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Abstract

Bayesian optimization is a sample-efficient approach to global optimization that
relies on theoretically motivated value heuristics (acquisition functions) to guide
its search process. Fully maximizing acquisition functions produces the Bayes’
decision rule, but this ideal is difficult to achieve since these functions are fre-
quently non-trivial to optimize. This statement is especially true when evaluating
queries in parallel, where acquisition functions are routinely non-convex, high-
dimensional, and intractable. We first show that acquisition functions estimated
via Monte Carlo integration are consistently amenable to gradient-based optimiza-
tion. Subsequently, we identify a common family of acquisition functions, includ-
ing EI and UCB, whose properties not only facilitate but justify use of greedy
approaches for their maximization.

1 Introduction

Bayesian optimization (BO) is a powerful framework for tackling complicated global optimization
problems [32] 40, 144]. Given a black-box function f : X — ), BO seeks to identify a maximizer
x* € arg max, y f(x) while simultaneously minimizing incurred costs. Recently, these strategies
have demonstrated state-of-the-art results on many important, real-world problems ranging from
material sciences [17,157]], to robotics [3}[7], to algorithm tuning and configuration [[16} 29, |53} 156].

From a high-level perspective, BO can be understood as the application of Bayesian decision theory
to optimization problems [11} (14} 45]. One first specifies a belief over possible explanations for f
using a probabilistic surrogate model and then combines this belief with an acquisition function £
to convey the expected utility for evaluating a set of queries X. In theory, X is chosen according
to Bayes’ decision rule as £’s maximizer by solving for an inner optimization problem |19} 42,
59]. In practice, challenges associated with maximizing £ greatly impede our ability to live up to
this standard. Nevertheless, this inner optimization problem is often treated as a black-box unto
itself. Failing to address this challenge leads to a systematic departure from BO’s premise and,
consequently, consistent deterioration in achieved performance.

To help reconcile theory and practice, we present two modern perspectives for addressing BO’s
inner optimization problem that exploit key aspects of acquisition functions and their estimators.
First, we clarify how sample path derivatives can be used to optimize a wide range of acquisition
functions estimated via Monte Carlo (MC) integration. Second, we identify a common family of
submodular acquisition functions and show that its constituents can generally be expressed in a
more computer-friendly form. These acquisition functions’ properties enable greedy approaches to
efficiently maximize them with guaranteed near-optimal results. Finally, we demonstrate through
comprehensive experiments that these theoretical contributions directly translate to reliable and,
often, substantial performance gains.
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Figure 1: (a) Pseudo-code for standard BO’s “outer-loop” with parallelism g; the inner optimization problem
is boxed in red. (b—c) GP-based belief and expected utility (EI), given four initial observations ‘s’. The aim of
the inner optimization problem is to find the optimal query ‘Y¢’. (d) Time to compute 2'* evaluations of MC
g-EI using a GP surrogate for varied observation counts and degrees of parallelism. Runtimes fall off at the
final step because g decreases to accommodate evaluation budget 7' = 1, 024.
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2 Background

Bayesian optimization relies on both a surrogate model M and an acquisition function £ to define
a strategy for efficiently maximizing a black-box function f. At each “outer-loop” iteration (Fig-
ure [Th), this strategy is used to choose a set of queries X whose evaluation advances the search
process. This section reviews related concepts and closes with discussion of the associated inner
optimization problem. For an in-depth review of BO, we defer to the recent survey [52].

Without loss of generality, we assume BO strategies evaluate ¢ designs X € R?%¢ in parallel so
that setting ¢ = 1 recovers purely sequential decision-making. We denote available information
regarding f as D = {(x;,¥;)};, and, for notational convenience, assume noiseless observations
y = f(X). Additionally, we refer to £’s parameters (such as an improvement threshold) as v and
to M’s parameters as {. Henceforth, direct reference to these terms will be omitted where possible.

Surrogate models A surrogate model M provides a probabilistic interpretation of f whereby
possible explanations for the function are seen as draws f* ~ p(f|D). In some cases, this belief
is expressed as an explicit ensemble of sample functions [28} 54, 160]. More commonly however,
M dictates the parameters 6 of a (joint) distribution over the function’s behavior at a finite set of
points X. By first tuning the model’s (hyper)parameters ¢ to explain for D, a belief is formed as
p(y|X, D) = p(y; 0) with 8 < M(X; ). Throughout, 8 < M (X; ¢) is used to denote that belief
p’s parameters @ are specified by model M evaluated at X. A member of this latter category, the
Gaussian process prior (GP) is the most widely used surrogate and induces a multivariate normal

belief 8 £ (p, ) + M(X; ¢) such that p(y; 8) = N (y; p, ) for any finite set X (see Figure).

Acquisition functions With few exceptions, acquisition functions amount to integrals defined in
terms of a belief p over the unknown outcomes y = {y1, ...,y } revealed when evaluating a black-
box function f at corresponding input locations X = {xi,...,%,}. This formulation naturally
occurs as part of a Bayesian approach whereby the value of querying X is determined by accounting
for the utility provided by possible outcomes y* ~ p(y|X, D). Denoting the chosen utility function
as ¢, this paradigm leads to acquisition functions defined as expectations

LX;D, ) = Ey [(y; )] / 0y 9)p(y[X, D)dy )

A seeming exception to this rule, non-myopic acquisition functions assign value by further con-
sidering how different realizations of Dk — DU {(x;,y¥)}{_, impact our broader understanding
of f and usually correspond to more complex nested 1ntegrals Figure m: portrays a prototypical
acquisition surface and Table [T|exemplifies popular, myopic and non-myopic instances of ().

