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Additional materials and methods 

Mouse models of Alzheimer’s disease 

The RNA samples used for this study were from the same mice we used previously, 

described in detail in Matarin et al., (2015), therefore no further mice were bred for 

this study. Briefly, the hippocampi of male mice at 2, 4, 8, or 18 months were used. 

At least three mice were used from each of the following five transgenic lines (except 

for the TAS10-mice at 4 months, and tau-mice at 18 months, where only two mice 

were available), plus at least seven littermate controls from the original parental lines. 

The five mouse lines used were as follows: 

TAS10-mice: human APP (K670N/M671L); hemizygous on Thy1 promoter 

(Richardson et al., 2003), 

TPM-mice: human PSEN1 (M146V); hemizygous on Thy1 promoter (Howlett et al., 

2004),  

HET-TASTPM-mice: hemizygous for both of the APP and PSEN1 transgenes 

(Medawar et al., 2019), 

HO-TASTPM-mice: as above but both transgenes bred to homozygosity (Medawar et 

al., 2019), 

Tau-mice: human microtubule-associated protein tau (MAPT; P301L), 

hemizygous on Camk2a promoter (Joel et al., 2019), 

WT-mice: age-matched wild-type mice of the same C57Bl/6J background. 



Mouse transcriptome work 

The quality and concentration of the total RNA from the Matarin et al., (2015) cohort 

was assessed using capillary electrophoresis of each sample. For this new study, 

RNA-seq library preparation and sequencing was performed by Eurofins Genomics 

(Ebersberg, Germany). RNA strand-specific libraries were created using 

commercially available kits according to the manufacturer’s instructions (TruSeq 

Stranded mRNA Library Preparation Kit, Illumina). In brief, poly(A)-RNA was 

extracted from total RNA using an oligo(dT)-bead based method. After fragmentation 

of the mRNA, first-strand and dUTP-based second strand synthesis was carried out, 

followed by end-repair, A-tailing, ligation of the indexed Illumina adapter and 

digestion of the dUTP-strand. Size selection was performed using a bead-based 

method. After PCR amplification, the resulting fragments were purified, pooled, 

quantified and used for cluster generation. For sequencing, pooled libraries were 

loaded on the cBot (Illumina) and cluster generation was performed according the 

manufacturer’s instructions. Paired-end sequencing using 100 bp read length 

(multiplex 12 samples per lane - 28M reads) was performed on a HiSeq2500 (HiSeq 

Control Software 2.2.58) using HiSeq Flow Cell v4 and TruSeq SBS Kit v4. For 

processing of raw data RTA version 1.18.64 and bcl2fastq-1.8.4 was used to generate 

FASTQ files. Adaptors and low quality base pairs were removed from FASTQ files 

using Trim Galore (Babraham Bioinformatics). Transcripts were quantified with 

Salmon (Patro et al., 2017), using gene annotation from ENSEMBL GRCm38. 

Salmon was used because it incorporates GC correction and accounts for fragment 

positional bias. To obtain gene level quantification from the transcripts, and correct 

for average transcript length and library size, expressed as transcripts per million 

(TPM), the tximport R package was used (Soneson et al., 2015). TPM values were 



log2 transformed, and genes were considered expressed when log2 TPM values 

displayed a mean >1·5 for a given gene, when gene TPM values were averaged for 

each genotype at each age (resulting in a total of 18,562 genes expressed). 

 

Weighted gene co-expression network analyses (WGCNAs) were performed as 

described in Matarin et al., (2015), using the recommended parameters from the 

original analysis developers (Zhang and Horvath, 2005; Horvath et al., 2006; Oldham 

et al., 2006; Langfelder and Horvath, 2008). R code and tutorials available from: 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/ind

ex.html). Co-expression networks were built using the WGCNA package in R. Genes 

with variable expression patterns (coefficient of variation >5% for wild-type, amyloid 

and tau mice) from log2 TPM values were selected for network analyses resulting in 

13,536 genes for network analyses. The module of genes with the highest significant 

correlation of the module eigengene with amyloid or tau pathological features was 

selected for analysis (amyloid, correlation 0·94, p = 3e-41; tau, correlation 0·82, p = 

4e-12). The gene module with the highest correlation to both amyloid and tau 

pathological features contained genes from the innate immune system. The 

topological overlap measure (TOM) connectivity values were used to plot the network 

diagrams (TOM > 0·39 for amyloid-associated module, and TOM > 0·36 for tau-

associated module, to plot a similar number of genes, approximately the top 150 

genes with the highest connections per module). Hub genes were considered to be 

those with at least 15 connections to other genes as Matarin et al., (2015), and Miller 

et al., (2010). 

