Investigating Glymphatic Function In Alzheimer’s Disease Pathology

A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy to University College London

Ozama Ismail

Centre for Advanced Biomedical Imaging

Division of Medicine

University College London
Declaration

I, Ozama Ismail, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.
Abstract

Alzheimer’s disease is fast becoming the greatest healthcare challenge of our time, with no known cure to-date. Brought about by the toxic formation of plaques of amyloid-β and tangles of tau in the brain, much is still unknown about the precise mechanisms that initiate these protein accumulations, thought to occur decades before clinical manifestation of symptoms. One theory is that an imbalance between the production of these proteins and their removal from the brain promotes retention that eventually aggregates into entities that devastate molecular and cellular machinery. Thus, targeting waste clearance mechanisms responsible for removing cerebral metabolites, including amyloid-β and tau, present novel, enthralling research targets. The glymphatic system is one such pathway that has been recently characterised. Considered a surrogate for lymphatics which are largely lacking in the brain, this fluid network relies on the water channel aquaporin-4, expressed highly on glia, thus being named “glymphatics”. In this work, first, a surgical protocol was established in the mouse brain to facilitate the delivery of tracer molecules into the cerebrospinal fluid. Direct, single time-point, histological assessment of fluorescent tracer distribution was performed to check consistency with previous characterisation of glymphatics in the mouse brain. Glymphatics were then visualised dynamically across the whole brain using magnetic resonance imaging. Glymphatic patterns were investigated in real-time by imaging fluid dynamics in the brain alongside a potent blocker of aquaporin-4. Next, imaging was used to characterise glymphatic changes and aquaporin-4 profiles in mouse models of Alzheimer’s pathology. This revealed a time-dependant relationship between glymphatics and tau accumulation. Finally, the findings were extrapolated onto humans by studying aquaporin-4 modifications in subjects with and without cognitive deficits. Here, the crucial relationship between aquaporin-4 and pathological aggregates of tau and amyloid-β was determined. Furthermore, dystrobrevin, a membrane protein linked to aquaporin-4, was also profiled in the setting of aging and amyloid-β pathology. The work presented herein elucidates the role of glymphatic perturbances in the context of Alzheimer’s disease and clarifies the implications of aquaporin-4 mediated clearance in neurodegeneration.
Impact Statement

The work presented in this thesis focuses on a novel research arm in Alzheimer’s disease biology. Research in glymphatics is a recent but rapidly developing topic in the neuroscience research domain. The novel knowledge and discoveries presented in this body of work adds significant volume to the current understanding of waste clearance from the brain and its implications in neurodegenerative disease. Hence, it accelerates the understanding of a devastating human disease that is widespread. A clearer understanding of the disease onset is still lacking and thus, these novel data are beneficial in supporting the progress of both clinical and basic science research. Elucidating these new disease mechanisms may also speed up the discovery of disease modifying therapies, which are desperately needed. Alzheimer’s disease is the 5th biggest killer globally and is still without a cure. This is largely due to the lack of a full picture of the mechanistic causes underlying disease onset. As such, the innovative research angles and novel data presented here in the context of a still poorly understood malady provides new scientific insights, which are necessary for the development of precise therapeutics in the race for a cure.

Acknowledgements

This PhD has been a turbulent journey and one I would not have survived alone. I am indebted to so many people in my life for getting me this far.

I am beholden to Prof. Mark Lythgoe for taking a chance on me when I first arrived as a bright-eyed research technician and later trusting me with the reigns of CABI’s operations, nurturing my professional development whilst tirelessly encouraging me to pursue my scientific interests. Mark also sparked my interest in public engagement, and the many exhilarating activities we undertook together made my time at CABI extraordinary.

I am also grateful for the steadfast care and supervision of Dr Jack Wells. Jack’s meticulous approach to science and unparalleled dedication to his students is inspiring. His constant presence, be it for an in-depth intellectual discussion at the lab bench, or a laugh over a silly anecdote by the kitchen sink, made being his student a pleasure. Without Jack’s belief in me, I would not have seen this PhD through. I am also deeply thankful for the academic wisdom as well as the delightful friendship of Dr Ian Harrison. Ian has been fiercely supportive of all my work, always making time and never without a smile, whenever I needed lab guidance. I will cherish the days doing those long, difficult experiments, because of his companionship.

CABI holds a special place in my heart because of all the splendid folk that have passed through its doors, enabling me the privilege of many fervent friendships. I treasure the friendships of my fellow “classmates”, Yolanda Ohene, Heather Fitzke, Hannah Greenwood, Phoebe Evans, Eleanor Bird, and Payam Nahavandi. I am especially grateful to Dr Daniel Stuckey, Dr Tammy Kalber, Dr Bernard Siow, Dr Claire Walsh and Jen Crouch for their expert advice whenever I needed it. A very special mention goes to the alumni whose brilliance I sorely miss – Holly Holmes, Rupy Ghatrora, Izzy Christie, Niral Patel, Raj Ramasawmy, Ben Duffy, Tom Roberts, Val Taylor, John Connell, Morium Ali, May Zaw-Thin, Jed Wingrove, Yanan Zhu, Niall Colgan and Vin Rajkumar.

My academic development was bolstered by several accomplished collaborators along the way. I am grateful for the guidance of Dr Michael O’Neill, Dr Zeshan Ahmed, Tracey Murray and the many other scientists with whom I worked with at Eli Lilly UK and USA. I am also immensely appreciative of the support of Prof. Elizabeth Fisher and Dr Frances Wiseman at the Institute of Neurology and the many invaluable discussions we shared.

I am indebted to Prof. Jeffrey Iliff at OHSU for taking me under his wing and enhancing my research portfolio. Jeff’s patience and careful guidance shaped me into a better scientist and my time under his mentorship will be the yardstick by which all my future research experiences will be measured. I am also grateful for the kindness shown to me by his team – Marie Wang, Jim Goodman, Matt Simon and Marquitta Smith, and the many colleagues at
Anaesthesiology, including members of the histology, microscopy and molecular biology cores at OHSU. I will always remember their unwavering enthusiasm and generosity.

My love for neuroscience was inspired by Dr Helen Barefoot, and I am thankful for her untiring support, starting from my early days as an undergraduate, all the way till today.

I would like to give a special shout out to my fellow cast mates of Why Aren’t You A Doctor Yet? – Alex Lathbridge, Hana Ayoob and Suhail Patel. The studio time I shared with them enriched my life with laughter, knowledge and love and made me a better human being. They will forever be my “mandem”.

I am extremely thankful to Dr Steve Cross for bringing me into the stand-up comedy circuit and introducing me to a whole new creative world of science communication, at a time when I was at my lowest and needed it the most. Recruiting me into the Talent Factory was the rejuvenation I needed to keep going, and I am grateful for the life-long friends I made through this scheme. I would especially like to mention Anna Ploszajski, Sarah Jones, Cerys Bradley and Rachel Wheeley whose mirth and endless wit brought me boundless happiness.

I would be lost without those special friends who have stood by me through thick and thin. I express my deepest gratitude to Grace Salsbury, Shannon Shibata-Geranos, Caz Sinclair, Gini Kirkpatrick, Chris Isherwood, Emma Ranade, Ali Thomas, Charuni Mason, Matt Daniels, Steve Chen, José Delgado, Reynaldo Roman, Michelle Millar and Peter Rennes for providing release and escape when things got too tough. I also thank the coaches at Royal Docks for taking a genuine interest in me and cheering me on in both my work and workouts.

I forged many terrific friendships during my brief time in the USA, and the experiences I shared with them will go down as some of my life’s most treasured moments. I particularly want to thank Steven Carter, Sara Charney, Jimmie Erwin and Brittani Price whose warmth, humour and generosity I will forever cherish. I am especially grateful to Grace Bierman for being an incredible counsellor and confidante. I am also thankful to the lovely folk at Intrepid PDX for their unfailing zest and compassion, and for making my time in the USA so joyous.

My utmost gratefulness goes to my family, first, to my loving parents, Hameed Ismail and Zareena Ismail, for dedicating their lives work to solely bettering the lives of their children and putting me where I am today. Also, to my brother Dilshad Ismail whose continued support has brought me constant warmth. Words fail me when it comes to thanking my biggest cheerleaders – my sister Nadiya Ismail and my brother-in-law Ashish Puliyel, who have also occasionally been a akin to a second set of parents. Their unrelenting support, infinite love and constant encouragement were, at times, the only things that kept me going.

And finally, to the newest member of the family, Ezra Rumi Ismail Puliyel, for bringing me so much joy when I penned this thesis, making the final stages of my PhD an absolute delight.
Selected Publications

The following is a selection of my authored publications from my time in the AD Research team at the UCL Centre for Advanced Biomedical Imaging.

Manuscripts in preparation

Published manuscripts

Selected Conference Proceedings

Awards

Alzheimer’s Association – Travel Fellowship
(July 2018)

University College London – Bogue Research Fellowship
(March 2018)

University College London – Graduate Research Scholarship
(March 2017)

Alzheimer’s Association – Lead Volunteer Award
(July 2017)

Alzheimer’s Association – Student Volunteer Award
(July 2016)

British Chapter of ISMRM Annual Meeting – Poster Pitch Award Runner-Up
(September 2015)

Alzheimer’s Association International Conference – Student Poster Award
(July 2015)

Alzheimer’s Imaging Consortium – Best Poster Award
(July 2014)

British Chapter of ISMRM Annual Postgraduate Meeting – People’s Award for Best Oral Presentation
(April 2014)
Table of contents

Declaration... 3
Abstract.. 5
Impact Statement... 7
Acknowledgements... 9
Selected Publications... 11
Selected Conference Proceedings... 13
Awards.. 15
Table of contents... 17
Index of figures.. 21
Abbreviations ... 25

1. Alzheimer's Disease.. 29
 1.1 A brief history of Alzheimer's disease.. 29
 1.2 Present day prevalence of dementia... 32
 1.3 Pathogenesis of AD... 33
 1.3.1 The spread of pathology in the AD brain .. 33
 1.3.2 Amyloid... 36
 1.3.3 Tau ... 40
 1.3.4 Neuroinflammation... 43
 1.3.5 Cholinergic hypothesis... 44
 1.4 Risk factors for AD... 45
 1.4.1 Genetics .. 46
 1.4.2 Modifiable risk factors... 48
 1.5 Mouse models.. 51
 1.6 Current approaches to therapeutics... 54
 1.7 Biomarkers for diagnosis.. 58
 1.7.1 CSF biomarkers... 60
 1.7.2 PET ... 60
1.7.3 MRI ... 63
1.7.4 The next generation of biomarkers .. 66

2. The Glympatic System .. 69

2.1 Cerebrospinal fluid .. 69
2.2 The blood brain barrier .. 71
2.3 Glympatic exchange ... 73
2.4 Aquaporin 4 ... 77
2.5 Aβ and tau in the extracellular space .. 78
2.6 Aβ and tau as glympatic substrates ... 80
2.7 Aims of this project .. 82

3. A Surgical Mouse Model to Assess Glympatic Inflow 83

3.1 Summary ... 83
3.2 Introduction .. 84
3.3 Methods ... 85
3.3.1 Intracisternal infusion of tracers into the mouse subarachnoid space 85
3.3.2 Evans blue dye to assess superficial tracer distribution 86
3.3.3 Fluorescent dyes to assess parenchymal tracer distribution 87
3.3.4 Analysis of fluorescent dye penetration .. 88
3.4 Results ... 89
3.4.1 Macroscopic assessment with Evans blue dye 89
3.4.2 Microscopic assessment with fluorescent tracers 91
3.5 Discussion .. 94

4. Magnetic Resonance Imaging and Pharmacological Inhibition of Glympatic
Function in the Mouse Brain .. 99

4.1 Summary ... 99
4.2 Introduction .. 100
4.3 Methods .. 101
4.3.1 Mice and aquaporin-4 blocking agent .. 101
4.3.2 Surgical preparation for contrast enhanced MRI 102
4.3.3 Magnetic resonance image acquisition ... 103
4.3.4 Image processing and analysis ... 104
4.3.5 Intracerebral infusion of tau homogenate and CSF collection 106
4.3.6 Tau enzyme linked immunosorbant assays 107
4.3.7 Statistical analysis .. 108
4.4 Results ... 109
4.4.1 Spatial and temporal profile of glymphatic inflow in the mouse brain 109
4.4.2 Effect of pharmacological inhibition of aquaporin-4 on glymphatic function 111
4.5 Discussion ... 115

5. Glymphatic Function in a Tauopathy Model of Alzheimer’s Disease 119
5.1 Summary .. 119
5.2 Introduction .. 120
5.3 Methods ... 121
5.3.1 Mice .. 121
5.3.2 Surgical preparation, magnetic resonance imaging and image analysis 121
5.3.3 Tau, GFAP and AQP4 Immunohistochemistry 121
5.3.4 AQP4 Immunofluorescence .. 123
5.3.5 Quantification of AQP4 Expression Across Blood Vessel Cross Sections 123
5.3.6 Quantification of AQP4 Polarisation ... 124
5.3.7 Statistical analysis ... 124
5.4 Results ... 125
5.4.1 Glymphatic inflow, tau and AQP4 in rTg4510 transgenic mice with age 125
5.4.2 Regional differences between the rostral and caudal cortices of the rTg4510 mouse model .. 130
5.5 Discussion ... 132

6. Glymphatic Function in Amyloidosis Models of Alzheimer’s Disease 137
6.1 Summary .. 137
6.2 Introduction .. 138
6.3 Methods ... 139
6.3.1 Mice .. 139
6.3.2 Surgical preparation, magnetic resonance imaging and image analysis 140
6.3.3 Amyloid Immunohistochemistry ... 140
6.3.4 Statistical Analysis ... 141
6.4 Results .. 141
6.4.1 Glymphatic inflow in J20 transgenic mice .. 141
6.4.2 Glymphatic inflow in NL-F transgenic mice .. 144
6.5 Discussion .. 146

7. Relationships Between Alzheimer’s Disease Pathology and Aquaporin 4 in Humans
 151

7.1 Summary .. 151
7.2 Introduction .. 152
7.3 Methods .. 154
7.3.1 Human subjects and tissues .. 154
7.3.2 Immunostaining of human brain sections .. 155
7.3.3 Western blotting of human brain sections .. 156
7.3.4 Manual counting of plaques and tangles .. 156
7.3.5 Threshold analysis of aquaporin-4 ... 158
7.3.6 Mice and tissue collection .. 159
7.3.7 Western Blotting of mouse brain samples .. 160
7.3.8 Immunostaining of mouse brain samples .. 161
7.3.9 Statistical analyses .. 162
7.4 Results .. 163
7.4.1 Measurements of plaque and NFT burden .. 163
7.4.2 Quantification of aquaporin-4 ... 165
7.4.3 Testing relationship to the rs3763043 SNP ... 171
7.4.4 Probing DTNA changes during aging and Aβ pathology in the mouse brain... 172
7.5 Discussion .. 175

8. Concluding Remarks ... 183

References ... 187
Index of figures

Figure 1. Drawings by Alzheimer of Auguste Deter’s brain preparations, showing different tangle staging of the disease.

Figure 2. Drawings by Fischer showing detailed staging of plaque pathology as well as tangle pathology.

Figure 3. Cartoon of a coronal human brain section illustrating the macroscopic changes that are visible in the most severe forms of AD.

Figure 4. Diagrammatic depiction of the spread of plaques and tangles during AD. Darker shading represents density of spread.

Figure 5. The hypothesised cascade of events leading from Aβ production to dementia.

Figure 6. Schematic representation of tau oligomerisation and the role of each form in the different stages of tau pathology.

Figure 7. Hypothesised schema depicting the cascade of neuroinflammatory events leading to AD onset.

Figure 8. Cartoon depicting an example of a transgenic mouse model.

Figure 9. Summary of drugs in Phase III trials targeting mechanistic pathways of AD.

Figure 10. Hypothetical model of AD biomarker detection.

Figure 11. Representation of disease progression against diagnosis by MRI.

Figure 12. Diagram depicting CSF flow within the cranium.

Figure 13. Cross sectional schematic showing a diving feeding pial artery and its cellular associations as it variegates into the capillary bed.

Figure 14. Structural elements of the BBB and the neurovascular unit.

Figure 15. Diagrammatic depiction of CSF-ISF exchange via glymphatic flow.

Figure 16. Surgical method to introduce tracers into the SAS.

Figure 17. Flow diagram showing an example of the analysis approach taken to calculate percentage penetration of fluorescent tracers.

Figure 18. Photographs of brains collected following intracisternal infusion of EBD at 2µl/min.

Figure 19. Photographs of brains collected following intracisternal infusion of EBD at 0.6 µl/min.

Figure 20. Coronal brain sections from mice infused with small molecular weight Alexa Fluor 594 Hydrazide.

Figure 21. Coronal brain sections from mice infused with medium molecular weight Texas Red.

Figure 22. Coronal brain sections from mice infused with large molecular weight fluorescein isothiocyanate.

Figure 23. Percentage penetration of large, medium and small molecular weight dyes infused into the cisterna magna at 0.6µl/min.
Figure 24. Surgical setup and MRI bed preparation for intracisternal contrast infusion and DCE-MRI acquisition.

Figure 25. Schematic with brain regions visualised and timeline illustrating experiments used to determine the pattern of glymphatic inflow in the mouse brain.

Figure 26. Schematic describing the processing steps following acquisition of T1 weighted MR images.

Figure 27. Schematic and timeline illustrating experiments used to determine the effects of pharmacological inhibition of AQP4 on clearance of tau from the mouse brain.

Figure 28. Glymphatic Inflow in the Mouse Brain Cortex.

Figure 29. Schematic illustration of contrast agent flow into the brain following cisterna magna infusion.

Figure 30. Representative pseudocolored DCE-MRI scans of vehicle (20% Captisol) and TGN-020 treated animals with Gd-DTPA infusion.

Figure 31. MRI T1 signal intensity vs. time data acquired from the cortex, striatum and hippocampus demonstrating significant inhibition of glymphatic inflow in three aspects of the TGN-020 treated animal brain.

Figure 32. Total tau and pTau concentration of CSF samples extracted from mice injected with tau homogenate demonstrating reduced clearance of tau from the TGN-020 treated animal brain.

Figure 33. MRI T1 signal intensity vs. time data acquired from the 2.5 month, 5 month and 7.5 month animals.

Figure 34. Slopes of the sigmoidal curves of the time course data in each of the brain regions from Figure 32, as a surrogate measure of rates of glymphatic inflow.

Figure 35. MRI and histological analyses grouped by genotype and age.

Figure 36. MRI T1 signal intensity vs. time data acquired from the rostral and caudal cortices of rTg4510 animals.

Figure 37. MRI T1 Signal Intensity (% change from baseline) vs. time plots from J20 (PDGF-APPSw,Ind) and wild type animals.

Figure 38. Representative immunohistochemistry images of 6 month old J20 and wildtype sections.

Figure 39. Percentage immunoreactivity of amyloid quantified in a subset of brains in the mice from the J20 cohort.

Figure 40. MRI T1 Signal Intensity vs. time plots from homozygous transgenic NL-F and wildtype animals.

Figure 41. Representative immunohistochemistry images of 8 month old NL-F and wildtype sections.