Inner optimization problem Maximizing acquisition functions plays a crucial role in BO as the
process through which abstract machinery (e.g. model M and acquisition function £) yields con-
crete actions (e.g. decisions regarding sets of queries X). Despite its importance however, this inner
optimization problem is often neglected. This lack of emphasis is largely attributable to a greater



Abbr. Acquisition Function £ Reparameterization MM

EI Ey[max(ReLU(y — «))] E,[max(ReLU(p + Lz — «))] Y
PI Ey max(1(y — o) E, [imax(o (2= ) Y
SR E,[max(y)] E,[max(u + Lz)] Y
UCB Ey [max(p + /B7/2[v])] E,[max(p + /#7/2|Lz|)] Y
ES  —Ey,[H(Ey,y, [17(ys — max(y,))]))] —E,, [H(E,, [softmax( ety
KG  Ey,[max(pus + Eb,azg,z (Ya = Ha))] E,, [max(pp + Eb,az};il‘aza)} N

Table 1: Examples of reparameterizable acquisition functions; the final column indicates whether they belong
to the MM family (Section . Glossary: 11/~ denotes the right-/left-continuous Heaviside step function;
ReLU and o rectified linear and sigmoid nonlinearities, respectively; H the Shannon entropy; a an improve-
ment threshold; 7 a temperature parameter; LLT £ 3 the Cholesky factor; and, residuals v ~ A (0, X).
Lastly, non-myopic acquisition function (ES and KG) are assumed to be defined using a discretization. Terms
associated with the query set and discretization are respectively denoted via subscripts a and b.

focus on creating new and improved machinery as well as on applying BO to new types of prob-
lems. Moreover, elementary examples of BO facilitate £’s maximization. For example, optimizing
a single query x € R? is usually straightforward when x is low-dimensional and £ is myopic.

Outside these textbook examples, however, BO’s inner optimization problem becomes qualitatively
more difficult to solve. In virtually all cases, acquisition functions are non-convex (frequently due to
the non-convexity of plausible explanations for f). Accordingly, increases in input dimensionality d
can be prohibitive to efficient query optimization. In the generalized setting with parallelism g > 1,
this issue is exacerbated by the additional scaling in q. While this combination of non-convexity
and (acquisition) dimensionality is problematic, the routine intractability of both non-myopic and
parallel acquisition poses a commensurate challenge.

As is generally true of integrals, the majority of acquisition functions are intractable. Even Gaus-
sian integrals, which are often preferred because they lead to analytic solutions for certain instances
of @]), are only tractable in a handful of special cases [13} [18| [20]. To circumvent the lack of
closed-form solutions, researchers have proposed a wealth of diverse methods. Approximation
strategies [13L[15/160], which replace a quantity of interest with a more readily computable one, work
well in practice but may not to converge to the true value. In contrast, bespoke solutions [[10} 20} |22]
provide (near-)analytic expressions but typically do not scale well with dimensionalityE] Lastly,
MC methods [27, 147, 53] are highly versatile and generally unbiased, but are often perceived as
non-differentiable and, therefore, inefficient for purposes of maximizing L.

Regardless of the method however, the (often drastic) increase in cost when evaluating £’s proxy
acts as a barrier to efficient query optimization, and these costs increase over time as shown in
Figure 1d. In an effort to address these problems, we now go inside the outer-loop and focus on
efficient methods for maximizing acquisition functions.

3 Maximizing acquisition functions

This section presents the technical contributions of this paper, which can be broken down into two
complementary topics: 1) gradient-based optimization of acquisition functions that are estimated via
Monte Carlo integration, and 2) greedy maximization of “myopic maximal” acquisition functions.
Below, we separately discuss each contribution along with its related literature.

3.1 Differentiating Monte Carlo acquisitions

Gradients are one of the most valuable sources of information for optimizing functions. In this sec-
tion, we detail both the reasons and conditions whereby MC acquisition functions are differentiable
and further show that most well-known examples readily satisfy these criteria (see Table|l).

By near-analytic, we refer to cases where an expression contains terms that cannot be computed exactly
but for which high-quality solvers exist (e.g. low-dimensional multivariate normal CDF estimators [20 [21]).



We assume that £ is an expectation over a multivariate normal belief p(y|X,D) = N(y; p, %)
specified by a GP surrogate such that (p, 3) < M (X). More generally, we assume that samples
can be generated as y* ~ p(y|X, D) to form an unbiased MC estimator of an acquisition function
L(X) ~ L, (X) £ L3 £(y"). Given such an estimator, we are interested in verifying whether

VLX)~ VL (X) 2 L3 viyh), @)
where V/ denotes the gradient of utility function ¢ taken with respect to X. The validity of MC
gradient estimator (2) is obscured by the fact that y* depends on X through generative distribution
p and that VL, is the expectation of ¢’s derivative rather than the derivative of its expectation.

