading to a reduction of movement. 

MSNs of the direct and indirect pathway express different dopaminergic receptors. D1 

dopaminergic receptors are expressed by MSNs from the direct pathway. D2 

dopaminergic receptors are expressed by MSNs from the indirect pathway. D1 and D2 

dopamine receptors are coupled to specific G proteins which are involved in different 

intracellular signalling pathways. D1 and D2 receptor activation thus have different 

downstream effects (Gerfen et al. 1994; Gerfen and Surmeier 2011). 
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Figure 1-3: Schematic representation of the direct and indirect pathway with the cortico-basal 

ganglia-thalamo-cortical loop. 

A shows the direct pathway. B shows the indirect pathway. Glutamatergic input signals are excitatory 

and GABAergic input signals are inhibitory. Dopamine is a modulator. 
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1.2.2 Role of Monoamines in the Brain  

The monoamines are an important group of neurotransmitters in the central nervous 

system. They include the catecholamines dopamine, noradrenaline and adrenaline, as 

well as serotonin) (Arenas, Denham, and Villaescusa 2015). Serotonin and dopamine 

are produced through the monoamine synthesis pathway, and stored in serotonergic 

and dopaminergic neurons respectively, in the presynaptic neuron (Dahlstroem and 

Fuxe 1964). Both dopaminergic and serotonergic neurons project widely to other brain 

regions (Figure 1-4). The dopaminergic neurons from the ventral midbrain (VM) 

represent 75% of dopaminergic neurons in the adult CNS (Hegarty, Sullivan, and 

OôKeeffe 2013). During embryonic development, dopaminergic (DA) neurons from 

the ventral midbrain are produced in the floor plate area from the mesencephalon of 

the neuronal tube (Ono et al. 2007). Dopaminergic midbrain neurons can be found in 

three different cell groups: the SNpc, the ventral tegmental area (VTA), and the 

retrorubral field (RrF) (Arenas et al. 2015). SNpc neurons project to the dorsal striatum 

in the nigrostriatal pathway. SNpc neurons regulate voluntary movement (Lees, Hardy, 

and Revesz 2009; Toulouse and Sullivan 2008). The VTA and the RrF project to the 

ventral striatum and the prefrontal cortex in the mesocorticolimbic pathway. They are 

involved in the control of emotion and reward (Tzschentke and Schmidt 2000). 

Serotonin is located in 9 different types of cell bodies in the pons and midbrain, 

particularly in the raphe nuclei of the midbrain (Dahlstroem and Fuxe 1964). Serotonin 

is also thought to play a role in motor activity, and is also involved in sleep, affect, 

emotion, and temperature regulation (Chojnacki et al. 2016; Denoyer et al. 1989; 

Jacobs and Fornal 1997; Reid et al. 1968; Strasser, Gostner, and Fuchs 2016).  

Further insight into the important role of these monoamines is derived from the clinical 

features reported in patients with dopamine and serotonin deficiency. A number of 

inherited primary monoamine neurotransmitter disorders are reported including (i) 

enzyme deficiencies resulting from defective synthesis or recycling of 

tetrahydriobiopterin (pterin defects) (ii) defects in monoamine synthesis (AADC and 

tyrosine hydroxylase deficiency) (ii i) defective membrane or vesicular transport of 

serotonin and/or dopamine (dopamine transporter deficiency syndrome, brain 

dopamine-serotonin deficiency) (Ng et al. 2015). Affected patients show a number of 
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overlapping features, including delayed neurodevelopment, abnormal tone, movement 

disorders, eye movement abnormalities, gastrointestinal dysmotility, sleep disturbance 

and autonomic features.  

 

 

Figure 1-4: Serotonin and dopamine pathways in the brain. 

Dopaminergic neurons from the SNpc project to the dorsal striatum (marked in green). Dopaminergic 

neurons from the VTA and the RrF project to the ventral striatum and the prefrontal cortex (marked in 

purple). The serotonergic projections from the raphe nuclei include regions of the sensorimotor network 

and default-mode network (marked in red).  

 

1.2.3 Monoamine Synthesis and Degradation 

The AADC enzyme has a key role in monoamine synthesis, converting 5-

hydroxytryptophan into serotonin, and L-dopa into dopamine (Figure 1-5). Serotonin 

is synthesised in a two-step reaction. L-tryptophan is hydroxylated to L-5-

hydroxytryptophan by the enzyme tryptophan hydroxylase. Tryptophan hydroxylase 

is dependent on the cofactor tetrahydrobiopterin (BH4), synthesised through the pterin 

pathway (Figure 1-5) and O2. L-5-hydroxytryptophan is finally decarboxylated to 

serotonin by AADC and its cofactor pyridoxal 5ô-phosphate (PLP). Serotonin is 

metabolised to 5-hydroxyindoleacetic acid (5-HIAA) by monoamine oxidase (MAO). 

