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Abstract

Background: Aromatic L-amino acid decarboxylas€ AADC) deficiency is a severe
pharmacoresistant neurologich$order due to indgrited autosomal recessive lass
function mutations in th&®DC gene. The resultant impairment of AADC enzyme
activity severely impacts on monoamine synthesis, leading to reduced levels of
dopamine and serotonin. Affected patients present malked newdevelopmental
delay, hypotonia, oculogyric crises and autonomic dysfunc@omrently, there are

few truly diseasenodifying therapies.

Aims: To generate AADC patiertterived induced pluripotent stem cells (iPSC) for
subsequent differentiation into midbrain dopaminergic (mDA) neurons, and to utilise

this model to better define disease mechanisms and test novel therapeutic strategies.

Methods: Patient and agenatched control fibroblasts were reprogrammed into iPSC
using SendaVirus methods. A modified dual SMAD inhibition protocol was then
utilised for differentiation of all IPSC lines way 65 of maturation. The generated
neuronal model was then analysed for mature mDA neuronal identity and AADC
diseasespecific features.

Results: iPSC lineswere generateffom skin fibroblasts derived frortwo patients
with AADC deficiency One patient hadured a homozygous missense mutation
(p.R347G) and the other was a compoureterozygote for a nonsense variant
(p.Arg7*) and missense mutation (p.C100SPIDC. For the projectwo iPSC lines
from one aganatched control subject were used that were pusiyareprogrammed

in my host laboratoryGenerated iPSC lines were confirmasdbeing truly pluripotent,
then successfully differentiated into midbrain dopaminergic neurons, with
characteristic neuronal morphologgxpressing tyrosine hydroxylase (TH) and
microtubuleassociated protein 2 (MAP2). hére was no evidence of
neurodegeneration in thgatient lines A number of diseassgpecific featuresvere
identified, including significantly marked reduction of AADC enzyme activity and
dysregulation of the dopanergic system in patient mDA neurons when compared to
the agematched controlPreliminary data also shows successéuitiviral rescue of

the patierdderived mDA cell model



Conclusion: The iPSCderived mDA neuronal model represents an ideal platform to
further elucidate disease mechanis@as,well as to screen novel pharmacological

agentdor AADC deficiency.



Impact Statement

The aim of this work is to generate a niewitro disease model gromatic L-amino

acid decarboxylas¢ AADC) deficiency. Thee is urgent clinical need for a humanised
disease model, to improve disease understanding and develop novel therapies for this
medically resistant, often lifmiting disorder. The model is of significant importance

as, to my knowledge, it is the firgported patientlerivedin vitro disease model of
AADC deficiency.lt is an excellent base to further elucidate disease mechanisms and
perform drug screening to find new effective treatments. Work in this field of
translational medicine has the potential benefit patients in the longer term, by

improving their quality of life and lonterm survival.
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1.1 Introduction to AADC Deficiency

Aromatic L-amino acid decarboxylas¢AADC) has a pivotal role ibrain monoamine
synthesis, by converting-3,4-dihydroxyphenylalanine (ddopa)into dopamine and
5-hydroxytryptophar{5-HTP)into serotonin(Lovenberg, Weissbach, and Udenfriend
1962) Dopamine and serotonin are key brain neurotransmitters governing motor
control, reward, affect and emotion. Dopamine is aksemtial for the downstream
production of the catholamines, norepinephrine and epinephrine. It is therefore not
surprising that patients with AADC deficiency present with a complex
neurodevelopmental syndrome characterised by rafalo motor and cagtive

development with associated autonomic features.

The firsthuman patients withAADC deficiency were published in 1990 by Hyland
and Clayton.They reported mnozygotic male twins presenhg in infancy with
abnormal eye movements consistent wibiculogyric crises, hypotonia and
developmental delayrlasmaAADC enzyme assay confirmed AADC deficienicy
both siblings Treatment with amonoamine oxidase inhibitoT{anylcypromine),
dopamine agonistBfomocriptine) and the cofactor of AAD@\ridoxine) led to
significant clinical improvementBoth patients showedmelioration oftone and
development ofpontaneousoluntary movements. By the agof 17 months, both
children had resolution of their oculogyric crises, cdakt themselves from a bottle
and showdbetter head contrgHyland et al. 1992; Hyland and Clayton 1998ince
this original diseasdescription, 123 patientsith AADC have been reported, with a
wide phentypic spectrum from virtually asymptomatic individuals to those with
severe disability and neurodevelopmental d@tisnmelreich et al. 2019; Wassenberg
et al. 2017)