Originally referred to as infinitesimal perturbation analysis 8}, 24], the reparameterization trick (37,
50] is the process of differentiating through an MC estimate to its generative distribution p’s param-
eters and consists of two components: i) reparameterizing samples from p as draws from a simpler
base distribution p, and ii) interchanging differentiation and integration by taking the expectation
over sample path derivatives.

Reparameterization Reparameterization is a way of interpreting samples that makes their differ-
entiability w.r.t. a generative distribution’s parameters transparent. Often, samples y* ~ p(y; )

can be re-expressed as a deterministic mapping ¢ : Z x @ — Y of simpler random variates

z¥ ~ p(z) [37,50]. This change of variables helps clarify that, if ¢ is a differentiable function

of y = ¢(z; 0), then % = 3—5) % by the chain rule of (functional) derivatives.

If generative distribution p is multivariate normal with parameters @ = (u, X), the corresponding
mapping is then ¢(z;0) £ p + Lz, where z ~ N(0,1) and L is X’s Cholesky factor such that
LLT = X. Rewriting (T) as a Gaussian integral and reparameterizing, we have

/ Ly)N(y; p, X)dy = / (p+ Lz)N(z;0,1)dz, 3)

where each of the ¢ terms ¢} in both @’ and b’ is transformed as ¢} = (¢; — pu; — Y, j<iLij 2;)/ Lis.

The third column of Table (1| grounds (3] with several prominent examples. For a given draw y* ~
N (p, X), the sample path derivative of £ w.r.t. X is then

di(y®) dy* dM(X)

ky _
VYD) = 5 aMX) X

“4)

where, by minor abuse of notation, we have substituted in y* = ¢ (z*; M(X)). Reinterpreting y
as a function of z therefore sheds light on individual MC sample’s differentiability.

Interchangeability Since £,,, is an unbiased MC estimator consisting of differentiable terms, it is
natural to wonder whether the average sample gradient V.£,,, ) follows suit, i.e. whether

VL(X) = VEy [((y)] = Ey [V(y)] % VL (X), 5)

where = denotes a potential equivalence when interchanging differentiation and expectation. Nec-
essary and sufficient conditions for this interchange are that, as defined under p, integrand ¢ must
be continuous and its first derivative ¢/ must a.s. exist and be integrable [8, 24]. Wang et al. [59]
demonstrated that these conditions are met for a GP with a twice differentiable kernel, provided
that the elements in query set X are unique. The authors then use these results to prove that (2) is
an unbiased gradient estimator for the parallel Expected Improvement (g-EI) acquisition function
[L10, 220 153]]. In later works, these findings were extended to include parallel versions of the Knowl-
edge Gradient (KG) acquisition function [61}62]]. Figure[2ld (bottom right) visualizes gradient-based
optimization of MC ¢-ElI for parallelism g = 2.

Extensions Rather than focusing on individual examples, our goal is to show differentiability for
a broad class of MC acquisition functions. In addition to its conceptual simplicity, one of MC
integration’s primary strengths is its generality. This versatility is evident in Table[I] which catalogs
(differentiable) reparameterizations for six of the most popular acquisition functions. While some
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Figure 2: (a) Pseudo-code for BO outer-loop with greedy parallelism, the inner optimization problem is boxed

in red. (b—c) Successive iterations of greedy maximization, starting from the posterior shown in Figure 1b. (d)

On the left, greedily selected query ‘yY<’; on the right and from ‘X’ to ‘¥¢’, trajectory when jointly optimizing

parallel queries x; and x> via stochastic gradient ascent. Darker colors correspond with larger acquisitions.

of these forms were previously known (EI and KG) or follow freely from the above (SR), others
require additional steps. We summarize these steps below and provide full details in Appendix [A]

In many cases of interest, utility is measured in terms of discrete events. For example, Probability
of Improvement [40, 58] is the expectation of a binary event ep;: “will a new set of results improve
upon a level a?” Similarly, Entropy Search [27] contains expectations of categorical events egg:
“which of a set of random variables will be the largest?” Unfortunately, mappings from continuous
variables y to discrete events e are typically discontinuous and, therefore, violate the conditions for
@). To overcome this issue, we utilize concrete (continuous to discrete) approximations in place of
the original, discontinuous mappings [31} 41].

Still within the context of the reparameterization trick, [31}41]] studied the closely related problem
of optimizing an expectation w.r.t. a discrete generative distribution’s parameters. To do so, the
authors propose relaxing the mapping from, e.g., uniform to categorical random variables with a
continuous approximation so that the (now differentiable) transformed variables closely resemble
their discrete counterparts in distribution. Here, we first map from uniform to Gaussian (rather than
Gumbel) random variables, but the process is otherwise identical. Concretely, we can approximate
PI’s binary event as

ém(X;a,7) = max (0 (Y=o/7)) ~ max (17 (y — a)) , (6)

where 1~ denotes the left-continuous Heaviside step function, ¢ the sigmoid nonlinearity, and
7 € [0, 00] acts as a temperature parameter such that the approximation becomes exact as 7 — 0.
Appendix [A.T|further discusses concrete approximations for both PI and ES.