Serotonin is also metabolised into N-acetylserotonin and subsequently to melatonin 
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(Kema, de Vries, and Muskiet 2000). Dopamine is similarly synthesised in a two-step 

reaction from L-tyrosine. L-tyrosine, catalysed by tyrosine hydroxylase, is converted 

to L-dopa. Tyrosine hydroxylase is dependent on BH4 (from the pterin pathway) and 

O2. This reaction is the rate limiting step in dopamine synthesis. L-dopa then forms 

dopamine through decarboxylation by AADC enzyme and its cofactor PLP. Dopamine 

is converted in noradrenergic cells to noradrenaline by the dopamine-ɓ-hydroxylase 

(DɓH), using ascorbate and O2. Noradrenaline is then methylated in adrenergic cells 

to adrenaline by phenylethanolamine N-methyltransferase (PNMT), which is S-

adenosyl-methionine (SAM) dependent (methyl donor). The degradation of dopamine 

to 3,4-dihydroxyphenylacetic acid (DOPAC) is performed by MAO and aldehyde 

dehydrogenase (ALDH). DOPAC is then metabolised to homovanillic acid (HVA) by 

catechol-O-methyltransferase (COMT), which is dependent on SAM. Dopamine can 

also be metabolised to 3-methoxytyramine by COMT, to then be degraded to HVA by 

MAO and ALDH. The precursor of dopamine, L-dopa is methylated to 3-

orthomethyldopa (3-OMD) by COMT. 3-OMD is then converted to vanillactic acid 

(VLA) by the transaminases (TAM), which depends on PLP [reviewed in 

(Himmelreich et al. 2019)]. 

 

 

 

 



 

 

4
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Figure 1-5: Synthesis and metabolism of serotonin and dopamine in neurons.  

Figure 1-5 shows the synthesis and metabolism of BH4 (green arrows), serotonin (red arrows) and dopamine (blue arrows) in neurons. BH4= tetrahydrobiopterin, GTP= 

guanosine triphosphate, GTPCH= GTP cyclohydrolase, PTPS= 6-pyruvoyltetrahydropterin synthase, SR= sepiapterin reductase, PLP= pyridoxal 5ôphosphate, AADC= aromatic 

L-amino acid decarboxylase, ALDH= aldehyde dehydrogenase, MAO= monoamine oxidase, 5-HIAA= 5-hydroxyindoleacetic acid, L-dopa= L-3,4-dihydroxyphenylalanine, 3-

OMD= 3-orthomethyldopa, VLA= vanillylactic acid, DɓH= dopamine ɓ-hydroxylase, PNMT= phenolethanolamine N-methyltransferase, SAM= S-adenosylmethionine, 

DOPAC= 3,4-dihydroxyphenylacetic acid, COMT= catechol-O-methyltransferase, HVA= homovanillic acid.
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1.2.4 Monoamine Neurotransmission 

1.2.4.1 Uptake into Synaptic Vesicles 

After synthesis, dopamine and serotonin are transported from the cytoplasm by the 

vesicular monoamine transporter 2 (VMAT2) for packaging into synaptic vesicles in 

the presynaptic terminal. Monoamine uptake into the synaptic vesicles is governed by 

a proton gradient (Daniels and Reinhard 1988; Darchen et al. 1988) which is regulated 

by the vacuolar-type H+ ATPase proton pump (Cidons and Sihrao 1989; Moriyama 

and Nelson 1987; Xie and Stone 1986). 

1.2.4.2 Monoamine Release  

Synaptic vesicles move to the active zone of the nerve terminal. The vesicles dock 

onto the plasma membrane and are primed for monoamine release (Südhof 2004; 

Wojcik and Brose 2007). The process of priming generates a protein complex to 

facilitate monoamine release from the synapse. SNARE complexes consist of SNAPs 

(soluble NSF attachment proteins), SNAREs (SNAP receptors) and NSFs (N-

ethylmaleimide-sensitive fusion proteins). The SNARE complexes ensure vesicle 

targeting and membrane fusion (McMahon et al. 1995; Söllner et al. 1993). When an 

action potential depolarises the cell membrane, voltage gated Ca2+ channels open and 

generate a calcium influx into the cell. The influx induces vesicle exocytosis. 

Synaptotagmin proteins act as Ca2+ sensors for neurotransmitter release at the synapse 

and are also connected to the protein complex involved in membrane fusion (Geppert 

et al. 1994; Reim et al. 2001). After monoamine release, vesicles are endocytosed, 

either directly or through the endosomal pathway (Ceccarelli, Hurlbut, and Mauro 

1973; Heuser and Reese 1973; Südhof 2004). 