1.2 The Human Brain: Important Motor Networks and Neuro transmitter
Pathways

1.2.1 Motor Control

Motor control in humans requires the systematic regulation of movement through
coordinated muscle contraction and relaxation. It is achieved through integrated

function of virtually all of the major divisions of the central nervous system: multiple
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corticd areas (including the primary motor area, supplementary motor anea
premotor cortex) are involved in the preparation and execution of motor commands;
the cerebellum in learning and motor task coordination; the spine and brainstem in
processing of sepnsimotor information, as well as complex circuitry involving
cortical/basal ganglia/thalamocortical and cerebellar/cortical/subcortical networks
(Figure 1-1 below). 1t is therefore not surprising that structural, metabolic or genetic
disruption of these finely tuned pathways can cause aberrant motor control leading to

reduced voluntary movement or excessive involuntary movement.

Cerebral cortex

i A

Thalamus

- T I T P Brainstem
| I
| Cerebellum |« I 1 Il h 4

T Spinal cord

Sensory receptors

Figure 1-1: Motor control in the human brain.

The basal ganglia ka a key role in movement arare involved in a number of
important motor networks that govern physiological motor contidiey are
composed of the striatum, globuallplus, substantia nigra and subthalamicleus
(Figure 1-2).
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Caudate Nucleus

Putamen

Globus Pallidus

Subthalamic Nucleus
Hypothalamus Substantia Nigra

Figure 1-2: Anatomy of the basalganglia with putamen, subthalamic nucleus, hypothalamys
substantia nigra, globus pallidus, thalamus, and caudateutleus.

Cortical and thalamic structures projgtitamatergic excitatory inputs the striatal
complex. In the striatum, medium spiny nens (MSNs), with GABAergic output
represent95% of striatal neurongDubé, Smith, and Bolam 1988put aspiny
GABAergic neurons andarge cholinergic interneansare also preserftapper and
Bolam 1992) The striatum receives dopamigerinput from thesubstantia nigra pars
compacta (SNpgPickel, Chan, and Sesack 199Rjojections that arglutamatergic

and dopaminergicerge onto dendritic spines from the salh8N (Bouyer et al.
1984) Striatal interneurons receive input from dopaminergic and glutaminergic

neurons, synapsing to MSKisawaguchi et al. 1995)

1.2.1.1 The Role of theDirect and Indirect Pathway in Motor Control
The direct and indirect pathway have a key role in motor co¢htbin, Young, and
Penney 1989; Calabresi et al. 2014; DeLong 1990)

In the direct pathwayHigure 1-3 A), cortical activation results in release of glutamate

which activates MSNs of the striatuirhese MSNSs project to the substantia nigra pars
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reticulata (SNpr), as well afd globus pallidus pars interna (GPAs MSNs are
GABAergic cells, they inhibit neurons of the SNpr which are also GABAergic. The
inhibition of SNprleads toa disinhibition of glutaratergic neurons of the thalamus.
The thalamus neurons project to thetewrr The direct pathway thus results in

activation of movement.

In the indirect pathwayFRigure 1-3 B) cortical activation results in release of
glutamae which activates MS&bf the striatum. Thetriato-pallidal MSNs project to

the SNpr through the globus pallidus pars externa (@Re)MSNs also project to the
subthalamic nucleus (STN). The GPe GABAergic neurons are inhibited, which leads
to disinhibiton of the STN glutamatergic neurons. The activated STN neurons activate
the GABAergic neurons of the SNpr. These neurons project to the thalamus and inhibit

its activity, leading to a reduction of movement.

MSNs of the direct and indirect pathway expraéifierent dopaminergic receptors: D
dopaminergic receptors are expressed by MSNs from the direct pathway. D
dopaminergic receptors are expresisg MSNs from the indirect pathway.@nd D
dopamine receptors are coupled to specific G proteins which are involved in different
intracellular signalling pathways.ifand D> receptor activation thus have different
downstream effect&Gerfen et al. 1994; Gerfen and Surmeier 2011)
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Figure 1-3: Schematic representation otthe direct and indirect pathway with the cortico-basal
ganglia-thalamo-cortical loop.