 



Human sample co-expression network construction and annotation 

Co-expression networks were generated from RNA-seq based gene expression 

profiling of 635 pre-frontal cortex samples from the ROS/MAP project (Bennett et 

al., 2012a; Bennett et al., 2012b; De Jager et al., 2018). The cognitive decline 

reported in the original studies cited above was used as a covariate to construct four 

networks: all samples network, not AD, probable AD and AD. WGCNA (Langfelder 

and Horvath, 2008) was used with an optimization for constructing more biologically 

meaningful co-expression networks (Botia et al., 2017). Gene expression was log2 

transformed previous to any data analysis task. Then batch effects were corrected 

using ComBAT (Johnson et al., 2007), unknown hidden effect covariates with SVA 

were obtained (Leek and Storey, 2007), and the residuals obtained were used by 

regressing the gene expression with SVA covariates, age and gender. Then the 

network modules were annotated for enrichment of Gene Ontology, REACTOME 

(Fabregat et al., 2018), and KEGG (Kanehisa et al., 2016) pathways using gProfileR 

(Reimand et al., 2007). 

 

Colocalization with monocyte eQTL datasets 

Coloc (version 3.1, see below for Software and algorithms) was applied to test for 

colocalization between AD loci surrounding the four novel risk genes (OAS1, 

LAPTM5, ITGAM, and LILRB4) and eQTLs (Giambartolomei et al., 2014). While no 

microglial eQTL datasets exist to date, eQTL analyses have been performed using 

monocytes and iPSC-derived macrophages (at rest and stimulated with various 

immunostimulants, such as IFN-γ) (Kim-Hellmuth et al., 2017; Alasoo et al., 2018). 



Coloc was run using default parameters and priors on all SNPs that: 1) had eQTLs 

tagging one of the four novel genes (this included all tested SNP-gene associations, 

including non-significant eQTLs); and 2) had overlapping SNPs in the AD GWAS. 

All loci were excluded for which PP3 + PP4 < 0·8, to exclude loci which were 

underpowered to detect colocalization. Loci with PP4/PP3 ≥ 2 were considered 

colocalized due to a single shared causal variant (PP4), as opposed to two distinct 

causal variants (PP3). 

 

Software and algorithms 

Mouseac, this paper and Matarin et al. (2015): www.mouseac.org 

WGCNA (Langfelder and Horvath, 2008): 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/ind

ex.html (accessed September 2018) 

Braineac (Ramasamy et al., 2014): www.braineac.org (accessed September 2018) 

1,000 genomes (Genomes Project et al., 2015): www.1000genomes.org and 

http://www.internationalgenome.org (accessed September 2018) 

MAGMA (de Leeuw et al., 2015): www.ctg.cncr.nl/software/magma (accessed May 

2019) 

Coloc, version 3.1, (Giambartolomei et al., 2014): 

https://github.com/chr1swallace/coloc (accessed September 2018) 

ROS/MAP (Bennett et al., 2012a; Bennett et al., 2012b; De Jager et al., 2018): 

https://www.synapse.org/#!Synapse:syn3219045 (accessed September 2018) 



i-CisTarget (Imrichova et al., 2015): https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget 

(accessed September 2018) 

GTEx V6 gene expression (Consortium GT, 2015): https://gtexportal.org/home 

(accessed September 2018) 

Coexp (Botia et al., 2017): https://github.com/juanbot/CoExpNets (accessed 

September 2018) 

Myeloid landscape datasets (Friedman et al., 2018): http://research-

pub.gene.com/BrainMyeloidLandscape/# (accessed June 2019) 
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Supplementary Figure 1 How the RNA-seq, gene co-expression analysis and then 

comparison of the genes in the mouse microglial co-expression module to human 

IGAP GWAS variants at the gene-level relate to other datasets we have 

published 

A cohort of APP (K670N/M671L)/PSEN1 (M146V) and tau (P301L) transgenic mice 

were bred for Matarin et al., (2015), where the amyloid and tau pathology were 

assessed by immunohistochemistry, and microarrays were performed to identify gene 

expression changes and co-expression networks expressed by microglia associated 

with pathology. Parallel cohorts of mice from the APP/PSEN1 lines (represented by 

the dashed arrow) were then used to count the increase in microglial number and 

activity in the CA1 of the hippocampus, alongside electrophysiological deficits in 

synaptic plasticity of acute hippocampal slices and mild changes to behaviour 

(Medawar et al., 2019). For this new study, we performed RNA-seq using the total 

RNA from the hippocampus of the exact same mice used for study by Matarin et al., 