1.2.4.3 Post-Synaptic Receptor Binding 

Dopaminergic neurotransmission: Released dopamine enters the synaptic cleft, and 

subsequently binds to dopaminergic receptors that are located either at the membrane 

of the post-synaptic neuron or to autoreceptors at the presynaptic membrane. 

Dopaminergic receptors consist of two families, the D1-like receptor family (D1 and 

D5), and the D2-like receptor family (D2, D3 and D4) (Missale et al. 1988). Dopamine 

receptors are G protein-coupled receptors (GPCRs). Activation of GPCRs leads to 

dissociation of the G-protein from the rest of the receptor. The G-protein can then 
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activate intracellular effector proteins (Gilman 1987). Each GPCR is coupled to 

different effector proteins, with specific intracellular consequences. For example, D1-

like receptors are involved in the production of cyclic adenosine monophosphate 

(cAMP), whereas D2-like receptors are involved in the inhibition of cAMP production 

(Kebabian and Caine 1979; Onali, Olianas, and Gessa 1984).  

Serotonergic transmission: Released serotonin enters the synaptic cleft, and binds to 

post-synaptic serotonergic receptors, which are either G-protein coupled receptors (5-

HT1,2,4-7) (Frazer A 1999) or ligand gated ion channels (5-HT3) (Derkach, Surprenant, 

and North 1989) which, similar to dopamine, activate secondary intracellular cascades 

leading to excitatory or inhibitory responses. 

1.2.4.4 Monoamine Reuptake  

Dopamine and serotonin are recycled back into the presynaptic neuron by monoamine-

specific membrane transporters, namely the dopamine transporter (DAT) (Kilty, 

Lorang, and Amara 1991; Shimada et al. 1991) and the serotonin transporter (SERT) 

(Blakely et al. 1991; Hoffman, Mezey, and Brownstein 1991). As such, these 

transporters play a major role in regulating the amplitude and duration of monoamine 

signalling. Elucidation of the structure of the homologous bacterial transporter LeuT 

has greatly facilitated our understanding of the substrate binding sites, and structure-

function properties of these SLC6 monoamine transporters (Yamashita et al. 2005). 

Monoamine transport across the plasma membrane is controlled by the concentration 

gradient of Na+ and Cl- (Gu, Wall, and Rudnick 1994), which is regulated by the 

membrane Na+K+ ATPase pump (Dunham and Glynn 1961; Tissari et al. 1969). 

Recycled monoamine in the presynaptic neuron is then re-packaged into the synaptic 

vesicles for re-release. 
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1.3 The AADC Enzyme in Health and Disease 

1.3.1 Structure-Function Properties of AADC Enzyme 

The AADC enzyme derives its name from its substrate specificity and ability to 

decarboxylate specific amines. The enzymeôs main catalytic activity consists of the 

conversion of L-dopa and 5-HTP to the monoamine neurotransmitters, dopamine and 

serotonin respectively. These monoamines are also the precursors of adrenaline, 

noradrenaline and melatonin. In addition, although much less efficiently, AADC is 

able to convert other aromatic amino acids such as p-tyrosine, tryptophan and 

phenylalanine to the corresponding amines (i.e. trace amines p-tyramine, tryptamine, 

2-phenylethylamine), which are postulated to play a role in neuromodulation (Miller 

2011). AADC enzyme is therefore not only widely expressed in mammalian neuronal 

tissue including pre-synaptic dopaminergic and serotonergic neurons (where its 

presence reflects its activity in neurotransmitter biosynthesis), but also in other tissues 

of non-neuronal origin. Outside the central nervous system, dopamine and serotonin 

have a number of non-neuronal roles, acting as exocrine or paracrine factors exerting 

their function in a limited area within specialised tissues, including the kidney 

(Hussain and Lokhandwala 2003), liver, gastrointestinal tract (Berger, Gray, and Roth 

2009; Rubí and Maechler 2010) and immune cells (Buttarelli et al. 2011). 

The native AADC enzyme is a tightly associated homo-dimeric protein, as shown in 

Figure 1-6, which represents the postulated structure derived from sus scrofa , solved 

in complex with PLP and substrate analog carbiDOPA (Burkhard et al. 2001). 
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Figure 1-6: Representation of AADC enzyme in the holo-form.  
The AADC enzyme structure corresponds to the sus scrofa holoenzyme (PDB code: 1JS3), solved in 

complex with PLP and carbiDOPA, and rendered using PyMolÊ software (1.7.4.5. Edu version). 