Figure 42. Percentage immunoreactivity of amyloid quantified in a subset of brains in the mice from the NL-F cohort.

Figure 43. Schematic representation of the dystroglycan anchoring complex and associated end foot elements, including aquaporin-4 and dystrobrevin.

Figure 44. Widefield representative composite (red, green, blue) micrographs of human sections stained for AQP4, nuclear stain DAPI and tau or Aβ.
Figure 45. Workflow used for analysing AQP4 stain on micrographs and the formulae used to compute the AQP4 measures investigated in these analyses.

Figure 46. Widefield example micrographs of hemisections of mouse brains used for DTNA analyses.

Figure 47. Manually counted plaque and NFT densities in frontal cortex grey matter, white matter and hippocampal CA1, CA2 and CA3 regions.

Figure 48. Manually counted pathology correlated to clinical scores.

Figure 49. Test analyses of AQP4 polarisation ratio on a subset of ROIs.

Figure 50. Composite micrographs of frontal cortex sections showing AQP4 and DAPI nuclear stains.

Figure 51. AQP4 expression by Western blot.

Figure 52. AQP4 polarisation and area coverage measures calculated using threshold analyses in frontal cortex grey matter, white matter and hippocampal CA1, CA2 and CA3 regions.

Figure 53. AQP4 polarisation and area coverage measures in the frontal cortex grey matter correlated to manual plaque counts, manual NFT counts and AQP4 expression by Western blot.

Figure 54. AQP4 measures and pathology by SNP status.

Figure 55. Representative micrographs of young and aged mouse brain sections stained for AQP4, nuclear stain DAPI and DTNA.

Figure 56. Representative micrographs of wildtype and Tg2576 mouse brain sections stained for AQP4, nuclear stain DAPI and DTNA.

Figure 57. Whole brain DTNA expression by Western blot and DTNA polarisation by immunofluorescence quantified in young vs aged mice and wildtype vs Tg2576 mice.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>AChE</td>
<td>acetylcholinesterase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>ADNI</td>
<td>Alzheimer's Disease Neuroimaging Initiative</td>
</tr>
<tr>
<td>AF594-H</td>
<td>Alexa Fluor 594 hydrazide</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AP</td>
<td>probable Alzheimer's disease</td>
</tr>
<tr>
<td>APOE</td>
<td>apolipoprotein E</td>
</tr>
<tr>
<td>APP</td>
<td>amyloid precursor protein</td>
</tr>
<tr>
<td>AQP4</td>
<td>aquaporin-4</td>
</tr>
<tr>
<td>Aβ</td>
<td>amyloid beta</td>
</tr>
<tr>
<td>BACE</td>
<td>beta-site amyloid precursor protein cleaving enzyme</td>
</tr>
<tr>
<td>BBB</td>
<td>blood brain barrier</td>
</tr>
<tr>
<td>CA</td>
<td>Cornu Ammonis areas of the hippocampus</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>calcium ion</td>
</tr>
<tr>
<td>CAA</td>
<td>cerebral amyloid angiopathy</td>
</tr>
<tr>
<td>CAMKIIα</td>
<td>calcium/calmodulin-dependent protein kinase type II alpha</td>
</tr>
<tr>
<td>CBF</td>
<td>cerebral blood flow</td>
</tr>
<tr>
<td>CERAD</td>
<td>Consortium to Establish a Registry for Alzheimer's Disease</td>
</tr>
<tr>
<td>ChAT</td>
<td>choline acetyltransferase</td>
</tr>
<tr>
<td>CI</td>
<td>cognitively impaired</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CTE</td>
<td>chronic traumatic encephalopathy</td>
</tr>
<tr>
<td>CTF</td>
<td>C-terminal fragment</td>
</tr>
<tr>
<td>DAC</td>
<td>dystroglycan anchoring complex</td>
</tr>
<tr>
<td>DCE-MRI</td>
<td>dynamic contrast enhanced magnetic resonance imaging</td>
</tr>
<tr>
<td>DIAN</td>
<td>Dominantly Inherited Alzheimer Network</td>
</tr>
<tr>
<td>DMN</td>
<td>default mode network</td>
</tr>
<tr>
<td>DTI</td>
<td>diffusion tensor imaging</td>
</tr>
<tr>
<td>DTNA</td>
<td>dystrobrevin</td>
</tr>
<tr>
<td>EBD</td>
<td>Evans blue dye</td>
</tr>
<tr>
<td>ECS</td>
<td>extracellular space</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbant assays</td>
</tr>
<tr>
<td>EMCI</td>
<td>early mild cognitive impairment</td>
</tr>
<tr>
<td>FCG</td>
<td>frontal cortex grey matter</td>
</tr>
<tr>
<td>FCW</td>
<td>frontal cortex white matter</td>
</tr>
<tr>
<td>FDG</td>
<td>fluorodeoxyglucose</td>
</tr>
<tr>
<td>FITC-d2000</td>
<td>fluorescein isothiocyanate–dextran-2000</td>
</tr>
<tr>
<td>FTDP-17</td>
<td>frontotemporal dementia with Parkinsonism linked to chromosome 17</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>GWAS</td>
<td>genome-wide association studies</td>
</tr>
<tr>
<td>HC</td>
<td>healthy control</td>
</tr>
<tr>
<td>IACUC</td>
<td>Institutional Animal Care and Use Committee</td>
</tr>
<tr>
<td>ICP</td>
<td>intracranial pressure</td>
</tr>
<tr>
<td>ISF</td>
<td>interstitial fluid</td>
</tr>
<tr>
<td>J20</td>
<td>J20(PDGF-APPsw,Ind) mouse model</td>
</tr>
<tr>
<td>LMCI</td>
<td>late mild cognitive impairment</td>
</tr>
<tr>
<td>LOAD</td>
<td>late onset Alzheimer’s disease</td>
</tr>
<tr>
<td>M1</td>
<td>aquaporin-4 M1 isoform</td>
</tr>
<tr>
<td>M23</td>
<td>aquaporin-4 M23 isoform</td>
</tr>
<tr>
<td>MAP</td>
<td>microtubule-associated protein</td>
</tr>
<tr>
<td>MAPT</td>
<td>microtubule-associated protein tau</td>
</tr>
<tr>
<td>MCA</td>
<td>middle cerebral arteries</td>
</tr>
<tr>
<td>MCI</td>
<td>mild cognitive impairment</td>
</tr>
<tr>
<td>MMSE</td>
<td>mini mental state examination</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>Na⁺</td>
<td>sodium ion</td>
</tr>
<tr>
<td>ND</td>
<td>not demented</td>
</tr>
<tr>
<td>NFL</td>
<td>neurofilament light chain</td>
</tr>
<tr>
<td>NFT</td>
<td>neurofibrillary tangles</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>NL-F</td>
<td>APP NL-F Knock-in mouse model</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NP</td>
<td>neuritic plaques</td>
</tr>
<tr>
<td>NSE</td>
<td>neuron specific enolase</td>
</tr>
<tr>
<td>NT</td>
<td>neuropil threads</td>
</tr>
<tr>
<td>OHSU</td>
<td>Oregon Health and Science University</td>
</tr>
<tr>
<td>PBB</td>
<td>phenyl/pyridinyl-butyadienyl-benzothiazoles/benzothiazolium</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PBS-T</td>
<td>phosphate buffered saline with 0.05% Tween-20</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PHF</td>
<td>paired helical filaments</td>
</tr>
<tr>
<td>PiB</td>
<td>Pittsburgh Compound B</td>
</tr>
<tr>
<td>PS</td>
<td>presenilin</td>
</tr>
<tr>
<td>PS1 / PSEN1</td>
<td>presenilin 1</td>
</tr>
<tr>
<td>PS2 / PSEN2</td>
<td>presenilin 2</td>
</tr>
<tr>
<td>P-tau</td>
<td>phosphorylated tau</td>
</tr>
<tr>
<td>ROI</td>
<td>regions of interest</td>
</tr>
<tr>
<td>rTg4510</td>
<td>rTg(tauP301L)4510 mouse model</td>
</tr>
<tr>
<td>SAS</td>
<td>subarachnoid space</td>
</tr>
<tr>
<td>SNPs</td>
<td>single nucleotide polymorphisms</td>
</tr>
<tr>
<td>SNTA</td>
<td>alpha1-syntrophin</td>
</tr>
<tr>
<td>TBI</td>
<td>traumatic brain injury</td>
</tr>
<tr>
<td>TBS</td>
<td>tris-buffered saline</td>
</tr>
<tr>
<td>TBS-T</td>
<td>tris-buffered saline with 0.1% Tween-20</td>
</tr>
<tr>
<td>Tg</td>
<td>transgenic</td>
</tr>
<tr>
<td>Tg2576</td>
<td>Tg2576 APP mouse model</td>
</tr>
<tr>
<td>TR-d3</td>
<td>Texas Red–dextran-3</td>
</tr>
<tr>
<td>TREM2</td>
<td>triggering receptor expressed on myeloid cells 2</td>
</tr>
<tr>
<td>T-tau</td>
<td>total tau</td>
</tr>
<tr>
<td>UCL</td>
<td>University College London</td>
</tr>
<tr>
<td>VLP-1</td>
<td>visinin-like protein 1</td>
</tr>
<tr>
<td>WT</td>
<td>wildtype</td>
</tr>
</tbody>
</table>
1. Alzheimer’s Disease

This chapter aims to provide an introductory snapshot of the Alzheimer’s disease landscape, starting from its early beginnings, to the current state of understanding and progress made within its research avenues.

1.1 A brief history of Alzheimer’s disease

The first published case of Alzheimer’s disease in 1907 remains a seminal piece of work in a disease which, over a century later, still remains to be cured. In the original publication by German psychiatrist and neuropathologist Alois Alzheimer, entitled “Über eine eigenartige Erkrankung der Hirnrinde (About a Peculiar Disease of the Cerebral Cortex)”, he described behavioural changes in patient Auguste Deter, who at age 51 had begun to experience such severe cognitive and behavioural decline, that it was deemed rare, curious and clinically unusual. Upon her death four and a half years later, neuropathological assessment would reveal that the changes to her central nervous system were clinically distinct from any other previously reported disease. Using the then state-of-the-art silver protocol of Bielschowsky staining, Alzheimer defined the presence of tangled bundles of neurofibrils, the deposition of “peculiar matter” (Figure 1) and the disappearance of numerous ganglion cells in the upper layers of the cortex [1,2].

Figure 1. Drawings by Alzheimer of Auguste Deter’s brain preparations, showing different tangle staging of the disease. Reproduced from Engelhardt et al., 2015 [3].
Given the young age of this patient, the case was subsequently designated as presenile dementia. With reports of 4 additional cases presenting similar clinical and neuropathological features, Alzheimer’s colleague Emil Kraepelin, a prominent psychiatrist, named the disease after Alzheimer, citing the young age, distinct behavioural anomalies and severe dementia presented in these cases as the reason to distinguish this condition from senile dementia [4].

Interestingly, in the same year, a Czech psychiatrist and neuropathologist Oskar Fischer also described the presence of neuritic plaques in 12 of 16 cases of presenile dementia. He subsequently published a larger study of 56 cases, describing the presence of neurofibrillary tangles alongside plaques, in a selection of cases that showed a clinical presentation of what

Figure 2. Drawings by Fischer showing detailed staging of plaque pathology as well as tangle pathology. Reproduced from Goedert, 2009 [4].
he described as presbyophrenic dementia. Whilst the drawings of the pathologies both scientists describe appear remarkably similar, Fischer went on to describe these plaques in much greater detail (Figure 2). Some early texts, including one written by Alzheimer, would even refer to plaques as “Fischer's plaques”, with presbyophrenic dementia and Alzheimer’s disease being used interchangeably [4].

However, the two scientists did not believe they were describing the same condition, with there being much academic debate between the rivals. Alzheimer’s career thrived, until ill health brought about his untimely death in 1915, but his legacy carried on [4,5]. With the rise of the National Socialist regime, in the late 1930s Fischer’s career declined, ending tragically with his arrest in 1941 and death a year later whilst in captivity. Despite his significant research contributions, by 1955 much of Fischer’s work on presbyophrenic dementia was considered obsolete (until the rediscovery of his work in the 2000s) and presenile dementia with plaques and tangles became widely known as Alzheimer’s disease (AD) [4,6].

Primarily only covering the presenile form of dementia when observed under the age of 65, the definition of AD was widely discussed and argued by academic scholars throughout the 20th century. In the 50s, presenile and senile dementias were classified under the umbrella term “chronic organic brain disease”, which covered all neurodegenerative conditions leading to a diagnosis, owing to the lack of understanding of the diseases underlying dementia [5]. Increasing evidence of the presence of plaque and tangle pathology in what was then separately known as “senile dementia of the Alzheimer’s type” (when observed over the age of 65) emerged from the 60s through to the 70s. By the late 70s, substantial evidence of both conditions pointing to a single disease had gathered [7], and given that the two conditions were neuropathologically indistinguishable, both presenile and senile forms were categorised singly into what is now known as AD [8].

This categorisation marked a turning point for AD research. Senile dementia was no longer considered a normal by-product of aging. The need for improved understanding and research into AD began to grow urgent, particularly after World War II. As life expectancy increased
through the 20th century, the incidence of AD also began to rise, bringing with it an ever increasing socioeconomic burden. Understanding the aetiology of AD quickly became a research priority. By the 80s, discernible scientific and public interest in AD encouraged increased funding to be pushed towards this cause [5].

Today, dementia is a global epidemic. Although it has come a long way since 1907, the field of dementia noticeably took time to gain momentum. We now know the pathological characteristics as originally described in the case of Auguste Deter, as the hallmark triad of AD neuropathology – neurofibrillary tangles, amyloid plaques and neuronal loss. Recent rediscovery and reanalysis of material from this historic patient case has confirmed that the nature and severity of pathology observed still stands as a typical diagnosis of AD by current standards [9]. Whilst the revisiting of this original work may serve as a symbolic demonstration of the scientific progress made within the field, the need for this re-examination of the first known case also highlights the lack of understanding of a complex disease, which began as a rare curiosity but became a global crisis.

1.2 Present day prevalence of dementia

Dementia is a syndrome brought about by one or more diseases, characterised by a range of symptoms including memory loss, language problems, psychological difficulties and psychiatric disturbances, all of which severely affect day to day living and quality of life for sufferers and their caregivers. AD is the most common cause, accounting for approximately 75\% of dementia cases. Several other forms of dementia causing diseases are now known, including vascular dementia, dementia with Lewy bodies, frontotemporal dementia, as well as mixed dementia where one or more forms exist together. Huntington’s disease, corticobasal degeneration, Creutzfeldt-Jakob disease and normal pressure hydrocephalus are also known causes but are less common by comparison [10].

The World Health Organisation lists AD and other dementias as the 5th biggest cause of death [11]. Globally, the incidence of dementia continues to climb. Dropping global fertility
rates combined with increased life expectancy is contributing rapidly to overall population ageing, resulting in a surge in age-related chronic conditions such as dementia. In 2015, there were an estimated 900 million people living over the age of 60, with 46.8 million people living with dementia [12]. 58% of these cases come from low and middle income countries. It is forecast that the total number of global cases will double every 20 years, reaching a staggering 131.5 million by 2050. The World Alzheimer Report estimates that this translates to one new case of dementia every 3.2 seconds worldwide [12].

This predicts an overwhelming global socioeconomic burden. The estimated global cost of dementia in 2015 was 818 billion US dollars, accounting for medical expenses, social care, residential, nursing and unpaid care costs [12]. Given the rate at which new diagnoses are predicted and the cost this will amount to, dementia is fast becoming one of the greatest social and healthcare challenges of our time.

1.3 Pathogenesis of AD

Despite decades of investigation, the root cause of the physiological events leading up to AD are still not clear. Research advances over the many decades have given rise to several key hypotheses which now provide the framework for AD research today. This section will explore these hypotheses, beginning with the macroscopic clinical picture of AD, and then briefly delve into the biology underpinning the current understanding of its pathogenesis.

1.3.1 The spread of pathology in the AD brain

AD is characterised by the build-up of extracellular amyloid plaques and intracellular tangles of tau, subsequently leading to neurodegeneration. During the later and most severe stages of the disease, shrinkage of the brain (Figure 3) results in the devastating symptoms observed in those suffering from the disease. Whilst these behavioural changes usually manifest much later in life, it is now widely believed that the formation of the hallmark lesions of AD occur decades before clinical symptoms are observed [13].
Figure 3. Cartoon of a coronal human brain section illustrating the macroscopic changes that are visible in the most severe forms of AD. Image reproduced from the Wikimedia Commons free media repository.

Plaques and tangles have a characteristic pattern of spread through the brain during AD pathogenesis. Plaque burden can be highly variable between individuals, but is broadly categorised into three neuropathological stages, clinically designated A, B and C (Figure 4). In the first stage, the earliest amyloid deposits are seen in the isocortex, mostly limited to the frontal, temporal and occipital lobes, with no deposits observed in the hippocampal formation. By the second stage, a higher density of amyloid deposits are observed in all isocortical regions, with some hippocampal involvement. In the third and most severe stage, a very high density is observed throughout the isocortex, with some also present in the striatal, thalamic and hypothalamic regions [14]. This neuropathological staging has been adapted into a standardised practical clinicopathological scoring system, based on analysis of post-mortem brain samples, instigated by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). CERAD assessment utilises selected anatomical brain regions in its scoring protocol – middle frontal, superior and middle temporal gyri, inferior parietal lobule, hippocampus, entorhinal cortex and substantia niagra. A minimum of five requisite sections are stained and neuropathologically scored for plaque density based on standardised representative diagrams. The scores are then cross-correlated against age and integrated with clinical dementia status to compute a final post-mortem score [15].
Tangles have a more distinct pattern of spread, and can be visualised in six stages. Stages I – II represent the prodromal phase, where tangles appear in a single layer of the transentorhinal cortex with mild hippocampal involvement in the CA1 region. During stages III – IV, the severity of the transentorhinal and entorhinal regions increases, with the appearance of ghost tangles – the remnants of a neuron containing NFTs. Increased tangle populations in the CA1 hippocampal subfield is observed, with an equivalence to the clinically diagnosed stage of AD. Stages V – VI sees the infestation of the isocortex and all hippocampal regions to a devastating degree, corresponding to fully developed AD [14]. This staging has gained prominence in neurology since it was first defined by Braak and Braak, and is now canon in AD neuropathological assessment. Braak staging uses three standardised anatomical blocks, which capture the anteromedial portion of the temporal lobe, parahippocampal and occipitotemporal gyri, medial and superior temporal gyri, and the base of the occipital lobe. The selected sections are histologically stained, and a score of I – VI is allocated based on the topographical spread of tangle pathology. Scoring requires expert knowledge of neuroanatomy and familiarity of tangle progression [16], and post-mortem Braak staging is
now a routine clinicopathological praxis alongside CERAD scoring, to reach a conclusive AD diagnosis.