A shows the direct pathwaf. shows the indirect pathway. Glutamatergic input signalezceatory
and GABAergic input signals are inhibity. Dopamine is a modulator.
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1.2.2 Role ofMonoamines in theBrain

The monoamines are an important group of neurotransmitters in the central nervous
system. They include the catecholamines dopamine, noradrenaline and adrenaline, as
well as serotonin(Arenas, Denham, and Villaescusa 20X&grotonin and dopamine

are produced through the monoamine synthesis pathway, and stored in serotonergic
and dopaminergic neuromeectively,in the presynaptic neuraipahlstroem and

Fuxe 1964)Both dopaminergic and serotonergic neurons project widely to other brain
regions Figure 1-4). The dopaminergic neurons from the ventral midbrain (VM)
represent 75% of dopaminergic neurons in the adult Gf&garty, Sullivan, and

O06 Ke e f f.®&urigCriBypnic developmerdppaminergic DA) neurons from

the ventral midbrain are produced in the floor plate area from the mesencephalon of
the neuronal tubgOno et al. 2007)Dopaminergic midbrain neurons can be found in
three different cell groupghe SNpoc, the ventral tegmental area (VTA), and the
retrorubral field (RrFfArenas et al. 20155 Npc neurons project to the dorsal striatum

in the nigrostriatal pathway. $Md neurons regulate voluntary movemgrees, Hardy,

and Revesz 2009; Toulouse and Sullivan 2008 VTA and the RrF project the

ventral striatum and the prefrontal cortex in the mesocorticolimbic pathway. They are
involved in the control of emotion and rewaftizschentke and Schmidt 2000)
Serotonin is located i® different types of cell bodies in the pons and midbrain,
particularly in the raphe nuclei of the midbréidahlstroem and Fuxe 1964erotonin

is also thought to play a role in motor activity, anélsoinvolved in sleepaffect,
emotion, and temperature regulati@@hojnacki et al. 2016; Denoyer et al. 1989;
Jacobs and Fornal 1997; Reid et al. 1968; Strasser, Gostner, and Fuchs 2016)

Further insight into the important role of these monoamines is derived from figalclin
features reported in patients witbpdmine and serotonin deficiendy number of
inherited primary monoamine neurotransmitter disor@ees reportedncluding (i)
enzyme deficienciesresulting from defective synthesis or recycling of
tetrahydriobiopteringterin defects(ii) defects in monoamine synthe¢&ADC and
tyrosine hydroxylase deficiengyiii) defectivemembrane or vesicular transport of
serotonin and/or dopamineddpamine transporter deficiency syndromigrain
dopamineserotonin deficiency{Ng et al. 2015)Affected patients show a number of
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overlapping features, including delayed neurodevelopment, abnormal tone, movement
disorders, eye movement abnormalities, gastrointestinal dysmaotility, sleep distirba

and autonomic features.

Serotonin Dopamine

Basal ganglia

Neocortex Thalamus

— Dorsal Striatum

\% Frontal cortex
X
\

s

121 {
M 2 @)=
s ® Substantia nigra (SN)

—\‘ ————————— VTAand RrF

Ventral Striatum/
Nucleus accumbens (Nac)

Hypothalamus
Temporal lobe

Raphe nuclei <

X

Figure 1-4. Serotonin and dopamine pathways in the brain.

Dopaninergic neurons from the $M project to the dorsal striatum (marked in green). Dopaminergic
neurons from the VTAand the RrF project to the ventral striatum and the prefrontal cortex (marked in
purple). The serotonergic projections from the raphe nuclei include regfitmssensorimotor network
anddefaultmode network (marked in red).

1.2.3 Monoamine Synthesis and Dgradation

The AADC enzyme has a key role in monoamine synthesmvering 5-
hydroxytryptophan into serotonin, ahddopainto dopamineigure 1-5). Serotonin

is synthesised in a twstep reaction. idtryptophan is hydroxylated to -b-
hydroxytryptopharby the enzyme tryptophan hydroxylase. Tryptophan hydroxylase

is dependent otihe cofactotetrahydrobiopterin (Bb), synthesised through the pterin
pathway (Figure 1-5) and Q. L-5-hydroxytryptophan is finally decarboxylated to
serotoomnby AADC and i ts ephosphatet (BUP Sepotomin isl o x a |
metabolisedo 5-hydroxyindoleacetic acid (6lIAA) by monoamine oxidasgMAO).
Serotonin is also metabolised inteadetylserotonirand subsequently tmelatonin
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(Kema, de Vries, and Muskiet 200@opamine is similarly synthesised in a tatep
reaction from Ltyrosine.L-tyrosine, catalysed by tyrosine hydroxylase, is converted
to L-dopa. Tyrosine hydroxylase is dependent ony Bidm the pterin pathwaygnd