Lastly, the Upper Confidence Bound (UCB) acquisition function [S5]] is typically not portrayed as
an expectation, seemingly barring the use of MC methods. At the same time, the standard definition
UCB(x;8) = u+ '/2¢ bares a striking resemblance to the reparameterization for normal random
variables ¢(z; u,0) = p + oz. By exploiting this insight, it is possible to rewrite this closed-form
expression as UCB(x; 8) = f:o yN (y; i, 2 fo?)dy. Formulating UCB as an expectation allows
us to naturally parallelize this acquisition function as

UCB(X; 8) = Ey [ max(u + /#7/2[5)]. (7)
where |y| = |y — p| denotes the absolute value of y’s residuals. In contrast with existing paral-

lelizations of UCB [12L15]l, Equation (7) directly generalizes its marginal form and can be efficiently
estimated via MC integration (see Appendix [A.2]for the full derivation).

These extensions further demonstrate how many of the apparent barriers to gradient-based opti-
mization of MC acquisition functions can be overcome by borrowing ideas from new (and old)
techniques.

3.2 Maximizing myopic maximal acquisitions

This section focuses exclusively on the family of myopic maximal (MM) acquisition functions:
myopic acquisition functions defined as the expected max of a pointwise utility function /, i.e.



L(X) = Ey[l(y)] = Ey[max {(y)]. Of the acquisition functions included in Table 1| this family
includes EI, PI, SR, and UCB. We show that these functions have special properties that make
them particularly amenable to greedy maximization.

Greedy maximization is a popular approach for selecting near-optimal sets of queries X to be evalu-
ated in parallel [1} 9 12} [15 135, 51]]. This iterative strategy is so named because it always “greedily”
chooses the query x that produces the largest immediate reward. Ateach stepj = 1,...,q, a greedy
maximizer treats the j—1 preceding choices X _; as constants and grows the set by selecting an addi-
tional element x; € arg max, ¢y £(X_; U{x}; D) from the set of possible queries X. Algorithm 2
in Figure [2] outlines this process’s role in BO’s outer-loop.

Submodularity Greedy maximization is often linked to the concept of submodularity (SM).
Roughly speaking, a set function £ is SM if its increase in value when adding any new point x; to an
existing collection X _; is non-increasing in cardinality &k (for a technical overview, see [2]). Greed-
ily maximizing SM functions is guaranteed to produce near-optimal results [39}143,/46]. Specifically,
if £ is a normalized SM function with maximum L£*, then a greedy maximizer will incur no more
than 1 £* regret when attempting to solve for X* € arg maxx ¢ yq £(X).

In the context of BO, SM has previously been appealed to when establishing outer-loop regret
bounds [[12} 15, 155]. Such applications of SM utilize this property by relating an idealized BO
strategy to greedy maximization of a SM objective (e.g., the mutual information between black-box
function f and observations D). In contrast, we show that the family of MM acquisition functions
are inherently SM, thereby guaranteeing that greedy maximization thereof produces near-optimal
choices X at each step of BO’s outer—loopE] We begin by removing some unnecessary complexity:

1. Let f* ~ p(f|D) denote the k-th possible explanation of black-box f given observations D.
By marginalizing out nuisance variables f(X \ X), £ can be expressed as an expectation over
functions f* themselves rather than over potential outcomes y* ~ p(y|X, D).

2. Belief p(f|D) and sample paths f* depend solely on D. Hence, expected utility £(X; D) =
Ef [¢(f(X))] is a weighted sum over a fixed set of functions whose weights are constant.
Since non-negative linear combinations of SM functions are SM [39]], £(-) is SM so long as

the same can be said of all functions £(f*(-)) = max/ (f*(-)).

3. As pointwise functions, f* and / specify the set of values mapped to by X. They therefore
influences whether we can normalize the utility function such that £(#) = 0, but do not impact
SM. Appendix [A.3] discusses the technical condition of normalization in greater detail. In
general however, we require that vy,j, = mingex i (f*(x)) is guaranteed to be bounded from
below for all functions under the support of p(f|D).

Having now eliminated confounding factors, the remaining question is whether max(-) is SM. Let
V be the set of possible utility values and define max(@)) = vy, Then, given sets A C B C V and
Vv €V, it holds that

max(AU{v}) — max(A) > max(BU {v}) — max(B). (8)

Proof: We prove the equivalent definition max(.A) + max(B) > max(A U B) + max(A N B).
Without loss of generality, assume max(A U B) = max(A). Then, max(B) > max(A N B)
since, for any C C B, max(B) > max(C).

This result establishes the MM family as a class of SM set functions, providing strong theoretical
justification for greedy approaches to solving BO’s inner-optimization problem.

Incremental form So far, we have discussed greedy maximizers that select a j-th new point x;
by optimizing the joint acquisition £(Xy.;;D) = Ey p [((y1.;)] originally defined in (I). A
closely related strategy [12| (15, 23 [53]] is to formulate the greedy maximizer’s objective as (the
expectation of) a marginal acquisition function £. We refer to this category of acquisition functions,
which explicitly represent the value of X;.; as that of X_; incremented by a marginal quantity,
as incremental. The most common example of an incremental acquisition function is the iterated

3 An additional technical requirement for SM is that the ground set X’ be finite. Under similar conditions,
SM-based guarantees have been extended to infinite ground sets [55], but we have not yet taken these steps.



expectation Ey_|p [L(x;;D;)], where D; = D U {(xi,y;) }i<; denotes a fantasy state. Because
these integrals are generally intractable, MC integration (Section [3.1) is typically used to estimate
their values by averaging over fantasies formed by sampling from p(y . ;|X_;, D).