Whilst these semi-quantitative scores form the crux of AD diagnosis, it still leaves a confirmed verdict only possible post-mortem. Clinical diagnosis relies on an array of neuropsychological evaluations to measure cognitive changes, alongside neuroimaging tests which currently only reliably detect brain changes that occur in the mid to late stages of the disease [17] (discussed in more detail in section 1.7), and the majority of these evaluations are triggered only when a patient enters a clinic experiencing cognitive disturbances. AD urgently requires robust biomarkers sensitive to the diverse array of lesions and biological changes that arise decades before the onset of cognitive decline. To that end, understanding the biology underlying the earliest in-life changes in the AD brain is paramount.

1.3.2 Amyloid

Since the isolation of amyloid as the main constituent of brain plaques [18], and through much of the early years of AD research, amyloid protein biology has taken centre stage in understanding AD aetiology. This was strengthened by the proposal of the amyloid hypothesis, put forward by Hardy and Allsop in 1991, which described a cascade of events leading from the accumulation of plaques to neuronal death (Figure 5) [19].

The hypothesis postulates that amyloid is the key component of AD pathogenesis. Within the scope of this hypothesis, genetic mutations or other environmental factors may give rise to altered amyloid processing. This is then thought to result in the accumulation of amyloid into plaques - the presumed initiator of AD pathogenesis, followed by the downstream phosphorylation of tau and the formation of tangles, consequently causing neuronal damage and ultimately manifesting as dementia [19]. A closer look at the biochemical, structural and genetic elements of plaques provide evidence for the instigation of this hypothesis.
The classic plaque is formed of a dense aggregate of extracellular of amyloid beta (Aβ) peptide, with closely packed abnormal axons and dendrites, or neurites. This deposit is usually surrounded by a halo of reactive astrocytes and activated microglia, thus forming a complex lesion of multiple cell types, with Aβ at its core [21]. Whilst this paints a classic picture of the well-known amyloid plaque, plaques are structurally diverse, and a more abundant variant of these deposits are diffuse plaques. These granular Aβ lesions are less distinct in structure, lack reactive glia and have far fewer abnormal neurites. Thought to be an early form of the plaque, these deposits represent a complex continuum of Aβ aggregation during AD pathogenesis [21]. An additional variant of plaque pathology is amyloid
angiopathy, where deposition of Aβ occurs in the walls of meningeal and parenchymal arterioles, venules and capillaries [22].

The Aβ peptide, found consistently in all these plaque variants, arises from the proteolytic cleavage of amyloid precursor protein (APP), a membrane glycoprotein associated with a range of biological functions including the regulation and maintenance of synapses [23] and axonal transport [24]. Proteolytic cleavage of this protein can occur via the non-amyloidogenic or amyloidogenic pathways. In the non-amyloidogenic pathway, APP is cleaved via the enzyme α-secretase, giving rise to a membrane tethered α-C-terminal fragment (CTF), and releasing soluble APPα. In the amyloidogenic pathway, APP is first cleaved at the N-terminus via the enzyme β-secretase, also known as beta-site APP cleaving enzyme (BACE), found abundantly in neurons, resulting in a β-CTF, which is then sequentially cleaved by γ-secretase [25]. γ-secretase is a complex membrane protein formed of four other protein subunits – presenilin (PS), nicastrin, presenilin enhancer 2, and anterior pharynx-defective 1, with PS forming the catalytic subunit of this composite enzyme [26]. The final cleavage step by γ-secretase causes extracellular release of Aβ.

This monomeric Aβ can assemble into a myriad of oligomeric forms as well as fibrils. Fibrils, which form the main makeup of Aβ plaques, are large in molecular weight and insoluble. Oligomers are heterogenous, assuming medium to low molecular weight forms, and are soluble [25]. Whilst the plaque-associated fibrillar form was always thought to be linked with neurotoxicity in AD, the oligomeric soluble form is emerging as a close contender, given its ability to readily spread throughout the brain and bind to extracellular receptors [27]. The formation of these different conformations is facilitated by the very nature of amyloidogenic processing by γ-secretase. Cleavage can occur at several sites, giving rise to multiple amino acid lengths ranging from 37 – 46 residues [25], including the 40 and 42 length isoforms Aβ40 and Aβ42, which are abundantly found during AD pathogenesis. Aβ42 more readily aggregates into fibrils whilst Aβ40 forms a more soluble variant [28].
Whilst the biochemistry of Aβ paints a complex picture of its dynamics, it is key to understanding the basis of the amyloid hypothesis, as modifications to amyloid metabolism via changes to the APP gene reliably establishes AD pathology. The earliest evidence to support this theory came from studying patients with Down syndrome, a condition which triplicates chromosome 21, where the APP gene is also located in humans. Virtually all patients with Down syndrome go on to develop AD pathology, with the deposition of amyloid plaques preceding neurofibrillary tangle formation [29]. A notable phenotype in these cases is that the predominant species of Aβ found in dense and diffuse plaques is the Aβ42 isoform, whilst the Aβ40 species is more readily detectable in angiopathy, when observed in these patient groups [30]. The next evidence backing the amyloid hypothesis came from discovery of familial mutations in the APP gene that gave rise to cerebral amyloid angiopathy (CAA) [31] and AD [32,33] in Dutch and Swedish populations. Subsequent study of mutations in the PS genes revealed that mutations in presenilin 1 (PS1 / PSEN1) and presenilin 2 (PS2 / PSEN2) result in an increase in the Aβ42 to Aβ40 ratio [34,35]. Moreover, when Aβ species from familial AD cases were assayed, the Aβ42 isoform, known for its fibrillar properties and susceptibility to aggregate, was consistently found to be elevated [36,37]. This cemented the notion that amyloid biology is fundamental to disentangling the complex neuropathology of AD.

Nevertheless, not everyone with an AD diagnosis carries mutations in these genes, with these cohorts only accounting for a small subset of all cases. In addition, amyloid load does not correlate well with cognitive impairment in human patients [38]. Furthermore, it is also now known that some individuals can maintain a high cognitive reserve during neuropathology. This is the brain’s ability to cope when it undergoes damaging changes and compensate efficiently to preserve cognitive abilities during pathology [39]. These individuals can live a lifetime without an AD diagnosis, despite developing considerable plaque pathology. As such, the amyloid hypothesis has come under scrutiny, with research focus being directed towards a wider view of the pathophysiological cascade of AD.
1.3.3 Tau

Though debate over the validity of the amyloid hypothesis prevails, it still forms a central dogma of AD aetiology. Within the amyloid cascade, the formation of neurofibrillary tangles (NFT) of phosphorylated tau is said to form an intermediary link between plaque formation and dementia onset (Figure 5) [20]. Notably, NFT spread reliably precedes the pattern of neurodegeneration in AD, and this regional pattern of atrophy is closely correlated to the impairment of brain function [14]. Thus, tau is perhaps the molecular candidate closest to revealing the precise mechanisms driving neurodegeneration. As such, in recent years, tau has emerged as a strong candidate towards illuminating the precise pathophysiological cascade of AD.

Prior to the isolation of tau, NFTs were known as intracellular filamentous aggregates composed of a little known polypeptide, structurally termed paired helical filaments (PHF). Isolation of PHF from AD brains enabled the biochemical identification of the polypeptide within PHF to be microtubule-associated [40], and subsequently, it was identified to be abnormally phosphorylated tau protein [41]. In the AD brain, deposition of tau can occur as a spectrum, ranging from small PHF and straight filaments in neuronal processes or neurites, known as neuropil threads (NT), to larger NFT deposits within the cell body of a neuron, which go on to become “ghost tangles” upon death of the neuron. Tau in dystrophic neurites can also be associated with amyloid plaques, morphologically recognised as neuritic plaques (NP) [42].

The discovery of mutations in the tau gene leading to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) hinted strongly at tau’s causative role in the development of neurodegenerative disease. Individuals with FTDP-17, brought about by tau mutations, show frontotemporal atrophy, neuronal loss and tau deposits in neuronal and glial cells. In some cases, these tau deposits are identical to the PHF and filamentous forms of tau seen in AD [43]. This put tau in the spotlight as the molecule that may hold the key to uncovering mechanisms behind neuronal death in AD.
Tau is now fairly well characterised as an intracellular microtubule-associated protein (MAP), expressed highly in the axons of central nervous system (CNS), and to a lesser degree, in the peripheral nervous system [44]. Microtubules are polymeric proteins that form the cellular cytoskeleton. Tau is required for microtubule assembly and stabilisation [45], cellular polarity and transport [46]. The microtubule-associated protein tau (MAPT) gene, located on chromosome 17, expresses six isoforms of tau in the CNS. These isoforms are broadly recognised based on the number of microtubule binding repeat domains they possess on the carboxy-terminal – 3R tau, containing 3 repeats and 4R tau, containing 4. The ratio of these two tau isoforms is in the brain is roughly one to one, but alterations in this ratio are recurrently observed in tau-driven pathologies [47].

Hyperphosphorylation of tau is another significant feature that is consistently observed in tau aggregates in the AD brain. Phosphorylation is a requisite regulatory mechanism in protein function and in its regular form, tau is a highly soluble protein, containing up to 85 phosphorylation sites [47]. Tau phosphorylation is regulated by a variety of kinase and phosphatase activity, and it is thought that imbalances in activity between these enzymes can result in hyperphosphorylation. In turn, proteolytic cleavage of tau and its misfolding into abnormal conformations are also influenced by phosphorylation status. Species of tau that are hyperphosphorylated, have undergone cleavage or have altered conformations are all found in the brains of several tauopathies [47]. Thus, the regulation of tau going awry is a pivotal component in the neurodegenerative process.

The isoform and phosphorylation status of tau is crucial to its various biological roles, including the regulation of its microtubule binding affinity [48]. It is widely theorised that hyperphosphorylation of tau causes it to dissociate from microtubules, and that this unbound tau is prone to aggregate [44]. Once dissociated, monomeric hyperphosphorylated tau structures gain affinity for each other and begins to oligomerise. Oligomers can assume two intermediate forms – a soluble oligomer, and a granular insoluble form [49]. The granular oligomer can polymerise even further to form the characteristic fibrils that then aggregates into NFTs [50] (Figure 6).
However, it is not NFTs themselves that are considered cytotoxic. The generation and characterisation of transgenic mouse models of tauopathy have fostered the understanding of tau pathogenesis and driven the tau hypothesis forward by leaps and bounds. One such mouse model, known as Wtau-Tg which expresses wildtype human tau, revealed that hyperphosphorylated tau alone can cause synaptic loss, resulting in learning and memory defects, without the aggregation into insoluble species or neuronal loss [51]. Furthermore, mouse models of FTDP-17 that do show neuronal loss reveal the presence of oligomeric insoluble tau aggregates. Taken together, these serve as testimony that the intermediate oligomeric forms are responsible for neurotoxicity, with tangles being the final tell-tale residual marker of neuronal death [49].

Whilst several mutations are now known to be associated with FTDP-17, a missense mutation known as P301L is the most common. This mutation has been studied in depth by integration into a transgenic mouse line, known as JNPL3. This mouse line exhibits progressive motor and behavioural dysfunction, with a gene-dose dependence on NFT accumulation. Additionally, the insolubility of tau species and hyperphosphorylation status matches the degree of NFT formation in these mice [52]. Thus, this tau mutation produces a phenotype that is strikingly similar to that observed in AD, strengthening the speculative role tau may have in its pathogenesis over Aβ.

Figure 6. Schematic representation of tau oligomerisation and the role of each form in the different stages of tau pathology. Reproduced from Takashima, 2013 [49].
Interestingly, when Aβ42 was injected into the brains of P301L transgenic mice, it exacerbated the NFT pathology, normally observed with just the transgene alone [53]. This therefore suggests that Aβ still has a steadfast role in accelerating AD pathogenesis via tau-driven neurodegeneration. Furthermore, much like in the case of the familial mutations linked to Aβ pathology, mutations in tau are not requisite for the development of all tauopathies. So, whilst tau holds an undeniable role in the neurodegenerative and dementing process, it cannot be interrogated in isolation to disentangle AD pathogenesis.

1.3.4 Neuroinflammation

Neuroinflammatory changes are a significant observation in AD and the activation of glial cells are a known occurrence in its pathogenesis. Microglia, the primary immune cells of the CNS, police the brain by scanning for pathogens, cellular debris or insults. They play a key role in regulating synaptic remodelling and maintaining neuronal plasticity. Pathological insults such as protein aggregation or neuronal death in AD can cause microglia to become reactive [54]. Studies of post-mortem plaque pathology and in vitro experimental evidence shows that pathogenic Aβ can be engulfed by microglia to facilitate clearance. The binding of Aβ to scavenger receptors activates microglia, initiating phagocytosis but also causes the release of proinflammatory cytokines [55]. However, the signalling feedback mechanisms triggered as a consequence of cytokine release can be damaging to neuronal cells. In addition, these neuroinflammatory processes can also contribute to tau phosphorylation [56], further contributing to pathology.

Astrocytes, the cell type most abundant in the CNS, are also known to respond during AD pathogenesis. Reactive astrogliosis, that is an increase in the number of astrocytes at the area of pathology, is a feature of AD reported in both humans and mouse models [57]. Both in vivo and in vitro evidence suggests that astrocytes are recruited in AD for the clearance of Aβ – in mouse models of amyloid pathology, astrocytes closest to plaques express neprilysin, an enzyme that degrades amyloid [58]. In culture, astrocytes demonstrate the ability to mobilise towards Aβ and degrade it, with this observation also replicated on brain sections in situ [59]. This suggests a protective role for astrocytes during pathology. However, astrocyte
activation, much like microglial activation, can also trigger cytokine expression, which can trigger oxidative stress and cascade into neuronal damage, thereby contributing to neurodegeneration [60].

Thus, the neuroprotective and neurotoxic mechanisms of neuroinflammation are blurred. Nonetheless, activated microglia, astroglia and elevated cytokines are a consistent feature of AD pathology (Figure 7), and thus form another branch in studying the neurodegenerative process in AD and present additional targets in the search for therapeutics.

![Figure 7](image)

Figure 7. Hypothesised schema depicting the cascade of neuroinflammatory events leading to AD onset. Reproduced from Ahmed et al., 2019 [60].

1.3.5 Cholinergic hypothesis

The loss of cholinergic neurons of the basal forebrain is another feature of AD. This observation lead to the proposal of the cholinergic hypothesis of AD, which postulated that the loss of cholinergic neurotransmission held responsibility for cognitive decline observed in AD [61]. The cholinergic system is implicated in learning and memory, sleep and wakefulness, stress responses and attention – functions in the brain that are all affected during AD. Cholinergic neurons are widespread in the brain, and utilises acetylcholine (ACh), a
major neurotransmitter in the CNS. ACh is synthesised by choline acetyltransferase (ChAT), and when released into the synapse can activate muscarinic receptors or nicotinic receptors, triggering the action of the enzyme acetylcholinesterase (AChE) to hydrolyse it and remove it from the synapse [62].

In post-mortem brains of individuals with AD and cognitive impairment, ChAT activity declines with increasing NP density. Cholinergic loss also correlates with NFT burden in the AD cortex [63]. Rodent studies have recapitulated similar findings, demonstrating that lesions in cholinergic neurons increased Aβ deposition and tau hyperphosphorylation [64]. Further experimental studies have shown that Aβ accumulation can deplete cholinergic synapses [65]. Thus there is ample evidence for cholinergic involvement during AD pathogenesis. Whilst the precise mechanisms behind this hypothesis continues to be a topic of research interest, the robust loss of cholinergic neurons are a sufficient feature to warrant its perusal in comprehending AD aetiology. Furthermore, drugs to target the cholinergic system are currently the most prevalent strategy used clinically to improve the cognitive symptoms of AD.

1.4 Risk factors for AD

Advancing age is the biggest known risk factor for AD onset. From the age of 65, the risk increases markedly – currently 3% of individuals between the age of 65 and 74 suffer from the disease. This jumps to 17% in individuals aged 75 – 84, and even further to 32% in those aged 85 and up [66].

Alongside age, a family history of AD can also be useful to clinicians when trying to identify dementia risk. This however is not purely based on a shared genetic makeup predisposing individuals to the disease. Common environmental influences and lifestyle factors play into inherited disease risk, and thus, studying ancestral history is beneficial in understanding familial risk [67]. AD is a chronic disease, and decades of study have teased out a range of
modifiable risk factors, in addition to genetic predispositions, that contribute to disease onset. These risk factors are discussed in brief in this section.

1.4.1 Genetics

Whilst genetics play an indisputable role in familial AD cases, it is useful to parse if genetic risk patterns are polygenic – where generationally shared environmental factors act together with genetic variations to increase sporadic disease risk, or if they follow Mendelian genetics – where a mutation in a single gene that is passed on, causes the familial form of the disease. Notably, it is only a small number of familial cases that account for AD, with just over 500 families in the global population of AD sufferers reported to have known disease-causing mutations [67].

The most extensively studied mutations for familial AD are those in genes that influence Aβ metabolism – APP, PSEN1 and PSEN2. Mutations in any of these three genes, or duplication of APP, results in autosomal dominant AD in 50% of affected cohorts, usually manifesting as an early-onset form of the disease. Symptoms become apparent as early as 30 – 50 years of age in carriers of PSEN1 mutations. APP mutation carriers typically have an age of onset between 45 and 60, and PSEN2 mutation carriers display a wider range of onset age. Whist mutations in these three genes can have varied mechanisms of abhorrent Aβ processing, a commonality observed in these cases is that they increase Aβ42 production, thereby altering the Aβ42: Aβ40 ratio [68].

A significant genetic risk factor for sporadic AD is the apolipoprotein E (APOE) gene. APOE is a glycoprotein which facilitates lipid metabolism by receptor-mediated endocytosis of lipoproteins, and in the brain, it is mostly expressed in astrocytes and some microglia [69]. Single nucleotide polymorphisms (SNPs) – a single-base mutation that naturally gives rise to variants of genes in the human genome – can influence the level of risk a gene can impose. The APOE gene has three common SNPs that give rise to variants of the gene, or alleles – designated ε2, ε3 and ε4, which encode the isoforms APOE2, APOE3 and APOE4. Possession of one ε4 allele increases the risk of AD up to 3 fold, whereas possession of two
can increase the risk up to 12 fold. Conversely, the ε2 allele is known to be associated with reduced AD risk [69]. The precise pathogenic mechanisms underlying APOE in AD are not fully understood, but clinical and experimental evidence would suggest that the ε4 allele increases the propensity of Aβ to accumulate by running interference with APP trafficking, encouraging Aβ oligomerisation or impairing Aβ clearance [70]. Some research also indicates that APOE4 is neurotoxic and may encourage NFT formation by influencing levels of tau phosphorylation. Genetically, APOE ε4 poses the strongest susceptibility to late-onset AD, with over 50% of sporadic late-onset cases being influenced by APOE allele status [70]. This suggests that other genetic components and environmental influences still account for a large proportion of sporadic AD cases. However, given the strong predisposition to disease onset, APOE and its mode of action in AD pathogenesis is of significant interest in disease understanding and drug discovery.

Interestingly, APOE is also a substrate for a receptor called “triggering receptor expressed on myeloid cells 2” (TREM2), expressed on microglia [71]. TREM2 has more recently been identified via genome-wide association studies (GWAS), as a candidate gene whose variants have a strong association with increased risk for late-onset AD [72]. Heterozygous possession of TREM2 variants can confer risk to AD to a similar degree to those carrying one copy of APOE ε4 [73]. Whilst the biology underlying these variants and their contribution to AD pathology is still under rife investigation, it is now well established that TREM2 variants can contribute to a 2–4 times increase in AD predisposition [74].