0. Thisreactionis the rate limiting step in dopamine syntiseki-dopathen forms
dopamine through decarboxiitan by AADC enzyme and itsofactor PLP. Dopamine

is converted imoradrenergicells to noadrenalineby the dopamineb-hydroxylase
(DbH), using ascorbate ancc.Noradrenalinds then methylated in adrenergic cells
to adrenalineby phenylethanolaminéN-methyltransferase (PNMT), which is- S
adenosyimethionine (SAM) dependent (metlddnor).The degradation of dopamine
to 3,4-dihydroxyphenylacetic acifDOPAC) is performedby MAO and aldehyde
dehydrogenase (ALDH). DOPAC is then metabolised to homovanillic acid (HVA) by
catecholO-methyltransferase (COMT), which igjgendent on SAM. Dopamine can
also be metabolised teriethoxytyramine by COMT, to then be degraded to HVA by
MAO and ALDH. The precursor of dopamine,-dopa is methylated to-3
orthamethyldopa (30MD) by COMT. 30MD is then converted to vanillactic acid
(VLA) by the transaminases (TAM), whiclkdepends on PLP [revieweth
(Himmelreich et al. 2019)
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Figure 1-5: Synthesis andmetabolism of serotonin and dopamine in neurons.
Figure 1-5 shows the synthesis and metabolismBbf4 (green arrows)serotonin(red arrows)and dopamingblue arrows)in neurons. BhlE tetrahydrobiopterinGTP=

guanosine triphosphate, GTPCH= GTP cychidase, PTPS=-fyruvoyltetrahydropterin synthase, SR= sepiapterin redud®aseR =

pyridoxal

56phosphat e,

L-amino acid decarboxylase, ALDH= aldehyde dehydrogenase, MAO= monoamine oxi#ta8&-55-hydroxyindoleacetic acid,-dopa= L-3,4-dihydroxyphenylalanine,-3
OMD= 3-orthomethyldopa, VLA=vanillylactic acid, DbH= dopamineb-hydroxylase, PNMT= phenolethanolaminentéthyltransferase, SAM=-&enosylmethionine,
DOPAC-= 3,4dihydroxyphenylacetic acid, COMTeatecholO-methyltransferase, HVAhomovanillic acid



1.2.4 Monoamine Neurotransmission

1.2.4.1 Uptake into Synaptic Vesicles

After synthesis, dpamineand serotoniraretransported from the cytoplasm by the
vesicular monoamine transporter 2 (VMATR) packagng into synaptic vesicles in
the presynaptic termindllonoamine uptake into th&ynapticvesicles iggovernedy

a proton gradientDaniels and Reinhard 198Barchen et al. 1988yhich isregulated
by the vacuolatype H ATPase proton pumfCidons and Sihrao 1989; Moriyama
and Nelson 1987; Xie and Stone 1986)

1.2.4.2 Monoamine Release

Synaptic vesicles move to the active zone of the nerve terminal. The vesicles dock
onto the plasma membra and are primed famonoaminerelease(Sudhof 2004;
Wojcik and Brose 2007)The process of primingeneratesa protein complexo
facilitate monamine release from the synapS&IARE complexesconsist ofSNAPs
(soluble NSF attachment proteinsSSNAREs (SNAP receptons and NSFs(N-
ethylmaleimidesensitive fusion proteins)The SNARE complexegensure vesicle
targeting ananembrane fusiofMcMahon etal. 1995; Sdllner et al. 1993)Vhenan
action potential depolaris¢he cell membrane, voltage gatecfCehannels open and
generate a calcium influx into the cell. The influx induces vesicle exocytosis.
Synaptotagmin proteinchasCa* sensors for neurotransmitter release at the synapse
and arealsoconnected to the protein complex involved in membrane fySleppert

et al. 1994; Reim et al. 2001After monoamime release vesiclesare endocytosd,
either direcly or through theendosoral pathway(Ceccarelli, Hurlbut, and Mauro
1973; Heuser anBeese 1973; Sudhof 2004)