In practice, approaches based on incremental acquisition functions (such as the mentioned MC es-
timator) have several distinct advantages over joint ones. Marginal (myopic) acquisition functions
usually admit differentiable, closed-form solutions. The latter property makes them cheap to eval-
uate, while the former reduces the sample variance of MC estimators. Moreover, these approaches
can better utilize caching since many computationally expensive terms (such as a Cholesky used to
generate fantasies) only change between rounds of greedy maximization.

A joint acquisition function £ can always be expressed as an incremental one by defining £ as the
expectation of the corresponding utility function ¢£’s discrete derivative

A(Xj; X<j7 D) = EYI:jID [5(yj; Y<j)} = L(Xl:j; D) - L(X<j§ D)7 9
with 0(y;:y ;) = £(y1:j) —€(y~;) and L(0; D) = 0 so that L(X1.4;, D) = 3:1 A(xj;X_;, D).
To show why this representation is especially useful for MM acquisition functions, we reuse the
notation of (8) to introduce the following straightforward identity

max(B) — max(A) = ReLU (max(B \ A) — max(.A)). (10)

Proof: Since vy is defined as the smallest possible element of either set, the ReLU’s argument is
negative if and only if B’s maximum is a member of .4 (in which case both sides equate to zero). In
all other cases, the ReLU can be eliminated and max(B) = max(B \ .A) by definition.

Reformulating the MM marginal gain function as §(y;; y.;) = ReLU(¢(y,;)—¢(y.;)) now gives the
desired result: that the MM family’s discrete derivative is the “improvement” function. Accordingly,
the conditional expectation of (9) given fantasy state D; is the expected improvement of /, i.e.

Ey o, [0(y53y<5)] = Ele (x5 D) = /F [0(y;) — Ly <j)] p(y;|x5, Dj)dy;, (an

where T'; £ {y, : £(y;) > ¢(y.;)}. Since marginal gain function § primarily acts to lower bound
a univariate integral over y;, (IT) often admits closed-form solutions. This statement is true of all
MM acquisition functions considered here, making their incremental forms particularly efficient.

Putting everything together, an MM acquisition function’s joint and incremental forms equate as
L(X1.4;D) = 23:1 Ey_,p [El¢ (x;D;))]. For the special case of Expected Improvement per se
(denoted here as Ly, to avoid confusion), this expression further simplifies to reveal an exact equiv-
alence whereby Lz (X1.4;D) = Z?Zl Ey_,p [Lei(x5;D;)]. Appending compares perfor-
mance when using joint and incremental forms, demonstrating how the latter becomes increasingly
beneficial as the dimensionality of the (joint) acquisition function ¢ X d grows.

4 Experiments

We assessed the efficacy of gradient-based and submodular strategies for maximizing acquisition
function in two primary settings: “synthetic”, where task f was drawn from a known GP prior, and
“black-box”, where f’s nature is unknown to the optimizer. In both cases, we used a GP surrogate
with a constant mean and an anisotropic Matérn-%2 kernel. For black-box tasks, ambiguity regarding
the correct function prior was handled via online MAP estimation of the GP’s (hyper)parameters.
Appendix [B.T] further details the setup used for synthetic tasks.

We present results averaged over 32 independent trials. Each trial began with three randomly cho-
sen inputs, and competing methods were run from identical starting conditions. While the general
notation of the paper has assumed noise-free observations, all experiments were run with Gaussian
measurement noise leading to observed values § ~ N (f(x), le—3).

Acquisition functions We focused on parallel MC acquisition functions £,,, particularly EI and
UCB. Results using EI are shown here and those using UCB are provided in extended results
(Appendix [B.3). To avoid confounding variables when assessing BO performance for different
acquisition maximizers, results using the incremental form of ¢-EI discussed in Section[3.2]are also
reserved for extended results.
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Figure 3: Average performance of different acquisition maximizers on synthetic tasks from a known prior,
given varied runtimes when maximizing Monte Carlo g-EI. Reported values indicate the log of the immediate
regret 1og,( | fmax — f(x™)|, where x* denotes the observed maximizer x* € arg max,.p 9.

In additional experiments, we observed that optimization of PI and SR behaved like that of EI and
UCB, respectively. However, overall performance using these acquisition functions was slightly
worse, so further results are not reported here. Across experiments, the ¢-UCB acquisition function
introduced in Section outperformed ¢-EI on all tasks but the Levy function.

Generally speaking, MC estimators L,,, come in both deterministic and stochastic varieties. Here,
determinism refers to whether or not each of m samples y* were generated using the same random
variates z" within a given outer-loop iteration (see Section . Together with a decision regard-
ing “batch-size” m, this choice reflects a well-known tradeoff of approximation-, estimation-, and
optimization-based sources of error when maximizing the true function £ [6]. We explored this
tradeoff for each maximizer and summarize our findings below.