Mutations for tau have not been implicated in AD risk per se, but MAPT mutations have been widely studied in related dementias such as frontotemporal dementia, particularly FTDP-17. Variants in MAPT have also been identified in families who clinically present with an AD phenotype, mixed dementia or have other known AD risk alleles, but there is insufficient data from population studies to conclusively identify genetic tau variants as a risk for pure AD [75,76]. Nonetheless, extensive investigation of these mutations has bolstered the field of tau biology, and in doing so, continues to provide crucial clues towards advancing the understanding of AD pathogenesis.
With the advent of GWAS and whole-exome sequencing technology, the potential to uncover more gene variants contributing to AD risk has been enabled. These new advances could help further our understanding of both polygenic and Mendelian genetic risk patterns for AD, and the identification of new gene variants could also divulge novel mechanistic links to the pathogenic pathways of AD.

1.4.2 Modifiable risk factors

Sporadic AD cannot be fully explained by genetic factors, and as such, a range of other modifiable risk factors have been identified through population studies. As yet, no single factor has been identified as one that could reverse or halt AD. But recognising these contributors to disease risk is helping the AD research community make evidence based recommendations to lifestyle changes in an effort to reduce AD risk in populations. Meta-analyses across populations have enabled the identification of a range of modifiable risk factors.

The strongest modifiable risk factor for AD and other dementias is cardiovascular health. Circumstances that are detrimental to cardiovascular health all contribute to increased dementia risk, which include smoking, diabetes, hypertension and obesity [66]. This risk can be modulated by lifestyle changes that are protective to heart health, which consequently also protect brain health. Physical activity is one such factor that is now known to be modestly protective against AD and cognitive decline. The exact nature, duration and regimen of activity that is most effective in reducing AD risk remains to be clarified, but it is thought that the mechanistic link between increased physical activity and reduced AD risk lies contemporaneously with reducing the risk of metabolic conditions such as cardiovascular disease and diabetes [77]. In a comparable manner, nutrition too has been reasonably recognised as a protective factor in AD prevention. The mechanisms of protection are predominantly attributed to improved heart health and reduced risk of diabetes arising from diets rich in fruit, vegetables, whole grains, fish, chicken and nuts, and low in saturated fats and sugar [66,78]. Moderate alcohol intake has also shown some protective effect against AD. The direct role this plays in reducing risk is unclear, but it must be noted that this is
outweighed by the damaging health effects that are brought about by excessive alcohol intake, which include neurotoxicity and a higher predisposition to dementias [79].

A strong association between the level of education and dementia risk has also been established. Individuals with fewer years of formal education are at higher AD risk than those with more years of education [80]. A further association between education level and socioeconomic status is also linked to AD risk. People from lower socioeconomic backgrounds are less likely to have good access to healthcare, tend to suffer poorer diets and are less likely to take up physical activity, factors which then predispose them to cardiovascular disease and diabetes risk, which therefore increases their AD risk. Level of education being protective is also believed to be in part due to a higher level of cognitive reserve in those who remain in education for longer, as well as in those who take up professions that are mentally engaging [66]. Thus, this presents an ostensive protective factor. But it must also be noted that though AD sufferers with higher cognitive reserve and more education have a delayed clinical age of onset, they can experience faster decline in cognitive ability post diagnosis [39].

On a related theme, cognitive training activity has similarly been explored for protective effect against AD. Whilst evidence from observational studies would suggest that engaging in cognitive activity lowers AD risk, the results are not clear cut. Whether interventional cognitive training is an effective strategy for AD remains inconclusive. Nonetheless, it is recognised that engaging in physical and social activities that are mentally stimulating can be beneficial in maintaining a better quality of life for older adults [81].

As we are a social species, it is perhaps unsurprising that remaining socially engaged throughout life is vital for maintaining brain health. Social engagement is linked to a reduced risk of AD later in life, possibly by building and maintaining cognitive reserve [66]. The purported mechanisms through which this is protective is unknown, however, there is evidence demonstrating that social isolation and loneliness is associated with poorer cognition [82] and increased AD risk later in life [83], and that amyloid burden increases in cognitively normal older adults experiencing loneliness [84]. Hearing loss in older adults is
also known to accelerate cognitive decline, in part by increasing vulnerability to social isolation and exhausting cognitive reserve [85]. This thus highlights social isolation as a multifaceted risk factor for AD.

Head injury is another factor that can increase the risk of dementia. Clinically known as traumatic brain injury (TBI), it was first identified as a risk in the early 90s after studying boxers who began to show neurodegenerative symptoms [86]. More recent evidence shows that mild TBI and repetitive concussions sustained from contact sports or warfare can precipitate a neurodegenerative condition known as chronic traumatic encephalopathy (CTE), which is clinically indistinguishable from AD. CTE is classified as a tauopathy, featuring NFTs and NPs, but can only be diagnosed neuropathologically on post-mortem examination [87].

Sleep disturbances are common in patients with mild to moderate AD, with around 25 – 40% experiencing this symptom. Experimental evidence alludes to Aβ imbalances brought about by disrupted sleep physiology as the mechanistic link here. [88]. Furthermore, sleep fragmentation has been implicated in faster cognitive decline and increased risk for AD. This implicates sleep disorder as a feature underlying the degenerative process, presenting it as a risk factor for AD [89]. Thus, sleep research offers an additional interventional avenue for AD research.

The factors presented above are not an exhaustive list of risk factors for AD onset. Additional factors including depression, statin use, nutritional supplements and several others [90] have been investigated within this context, but aren’t discussed here. Nonetheless, with increasing population studies across international cohorts, the list continues to grow. Overall, the overarching evidence would suggest that a healthy approach to aging is the key to reducing dementia risk later in life.
1.5 Mouse models

AD research has taken giant strides with the advent of transgenic mouse models of the disease, which have enabled researchers to dissect out the various pathophysiological pathways and study them in isolation as well as in tandem. Transgenic technology has been developed and honed over decades and generating transgenic models of disease in mice offers several advantages over other model organisms. Mice share almost 99% of the genome with humans, and have comparable anatomy, physiology and development [91]. The mouse genome has also been well characterised by international large-scale sequencing efforts, and this, combined with the power of transgenic manipulation of the genome, makes the laboratory mouse a powerful research tool [91]. Furthermore, mice are relatively inexpensive to maintain and have quick lifespans enabling cost-effective acceleration of research output.

Over a hundred different lines of mouse models are currently in use amongst the AD research community [92]. This not only represents the complexities of studying human disease in a separate host species, but also demonstrates the value of this approach in understanding disease aetiology and drug discovery. An ideal transgenic model organism requires the disease to have a genetic origin, as well as have fairly well characterised pathology, physiology and behaviour in humans that can be recapitulated for in depth experimental exploration [93]. As such, AD mouse models largely rely on the known mutations in AD-causing genes as well as the known features of plaque and tangle pathology to recapitulate clinical AD-like phenotypes in mice.

The APP, PSEN1 and MAPT gene mutations identified in human AD cohorts feature heavily in AD transgenic models, with PSEN2, APOE and TREM2 mutants also providing valuable alternative models for the mechanistic exploration of the AD pathophysiological cascade. Mutant forms of these genes have been used in isolation to generate single gene transgenic models, as well as in combination for multi-transgene models based on the research question the model aims to address [92]. In the work presented in this thesis, a selection of these models have been utilised. These are described in brief below and discussed further in the relevant upcoming chapters.
Figure 8. Cartoon depicting an example of a transgenic mouse model. Here, the transgenic constructs that generate and modulate tau pathology in the rTg4510 mouse model are shown. This model is generated by crossing a transgenic mouse containing the P301L human tau mutation, with a second transgenic containing a transactivator under the CaMKIIα promoter which drives forebrain expression of mutant tau in the bigenic progeny. Expression of this construct can be halted by tetracycline analogue, Doxycycline.

The rTg(tauP301L)4510 (rTg4510) mouse model is a model of tauopathy that has prominently been used in the laboratory study of tau physiology. The model is generated out of a transgenic line which carries the human MAPT gene harbouring the P301L mutation, crossed with a second transgenic line that carries a forebrain specific expression promoter, calcium/calmodulin-dependent protein kinase type II alpha (CAMKIIα). The bigenic progeny of these two mouse lines therefore results in robust overexpression of human mutant tau throughout the forebrain. The genetic design of this line also enables the systemic modulation of transgene expression by manipulating the tetracycline-controlled transactivator built into the transgenic construct; forebrain expression of mutant tau can be halted using the tetracycline analogue doxycycline [94] (Figure 8). The model rapidly develops insoluble hyperphosphorylated tau species, accumulates NFTs, and exhibits neuronal loss, gliosis and atrophy in an age-dependant pattern, with impairments in cognition and behaviour which are phenotypically relatable to AD [95].

Incorporating the earliest familial APP mutations into transgenic lines has advanced the study of Aβ pathology, and one such line is the J20(PDGF-APPsw,Ind) (J20) [96]. This
transgenic line incorporates the Swedish APP mutation as well as an additional APP mutation identified in Romanian kindreds, first isolated by a research group in Indiana. The transgene is driven by a neuron-specific promoter called platelet derived growth factor (PDGF), and the model expresses elevated levels of Aβ and robust plaque pathology, with gliosis, some neuronal loss in the hippocampus but no gross atrophy. Learning and memory deficits are also observed in J20 mice [97], thus enabling the study of the cognitive and pathological changes of AD solely driven by plaques, without being confounded by aggressive tangle-driven neurodegeneration.

Whilst these and other murine models continue to propel the understanding of AD aetiology, overexpression models have faced criticism due to their propensity to drive phenotypes in an artificial way, thus making data interpretation challenging. These criticisms are fuelling the evolution of new models to address these challenges. One such line is the APP NL-F Knock-in (NL-F). This mutant line combines the Swedish mutation along with an APP mutation from a patient of Iberian ancestry, but is only expressed at endogenous levels [98]. The phenotypes seen in this model are only driven by the combined effects of the two mutations and avoid being confounded by overexpression. The resulting mouse model develops cortical plaque pathology at an early age, but does not show cognitive deficits till later in its lifespan, thus recapitulating a more realistic disease progression. Generation of such innovative lines is unlocking new potential in the use of transgenic technology to uncover the complex nature of AD pathogenesis.

But newer mouse lines have not devalued the use of long-existing transgenics, which still prove useful today. One of the earliest overexpression models, known as Tg2576, which incorporates only the Swedish mutation [99], is still widely in use in AD basic science research today. This line displays a similar phenotype to the J20, but progresses plaque pathology at a slower rate. Such utilisation of various transgenic lines targeting different aspects of pathology with differential progression, highlights the pressing need to target the cascade of AD pathophysiology with fine detail in order to fully comprehend a disease which is still not fully understood.
Scores of other mouse models that replicate tauopathy, amyloidopathy and the other molecular and cellular characteristics of AD pathology continue to be the subjects of extensive research investigation [100]. It must be noted however, that no mouse model exists that fully recapitulates all neuropathological features, behavioural changes and progression of AD in one, and has thus proven to be an added challenge in the search for candidate therapies that can interfere with the pathophysiological cascade.

1.6 Current approaches to therapeutics

The pursuit of a disease modifying therapy for AD has been vigorous and met with many challenges and failures. This is owing to the fact that we still do not fully understand the complete picture of AD pathogenesis, nor have we conclusively identified the root cause of the disease. Drugs that are currently in use in the clinic only help alleviate the symptoms of mild to moderate AD, but none exist that fully cease the neurodegenerative process.

204 candidate therapeutics for AD have entered investigative trials to date, of which 78 are already discontinued. Five of these are currently approved for use by the Federal Drug Administration (FDA), all of which target neurotransmission – Donepezil, Galantamine, Rivastigmine and Tacrine which target the cholinergic system by inhibiting AChE, and Memantine an antagonist of N-methyl-D-aspartate (NMDA) glutamate receptors [101]. During AD development, AChE activity increases, thereby hydrolysing an excess of ACh, causing a decrease in the availability of this neurotransmitter at the synapse, and this impairment at synapses manifests as cognitive deficits observed in patients [102]. AChE inhibitors act by targeting this process, thus facilitating symptomatic relief by increasing ACh availability.

NMDA receptors on the other hand work by reducing neurotransmitter activity. Whilst this may seem counter intuitive, NMDA receptor overactivity is thought to contribute to the neurodegenerative process by becoming neurotoxic – a phenomenon known as excitotoxicity [103]. Normally, NMDA receptors are implicated in synaptic plasticity. They act by binding
glutamate, a potent neurotransmitter, which then results in postsynaptic depolarisation via ionic sodium (Na\(^+\)) and calcium (Ca\(^{2+}\)) influx [104]. During AD, it is thought that overactivity of NMDA glutamate receptors causes an excess of Ca\(^{2+}\) influx, to a level which triggers cellular injury or death [103]. Thus, NMDA glutamate receptor antagonists mode of action is to reduce excitotoxic neurodegeneration. This is a challenging strategy, as therapeutics that block synaptic neurotransmission have to act such that they do not then cause further neurological adverse effects in trying to prevent excitotoxicity. Memantine is the only clinically used drug that uses this strategy, and it is designed such that it only blocks the NMDA receptor once the receptor has been activated for a long time by an excess of glutamate [103].

Whist these strategies are a step in the right direction, the holy grail of AD drug discovery would be one that ameliorates Aβ and tau accumulation. Numerous disease modifying therapies targeting these hallmark proteins have entered drug discovery pipelines but to little or no avail. In 2018, 26 candidates reached Phase III trials, of which 14 aimed to target amyloid and one was aimed at tau [105]. This not only provides a snapshot of the challenging landscape of AD drug discovery, but also alludes to the ebb and flow of therapeutic approaches to AD.

Figure 9. Summary of drugs in Phase III trials targeting mechanistic pathways of AD. Reproduced from Cummings et al., 2018 [105].
In the search for a disease modifying therapy, amyloid research still dominates the AD drug discovery arena (Figure 9) [105]. Aβ targeted therapies aim to intervene at the early stages of the amyloid cascade by interfering with production, preventing aggregation or reducing deposition [106]. As such, targeting APP cleavage has been of significant focus, either by inhibiting β- or γ-secretase activity or upregulating the non-amyloidogenic pathway via α-secretase activity. Targeting α-secretase may seem a viable strategy, however, more APP is processed via this non-amyloidogenic pathway, and several other substrates for this enzyme exist. Thus this pathway would need to be upregulated significantly to elicit a therapeutic effect, and the consequence to its other substrates are unknown. Whilst inhibiting γ-secretase activity seems more feasible, and has been approached, it is now known that several other substrates for γ-secretase are vital components for development, thus posing toxicity issues and preventing its therapeutic use [107]. This leaves β-secretase as the front runner in this strategy, and several BACE inhibitors have entered therapeutic trials. However, this is not without its challenges – numerous previous BACE trials were halted from not passing safety standards, or due to lack of therapeutic effect in mild to moderate AD. The focus of using BACE inhibitors is thus now shifting towards its use in asymptomatic individuals at risk of developing AD [108].

Immunotherapy approaches have also shown promise in targeting Aβ, with much of the early evidence coming from active immunotherapy approaches in mouse models, where a synthetic version of the peptide is used to induce an immune response against endogenous Aβ. Immunotherapy against Aβ by anti-amyloid antibodies is thought to work via three different approaches – by microglial activation and phagocytosis, by preventing aggregation or by sequestering Aβ and draining it into circulation [107]. Initial trials in humans were halted due to adverse effects brought about by active immunisation in 6% of subjects, with autopsy of two of these cases revealing an autoimmune T-cell response, thought to arise from the C-terminus region of the peptide. However, a further three autopsies from these trials also showed no cortical plaques thus providing some confidence in this therapeutic approach [106]. The next generation of immunotherapy candidates are being designed to take a passive
immunisation approach using monoclonal antibodies against Aβ, or by modifying the peptide conformation to overcome autoimmune responses associated with the active approach [109]. Whether these approaches will be fruitful are yet to be revealed, with several vaccines still in trials.

Tau is emerging as a more lucrative target for AD drug development in recent years, particularly with the failure of large numbers of amyloid-focussed therapies. This is perhaps unsurprising given the indisputable role it plays in the neurodegenerative process, as tau burden in AD and other dementias correlates well with clinical measures [38]. Early approaches to tau targeted therapy focused on manipulating kinase and phosphatase activity to circumvent hyperphosphorylation, preventing aggregation of tau [106] or restablising microtubules. Success with these strategies waxed and waned, and eventually proved unfruitful, so more recently, immunotherapy against tau has gained popularity. Tau antibodies may act extracellularly by sequestering aggregates and activating microglial phagocytosis, thus preventing further spread, or may also bind intracellularly and promote removal via lysosomal degradation. Animal studies have shown promising results with both active and passive immunisation strategies, and several tau vaccines are entering trials on this basis [110]. However, it is too early to tell if these approaches will yield the desired outcome, particularly as translating therapeutic improvements from animals to humans is challenging.

Developing a drug to halt AD is an arduous task. The ideal candidate needs to be a small molecule capable of crossing the blood-brain barrier, not produce deleterious effects, be able to reverse or halt the neurodegenerative process and alleviate cognitive and neuropsychiatric symptoms. It is likely that a combination approach tackling multiple aspects of the disease may be efficacious and this can only be elucidated once ongoing trials are complete. There is also a shift in focus towards targeting the prodromal phase of AD, which may be a more prudent strategy. But this requires reliable markers for screening and thus highlights the urgent need for robust biomarkers that are sensitive to the earliest cellular and molecular changes in the AD brain.
1.7 Biomarkers for diagnosis

In the original clinical criteria, biomarkers did not play a part in AD diagnosis. Without the use of biomarkers, diagnosis was tiered – the highest tier, “definite AD”, was only designated upon post-mortem neuropathological confirmation. During life, the diagnoses allocated were “probable AD”, described by amnestic disorders with gradual functional and cognitive impairment, or “possible AD”, the lowest of the three tiers, identified as an atypical amnestic patterns with mixed aetiology. These clinical diagnoses took into account the patient’s medical history, along with measures of cognition, social function, depression and anxiety, assessed using the Mini Mental State Examination (MMSE), the Blessed Dementia Scale, the Hamilton Depression Scale and the Present State Examination. In addition, further sensory and motor tests, as well as psychiatric evaluations were performed to eliminate all other causes, thus reaching a diagnosis of AD by process of elimination [111].

With the identification of AD as a continuum of disorders, the term “mild cognitive impairment” (MCI) was later introduced. This categorisation identified those individuals who fell in the symptomatic spectrum between normal aging and probable AD, thus signifying AD at its prodromal phases. Individuals with MCI show some neuropathological features of dementia diseases, such as NFTs and atrophy, and is thus thought to be predictive of AD onset [112]. Updates to the diagnostic criteria aimed to improve the accuracy of AD and MCI diagnoses, and thus introduced the use of biomarkers alongside the battery of neuropsychological measures. Its use is now recommended in those who approach the criteria for probable AD [17].