1.2.4.3 PostSynaptic ReceptorBinding
Dopaminergic neurotransmission: Releagegpamineenters thesynaptic cleft and
subsequentlpinds to dopaminergic receptors that are located either at the membrane
of the postsynaptic neuron roto autoreceptors at the presynaptic membrane.
Dopaminergic receptors consist of two families, thelike receptor family(D: and
Ds), and the D-like receptorfamily (D2, Ds and ) (Missale et al. 1988Popamine
receptors aré& proteincoupled receptors (GPCR%ctivation of GPCRs leads to
dissociation ofthe Gprotein from the rest of the receptor. Thepfdtein can then
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activate intracellulareffector proteins (Gilman 1987) Each GPCR is coupled to
differenteffector proteinswith specificintracellularconsequence&or examplepDs-

like receptors are involved in the production of cyclic adenosine monophosphate
(cAMP), wheread-like receptors are involved in the inhibitiohcAMP production
(Kebabian and Caine 1979; On&lianas, and Gessa 1984)

Serotonergic transmission: Released serotonin enters the synaptiarcddinds to
postsynaptic serotonergic receptors, which are eitherd@ein coupled receptors-(5
HT1,2.47) (Frazer A 1999pr ligand gated ion channelskbT3) (Derkach, Surprenant,
and Noth 1989)which, similar to dopamine, activate secondary intracellular cascades
leading to excitatory or inhibitory sponses.

1.2.4.4 Monoamine Reuptake

Dopamineand serotoni@are recycled back into thesynaptic neurolbpy monoamine
specific membrane transpiers, namely lte dopamine transportéDAT) (Kilty,
Lorang, and Amara 1991; Shimada et al. 1991gthe serotonin transporter (SERT)
(Blakely et al. 1991; Hoffman, Mezey, and Brownstein 19943 such, these
transporters play a major role in regulating the amplitude and duration of monoamine
signalling. Elucidation of the structure of the homologous bacterial transporter LeuT
has greatly facilitated our understanding of the substrate bindesy aitd structure
function properties of these SLC6 monoamine transpof¥amashita et al. 2005)
Monoaminetransportacrosghe plasma membrane is controlled by the concentration
gradient of Na and Ci (Gu, Wall, and Rudnick 1994Wwhich is regulated by the
membrane N&K" ATPase pump(Dunham and Glynn 1961; Tissari et al. 1969)
Recycled monoamine in th@resynaptic neurois thenre-packaged into the synaptic

vesiclesfor re-release.
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1.3 The AADC Enzyme inHealth andDisease

1.3.1 Structure-Function Properties of AADC Enzyme

The AADC enzyme derives its name from its substrate specificity and ability to
decarboxyl at e s peci adinccatadytciactiatys consididitee e n z y m
conversion oL-dopaand 5HTP tothe monoamin@eurotransmitterglopamine and
serotonin regectively These monoamines are also frecursors of adrenaline,
noradrenaline and melatonin. In addition, although much less effici&ARC is

able to convert other aromatic amino acids such -&gaggine, tryptophan and
phenylalanine to the corregpting aminesi(e. trace aminep-tyramine, tryptamine,
2-phenylethylamine), whiclre postulated to play a role meuromodulatior{Miller

2011) AADC enzyme is therefore not only widely expressed in mammalian neuronal
tissue including prsyngtic dopaminergic and serotonergic neurons (where its
presence reflects its activity in neurotransmitter biosynthesis), but also in other tissues
of non-neuronal origin. Outsid&he central nervous systegppamine and serotonin
have a number of nemeuronal role, acting agexocrine or paracrine factors exerting
their function in a limited areavithin specialised tissuesncluding the kidney
(Hussain and Lokhandwala 2008yer, gastrointestinal tragBerger, Gray, and Roth
2009; Rubi and Maechler 201a8nd immune cell§Buttarelli et al. 2011)

The native AADC enzymeis atightly associated homdimeric protein, as shown in
Figure 1-6, which represents the postulated structure defnoed sus scrofg solved
in complex with PLP andubstrate analogarbiDOPA(Burkhard et al. 2001)
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carbiDOPA

Figure 1-6: Representation of AADC enzyme in the holdorm.