Maximizers We considered a range of (acquisition) maximizers, ultimately settling on stochastic
gradient ascent (ADAM, [36]]), Covariance Matrix Adaptation Evolution Strategy (CMA-ES, [26])
and Random Search (RS, [4]). Additional information regarding these choices is provided in Ap-
pendix [B.1] For fair comparison, maximizers were constrained by CPU runtime. At each outer-loop
iteration, an “inner budget” was defined as the average time taken to simultaneously evaluate N
acquisition values given equivalent conditions. When using greedy parallelism, this budget was split
evenly among each of g iterations. To characterize performance as a function of allocated runtime,
experiments were run using inner budgets N € {212 214 2161

For ADAM, we used stochastic minibatches consisting of m = 128 samples and an initial learning
rate 77 = !/40. To combat non-convexity, gradient ascent was run from a total of 32 (64) starting posi-
tions when greedily (jointly) maximizing £ Appendix [B.2]details the multi-start initialization strat-
egy. As with the gradient-based approaches, CMA-ES performed better when run using stochastic
minibatches (m = 128). Furthermore, reusing the aforementioned initialization strategy to generate
CMA-ES’s initial population of 64 samples led to additional performance gains.

Empirical results Figures [3| and 4 present key results regarding BO performance under varying
conditions. Both sets of experiments explored an array of input dimensionalities d and degrees of
parallelism ¢ (shown in the lower left corner of each panel). Maximizers are grouped by color, with
darker colors denoting use of greedy parallelism; inner budgets are shown in ascending order from
left to right.

Results on synthetic tasks (Figure [3)), provide a clearer picture of the maximizers’ impacts on the
full BO loop by eliminating the model mismatch. Across all dimensions d (rows) and inner budgets
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Figure 4: Average performance of different acquisition maximizers on black-box tasks from an unknown prior,
given varied runtimes when maximizing Monte Carlo g-EI. Reported values indicate the log of the immediate
regret 1og,( | fmax — f(x™)|, where x* denotes the observed maximizer x* € arg max,.p 9.

N (columns), gradient-based maximizers (orange) were consistently superior to both gradient-free
(blue) and naive (green) alternatives. Similarly, submodular maximizers generally surpassed their
joint counterparts. However, in lower-dimensional cases where gradients alone suffice to optimize
L., the benefits for coupling gradient-based strategies with near-optima seeking submodular maxi-
mization naturally decline. Lastly, the benefits of exploiting gradients and submodularity both scaled
with increasing acquisition dimensionality g X d.

Trends are largely identical for black-box tasks (Figure [)), and this commonality is most evident
for tasks sampled from an unknown GP prior (final row). These runs were identical to ones on syn-
thetic tasks (specifically, the diagonal of Figure [3)) but where knowledge of f’s prior was withheld.
Outcomes here clarify the impact of model mismatch, showing how maximizers maintain their in-
fluence. Finally, performance on Hartmann-6 (top row) serves as a clear indicator of the importance
for thoroughly solving the inner optimization problem. In these experiments, performance improved
despite mounting parallelism due to a corresponding increase in the inner budget.

Overall, these results clearly demonstrate that both gradient-based and submodular approaches to
(parallel) query optimization lead to reliable and, often, substantial improvement in outer-loop per-
formance. Furthermore, these gains become more pronounced as the acquisition dimensionality
increases. Viewed in isolation, maximizers utilizing gradients consistently outperform gradient-free
alternatives. Similarly, greedy strategies improve upon their joint counterparts in most cases.

5 Conclusion

BO relies upon an array of powerful tools, such as surrogate models and acquisition functions, and
all of these tools are sharpened by strong usage practices. We extend these practices by demonstrat-
ing that Monte Carlo acquisition functions provide unbiased gradient estimates that can be exploited
when optimizing them. Furthermore, we show that many of the same acquisition functions form
a family of submodular set functions that can be efficiently optimized using greedy maximization.
These insights serve as cornerstones for easy-to-use, general-purpose techniques for practical BO.
Comprehensive empirical evidence concludes that said techniques lead to substantial performance
gains in real-world scenarios where queries must be chosen in finite time. By tackling the inner opti-
mization problem, these advances directly benefit the theory and practice of Bayesian optimization.
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A Methods Appendix
A.1 Concrete approximations

Concrete Probability of Improvement (g = 1) Concrete Entropy Search (¢ = 1) Gradient-based optimization (g = 2)
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Figure 5: Left: Concrete approximation to PI for temperatures 7 € [le—3,le—1]. Middle: Concrete ap-

proximation to ES for temperatures 7 € [le—3,1le—1]. Right: Stochastic gradient ascent trajectories when

maximizing concrete approximation to parallel versions of PI (top left) and ES (bottom right), both with a

temperature 7 = 0.01.

As per Section 3.1} utility is sometimes measured in terms of discrete events e € £. Unfortunately,
mappings from continuous values y € )Y to the space of discrete events £ are typically discon-
tinuous and, therefore, violate a necessary condition for interchangeability of differentiation and
expectation. In the generalized context of differentiating a Monte Carlo integral w.r.t. the param-
eters of a discrete generative distribution, 1] proposed to resolve this issue by introducing a
continuous approximation to the aforementioned discontinuous mapping.

As a guiding example, assume that 6 is a self-normalized vector of ¢ parameters such that
V0 € 6,0 > 0and that z = [z, ..., zq]T is a corresponding vector of uniform random variables.
Subsequently, let ¢(z;0) = log(—9/logz) be defined as random variables y’s reparameterization.
Denoting by y* = max(y), the vector-valued function e : Y7 — {0, 1}7 defined as

e(z;0)=[y1 >y, ...,y >y =1" (y —¢") (12)

then reparameterizes a (one-hot encoded) categorical random variable e having distribution
p(e;0) = T17, 65" Importantly, we can rewrite (I2) as the zero-temperature limit of as continuous
mapping € : Y9 +— [0, 1]7 defined as

é(y; 7) = softmax (y —V > = softmax (X) , (13)
T T

where 7 € [0, o0] is a temperature parameter. For non-zero temperatures 7 > 0, we obtain a relaxed
version of the original (one-hot encoded) categorical event. Unlike the original however, the relaxed
event satisfies the conditions for interchanging differentiation and expectation.