An ideal biomarker is defined as a reproducible measure that can accurately quantify physiological changes brought about by disease. Ideally, the perfect AD biomarker would enable the detection of the disease prior to the significant loss of neurons, thus enabling beneficial interventions to halt the disease. Biomarker use in AD diagnosis currently takes a two-pronged approach – one looks at the markers of amyloid, measuring levels of Aβ42 in cerebrospinal fluid (CSF) and amyloid positron emission tomography (PET) imaging. The second looks more broadly at markers of neurodegeneration, by measuring CSF tau,
including levels of total tau (T-tau) and phosphorylated tau (P-tau), 18fluorodeoxyglucose (18F-FDG) PET and structural magnetic resonance imaging (MRI) [17]. Patient data from those recruited into large scale longitudinal human cohort studies, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN), have enabled researchers to track and detect the patterns of these biomarkers in sufferers and those predisposed to AD [113,114]. Such studies have revealed that biomarker changes accelerate during the initial stages of the pathology and decelerate in the later stages of the disease, thus assuming a sigmoidal trajectory [114]. The use of multi-factorial analyses of data from these cohorts have continually facilitated the understanding of the temporal specificity of discrete biomarkers with disease progression [115]. As such, a model of the pathological cascade against biomarker detectability has been proposed, demonstrating the order of sensitivity against disease progression (Figure 10).

Figure 10. An updated model of AD biomarker detection. Using data from ADNI, each biomarker is modelled to a sigmoidal trajectory as it changes from the healthy state to AD. This model reveals that vascular dysfunction is the earliest change, followed by Aβ deposition and metabolic dysfunction. CSF biomarkers come later in the temporal cascade of pathophysiological events and increase in sensitivity with disease progression (HC = healthy controls; EMCI = early MCI; LMCI = late MCI; LOAD = late onset AD). Reproduced from Iturria-Medina et al., 2016 [115].
1.7.1 CSF biomarkers

CSF for diagnosis is extracted via lumbar puncture, using a needle placed into the subarachnoid space between the 3rd and 4th lumbar vertebrae. The technique is safe and relatively quick, but can induce a mild post-lumbar puncture headache in some cases [116]. Meta-analyses of vast datasets from human cohort studies have provided validation for numerous fluid biomarkers, including the core CSF measures, Aβ42, T-tau and P-tau, which have up to 90% accuracy for detecting AD and MCI [117].

CSF Aβ42 decreases with AD progression. As this decrease correlates well with increased parenchymal amyloid counts, it is discernibly hypothesised that Aβ42 accumulation into plaque pathology is responsible for the decline of this species in CSF. Low CSF Aβ42 is also concordant with amyloid PET positivity in AD patients. Although Aβ40 is relatively unaffected, the ratio of Aβ42:Aβ40 has particularly proven itself a strong biomarker for AD and is usually used in conjunction with Aβ42 [118]. CSF T-tau and P-tau on the other hand, increases with AD. CSF T-tau is taken as a measure of neuronal damage, as this metric is also elevated in other conditions such as stroke and TBI, where it also correlates to the degree of tissue damage. P-tau, a measure of phosphorylation status, correlates reliably with NFT pathology and hippocampal atrophy [116].

More recently, a class of phosphorylated neuronal proteins known as neurofilaments are emerging as promising markers for axonal damage. Neurofilaments are cytoskeletal proteins made of three subunits. Elevated levels of the neurofilament light chain (NfL) subunit are reliably detectable in AD compared to controls. This may provide a new and robust CSF biomarker for AD [117], but at present is only used as a research tool.

1.7.2 PET

The development of in vivo imaging technologies sensitive to the pathological features of AD provide a rare yet crucial opportunity to visualise the pathogenic features of AD during the lifetime of a patient, which previously was only possible at autopsy. Nuclear imaging
techniques such as PET do so by highlighting regions of pathology by means of systemically administered radioactively labelled compounds, sensitive to the target features of pathology.

Pittsburgh Compound B ([\(^{11}\)C]PiB) is one of the earliest PET ligands developed for A\(\beta\) visualisation, and is still in use today [119]. [\(^{11}\)C]PiB has high affinity to fibrillar forms of amyloid and thus recognises vascular and parenchymal plaque pathology. Increased uptake of [\(^{11}\)C]PiB is seen in the in cortical regions as well as the cingulate gyrus, precuneus and striatum, thus following a characteristic pattern of disease spread which also correlates well with plaque distribution at autopsy. [\(^{11}\)C]PiB can also predict the conversion of MCI to AD with high specificity, thus providing an early indicator of disease onset [120].

But the carbon-11 radionucleotide gives [\(^{11}\)C]PiB a relatively short half-life (20 minutes) [121], and so it is impractical for routine use, as it requires cyclotron technology to be in close proximity to scanning sites. This has paved the way for the development of durable ligands with longer half-lives. [\(^{18}\)F]Florbetapir is one such ligand which is conjugated to fluorine-18. With a longer activity (100 minute half-life) [121], it enables sufficient time for transport and handling, thus facilitating widespread use [122]. [\(^{18}\)F]Florbetapir has slightly less sensitivity compared to [\(^{11}\)C]PiB, but reliably replicates the detection specificity observed with [\(^{11}\)C]PiB, and its binding to fibrillar A\(\beta\) has been confirmed by autopsy [123]. Development of fluorinated compounds are gaining popularity in neuroimaging, and an array of other compounds continue to enter this research domain, namely, [\(^{18}\)F]Florbetaben, [\(^{18}\)F]Flutemetamol, [\(^{18}\)F]AZD4694 and [\(^{18}\)F]FIBT all of which show promise as agents with high specificity to AD [120].

\(^{18}\)F-FDG PET has also long been used in AD research and quantifies glucose metabolism in the brain, which is reduced during AD due to synaptic decline. Thus it provides an indirect measure of synaptic activity. Hypometabolism measures using \(^{18}\)F-FDG have up to 70% specificity in detecting AD from healthy controls, and through the differential stages of the disease. During the early stages, it is observed in the posterior cingulate cortex and precuneus, later in the posterior temoro-parietal cortex and finally in the frontal cortex during the most advanced stage. \(^{18}\)F-FDG can also reliably predict the progression of MCI
individuals to AD, as those subjects that progress to AD show lower uptake in the temporal and parietal cortices [120].

The development of tau PET ligands however, has been faced with a plethora of challenges. Primarily, the predominant intracellular location of tau requires a ligand to be able to overcome the blood brain barrier (BBB) and then also cross the cell membrane. Tau also assumes multiple isoforms, which undergo various post translational modifications and these pose challenges to the structural design of a viable molecule. Furthermore, tau is lower in concentration compared to Aβ, can assume similar structural conformations to Aβ sheets and is also found in white matter regions, thus posing multiple complications with binding specificity [124].

The first generation of tau PET tracers that overcame these hurdles were fluorinated quinoline derivatives, collectively known as THKs, and although they showed good affinity to tau, the use of these agents were continually hampered by white matter binding and off target binding [125]. Subsequent development of carbon-11 conjugated phenyl/pyridinyl-butadienyl-benzothiazoles/benzothiazolium (PBB) tracers have achieved greater success. [11C]PBB3 has high affinity for dystrophic neurites and NFTs, is retained in the medial temporal region, precuneus and frontal cortex and correlates well with cognitive decline [126]. Fluorinated versions of this compound are currently in development. Another fluorinated tracer that has made strides in tau neuroimaging is a molecule called AV-1451. The spatial distribution of [18F]AV-1451 localises well to tau deposition in a way that can be linked to Braak staging, thus enabling the progressive tracking of disease severity [125].

However, development of these novel ligands is not without its challenges. It is recognised that each of these ligands have differential affinity to the various sub species of tau associated with different proetinopathies – for instance, THKs recognise NFTs which contain both 3R and 4R tau, but are less competent at recognising tauopathies which only have one of these species, unlike PPBs which detect all tau compositions [127]. Furthermore, off target binding is not fully resolved even in these ligands. These issues call into question the veracity of tau PET as a biomarker, and validation of tau PET ligands in further longitudinal studies is
crucial for its advancement into the clinic [128]. Thus, the utility of tau PET remains as a developmental research tool for now.

1.7.3 MRI

MRI has long served as a reliable and useful diagnostic tool to assess macroscopic brain changes that occur during mid and severe stages of AD. The regional and progressive pattern of atrophy measurable by MRI reliably mirrors the cognitive and behavioural changes reported in clinic [129]. The earliest changes are seen in the entorhinal cortex, hippocampus and posterior cingulate cortex, correlating to memory impairments, whereas the later stages see atrophy take hold of the temporal, parietal and frontal cortices, reflecting the observed deficits in language, and behaviour [130].

Hippocampal and medial temporal lobe atrophy measures taken using structural MRI are consistently calculable with roughly 80% specificity for both AD and MCI, with hippocampal volume also correlating well with NFT Braak staging. Additionally, rates of change of cortical regions as well as ventricular enlargement, measurable by MRI, correlate well with the cognitive changes clinically observed. It is important to note that the various structural markers obtainable by MRI are differentially useful for the various stages of disease progression. Although measures have sensitivity to the prodromal stages of the AD continuum, markers of Aβ pathology still provide greater sensitivity to the early stages. These markers plateau later during the diseased state, and regional differences in atrophy then provide better information on disease progression (Figure 11) [131]. Although these macroscopic changes observed by MRI provide a valuable clinical biomarker, the use of this modality to probe the microstructural and functional changes that precede the macroscopic changes can profoundly increase its potential to provide a more sensitive biomarker for early detection. To this end, MRI is profusely pursued in AD biomarker research.

Hippocampal volume reductions have been a predominantly useful measure in assessing those with MCI and genetic predispositions to AD. But the predictive power of hippocampal volume changes can be markedly strengthened by using hippocampal subfield measurements. In particular, the CA1 region of the hippocampus has consistently been found
to be reduced in volume in MCI subjects compared to healthy controls, and is able to predict the conversion from MCI to AD. Probing subregions of the brain most vulnerable to AD therefore increases the effectiveness of MRI as an early biomarker, as this could detect subtle brain changes up to a decade before clinical onset [132].

![Diagram of disease progression](image)

Figure 11. Representation of disease progression against diagnosis by MRI. The preclinical stages are better diagnosed with non-MRI markers, whilst the clinical stages have sensitivity to disease stage. Reproduced from Frisoni et al., 2010 [131].

MRI has also gained repute in detecting microstructural changes that occur in the brain during neurodegenerative disease. White matter lesions are a commonly observed feature of AD, believed to be brought about by axonal loss and demyelination [133]. Diffusion tensor imaging (DTI), which measures the Brownian motion of water, is particularly useful in following these white matter changes brought about by pathology. In myelin fibres, this pattern of movement is restricted to the structural tracts of the tissue. The consequential change and directionality of diffusion can be quantified using DTI [134]. Disarray of white
matter tracts driven by AD pathology can therefore be assessed. At present, MCI can be differentiated from AD using DTI, but the sensitivity does not exceed that attained from volumetric measures [135], and so while it can add profound diagnostic value to other biomarkers, it may not be a steadfast marker specific to AD in isolation.

Being the most energy intensive organ in the body, the brain requires good blood flow to maintain brain health. Significant evidence implicates vascular pathology and cerebral hypoperfusion as a causative element in the pathogenies of AD [136]. Thus, it is pertinent to explore cerebral perfusion as a marker. MRI measures of cerebral blood flow (CBF) have been widely explored in AD patients and they consistently show a reduction in CBF by approximately 40%, with regional correlations to NFT pathology. The outlook of this marker in MCI present a mixed picture. Both hyperperfusion and hypoperfusion are reported in MCI subjects. It is hypothesised that hyperperfusion alludes to a compensatory mechanism that precedes the hypoperfusion that indicates the disease onset [137]. Until there is resolute understanding of these observations, it is difficult to perceive CBF as a clinically translatable biomarker for early onset. However, it’s use in AD research is prolific in exploring the pathogenic changes via non-invasive imaging.

Brain connectivity is another aspect that is gaining research interest in AD, given the implication of synaptic dysfunction in the disease, and this can be measured using functional MRI (fMRI). fMRI enables the quantification of blood oxygenation as a measure of brain activity, and this measure can be used as a surrogate for functional connectivity of neural networks. In particular, the default mode network (DMN) has been extensively studied within this context [132]. The DMN describes a functionally connected network of brain regions which include the medial prefrontal cortex, posterior cingulate cortex, inferior parietal lobule, lateral temporal cortex and hippocampus [138]. The DMN is understood to be highly metabolically active at rest and is downregulated during task-based activities that require attention, a feature measurable using fMRI. This downregulation is impaired in individuals with MCI, and impaired even further during AD. Furthermore, depletion of DMN activity is distinguishable in mild AD compared to healthily aging individuals [139].
Functional measures using MRI show promise in biomarker utility and may be particularly apt for early detection, as functional changes precede the detrimental morphological changes of the AD brain.

Several laboratories, including ours, continue to develop and refine quantitative MRI techniques sensitive to the early changes of AD, including methodologies sensitive to the pathogenic accumulation of proteins. It is also advantageous over PET measures of brain function, as it overcomes the requirement for radioactive tracers, and MRI is a modality that is more widely accessible, thus lends itself readily for clinical translation. Nonetheless, much like the case of novel PET ligands, any given quantitative MRI biomarker remains a research tool until it is sufficiently validated via human cohort studies.

1.7.4 The next generation of biomarkers

Although neuroimaging is undeniably valuable in assessing the various stages of AD, a significant challenge with its utility as a routine biomarker remains to be its cost, accessibility and throughput. This has spurred efforts to rapidly identify fluid biomarkers, which are more readily accessible. As such, blood based biomarkers are rapidly developing [140]. Blood presents a tangible source of markers, as blood withdrawal is quick, inexpensive, and inflicts minimal discomfort to patients over CSF extraction.

Plasma markers of Aβ and tau have gained notable research interest, but thus far only plasma T-tau has reached the strengths of sensitivity their CSF counterparts can achieve. Other indirect markers of neuronal markers such as NfL, as well as as visinin-like protein 1 (VLP-1), a neuronal cytoplasmic protein, and neuron specific enolase (NSE), a neuronal enzyme, are gaining attention due to their significant CSF presence in AD [117]. Plasma NfL as a marker of axonal damage in particular has come through as a strong biomarker, correlating well with CSF levels [118]. These new candidates provide promising new accessible markers for early detection.
AD is also widely understood to be caused by an imbalance between production and clearance of pathogenic proteins [141]. If imaging accumulation indicates a point in the AD continuum that is too little too late, then useful biomarkers sensitive to the physiological processes that precede accumulation or impede clearance need to be developed. Tests sensitive to the pathways implicated in clearance may therefore provide fruitful avenues for novel biomarker development and viable therapeutic intervention, and also advance our understanding of disease cause, which still remains elusive.
2. The Glymphatic System

This chapter will introduce and define the glymphatic system, a focal theme of the work presented in this thesis, and explore its implication in Alzheimer’s disease pathology.

The glymphatic system describes a fluid network of exchange between cerebrospinal fluid (CSF) which surrounds the brain, and interstitial fluid (ISF) found in the extracellular space. It is considered a surrogate for conventional brain lymphatics, which are largely lacking in the brain. It gets its name from its close association with glia, as it is highly reliant on astrocytes for its function. This system facilitates the flushing of solutes and metabolic waste from the extracellular space by influx of CSF into the brain parenchyma, and thus CSF dynamics form an important facet of its function.

2.1 Cerebrospinal fluid

The brain, being such a vital organ, is protected by several physiological layers, the meninges. Beneath the skull, the dura mater forms the first tough meningeal membrane, followed closely by leptomeninges – the arachnoid mater and pia mater. The space between the leptomeninges forms the subarachnoid space (SAS), which holds a layer of CSF surrounding the entire brain. CSF is dynamic – it pulsates and flows around the brain and spinal cord, and through the ventricular network (Figure 12). Multiple forces contribute to these dynamics – CSF appears to follow a pulsatile pattern mirroring the cardiac cycle [142], as well as respiratory stimuli [143]. In addition, rapid bulk flow occurs through the ventricular system [144]. CSF production at the choroid plexus drives it through the lateral ventricles and into the third ventricle, down the aqueduct and into the fourth ventricle, which exits into the SAS via the cisterna magna. Reabsorption of CSF occurs at the arachnoid villi which protrude through the arachnoid membrane into the superior sagittal sinus at the top of the skull, where it drains into venous blood. Additionally, CSF can also drain along cranial
nerves to reach the extracranial lymphatics [145]. Careful physiological equalisation of production and reabsorption maintains intracranial pressure, which is vital for brain health.

Figure 12. Diagram depicting CSF flow within the cranium. CSF is produced at the choroid plexus within the lateral ventricles, flows through the third ventricle, into the aqueduct down to the fourth ventricle. From here, it flows into the cisterna magna via the median aperture and spreads into the spinal chord and recirculates around the skull, draining into the superior sagittal sinus via the arachnoid granulations. Image reproduced from the Wikimedia Commons free media repository.

The extension of the CSF space into the parenchyma occurs along the main penetrating vessels. The main vessels feeding the brain originate at the circle of Willis at the base of the brain, which separate into three pairs of major arteries – the anterior, the middle and the posterior cerebral arteries. These pial vessels which sit within the SAS, between the leptomeninges, are surrounded by CSF and branch further into arteries and arterioles. The arterioles that begin to dive into the brain parenchyma create a continuation of the SAS between the pial and parenchymal vessels, called the Virchow-Robin space, taking with it a continuation of the pia and the glia limitans – a layer formed of astrocytic end feet that sit directly underneath the pia (Figure 13). As these arterioles branch deeper into the brain, they
change structurally. The layers of the pia and glia limitans discontinue and eventually, the vessels form the capillary bed. This then feeds into the venous drainage system, but an important feature of the capillary microcirculation network is that it forms the neurovascular unit and blood brain barrier (BBB) [146].

![Figure 13. Cross sectional schematic showing a diving feeding pial or leptomeningeal artery and its cellular associations as it variegates into the capillary bed. Pial arteries dive into the brain along with the pia and glia limitans forming the Virchow-Robin space. As vasculature branches and penetrates deeper into the brain, it changes structurally. Arteries are distinguishable from their multiple layers of vascular smooth muscle cells (VSMC). Capillaries are formed of a single layer of endothelium and associated with pericytes. Astrocytic processes surround the entire network of brain vasculature. Reproduced from Zlokovic, 2011 [147].](image)

2.2 The blood brain barrier

The BBB is formed of the endothelial lining of microvasculature throughout the brain. Specialised contractile cells called pericytes sit on endothelial cells of the microvasculature, and together are encased in the basal lamina, formed of a variety of extracellular matrix proteins [146]. The endothelial layer is largely impermeable to macromolecules, with tight junctions between cells acting as a seal preventing plasma proteins from leeching from the blood into the brain, which can otherwise have damaging consequences. In order to transport nutritional molecules from circulation to parenchyma, this seal is specifically equipped with
a variety of transport systems. [148]. The barrier is permeable to other small lipophilic molecules, oxygen and carbon dioxide [147].