(2015), and using gene co-expression network analyses we identified a higher 

resolution network expressed by amyloid-responsive or tau-responsive microglia. In 

this study we also statistically compare the genes present in the mouse microglial 

networks using human gene-level sequence variants associated with Alzheimer’s 

disease as assessed in the IGAP GWAS (Kunkle et al., 2019). 
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Supplementary Figure 2 An innate immune network of genes expressed by 

microglia that respond to tau pathology, featuring some orthologues of 

established GWAS genes associated with Alzheimer’s disease, is different to the 

immune network expressed by microglia responding to amyloid 

Network plot using VisANT reveals key drivers of an innate immune module from 

RNA-seq derived gene expression from the hippocampus of wild-type and tau mice. 

Red circles show orthologues of established GWAS genes associated with 

Alzheimer’s disease including Trem2, Apoe, Ms4a6d and Ms4a4b. Blue underline 

shows the single gene orthologue, Pirb, predicted to confer increased risk of 

Alzheimer’s disease by overlapping gene expression data in microglia that respond to 

tau pathology in transgenic mice with individual human genes significantly associated 

with Alzheimer’s disease by analyzing combinations of adjacent SNPs bounded by 

the coding regions of genes (compare to Fig. 1). Larger blue spheres represent ‘hub’ 

genes, those showing the greatest number of connections to other genes in the 

network, and include Apoe, Cd68, C1qc and Lilrb4a, which are likely to play 

important roles in driving microglial function in response to tau pathology.  
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Supplementary Figure 3 Regional plots for the LAPTM5 and OAS1 loci  

The SNP positions are provided from Build 37, Assembly Hg19, and illustrated using 

LocusZoom software. The left y-axis gives the significance of each single SNP 

associated with Alzheimer’s disease from IGAP, and the right y-axis gives the 

recombination rate along the gene where a higher recombination rate indicates greater 

independence between SNPs. The SNP with the most significant p-value for LAPTM5 

was rs7549164, and for OAS1 was rs4766676 according to Kunkle et al., (2019), but 

not available in the data used by the LocusZoom software for LD estimation. Dashed 

line illustrates p-value = 0.05.  
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Supplementary Figure 4 Regional plots for the ITGAM and LILRB4 loci  

The SNP positions are provided from Build 37, Assembly Hg19, and illustrated using 

LocusZoom software. The left y-axis gives the significance of each single SNP 

associated with Alzheimer’s disease from IGAP, and the right y-axis gives the 

recombination rate along the gene where a higher recombination rate indicates greater 

independence between SNPs. The SNP with the most significant p-value within each 

gene is labelled, for ITGAM rs79113991, and for LILRB4 rs731170 according to 

Kunkle et al., (2019). Dashed line illustrates p-value = 0.05.  
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Supplementary Figure 5 Expression of the orthologues of the four genes 

predicted to confer increased risk of Alzheimer’s disease alongside established 

GWAS risk genes, Trem2, Abi3 and Ms4a6d, and a reference Aif1 in APP/PSEN1 

mice in response to amyloid deposition. Gene expression is presented from the 

RNA-seq as transcripts per million, TPM.  
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Supplementary Figure 6 Relative expression of the orthologues of the four genes 

predicted to confer increased risk of Alzheimer’s disease alongside the 

established GWAS risk gene Trem2 and a reference Aif1 in APP/PSEN1 mice. 

(A) The expression of the genes in the homozygous APP/PSEN1 mice is shown 

relative to age-matched wild-type mice. The dotted red line represents the average 

expression of 1,584 genes in the innate immune network (Supplementary Table 1) in 

homozygous APP/PSEN1 mice relative to age-matched wild-type mice (dashed black 

line = 1.0). N = 3-4 homozygous APP/PSEN1 and N = 7-8 wild-type mice per age 

group. Data shown as mean ± SEM. Two-way ANOVA with significant main effects 

of genotype (p < 0.0001), age (p < 0.0001) and significant interaction (p < 0.0001). 

Dunnett’s multiple comparisons tests were used to test pairwise significance between 

each gene and the average relative expression of all genes in the innate immune 

network: Oas1a and Trem2 were significant at 8- and 18-months of age compared to 

average relative expression of all genes in network; **** p<0.0001. Laptm5 and 

Lilra5 were significant only at 8-months of age compared to average relative 

expression of all genes in network; * p<0.05. 