Returning to the case of an acquisition function () defined over a multivariate normal belief p(y|X)
with parameters & = (u, X), random variables y are instead reparameterized by ¢(z;0) = p +
L g(z), where g denotes, e.g., the Box-Muller transform of uniform rvs z = [z1,. .., z2q]T. This
particular example demonstrates how Entropy Search’s innermost integrand can be relaxed using a
concrete approximation. Identical logic can be applied to approximate Probability of Improvement’s
integrand.

For Monte Carlo versions of both acquisition functions, Figure[5]shows the resulting approximation
across a range of temperatures along with gradient-based optimization in the parallel setting ¢ = 2.
Whereas for high temperatures 7 the approximations wash out, both converge to the corresponding
true function as 7 — 0.
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A.2 Parallel Upper Confidence Bound (¢g-UCB)

For convenience, we begin by reproducing (3)) as indefinite integrals,

oo

£x) = [ T UV (S dy = 7t v a0, 1

— o0 — o0

Working backward through this equation, we derive an exact expression for parallel UCB. To this
end, we introduce the definition

\/Z / 02| (2;0,1)dz = V2r / yN (y;0,0%)dy = o, (14)
—00 0

where |-| denotes the (pointwise) absolute value operatorE] Using this fact and given z ~ N(0, 1),
let 62 £ (7/2)0? such that E|62| = $"/?¢. Under this notation, marginal UCB can be expressed as

UCB(x; 8) = p+ 87?0
=/ (u+162]) N(2;0,1)dz (15)

— 00

= [ e PN G067y

— 00

where (1, 02) parameterize a Gaussian belief over y = f(x) and v = y—u denotes y’s residual. This
integral form of UCB is advantageous precisely because it naturally lends itself to the generalized
expression

oo

UCB(X; §) = / max(ps + [N (7: 0, £)dy

— o0

_ / max (g + |Lz|) A (z; 0, 1)dz 16)

— o0

Q

1 .
— E max(p 4 |Lz"|) for zF ~ N(0,1),
m

k=1

where LLT = 3 £ (87/2)%. This representation has the requisite property that, for any size ¢’ < ¢
subset of X, the value obtained when marginalizing out the remaining ¢ — ¢ terms is its ¢’-UCB
value.

Previous methods for parallelizing UCB have approached the problem by imitating a purely se-
quential strategy [12| [15]. Because a fully Bayesian approach to sequential selection generally
involves an exponential number of posteriors, these works incorporate various well-chosen heuris-
tics for the purpose of efficiently approximate parallel UCBE] By directly addressing the associated
g-dimensional integral however, Eq. (I6) avoids the need for such approximations and, instead,
unbiasedly estimates the true value.

Finally, the special case of marginal UCB (I3) can be further simplified as
VOB B) = p+2 [ 6N (0.0)ds = [ uN 2o a7
0 Iz

revealing an intuitive form — namely, the expectation of a Gaussian random variable (with rescaled
covariance) above its mean.

l1—e™ a%v?
2q2
Due to the stochastic nature of the mean updates, the number of posteriors grows exponentially in g.

“This definition comes directly from the standard integral identity [25]: fob ze~ U 4y =
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A.3 Normalizing utility functions

An additional requirement when proving the near-optimality of greedy maximization for a SM func-
tion £ is that £ be a normalized set function such that £()) = 0. As in Section let vy, be
defined as the smallest possible utility value given a utility function ¢ defined over a ground set f*
indexed by X. Because the max is additive such that max(y — vmin) = max(y) — Umin, NOI-
malization is only necessary when establishing regret bounds and simply requires lower bounding
Umin > —00. This task is is facilitated by the fact that v,;, pertains to the outputs of £ rather than to
(a belief over) black-box f. Addressing the matter by case, we have:

a. Expected Improvement: For a given threshold «, let improvement be defined (pointwise) as
ReLU(y — o) = max(0,y — «). EI’s integrand is then the largest improvement g, (y; o) =
max(ReLU(y — a))E] Applying the rectifier prior to the max defines /y; as a normalized,
submodular function.

b. Probability of Improvement: PI’s integrand is defined as £p,(y, @) = max(1~ (y — «)), where
1~ denotes the left-continuous Heaviside step function. Seeing as the Heaviside maps )
{0, 1}, £, is already normalized.

c. Simple Regret: The submodularity of Simple Regret was previously discussed in [1]], under the
assumption vy,;; = 0. More generally, normalizing ¢ requires bounding f’s infimum under p.
Technical challenges for doing so make submodular maximization of SR the hardest to justify.

d. Upper Confidence Bound: As per (7), define UCB’s integrand as the maximum over y’s ex-
pectation incremented by non-negative terms. By definition then, ;.5 is lower bounded by the
predictive mean and can therefore be normalized as fycp = max(p + || — Vmin), provided
that vy = minkey p(x) is finite. For a zero-mean GP with a twice differentiable kernel, this
condition is guaranteed for bounded functions f.