A uniquely important feature of the entire vascular network of the brain is that it is closely associated with astrocytes via astrocytic end foot processes that almost wholly ensheathe the entirety of brain vasculature. The overlap between these end feet form clefts of roughly 20nms, and these inter-end feet gaps allow microglial processes to interact with the basal lamina [149]. Gap junctions present between individual astrocytic processes also facilitate intercellular exchange between astrocytes, and this unique feature enables a network of communication via the formation of a non-overlapping syncytium [150]. The inter-end feet gaps may provide an entry route for proteins and other macromolecules within this size range to move between the parenchyma and the CSF, but restricts entry into circulation. Thus the BBB serves a crucial protective function in maintaining brain health.

Figure 14. Structural elements of the BBB and the neurovascular unit. At the capillary bed, astrocytic end feet processes surround the pericyte and capillary endothelial cell. Tight junctions between endothelial cells prevent passive entry and exit of molecules between blood and brain tissue. Microglia can interact with the endothelium via gaps between end feet. Reproduced from Abbott et al., 2010 [148].

The close association of the microcirculation with neurons as well as astrocytes, microglia and pericytes also forms an important physiological entity known as the neurovascular unit (Figure 14). The neurovascular unit works carefully to control the chemical makeup of the
interstitium around it, to ensure healthy physiological function. The interplay and cross communication between this myriad of neuronal and non-neuronal cell populations in the brain serves to regulate BBB permeability and cerebral blood flow, thus monitoring critical aspects of normal brain function [147].

2.3 Glymphatic exchange

The continuous fluid network formed from CSF penetrating the brain, first along the Virchow-Robin spaces, and then following the perivascular spaces along the basal lamina to reach the interstitium bathing the cells of the brain, gives way for fluid exchange. The forces of CSF movement, which include cardiac pulsation, respiration and CSF production provide driving forces for CSF to move along this low-resistance pathway to reach the brain parenchyma. Here, CSF moves into the brain parenchyma and exchanges with ISF by convective bulk flow [151]. This enables rapid exchange of CSF with ISF, which then, driven by vectoral convective flux, is drained along the perivascular spaces around draining veins (Figure 15), then getting flushed into the recently discovered meningeal lymphatic vessels [152] and ultimately into the cervical lymph nodes [153].

The mechanisms by which this process occurs have long been debated and probed. Early work by Cserr et al. measured the exit rates of radioactive tracers of varying sizes injected into the rat brain, expecting smaller molecules to clear faster if diffusion was the only fluid driving force in the interstitium. They found that tracers cleared at similar rates, thus pointing to bulk flow [154]. Shortly afterwards, work by Rennels et al. in cats and dogs showed that infusing tracers into the SAS caused them to travel along perivascular routes and enter the parenchyma, with this effect being diminished by partially ligating the brachiocephalic artery. They deduced that cerebral arterial pulsations were requisite to the entry of solutes into the brain along this pathway [155].

More recently, the workings of this system have reproducibly and comprehensively been demonstrated in the mouse brain. Using fluorescent dyes infused into the SAS and confocal
microscopy, Iliff *et al.* showed that the entry of fluorescently tagged CSF occurs along the penetrating arteries, and also attributed this to the pulsatility of the smooth muscle in the arterial walls [151]. In a subsequent experiment, they verified the crucial role of arterial pulsation, by showing that glymphatic flux was impaired when the carotid artery was ligated to reduce arterial pulsatility in the brain by 50%, and conversely, increasing pulsatility by 60% using an adrenergic agonist sped up this mechanism [156]. The initial experiments also elegantly demonstrated the unique reliance of periarterial and perivenous routes for entry and exit respectively. Using a combination of genetic reporter mice that fluorescently distinguish arteries from veins, and fluorescent tracers injected into the SAS and the parenchyma, they showed that while CSF entry occurred along periarterial routes, exit routes for all these fluid solutes were along the margins of central draining veins. In this work, they also showed the requirement of aquaporin-4 (AQP4) for convective exchange into the parenchyma.

![Diagram](image_url)

Figure 15. Diagrammatic depiction of CSF-ISF exchange via glymphatic flow. Arterial pulsations drive CSF along periarterial spaces, where AQP4 can facilitate exchange with ISF. Bulk flow drives waste metabolites along with CSF towards perivenous drains [157].

Using AQP4 deficient mice, they found that bulk CSF flow into the Virchow-Robin spaces was unaffected, but CSF tracer exchange into the parenchyma was impaired in the absence
of AQP4. Additionally, they found that tracers injected into the AQP4 null brain interstitium were not efficiently removed, reporting up to a 70% impairment. This crucially demonstrated that the glial water channel AQP4, which is densely expressed at the abluminal surface of the astrocytic end feet which wall the perivascular space, had a significant responsibility in facilitating this fluid exchange network. Because this system behaves as a substitute for brain lymphatics, and relies on glia, the term “glymphatics” was coined [151].

Although evidence demonstrating the workings of this pathway continues to build [158], the precise origin of the driving forces of convective exchange remain dubious. Global CSF flow, diffusion and arterial pulsation have all been put forward, but not fully proven as drivers. The aforementioned early work by Cserr et al., demonstrated that diffusion alone would be insufficient to facilitate the exit rates of tracers [154]. Further studies combining mathematical modelling to infusion studies continued to support the notion that diffusion alone was insufficient to drive influx, and additional forces driving bulk flow within the ISF were at play [159]. Iliff et al. put forward the concept of a hydrostatic arteriovenous gradient, created by the combination of arterial pulsation, rapid fluid exchange into tissue via AQP4 and low pressure sinks in perivenous routes [151]. Recent mathematical experiments modelling perivascular CSF inflow and exchange with ISF have suggested that arterial pulsation may not be the sole driving force of inflow. Asgari et al. propose the concept of rapid dispersion, described as a combined effect of diffusion in the brain and macroscopic ventricular CSF motion arising from cardiac and respiratory brain deformation. Based on their model, they suggest that rapid dispersion of solutes as a consequence of arterial pulsation facilitates fast transport along perivascular routes, and net bulk flow would require additional driving forces [160]. Physiological evidence for this hypothesis as well as the driving forces for bulk flow is yet to be pinpointed. It is fathomable that the multitude of flow vectors at play within the cranium and the various fluid compartments contribute variably to net flow. A recent study by Ray et al. simulated both interstitial bulk and diffusive flow and compared it to a wealth of experimental data that supported both these mechanisms. This study concluded that both these mechanisms are relevant to fluid transport in the
interstitium, with their findings pointing to bulk flow is an important facilitator in moving larger molecules, which diffuse less readily and slowly in the tortuous extracellular space than smaller molecules [161].

The crucial contribution of AQP4 in this system has also been modelled to test the movement of fluid from the periarterial to perivenous side. Asgari et al. modelled the astrocytic syncytium between these two locations, by including AQP4 on the plasma membranes, an abundance of AQP4 on the perivascular surfaces, 20nm inter-end feet gaps and gap junctions within their model (Figure 15). They demonstrated the movement of fluid through both a tortuous extracellular route (around astrocytes and cells of the brain neuropil) as well as a simpler intracellular route (through astrocytes, via AQP4 and gap junctions), occurring in parallel. They note that these parallel routes work in harmony, as depleting AQP4 at the end foot domain hinders the net flow, including reduction of movement through gap junctions and the inter-end feet gaps, where metabolites would be expected to move through, possibly driven by a pressure gradient, although the presence of such a gradient has not been physiologically proven [162]. These observations however mirror in vivo data and reinforce the idea that effective CSF-ISF exchange relies on a high density of AQP4 on the perivascular domains.

![Figure 15. Schema of the mathematical model to simulate periarterial inflow, AQP4 mediated fluid flow and perivenous drainage. A continuous non-overlapping network of astrocytes with AQP4 is modelled here to test the movement of fluid from periarterial to perivenuous compartments. Reproduced from Asgari et al., 2015 [162].](image)
2.4 Aquaporin 4

AQP4 is one of several aquaporins which form a family of cellular water channels. Earliest investigations of aquaporins were focused on organs such as the kidneys where a high level of water exchange is crucial in function [163], and subsequently also studied in the eye, lungs and brain of rodents [164]. Aquaporins are crucial in the brain, where careful control of water homeostasis is critical in regulating normal function. AQP1 is found on the epithelial cells of the choroid plexus, whereas AQP4, 5 and 9 are present on the ependymal cells that line ventricles, and on astrocytes [165]. AQP4 is the most abundant form in the brain, highly expressed on astrocytes, and expressed in two isoforms – M1 and M23. The M23 isoform assembles in highly complex structured orthogonal arrays, with a preference towards the end foot process, whereas the M1 isoform individually spreads and moves through the plasma membrane, with a regional preference towards extending membranes [166]. High densities of AQP4 are found at the end feet processes of astrocytes that surround the vasculature network, and also form the glia limitans [164]. This astrocytic feature gives AQP4 a key role in water homeostasis in the brain.

AQP4 has been implicated in a range of brain conditions including neuroinflammation, stroke, oedema and traumatic brain injury (TBI) and experimental evidence in mice have provided a wealth of evidence towards this. For example, in experimental models of water intoxication and stroke, AQP4 null mice show lowered susceptibility to brain oedema and neurological impairment than their wildtype counterparts, providing evidence for its role in water homeostasis during disease [167]. In studying post TBI seizures, AQP4 null mice experienced more severe seizures, increased microgliosis and decreased astrogliosis compared to wildtypes, which contributed to weaker scar formation, thus giving AQP4 a protective role [168]. In a model of TBI, AQP4 has been found to undergo an overall increase in expression along with astrogliosis, but a reduction in polarisation [169].

If AQP4 changes occur in the brain in response to an insult, and polarisation is an important feature in the fluid-mediated transit of brain metabolites, then probing pathologies of the brain within the context of the glymphatic system is of interest. In AD, this system provides
a viable route for tau and Aβ spread through and clearance from the brain. In order for this to be feasible, these proteins need to reach the interstitial fluid in the extracellular space.

2.5 Aβ and tau in the extracellular space

The imbalance between protein production and clearance has implicated impaired clearance as a potential mechanism contributing to aggregation during proteinopathies [170]. The initiators of Aβ and tau pathology remain elusive, but investigation into the spread of these pathogenic proteins provide insights into the possible mechanisms underlying AD onset. Aβ is an extracellular lesion which appears early during the disease, whereas tau pathogenesis begins intracellularly and later in the AD cascade, and they both have distinct patterns of spread. Thus, the mechanisms by which this occurs can be regarded individualistically and mouse models have been valuable assets in exploring these mechanisms.

APP processing at the plasma membrane releases Aβ into the extracellular space which oligomerises and accumulates into plaques [25]. It is however increasingly evident that intracellular Aβ oligomers are neurotoxic over the fibrillar extracellular plaque forms [27]. *In vitro*, Aβ can be internalised at distal axons and travel to cell bodies in a retrograde manner, and then transneuronally spread to neighbouring neurons. *In vivo*, Aβ is seen to spread via neuroanatomically connected regions in the mouse brain [171]. It is hypothesised that oligomeric Aβ is secreted extracellularly via exosomes, and then internalised endosomally, where it then collects in lysosomal vesicles. Support for this theory is evident in cell culture, where endosomal-lysosomal trafficking of oligomeric intracellular Aβ42 has been demonstrated [172]. When internalised, Aβ is devastating to cellular machinery, as it can interfere with synaptic function, disrupt enzymatic activity and disturb calcium homeostasis [173]. In mice, oligomeric extracellular Aβ can also act as seeds around existing plaques, thereby promoting formation of new plaques [174].

Hyperphosphorylation of tau inside the neuron causes it to dissociate from microtubules and aggregate in an incremental manner until it forms an NFT. Although tau is an intracellularly
aggregating protein, the appearance of P-tau in CSF during AD indicates that the release of pathogenic tau species into the extracellular space is a key event in initiating its spread. It is hypothesised that pathogenic conformations of tau in the extracellular space can act as a seed and propagate misfolding and spread through synaptically connected neurons in a prion-like manner [175]. This has been demonstrated in mice [176]. When insoluble tau species extracted from mutant tau mice are injected into the brains of transgenic mice expressing wildtype human tau, it induces the formation of pathogenic tau fibrils, which spreads through anatomically connected regions and progresses with age [177]. The transmission of tau from cell to cell has been probed in vitro, and when cells with fluorescently tagged tau is cocultured with naive cells, it is seen to leave one cell and enter neighbouring cells when cocultured. Unlike Aβ, it is the filamentous form of tau that exacerbates propagation, whereas the oligomeric forms do not succeed in propagating pathology [178].

It is clear that spread of the pathogenic forms of Aβ and tau require its presence in the extracellular space. It is also apparent that transmission of these abhorrent proteins is encouraged, pointing to an inefficiency in clearance mechanisms at play within the brain during pathogenesis. Thus, probing dysregulation of clearance may offer vital clues towards the onset of AD. In addition, understanding the failure of clearance may offer new targets for therapeutic intervention.

Protein waste can be degraded via a myriad of mechanisms, including and not limited to enzymatic degradation (both intracellular and extracellular), bulk ISF flow and BBB transport, and whilst several clearance systems have been widely studied, the relative contributions of each system remain unknown. It has long been understood that BBB was the prime site of clearance of metabolites, including Aβ clearance [179]. However, research in glymphatics has demonstrated that it has the potential to clear Aβ with up to 65% efficiency [151]. It is important to note that whilst glymphatic system has been proposed as a surrogate solution for the lack of brain lymphatics, meningeal lymphatic vessels have also recently been identified in the dural sinuses of the mouse brain, bringing important new insights into waste removal routes in the brain [152]. Evidence for a further perivascular
clearance pathway along basement membranes of capillaries and arterial walls in the reverse direction to glymphatic flow also exists, with important implications in the development of cerebral amyloid angiopathy CAA [180]. The glymphatic system offers a new mechanistic window into the efficient removal of pathogenic substances from the extracellular space and therefore warrants investigation in the AD setting, given that much is still undiscovered in its pathogenesis.

2.6 Aβ and tau as glymphatic substrates

The entry and exit of parenchymal metabolites via the glymphatic system has been demonstrated using a variety of techniques. In the preliminary experiments by Iliff et al., in addition to characterising the pattern of periarterial to perivenous transit, they also showed that Aβ is a substrate for removal via this mechanism. Using fluorescently labelled Aβ, they showed its presence along capillaries and draining veins, and when radioactively labelled Aβ40 was injected into the parenchyma, they showed gradual removal of this substrate over time. When injected into the SAS, an increase in tagged Aβ was detected in the brain over time. Importantly, both these observations were significantly marred when repeated in AQP4 null mice [151]. Glymphatic Aβ clearance has also been investigated with sleep cycles, as both APP mice, as well as human subjects show increases in ISF Aβ levels that correlate with wakefulness. In addition, APP mice that are sleep deprived show increased cortical plaque burden [181]. Based on this finding, and the observation that sleep disturbances are prevalent in AD subjects, Xie et al. measured glymphatics in awake and sleeping mice by infusing fluorescent traces onto the SAS. They found that wakefulness impaired the amount of tracer influx, and attributed this to extracellular space changes, as they found that the interstitial volume increased by up to 60% during anaesthesia-induced sleep. They then tested the clearance of radioactively labelled Aβ and found a twofold increase in clearance in sleeping mice [182]. In another study which looked at the relationship between aging and Aβ removal, clearance of radiolabelled Aβ was seen to be impaired with advancing age of the mouse, at a rate comparable to co-infused tracers which would exclusively be cleared via
bulk flow. These observations were attributed to reductions in arterial pulsatility also observed within these aging mice [183]. Taken together, these studies collectively pose Aβ as a substrate for glymphatic clearance.

The evidence for tau as a glymphatic substrate comes from studies investigating TBI. When mice that underwent TBI were assessed for changes in their glymphatic components, several observations were made. First, the inflow of fluorescent tracers and clearance of radiotracers were reduced in the post-TBI brain. In addition, AQP4 polarisation was reduced following TBI. P-tau levels were elevated following TBI, but importantly, when this experiment was repeated in AQP4 null mice, a significant elevation in P-tau and neurodegeneration was observed [184]. These findings imply that perturbances of AQP4 can contribute to elevated tau pathology via glymphatic impairment.

These experimental findings lay important groundwork for investigating novel clearance mechanisms of Aβ and tau to further our understanding of AD progression. The work presented in the context of aging is of particular relevance, given that age is the biggest risk factor for AD [66]. In addition to the experimental observations cited here in models of AD and TBI, glymphatic fluctuations are also observed in mouse studies investigating stroke [185], alcohol use [186], exercise [187]. This is fascinating, given that these are all known factors that pose risk for or modulate AD. This growing body of work in this emerging field is paving the way for new avenues in neurodegenerative research. Thus, it is prudent that these findings are expanded upon in order to develop new ideas for AD treatment.
2.7 Aims of this project

The glymphatic system is a newly discovered clearance pathway which has been implicated in clearing waste from the brain, and the workings of this system during AD pathology, which are not fully explored, have been interrogated in the work in this thesis. Within this research programme, I set out to quantify glymphatic inflow in mouse models of AD, taking a whole-brain 3-dimentional imaging approach. My thesis aimed to:

1. Set up a robust surgical methodology which would provide a suitable experimental system to image glymphatics in mouse models.

2. Build on the understanding of the role of AQP4, by modulating it pharmacologically to determine if artificial impairment of glymphatics are reliably measurable in vivo using MRI.

3. Identify if glymphatic changes precede pathology, by carrying out whole brain MRI at select time points on mouse models of tau and Aβ, to better understand if fundamental variations in clearance bring about AD-related molecular changes.

4. Extend my findings to human AD, to bridge the gap between basic science and clinical data, by studying AQP4 profiles in post mortem brains and their relationship to pathological burden.

Quantifying glymphatic function during pathology and modulating AQP4 as a therapeutic intervention are emerging concepts in AD research and the novel data presented in this thesis contributes to that growing body of work.
3. A Surgical Mouse Model to Assess Glymphatic Inflow

In this chapter, a surgical method to measure glymphatic inflow in the mouse brain is established as a proof of concept. This in vivo setup serves as the basis for experiments in wildtype and transgenic mice in subsequent chapters.