AADC is shown with the two monomers composing the native rearrangement of the enzyme coloured 

in red and blue. PLP and carbiDOPA are represented as sticks (and indicated by black arrows) and 

coloured by element, based on green and magenta, respectively. Image courtesy of Giada Rossignoli 

(University of Verona, Department of Neuroscience, Bio-medicine and Movement). 

 

Each monomer of the homo-dimeric rearrangement consists of three distinct domains: 

a N-terminal domain (residues 1-85), a Large Domain (residues 86-372), and a C-

terminal or Small Domain (residues 373-486) (Giardina et al. 2011). The dimeric 

structure is stabilised by the wide contact surface between the Large Domains of the 

two monomers, and also by interactions between the two N-terminal domains. 

The wide AADC dimeric interface hosts the two active sites, one for each monomer. 

The active site of the enzyme stably binds PLP cofactor, the active form of vitamin 

B6. It is covalently bound to the side-chain amino group of Lys303 in absence of 

substrate, and its linkage is further stabilised through an extended bond network, as 

visible in Figure 1-7, which represents the PLP-carbiDOPA complex in the available 

structure (Burkhard et al. 2001). 



 

 46 

 

Figure 1-7: Representation of AADC active site.  

The structure corresponds to sus scrofa holoenzyme (PDB code: 1JS3), solved in complex with PLP 

and carbiDOPA, and rendered using PyMolÊ software (1.7.4.5. Edu version). AADC is shown as 

transparent cartoon, with the two monomers composing the native rearrangement of the enzyme 

coloured in red and blue. Active sites residues important for the cofactor or substrate-analog binding 

are represented as sticks, labelled and coloured by element, based on the corresponding subunit. PLP 

and carbiDOPA are represented as sticks and coloured by element, based on green and magenta, 

respectively. Dotted lines highlight the most important interactions between protein residues and PLP 

or carbiDOPA, while solid lines highlight local protein features relevant to PLP or carbiDOPA binding 

and positioning. Image courtesy of Giada Rossignoli (University of Verona, Department of 

Neuroscience, Bio-medicine and Movement). 
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The most important interactions that stabilise AADC-PLP contact mainly involve: 

¶ Asp271, which makes a salt bridge with PLP pyridine nitrogen 

¶ His192, which is the pyridine stacking residue positioning the PLP ring 

¶ A large number of residues (such as Ser147, Ser149, and Asn300) contributing 

to stabilisation through hydrogen binding interaction with PLP phosphate 

group 

The solved structure in complex with AADC inhibitor carbiDOPA (Burkhard et al. 

2001) allows the identification of important residues involved in substrate binding, 

shown in Figure 1-7. The inhibitor covalently binds to PLP replacing Lys303, and it 

is stabilised in the active site by other interactions, such as a hydrogen bond with Thr79 

and hydrophobic interactions with Ile101* and Phe103* (* symbol indicates residues 

belonging to the other monomer in relation to the main monomer composing the 

considered active site). 

Even if the active and stable form of AADC is in complex with PLP (holo-form, or 

closed conformation), the enzyme can also present an open conformation known as 

apo-form, that does not bind PLP in its active sites. The addition of cofactor drives the 

conversion from apo to holo-form. AADC apo-form was solved from the human 

enzyme (Giardina et al. 2011), and is represented in Figure 1-8.  

  



 

 48 

 

Figure 1-8: Representation of AADC in its apo-form.  

The structure corresponds to human apoenzyme (PDB code: 3RBL), solved without PLP, and rendered 

using PyMolÊ software (1.7.4.5. Edu version). AADC is shown as cartoon, with the two monomers 

composing the native rearrangement of the enzyme coloured in red and blue. Image courtesy of Giada 

Rossignoli (University of Verona, Department of Neuroscience, Bio-medicine and Movement). 

 

In contrast to AADC holo-form, the apo-form shows a decreased dimer interface that 

just comprises the N-terminal domains of the two monomers, while the central part of 

the protein is completely exposed to the solvent. Since the active sites do not bind the 

cofactor, and they are not properly structured due to the lack of the monomer-monomer 

interface, AADC apo-form does not present any enzymatic activity. 

Interestingly, in both AADC forms, a stretch of amino acids (residues 326-346) is 

invisible in solved structures, highlighting the presence of a mobile loop, also known 

as the catalytic loop. This loop contains the important residue Tyr332, which was 

shown to take part in the catalytic mechanism in enzyme catalysis (Bertoldi et al. 

2002). Thus, it has been suggested that the catalytic loop together with neighbouring 

residues, could cover and occlude the active site cleft after substrate binding.  


































































































































































































































































































































