A4 Expected Improvement’s incremental form

For the special case of Lg;, the expected improvement of improvement integrand ¢, simplifies as:

Elyy, (x5,D;) = Ey, [ReLU (ReLU(y; — o) — maxReLU(y_; — ))]

=E,, [ReLU (max(c,y;) — max(a, maxy_;))] (18)
=E,, [ReLU (y; — max(a, maxy_;))]

= L(x;;Dj),

where o = max({y : V(x, y) € D}) denotes the initial improvement threshold.

B Experiments Appendix

B.1 Experiment Details

Synthetic tasks To eliminate model error, experiments were first run on synthetic tasks drawn
from a known prior. For a GP with a continuous, stationary kernel, approximate draws f can be
constructed via a weighted sum of basis functions sampled from the corresponding Fourier dual
(5, 28] 48], [49]. For a Matérn-+/2 kernel with anisotropic lengthscales A~!, the associated spectral
density is the multivariate ¢-distribution ¢,,(0, A~!) with v degrees of freedom [38]. For our exper-
iments, we set A = (4/16) I and approximated f using 2'4 basis functions, resulting in tasks that
were sufficiently challenging and closely resembled exact draws from the prior.

Maximizers In additional to findings reported in the text, we compared several gradient-based ap-
proaches (incl. L-BFGS-B and Polyak averaging [59]) and found that ADAM consistently delivered
superior performance. CMA-ES was included after repeatedly outperforming the rival black-box
method DIRECT [33]. RS was chosen as a naive acquisition maximizer after Successive Halving
(SH, [30, [34]]) failed to yield significant improvement. For consistency when identifying the best
proposed query set(s), both RS and SH used deterministic estimators £,,. Whereas RS was run

60 is often written as the improvement of max(y); however, these two forms are equivalent.
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with a constant batch-size m = 1024, SH started small and iteratively increased m to refine esti-
mated acquisition values for promising candidates using a cumulative moving average and cached
posteriors.

B.2 Multi-start initialization

As noted in [59], gradient-based query optimization strategies are often sensitive to the choice of
starting positions. This sensitivity naturally occurs for two primary reasons. First, acquisition func-
tions £ are consistently non-convex. As a result, it is easy for members of query set X C X to get
stuck in local regions of the space. Second, acquisition surfaces are frequently patterned by (large)
plateaus offering little expected utility. Such plateaus typically emerge when corresponding regions
of X are thought to be inferior and are therefore excluded from the search process.

To combat this issue, we appeal to the submodularity of £ (see Section [3.2). Assuming L is sub-
modular, then acquisition values exhibit diminishing returns w.r.t. the degree of parallelism q. As a
result, the marginal value for querying a single point x € X upper bounds its potential contribution
to any query set X s.t. x € X. Moreover, marginal acquisition functions £(x) are substantially
cheaper to compute that parallel ones (see Figure[Ild). Accordingly, we can initialize query sets X
by sampling from £(x). By doing so we gracefully avoid initializing points in excluded regions,
mitigating the impact of acquisition plateaus.

In our experiments we observed consistent performance gains when using this strategy in conjunc-
tion with most query optimizers. To accommodate runtime constraints, the initialization process was
run for the first tenth of the allocated time.

Lastly, when greedily maximizing £ (equiv. in parallel asynchronous cases), “pending” queries were
handled by fantasizing observations at their predictive mean. Conditioning on the expected value
reduces uncertainty in the vicinity of the corresponding design points and, in turn, promotes diversity
within individual query sets [15]. To the extent that this additional step helped in our experiments,
the change in performance was rather modest.

B.3 Extended Results

Additional results for both ¢-UCB (Section[3.1) and incremental form ¢-EI (Section [3.2)) are shown
here. These experiments were run under identical conditions to those in Section

Parallel UCB We set confidence parameter 3 = 2. Except for on the Levy benchmark, ¢-UCB
outperformed g-EI, and this result also held for both Branin-Hoo and Hartmann-3 (not shown).

Incremental g-EI  We tested performance using m € {16, 32,64, 128} states. At the end of the

first round of greedy selection k = 1, m outcomes ygi) ~ p(y1]|x1, D) were fantasized, producing

m distinct fantasy states DY) = DU{(x1, y%l))}. At all other steps k € [2, ¢], a single outcome was

fantasize for each state such that the number of states remained constant. Additionally, fantasized
outcomes were never resampled.

Figure [§] compares results obtained when greedily maximizing incremental ¢-EI (with m = 16 to
those obtained when greedily maximizing joint ¢-EI (as discussed in Section ). In contrast with
the larger body of results, CMA-ES combined with incremental g-EI outperformed gradient-based
optimization for higher dimensional acquisition surfaces.
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Figure 6: Average performance of different acquisition maximizers on synthetic tasks from a known prior,
given varied runtimes when maximizing Monte Carlo g-UCB. Reported values indicate the log of the immedi-

ate regret log, | fmax —
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Figure 7: Average performance of different acquisition maximizers on black-box tasks from an unknown
prior, given varied runtimes when maximizing Monte Carlo g-UCB. Reported values indicate the log of the
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Figure 8: Average performance when greedily maximizing joint vs. incremental forms of ¢-EI.
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