The AADC enzymestructure corresponds tbe sus scrofegholoenzyme (PDB code: 1JS3), solved in
complex with PLP and carbi DOPA, and rendered usi
AADC is shown with thdwo monomers composing the native rearrangement of the enzyme coloured

in red and blue. PLP and carbiDOPA are represented as @iottsndicated by black arrowand

coloured by element, based on green and magenta, respectively. Image courtesy &oGsaglli

(University of Verona, Department of Neuroscience,-Biedicine and Movement)

Each monomer of the horrimeric rearrangement consists of three distinct domains:

a N-terminal domain(residues 485), a Large Domainresidues 8&872),and a C
terminal or Small Domainresidues 373186) (Giardina et al. 2011)The dmeric
structure is stabilised by the wide contact surface between the Large Domains of the

two monomers, and also by interactions between the ttayinal domains.

The wide AADC dimeric interface hosts the two active sibe® for each monomer.
The actve site of the enzyme stably binds PLP cofactor, the active form of vitamin
B6. It is covalently bound tthe sidechainamino group of Lys303n absence of
substrateandits linkage is furtherstabilised through arextended bond network, as
visible inFigure 1-7, which represents the PidarbiDOPA complex in the available
structure(Burkhard et al. 2001)
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carbiDOPA

~A|a273
‘ Ser149
."\ ‘Asn300

// 3
‘-\ ,
‘ Ser147
His302

Figure 1-7: Representdion of AADC active site

The structure corresponds gas scrofenoloenzyme (PDB code: 1JS3), solved in complex with PLP

and carbiDOPA, and rendered using Py®losoftware (1.7.4.5. Edu version). AADC is shown as
transparent cartoon, with the two monomers composing the native rearrangement of the enzyme
coloured in red and blue. Active sites residues important for the cofactor or substibtg binding

are represnted as sticks, labelled and coloured by element, based on the corresponding subunit. PLP
and carbiDOPA are represented as sticks and coloured by element, based on green and magenta,
respectively. Dotted lines highlight the most important interactionsdeet protein residues and PLP

or carbiDOPA, while solid lines highlight local protein features relevant to PLP or carbiDOPA binding
and positioning.Image courtesy of Giada RossignolUnjversity of Verona, Department of
Neuroscience, Bianedicine and Movaent)

Phe103*

electrostatic
network

Thr102

hydrophobic
cleft

lle101*
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The most important interactions that stabilise AABCP contact mainly involve

Asp271,which makes a salt bridge with Plpyridine nitrogen
His192, which is the pyridine stacking residue positioninghering

1 A large number of residues (such@erl47, Serl49, and Asn300) contributing
to stabilsation through hydrogen binding interaction with PLP phosphate

group

The solved structure in complex wiADC inhibitor carbiDOPA(Burkhard et al.
2001) allows the identification of important residu@svolved in substrate bging,
shown inFigure 1-7. The inhibitor covalently binds tBLP replacing Lys303, and it

is stabilised in the active site by other interactions, such as a hydrogewitomtir79
andhydrophobic interactions with ll@L* and Phel103* (* symbahdicates residue
belonging to the other monomer in relation to the main monomer composing the

considered active site

Even if the active and stable form of AADC is in complex with PLP (iofm, or
closed conformation), the 2yme can also present an open conformation known as
apoform, that does not bind PLP in its active sites. The addition of cofactor drives the
conversion from apo to hofierm. AADC apeform was solved from the human
enzyme(Giardina et al. 2011)and isrepresented ifigure 1-8.
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Figure 1-8: Representation of AADC in its apeform.

The structure corresponds to human apoenzyme (PDB code: 3RBL), solved without PLP, and rendered
using PyMol E software (1. 7.a4caBaon, Wt the twemosomers ) . AA
composing the native rearrangement of the enzyme coloured in red anbinalge.courtesy of Giada

Rossignoli University of VeronaPepartment of Neuroscience, Bmedicine and Movement)

In contrast to AADC holdorm, the apeform shows a decreased dimer interface that
just comprises the f&rminal domains of the two monomers, while the central part of
the protein is completely exposed to the solvent. Since the active sites do not bind the
cofactor, and they are not jrerly structured due to the lack of the monomemomer

interface, AADC apdorm does not present any enzymatic activity.

Interestingly, in both AADC forms, a stretch of amino acids (residues338p is
invisible in solved structures, highlighting the geace of a mobile loop, also known

as the catalytic loop. This loop contains the important residue Tyr332, which was
shown to take part in the catalytic mechanism in enzyme catéBmsitoldi et al.
2002) Thus, it has been suggested that the catalytic tmggther withneighbouring
residuescould cover andazlude the active site cleft after substrate binding.
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