3.1 Summary

The recently described glymphatic system may provide a novel route for the effective clearance of proteins such as amyloid-β and tau from the brain, and it's role in Alzheimer's disease pathology is intriguing. To study glymphatics in vivo by probing the dynamics of the physiologically sensitive fluid spaces in the brain, a model system needs to be robust and reproducible. Here, a surgical methodology that would enable dynamic imaging of the mouse brain with continuous infusion of contrast is established based on previous study of glymphatic function in rodent models. The technique is assessed using a series of dyes of varying sizes and infusion rates to confirm concordance with previous experimental evidence. This work provides confidence in the subsequent imaging studies, in the use of this method to capture real-time dynamics of cerebrospinal fluid ingress into the brain.
3.2 Introduction

In the brain, an imbalance between production and clearance of the pathogenic proteins of Alzheimer’s Disease (AD), amyloid-β (Aβ) and tau, is hypothesised to be a contributing factor to disease onset. The lack of robust treatment for AD has fuelled renewed interest in exploring novel ways in how the brain clears itself of pathogenic proteins, and has paved way for new research advances in the neurodegenerative disease. The glymphatic system has only been recently characterised as a clearance mechanism for Aβ, and is still in fairly early stages in research exploration, but is gaining momentum and recognition as an important removal route for brain metabolites [188–191]. As described in the previous chapter, using experimental mouse models, Iliff et al. elegantly demonstrated a periarterial influx route of cerebrospinal fluid (CSF) from the subarachnoid space (SAS) into the brain. They also showed the need for the water channel aquaporin-4 (AQP4), found highly abundant at the astrocytic end feet that ensheathe brain vasculature, for exchange of CSF solutes with parenchymal interstitial fluid (ISF). In addition, they provided evidence for the exit of parenchymal solutes along perivenous routes [151]. They used an intracisternal tracer infusion approach and showed that tracers from the SAS entered the brain along cortical arteries. In this work, they also demonstrated a size-based selectivity in the penetration depth of solutes into the brain, using both radioactive and fluorescent solutes infused into the SAS. The smallest molecules penetrated the deepest regions of the brain, whereas larger tracer molecules were restricted to the more superficial perivascular regions, an observation which was attributed to the 20nm gaps between the astrocytic end feet [149], sieving out molecules larger than this size and preventing their movement from the perivascular space into the brain tissue. Crucially, it was also noted that maintaining the hydraulic integrity of the intracranial space was requisite for the maintenance of glymphatic flow – that is, the introduction of a small unsealed hole into the dura was found to markedly reduce measured rates of perivascular contrast movement from the SAS to the brain tissue [151,192]. This demonstrates that careful experimental control is required when manipulating and testing parameters within this finely balanced system.
In this work the methodology employed in the previous work is reproduced, to demonstrate that the surgical methodological protocol is reproducible and yields results concordant with previous studies. First, measures of glymphatic inflow were macroscopically assessed by using dyes that could be visualised by the naked eye, to confirm movement of solutes along penetrating vessels on the surface of the mouse brain. Next, this was advanced to microscopic visualisation using fluorescent tracers in order to detect parenchymal penetration, and to test the size based patterns of glymphatic inflow previous described in Iliff et al. This provided reassurance that the surgical methodological protocol yielded measures that were robust and concordant with previous work, prior to extrapolating this work onto magnetic resonance imaging (MRI) experiments, which comes with its own distinct set of technical and practical challenges.

3.3 Methods

3.3.1 Intracisternal infusion of tracers into the mouse subarachnoid space

8.5 month old wildtype female C57BL/6 mice were used, imported from Charles River (Wilmington, Massachusetts, USA). N numbers used for each experimental set are provided in the subsections below. All animal work was performed in accordance with the United Kingdom’s Animals (Scientific Procedures) Act of 1986 and was previously approved by University College London’s (UCL) internal Animal Welfare and Ethical Review Body. Mice had unrestricted access to food and water, and were housed under automatically controlled temperature, humidity, ventilation and 12h light/dark cycle settings.

Mice were anaesthetised with 2% isoflurane delivered in O₂ at a delivery rate of 1l/min, and positioned in a stereotaxic frame (Kopf) with the head flexed to 50°. Mice were maintained at 37°C (±2°C) using a feedback controlled heated mat connected to a rectal core temperature monitor (Harvard Apparatus). A midline incision was made at a midpoint between the skull base and the occipital margin to the first cervical vertebra (Figure 16). The underlying muscles were parted to expose the atlanto-occipital membrane and dura mater overlaying
the cisterna magna, and a durotomy was performed using a 23-gauge needle. An intrathecal catheter (35-40 mm port length, 80-90 mm intravascular tippet length, Sandown Scientific, Middlesex, UK) extended with polyethylene tubing (0.4 mm x 0.8 mm, Portex) and attached to a 100µL glass Hamilton syringe driven by a microinfusion pump (sp210iw syringe pump, World Precision Instruments, Sarasota, Florida, USA) was filled with the desired contrast agent. The catheter was advanced <1mm into the cisternal space, sealed and anchored in place using superglue. This setup is shown below in Figure 16.

![Figure 16. Surgical method to introduce tracers into the SAS. 1. The anaesthetised mouse is secured on a stereotaxic frame. An incision of the skin is made to expose muscle from occipital bone to atlas. 2. The of splenius capitis, semispinalis muscles and atlanto-occipital membrane are removed, revealing the cisterna magna. 3. The dura mater is punctured with a needle (diameter ~0.25mm). The needle tip is stained with ink to visualise the puncture, seen here as a blue residue around the puncture. 4. The intrathecal catheter advanced <1mm into cisterna magna and secured with superglue. In this image, the catheter contains Alexa Fluor 594 hydrazide dye.](image)

3.3.2 Evans blue dye to assess superficial tracer distribution

A flowrate of 2μl/min (n = 4) as used in the original work by Iliff et al. [130] was tested, as well as a slower, more physiologically compatible flow rate [193] of and 0.6μl/ min (n = 5), with the intention of using this in subsequent MRI experiments. 4% Evans blue dye (EBD) (molecular weight 961 Da) (Sigma catalogue# E2129) prepared in filtered 0.9% NaCl was infused into the cisterna magna for a total of 10μl delivered volume for each flow rate. 30 minutes after the start of the infusion, mice were euthanized by overdose with sodium pentobarbital (10ml/kg, i.p.). Brains were removed and photographed dorsally, ventrally and
laterally to capture dye distribution around the outer brain surface (my hypothesis being that dyes would be preferentially distributed along the para-arterial space of surface vessels).

3.3.3 Fluorescent dyes to assess parenchymal tracer distribution

In the fluorescent tracer experiments, only the 0.6μl/min infusion rate (n = 4 per dye) was used. 0.5% solutions of Alexa Fluor 594 hydrazide (AF594-H) (molecular weight 759 Da; emission/excitation wavelengths: 588/613 nm) (ThermoFisher catalogue# A10438), Texas Red–dextran-3 (TR-d3) (molecular weight 3 kDa; emission/excitation wavelengths: 595/615 nm) (ThermoFisher catalogue# D3329) and fluorescein isothiocyanate–dextran-2000 (FITC-d2000) (molecular weight 2000 kDa; emission/excitation wavelengths: 490/520 nm) (Sigma, catalogue# 52471) in filtered cortex buffer (pH 7.4) were infused into the cisterna magna for a total of 10μl for each flow rate. Cortex buffer was chosen as the vehicle for delivery here to maintain a salt solution that was more physiologically compatible with the brain. To collect sections without fluorescence as a reference control, one mouse was infused with cortex buffer without fluorescent tracers. Recipe for cortex buffer used is as follows:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount to add</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>7.31 g</td>
<td>125 mM</td>
</tr>
<tr>
<td>KCl</td>
<td>0.373 g</td>
<td>5 mM</td>
</tr>
<tr>
<td>Glucose</td>
<td>1.802 g</td>
<td>10 mM</td>
</tr>
<tr>
<td>HEPES</td>
<td>2.38 g</td>
<td>10 mM</td>
</tr>
<tr>
<td>1 M CaCl₂</td>
<td>2 mL</td>
<td>2 mM</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.493 g</td>
<td>2 mM</td>
</tr>
<tr>
<td>H₂O</td>
<td>to 1 L</td>
<td>--</td>
</tr>
</tbody>
</table>

Tracers were infused for a total of 10μl. 55 minutes after the start of the infusion, mice were euthanized by overdose with sodium pentobarbital (10ml/kg, i.p.). Mice were perfused with 15 ml 0.9% saline followed by 50ml 10% buffered formalin (VWR catalogue# 9713.1000). Brains were rapidly removed and snap frozen in isopentane pre-chilled on dry ice to prevent further diffusive movement of tracers. 50μm coronal sections of the brain were collected onto RNase-free SuperFrost® Plus slides, using a cryostat. Slides were imaged on an Invitrogen EVOS FL Auto fluorescence microscope and images were analysed on ImageJ. Each slide
with fluorescent sections was scanned alongside a slide with sections from the control mouse infused with cortex buffer only.

3.3.4 Analysis of fluorescent dye penetration

The most medial section from each brain with minimal slicing artefacts was selected. The image was binarized on ImageJ and the mean intensity of the image obtained. An ROI was drawn around the selected slice and a threshold of 3 standard deviations from the mean signal of each brain was then applied to the image. The % area coverage of this threshold was taken as a measure of penetration into the tissue for each section. This image analysis pipeline is shown in Figure 17. Statistical comparisons between groups were performed via one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons tests. Data is represented as mean ± SEM for the n number of animals in each group. Statistical testing was performed using GraphPad Prism (v7 for Windows, San Diego, CA, USA).

Figure 17. Flow diagram showing an example of the analysis approach taken to calculate percentage penetration of fluorescent tracers.
3.4 Results

Prior to the data reported here, I performed this surgical procedure in a total of 32 mice, which collectively enabled me to better control for important sources of experimental variation such as anaesthetic delivery, stereotaxic positioning and contrast agent buffering (data not shown). Once my surgical skill was honed, I commenced data collection on the experiments described in sections 3.3.2 and 3.3.4.

3.4.1 Macroscopic assessment with Evans blue dye

<table>
<thead>
<tr>
<th></th>
<th>Ventral</th>
<th>Lateral</th>
<th>Dorsal</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2_4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 18. Photographs of brains collected following intracisternal infusion of EBD at 2µl/min. Each row represent a single mouse brain, photographed ventrally, laterally and dorsally. EBD distribution is visible in blue.
<table>
<thead>
<tr>
<th></th>
<th>Ventral</th>
<th>Lateral</th>
<th>Dorsal</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0.6_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0.6_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0.6_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0.6_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0.6_5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 19. Photographs of brains collected following intracisternal infusion of EBD at 0.6 μl/min. Each row represent a single mouse brain, photographed ventrally, laterally and dorsally. EBD distribution is visible in blue.

In the 2μl/min group (Figure 18), a high amount of tracer retention was observed around the brain stem close to the cisterna magna infusion site. EBD infused into the cisterna magna was visible at the base of the brain around the circle of Willis. Tracer was also visible along the middle cerebral arteries (MCA) and along the branches of the leptomeningeal arteries, towards the surface of the cortex. One mouse in the 2μl/min group died shortly after the infusion commenced. Upon necropsy, EBD was not visible on the surfaces of the brain in
this mouse (Figure 18, M2_2) and further dissection revealed that EBD had filled all the ventricles.

In the 0.6μl/min group (Figure 19), tracer distribution was highly similar to the observations in the 2μl/min group. Tracer retention along the branches of the MCA were noticeably more prominent. In one mouse from this group, tracer appeared to pool in the cisterna magna and drained out upon necropsy. No dye was observed on the brain surface (Figure 19, M0.6_4) or within the ventricles. EBD was not observed in the ventricles of any other mice.

3.4.2 Microscopic assessment with fluorescent tracers

![Figure 20](image)

Figure 20. Coronal brain sections from mice infused with small molecular weight Alexa Fluor 594 Hydrazide (0.76 kDa), sliced from rostral (top) to caudal (bottom) regions. Each column contains images from an individual mouse. Control sections were obtained from one mouse infused with cortex buffer only (AF594 Emission / Excitation wavelengths: 588/613 nm).
Figure 21. Coronal brain sections from mice infused with medium molecular weight Texas Red (3 kDa) sliced from caudal (top) to rostral (bottom) regions. Each column contains images from an individual mouse. Control sections were obtained from one mouse infused with cortex buffer only (TR Emission /Excitation wavelengths: 595/615 nm).

<table>
<thead>
<tr>
<th>Control</th>
<th>TR_M1</th>
<th>TR_M2</th>
<th>TR_M3</th>
<th>TR_M4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1cm

Figure 22. Coronal brain sections from mice infused with large molecular weight fluorescein isothiocyanate (2000kDa), sliced from rostral (top) to caudal (bottom) regions. Each column contains images from an individual mouse. Control sections were obtained from one mouse infused with cortex buffer only (FITC Emission /Excitation wavelengths: 490/520 nm).

<table>
<thead>
<tr>
<th>Control</th>
<th>FITC_M1</th>
<th>FITC_M2</th>
<th>FITC_M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1cm
The large molecular weight FITC-d2000 penetrated the brain the least (1.7% ± 1.4 SEM). On the micrographs (Figure 22), tracer was mostly visible on the peripheries of the brain tissue. This was followed by medium molecular weight TR-d3 (Figure 21) which penetrated up to 16% (± 5.8 SEM), travelling deeper than FITC-d2000. AF594-H, the smallest dye, travelled the deepest (Figure 20), achieving up to 60% (± 2.6 SEM) penetration. This tracer penetrated significantly deeper than TR-d3 (p= 0.0005) and FITC-d2000 (p = 0.0001, Figure 23 A) and visibly illuminated the brain sections on the micrographs (Figure 20). This data was also plotted against tracer size, producing a single phase decay, as modelled in Figure 23 B. This enabled the rough estimation of penetration that could be expected with other potential tracers. The experiments started with 4 mice in each tracer cohort. However, one mouse from the FITC-d2000 group was removed from analysis as the infusion line was visibly blocked and prevented tracer from entering the cisterna magna. A mouse from the AF594-H group was also removed from analysis due to a leak at the infusion site during the experiment and thus had to be terminated. In the TR-d3 group, one mouse (TR_M3; Figure 21) appeared to have reduced penetration compared to the others in this cohort. However, no visible experimental observations or errors warranted its removal and thus was included in the analysis.

![A](image1.png)

Figure 23. (A) Percentage penetration of large (FITC-d2000; n=3), medium (TR-d3; n=4) and small (AF594-H; n=3) molecular weight dyes infused into the cisterna magna at 0.6µl/min. (B) The data from A, modelled against one phase decay curve. Vertical dotted line denotes the size of a proposed MRI contrast agent, Gd-DTPA. Error bars represent standard error of the mean (SEM). Statistical significance denoted by asterisks: ***=p<0.001.
3.5 Discussion

This work aimed to develop a methodological protocol for reproducible assessment of glymphatic inflow in the mouse brain and to use this protocol to replicate previous experimental observations: namely the characteristic spatial distribution of tracers and the tracer-size dependence of these distributions [151]. Using EBD, the characteristic movement of tracers in the SAS along the main feeding leptomeningeal vessels was macroscopically observed. When fluorescent tracers were used, they were visible in the brain parenchyma, and followed a size-based pattern, with the smallest tracers achieving the deepest penetration depths.

A key aim of these experiments was to establish a method that would enable the extension of these studies into MRI, to enable dynamic assessment of whole brain glymphatic function in AD. Anticipating that capturing dynamic real-time MRI scans would require a protocol with a larger volume infused over a longer period based on similar imaging experiments carried out in rat brains [194], the need to calibrate the infusion rate was recognised. Given that intracranial hydraulic integrity is a key component of maintaining CSF flow patterns, an infusion rate of 0.6 µl/min was implemented, theorising this to be physiologically compatible whilst still enabling detectable contrast, and the rationale is explained henceforth.

First, tracer movement was macroscopically tested using the infusion rate from the original work by Iliff et al. of 2 µl/min as well as the proposed rate of 0.6 µl/min. Both experimental cohorts showed tracers moving along the leptomeningeal vessels and branches moving towards the cortical surface, however, this was more prominent in the 0.6 µl/min group. The 0.6 µl/min flow rate is likely to disrupt endogenous brain fluid movement to a lesser extent than the 2 µl/min flow rate and interestingly, it was observed that this resulted in more prominent perivascular distribution of tracers, seen by qualitative, visual assessment of EBD distribution (Figure 19). This observation indicates that high infusion rates may underestimate rates of glymphatic inflow relative to lower infusion rates.
One explanation for this may be that faster rates could disrupt fluid dynamics in the SAS, possibly by interfering with intracranial pressure (ICP) and thus diminishing the pattern of pulsatile flow along feeding vessels. In the original work using an infusion rate of 2µl/min, the senior authors only noted a transient disturbance in ICP, and in a protocol subsequently published, they recommended a rate of 1µl/min for cisterna magna infusions [195]. Prior work from a different group, using a cisterna magna bolus of tracer infused at 3µl/min, had shown no detectable changes in ICP 10 minutes following the infusion [196]. More recently, a study using cisterna magna tracer infusions continuously tested ICP whilst gradually increasing the infusion rate. They found that a rate of 0.34µl/min increased ICP from a baseline reading of 4.1 ± 0.4 mmHg to 4.2 mmHg, and at 1µl/min ICP reached 5.3 mmHg, but gradually decreased after the end of the infusion [197]. Thus it would seem that a variety of flow rates and infusion volumes do not produce marked increases in ICP using the experimental design implemented here. In this study, one mouse that died from the 2µl/min group showed tracer filled ventricles, but none along the vessels. It may have succumbed to adverse effects from this infusion, possibly due to a combination of the faster rate as well as erroneous placement of the catheter, forcing the tracer in the wrong direction, which may have then detrimentally disrupted cerebral physiology.

Lymphatic inflow has previously been visualised in the rat brain by contrast-enhanced MRI and that study used an infusion rate of 1.6µl/min [194]. In a separate study, this group also used this same infusion rate in fluorescence experiments in mice alongside rats, where a comparable pattern of tracer distribution was observed in both species. ICP recordings taken in these rat brains showed no perturbances [198]. Another study in the rat brain has shown that intracisternal infusion only increases ICP at ≥3µl/min [199]. But, the adult mouse brain is approximately 4 - 5 times smaller than the adult rat brain [200] and has 4 times less total CSF volume [201]. Based on these metrics, an infusion rate of 0.4 µl/min would seem pragmatic. This rate would also be similar to the rate of CSF production in the mouse brain which is estimated at 0.37 ± 0.04 µl/min [193], and thus be physiologically compatible. However, a challenge posed by the MRI experiments was that an infusion rate too slow, or
a total volume of tracer delivered too small could impede meaningful signal detection. I therefore concluded that a compromised rate needed to be reached – whilst the ideal infusion rate for the mouse brain would be 0.4µl/min, the aforementioned studies provided the understanding that this could be pushed beyond 1µl/min without changing ICP, and thus conceded here at 0.6µl/min moving forward. I reasoned this rate would not markedly change ICP but allow reasonable infusion of contrast agent volume and detection of signal in MRI. It must be noted that one mouse from the 0.6µl/min cohort in the EBD experiments also did not show tracer along the vessels, however, it did not suffer any adverse effects and the mouse survived the end of the experiment. As the tracer appeared to pool around the infusion site, with some draining out during necropsy, it is unlikely that a block in the SAS was responsible for this, as such a physiological change would be devastating to its physiology. Dissection of this brain confirmed a complete lack of tracer in any brain region. Thus, it is likely that a technical error caused a blockade in the infusion line of this mouse. The remaining 4 mice in that group prominently displayed the characteristic distribution of tracer along the cortical vessels. Overall, an affirming observation in these experiments was how the macroscopic spatial tracer distribution on the ventral aspect of the brain and along cortical vessels were on par with the observations reported in the previous rat brain MRI experiments [194] and mouse brain fluorescence studies [151].