(B) The expression of the genes in the hemizygous APP/PSEN1 mice is shown 

relative to age-matched wild-type mice. The dotted red line represents the average 

expression of 1,584 genes in the innate immune network (Supplementary Table 1) in 

hemizygous APP/PSEN1 mice relative to age-matched wild-type mice (dashed black 

line = 1.0). N = 4 hemizygous APP/PSEN1 and N = 7-8 wild-type mice per age 

group. Data shown as mean ± SEM. Two-way ANOVA with significant main effects 

of genotype (p < 0.0001), age (p < 0.0001) and significant interaction (p < 0.0001). 

Dunnett’s multiple comparisons tests were used to test pairwise significance between 

each gene and the average relative expression of all genes in the innate immune 



network: Oas1a and Trem2 were significant at 8- and 18-months of age compared to 

average relative expression of all genes in network; **** p<0.0001. Lilra5 was 

significant at 8-months of age (**** p<0.0001), and significant at 18-months of age 

(* p<0.05), compared to age-matched average relative expression of all genes in 

network.  
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Supplementary Figure 7 Co-expression network of LAPTM5, ITGAM, LILRB4 

and OAS1 in the human ROS/MAP samples 

The genes LAPTM5, ITGAM, LILRB4, OAS1, TREM2, ABI3, CD33, SPI1, INPP5D, 

PLCG2, RIN3 and APOE were used as seeds, and for each seed gene, sequentially, 

the genes most connected to it were added (based on TOM values). This allows 

visualization of the connectivity context around specific genes that are not necessarily 

clustering together (i.e. they belong to different network modules), but likely cross-

talk and interact. The colours indicate that the genes belong to three modules. 

Annotating the modules for enrichment with Gene Ontology, REACTOME and 

KEGG reveals that the Tan module relates to innate immune system function, the 

Pink module relates to interferon signaling, and the Green module relates to metabolic 

processes. The size of the sphere reflects how likely the gene is to act as a hub gene.  
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Supplementary Figure 8 Colocalization of AD GWAS loci with eQTLs derived 

from baseline and stimulated iPSC-derived macrophages 

Colocalization of AD loci and eQTLs targeting OAS1 in baseline and stimulated 

states (IFNγ, 18 hours; Salmonella, 5 hours; IFNγ and Salmonella, 18 hours and 5 

hours respectively). The eQTL data is from Alasoo et al., (2018). The best 

Alzheimer’s disease locus in OAS1 from the IGAP data (Lambert et al., 2013) is 

highlighted with the black line. IFNγ, interferon-γ. Numerical results are reported in 

Supplementary Table 4.  
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Supplementary Figure 9 Colocalization of AD GWAS loci with eQTLs derived 

from baseline and stimulated human-derived monocytes 

Colocalization of AD loci and eQTLs targeting OAS1 in baseline and stimulated 

states. In MDP, LPS and RNA panels, lighter and darker data points represent 

monocytes stimulated for 90 minutes and 6 hours, respectively. The eQTL data is 

from Kim-Hellmuth et al., (2017). The best Alzheimer’s disease locus in OAS1 from 

the IGAP data (Lambert et al., 2013) is highlighted with the black line. LPS, 

lipopolysaccharide; MDP, muramyl-dipeptide; RNA, 5-triphosphate RNA. Numerical 

results are reported in Supplementary Table 4.  

  



Supplementary Table 1 All genes in innate immune module associated with 

amyloid deposition 

Available to download. 

 

Supplementary Table 2 The mouse genes showing the tightest expression in 

amyloid-responsive microglia, which form the innate immune module plotted in 

Figure 1 (TOM > 0·39) 

Available to download. 

 

Supplementary Table 3 Putative risk genes in entire immune module associated 

with amyloid pathology (entire immune module in Supplementary Table 1) 

Available to download. 

 

Supplementary Table 4 Colocalization of Alzheimer’s disease GWAS loci with 

eQTLs derived from baseline and stimulated iPSC-derived macrophages and 

human-derived monocytes 

Available to download. 

 

Supplementary Table 5 Human microglial genes expressed preferentially in 

purified human microglia (Galatro et al., 2017 and Gosselin et al., 2017), but 

orthologues not present in the mouse co-expression network present in amyloid-

responsive microglia (Supplementary Table 1) 

Available to download. 