The next set of experiments used fluorescent tracers infused at 0.6µl/min and demonstrated that CSF tracers can enter the parenchyma. In the TR-d3 infused brains, some sections revealed tracer entry along penetrating cortical vessels. This is as expected, as the pulsatile pattern of fluid movement is thought to move solutes towards the Virchow-Robin spaces to facilitate parenchymal ingress [160]. A size based preference in solute size is apparent as previously described – smaller molecules penetrate deeper in the brain and large molecules are more restricted in movement [151]. Glymphatic inflow partially relies on this pulsatile movement for CSF to enter the brain along penetrating arteries [156], and fluid exchange into the parenchyma is facilitated by aquaporin-4 (AQP4) channels, found highly polarised at the end feet of astrocytes that surround vessels [149]. Water enters the brain through AQP4
and can move through both extracellular and intracellular routes, whereas other solutes are restricted by cellular boundaries and may enter the brain only through the gaps between end feet, thought to be driven by a pressure gradient, and flow through the extracellular space (ECS) [162]. The restriction of larger molecules is attributed to the size of these gaps, which are roughly 20 nm wide [149]. Additionally, the width of the ECS in the brain is estimated to be around 38–64 nm [202]. FITC-d2000 has an estimated diameter >32nm, TR-d3 is estimated to be between 2.7–3.2nm and AF594-H is around 1.1nm [203]. The large size of FITC-d2000 would thus prevent it from moving further than the Virchow-Robin spaces, as observed in these and previous data. Smaller molecules such as TR-d3 and AF594-H may reach the parenchyma via the end foot clefts. But in the tortuous parenchymal ECS, the smallest molecules diffuse more freely, whereas larger molecules rely more heavily on bulk flow, as demonstrated by a combination of modelling and experimental data [161]. Thus the smallest of molecules such as AF594-H would be expected to reach the parenchyma fastest and move through the ECS more rapidly, thus achieving greater penetration depths than TR-d3 and FITC-d2000. Based on these observations, one can expect a small contrast agent such as Gd-DTPA penetrate the brain parenchyma with up to 55% efficiency (Figure 23 B).

These preliminary experiments emphasised the fine technicalities of working within a small physiological space, and thus highlighted the need for careful technical and physiological control for reliable utility of this methodological protocol. These data provide evidence as to the reproducibility of the measurement of glymphatic inflow in wildtype mice, and that contrast agents infused using this method follow the characteristic size-dependant pattern of glymphatic flow previously characterised. The data also yielded confidence that with use of a small MRI contrast agent, good penetration efficiency may be attained in the mouse brain. In order to move into MRI experiments, a suitable infusion rate that would provide efficacious image contrast was also established. Using these parameters, the next study aimed to image glymphatic flow in the mouse brain, by combining the surgical procedures developed and described in this chapter, with MRI.
4. Magnetic Resonance Imaging and Pharmacological Inhibition of Glymphatic Function in the Mouse Brain

The work characterising glymphatic inflow in the previous chapter is advanced to in vivo whole brain imaging. The work presented herein also demonstrates that the influence of pharmacological modulation of aquaporin-4 function on glymphatic inflow can be imaged in vivo using magnetic resonance imaging.

4.1 Summary

Aquaporin-4 facilitated exchange of cerebrospinal with interstitial fluid via the glymphatic system, may provide a pathway by which amyloid-β and tau are cleared from the brain, and as such, represents an exciting new target for Alzheimer’s disease. Here, glymphatic inflow is dynamically imaged in real time using whole brain contrast enhanced magnetic resonance imaging, to investigate the spatial-temporal dynamics of contrast agent egress into the mouse brain. Measurements of glymphatic outflow are also performed by intracerebrally injecting tau and measuring clearance. The influence of aquaporin-4 on these measures of CSF-ISF exchange was then investigated by using a potent aquaporin-4 inhibitor. These findings present aquaporin-4 as a novel drugable target for the treatment of Alzheimer’s disease.

I would like to thank Ian Harrison for performing the intracerebral injections and CSF assays included in this chapter. I would also like to thank Niall Colgan for setting up the MRI sequence and Payam Nahavandi for assistance with image post-processing. Parts of these data are currently being prepared for a manuscript.
4.2 Introduction

Exchange of cerebrospinal fluid (CSF) with interstitial fluid (ISF) via glymphatic flow is thought to be facilitated by the expression of aquaporin-4 (AQP4) channels on astrocytic end feet; animals lacking AQP4 exhibit a ~70% reduction in CSF influx and a ~55% reduction in parenchymal solute clearance [151,158]. Evidence demonstrating the role of AQP4 in exchange of fluid and solutes through the brain has spurred investigations into its implication in neurodegenerative conditions such as Alzheimer’s disease (AD).

Deletion of AQP4 in APP/PS1 amyloid mice has been shown to potentiate the development of amyloid-β (Aβ) pathology and memory deficits in this disease model [204]. It has also been shown that the appropriate spatial expression pattern of AQP4 polarisation to astrocytic end feet is required for efficient glymphatic function [183,184], and that this polarisation in the brain declines with age [183,205]. Moreover, in mouse models of traumatic brain injury (TBI), AQP4 polarisation is demonstrably reduced, glymphatic function is impaired and AQP4 null mice that experience TBI are shown to experience an elevation in CSF phosphorylated tau (P-tau) levels [184]. These studies suggest that suppressed glymphatic function is capable of inducing or advancing AD pathology. Furthermore, it was shown recently that AQP4 polarisation itself is associated with AD status [205], suggesting that impaired glymphatic function may play a role in rendering the aging brain vulnerable to aberrant protein deposition. Therefore, the ability to visualise glymphatic changes and AQP4 driven perturbances to fluid movement can provide important insights into the changes preceding protein accumulation in the AD brain.

In this study, the glymphatic system is characterised across the mouse brain in real-time using dynamic contrast enhanced MRI (DCE-MRI). Having previously established a surgical protocol for reproducible assessment of glymphatic inflow in the brain using fluorescent dyes and histological assessment, in this chapter I attempted to translate this technique from the bench to high field MRI measurement. This aimed to enable dynamic whole brain mapping of glymphatic function but came with considerable methodological challenges due to strong magnetic fields and confined space inside the bore of the magnet. Furthermore, I aimed to
test the sensitivity of the technique to detect a relatively marked change in glymphatic function prior to application to mouse models of AD. Thus, I chose to pharmacologically target the function of AQP4, a critical component of the glymphatic pathway, using the novel inhibitor TGN-020.

By using DCE-MRI, a spatial and temporal description of the glymphatic system in the mouse brain is provided, and the spatially heterogeneous nature of glymphatic inflow is highlighted. The critical role of AQP4 to facilitate glymphatic inflow is assessed by pharmacologically inhibiting its function and visualising dynamic changes on MRI. The impact of AQP4 inhibition on outflow is also queried by testing the clearance of parenchymal tau using intracerebral injections and CSF sampling.

4.3 Methods

4.3.1 Mice and aquaporin-4 blocking agent

Wildtype female C57BL/6 mice at 8.5 months of age were used for MRI, imported from Charles River (Wilmington, Massachusetts, USA) into the United Kingdom for study at University College London’s (UCL) Centre for Advanced Biomedical Imaging. N numbers used for each experimental set are provided in each results subsection. rTg4510 transgenic mice were used to extract tau for intracerebral injections. Generation of homozygous rTg4510 transgenic mice has been described previously [95]. The rTg4510 mice were licensed from the Mayo Clinic (Jacksonville, Florida, USA) and bred for Eli Lilly by Taconic (Germantown, Maryland, USA). For accompanying TGN-020 experiments, where stated, AQP4 knockout mice, generation of which has been described previously (59), (henceforth referred to as Aqp4-/- mice) were used, imported directly from University of Oslo, Norway. All animal work was performed in accordance with the United Kingdom’s Animals (Scientific Procedures) Act of 1986 and was previously approved by UCL’s internal Animal Welfare and Ethical Review Body. Mice had unrestricted access to food and water, and were
housed under automatically controlled temperature, humidity, ventilation and 12h light/dark cycle settings.

For pharmacological inhibition of AQP4, TGN-020 (N-1,3,4-Thiadiazol-2-yl-3-pyridinecarboxamide, Tocris Bioscience, Bristol, UK) was used [206]. In order to increase solubility, TGN-020 was dissolved in a cyclodextrin derivative, 20% w/v Captisol (CyDex Pharmaceuticals) in water for injection. For TGN-020 experiments, mice were treated intraperitoneally with either TGN-020 (250mg/kg in 20ml/kg body weight) or vehicle (empty 20% Captisol, 20ml/kg) 15 minutes prior to commencing imaging or injecting tau.

4.3.2 Surgical preparation for contrast enhanced MRI

Mice were anaesthetised with 2% isoflurane delivered in O₂ at a delivery rate of 1l/min, and positioned in a stereotaxic frame with the head flexed to 50°. A midline incision was made at a midpoint between the skull base and the occipital margin to the first cervical vertebra. The underlying muscles were parted to expose the atlanto-occipital membrane and dura mater overlaying the cisterna magna, and a durotomy was performed using a 23-gauge needle. An intrathecal catheter (35-40 mm port length, 80-90 mm intravascular tippet length,
Sandown Scientific, Middlesex, UK) extended with polyethylene tubing (0.4 mm x 0.8 mm, Portex) and attached to a 100µL glass Hamilton syringe driven by a microinfusion pump (sp210iw syringe pump, World Precision Instruments, Sarasota, Florida, USA) was filled with low molecular weight paramagnetic contrast agent Magnevist® (21mM Gd-DTPA, MW 938 Da; Schering Health Care Ltd., in filtered 0.9% NaCl). The catheter was advanced 1mm into the cisternal space, sealed and anchored in place using superglue and fast setting resin (Araldite). This setup is shown in Figure 24.

4.3.3 Magnetic resonance image acquisition

Figure 25. (A) Schematic with brain regions visualised and (B) timeline illustrating experiments used to determine the pattern of glymphatic inflow in the mouse brain. Gd-DTPA was infused into the cisterna magna followed by serial acquisition of T1 weighted MR images.

Following surgery, animals were transferred to an MRI compatible cradle with head held prone and a snout mask positioned to deliver 1.5% isoflurane in O2 at a delivery rate of 1l/min. Core temperature and respiratory rate were monitored using a rectal probe and pressure pad respectively (SA Instruments). Mice were maintained at 37°C (±2°C) using heated water tubing and a feedback loop controlled warm air blower (SA Instruments). Respiration rate was maintained between 80 and 120 breaths per minute by incrementally adjusting isoflurane dose. All imaging was performed with a 9.4T VNMRS horizontal bore scanner (Agilent Inc., Santa Clara, California, USA). A 72mm inner diameter volume coil (Rapid Biomedical, Rimpar, Germany) was used for RF transmission and signal was
received using a 2 channel array head coil (Rapid Biomedical). A 3D T1-weighted gradient echo sequence was employed to detect the motion of the Gd-DTPA with parameters: TR = 15 ms, TE = 3.4 ms, flip angle = 15°, NA = 3, FOV = 1.28 × 1.28 × 1.92 cm, scanning time = 12 min, acquisition matrix size of 128 × 128 × 128, yielding an image resolution of 0.1 × 0.1 × 0.15 mm. Three baseline scans were acquired prior to intracisternal infusion of Gd-DTPA via the indwelling catheter (30 μl at 0.6 μl/min, total time 50 min). Acquisition of each timepoint took 12 minutes per scan. MR images were continually acquired throughout and after intracisternal infusion for a total time of 180 min (Figure 25). At the end of the experiment the animal was euthanized by overdose with sodium pentobarbital (10 ml/kg, i.p.).

4.3.4 Image processing and analysis

First, the acquired T1-weighted MRI images were converted to the 3D NIfTI image format. Second, scan-to-scan misregistration caused by head movement was corrected by rigid-body alignment to the baseline volume. Next, affine registration was performed to correct variability between each mouse brain. Transformed T1-weighted MR images, including the baseline and contrast-enhanced scans, were averaged to create a template image with high-contrast, and this image used to anatomically guide placement of 3D regions-of-interests (ROIs) which encapsulated most of the mouse brain (Figure 26). As the mouse models of AD included in this programme of work were known to present with pathology in the cortical and hippocampal areas, these regions were focussed on in the subsequent studies investigating the effects of pathology. A previous observation made by the histologists processing the rTg4510 brains at Eli Lilly were that the rostral and caudal cortices presented with differential early pathology. Based on this, the cortex was further segmented into these subregions.

A difference image was calculated for each timepoint. Signal intensity measured on the T1 weighted MR images over time in preselected anatomical areas were used to obtain intensity measurements. The intensity signal for each ROI on each timepoint image was extracted and expressed as a % change from the average baseline image. For calculation of kinetic
parameters such as the maximal intensity and the time at which half maximal intensity was achieved in each brain region, signal intensity vs. time data was fitted to a sigmoidal model:

\[y = \frac{\text{Intensity}_{\text{Max}}}{1 + e^{\frac{\text{Time}_{50} - x}{\text{Slope}}}} \]

Where \(\text{Intensity}_{\text{Max}} \) is the maximal intensity achieved in the brain region, \(\text{Time}_{50} \) is the time at which half maximal intensity is achieved, and Slope is the gradient of the linear portion of the fitted sigmoidal curve. Additionally, each ROI’s \(\text{Intensity}_{\text{Max}} \) value was divided by its corresponding \(\text{Time}_{50} \) value to give a measure of ‘Penetration Efficiency’ for each region.

Figure 26. Schematic describing the processing steps following acquisition of T1 weighted MR images. All images are registered to the same space, and then segmented to extract regional intensity measurements as shown here and described above.
4.3.5 Intracerebral infusion of tau homogenate and CSF collection

Tau for intracortical injection was prepared by euthanizing an aged rTg4510 mouse (12 months of age) by overdose with sodium pentobarbital (10ml/kg, i.p.) and dissecting out the cortex and hippocampus. Tissue was quickly frozen in isopentane on dry ice for storage at -80°C. Frozen tissue was weighed, thawed, and gently mixed in a mortar with a few strokes of a pestle in 10% w/v volumes of cold Tris-buffered saline (TBS) containing protease inhibitor cocktail, phosphatase inhibitor cocktails I and II (all Sigma, UK), at a final dilution of 1:100, and 1mM phenylmethylsulfonyl fluoride. To estimate total human tau content, an Enzyme Linked Immunosorbant Assay (ELISA) of brain homogenate was performed (Human Tau (total) ELISA Kit (Invitrogen, UK) as per the manufacturer’s instructions, see below) and stock solution tau concentration adjusted to 20μg/ml with homogenisation buffer, and stored at -80°C until intracerebral infusion.

![Diagram of brain and CSF extraction process](image)

Figure 27. (A) Schematic and (B) timeline illustrating experiments used to determine the effects of pharmacological inhibition of AQP4 on clearance of tau from the mouse brain. TGN-020 or vehicle was administered 15mins prior to injection of tau containing brain homogenate into the striatum, and CSF extracted from the cisterna magna either 15, 30, or 60mins later.
Mice were anaesthetised with 2% isoflurane delivered in O\textsubscript{2} at a delivery rate of 1l/min, and positioned in a stereotaxic frame in the horizontal skull position. A midline incision was made on the top of the head to expose the underlying skull. A small burr hole was made, using a microdrill, above the location of the intracerebral injection. 50ng tau containing brain homogenate was infused into the striatum (anteroposterior, -0.2mm, mediolateral, +2mm and ventral to dura, -1.75mm, relative to bregma) [207] using a 10\(\mu\)l glass Hamilton syringe (2.5\(\mu\)l at 0.25\(\mu\)l/min, total time 10min). Either 15, 30, or 60 minutes after the start of the intracerebral infusion, with the needle left in situ, a midline incision was made at a midpoint between the skull base and the occipital margin to the first vertebrae. The underlying muscles were parted to expose the atlanto-occipital membrane and dura mater overlaying the cisterna magna, which was thoroughly cleaned with saline. A durotomy was performed using a 23-gauge needle, allowing CSF to be collected using a narrow bore pipette tip. CSF volume varied between mice: 5-8\(\mu\)l was routinely collected (Figure 27). At the end of the experiment the animal was euthanized by overdose with sodium pentobarbital (10ml/kg, i.p.).

4.3.6 Tau enzyme linked immunosorbant assays

The collected CSF was centrifuged and supernatant was removed and frozen at -20\(^\circ\)C until further analysis by ELISA. The remaining pellet was used to assess blood contamination using a a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham MA). Concentration of human tau in CSF samples was then quantified using ELISAs. CSF total tau was quantified using Human Tau (total) ELISA Kit (#KHB0041, Invitrogen, UK), and CSF phosphorylated tau was quantified using Human Tau (Phospho) [pS199] ELISA Kit (#KHB7041, Invitrogen, UK), as per the manufacturer’s instructions. Briefly, CSF samples were diluted in diluent buffer prior to being incubated in capture antibody coated wells for 2hrs at room temperature. Wells were washed several times before being incubated in detection antibody for 1hr at room temperature. Wells were washed again before being incubated with horseradish peroxidase conjugated secondary antibody for 30 minutes at room temperature. Wells were then washed again before being incubated with stabilized chromogen for 30 minutes at room temperature. After this incubation, stop solution was
added to each well and the plate was read at 450nm. A set of standards of known (p)Tau concentration (0, 31.25, 62.5, 125, 250, 500, 1000, 2000pg/ml for total tau, and 0, 15.625, 31.25, 62.5, 125, 250, 500, 1000pg/ml for phospho [pS199] tau), were run in parallel for each experiment for quantification of CSF sample tau content from the standard curve.

4.3.7 Statistical analysis

Statistical comparisons between groups were performed via either a repeated measures two-way analysis of variance (ANOVA) followed by post-hoc Bonferroni post-tests for multiple comparisons (for MRI data), or a regular two-way ANOVA followed by post-hoc Bonferroni post-tests for multiple comparisons (for all other grouped comparisons not containing repeated measures). Unpaired t-tests were used for single comparisons. All statistical testing was performed using GraphPad Prism (v7 for Windows, San Diego, CA, USA). All data is represented as mean ± SEM for the n number of animals in each group, which are detailed in figure legends.
4.4 Results

4.4.1 Spatial and temporal profile of glymphatic inflow in the mouse brain

This part of the project aimed to carry out an exploratory study to investigate the spatial and temporal patterns of glymphatic inflow in the mouse brain. Glymphatic inflow in healthy wildtype mice was characterised using contrast-enhanced MRI by quantifying the regional pattern of delivery of MR contrast agent Gd-DTPA from the SAS into the brain. Gd-DTPA infused intracisternally with serial T1-weighted images acquired over 3 hours showed a distinct pattern of CSF flow into the mouse brain (Figure 28 A), and mirrored the distribution pattern previously reported in the rat brain [173]. 90 minutes after initiation of the infusion, the MRI signal plateaued in all brain regions (Figure 28 B). T1 contrast was initially observed in the CSF filled aqueduct, progressing to ventral nuclei (the pontine nucleus and pituitary recess) and the caudal cortex. Later timepoints showed advancement of the signal throughout the brain, in the pineal recess and cerebellum, and more rostral regions, such as the rostral cortex and the olfactory bulbs. This distribution pattern is schematised in Figure 29.

Quantification of MR signal in grey matter revealed heterogeneity of glymphatic inflow in the mouse brain. The rostral cortex of wildtype animals exhibited a relatively low level of Gd-DTPA infiltration (IntensityMax (% change from baseline), 7.44%), yet the caudal cortex exhibited a high level of contrast agent infiltration (IntensityMax (% change from baseline), 60.23%, p<0.001 compared to rostral cortex) (Figure 28 C). When ‘penetration efficiency’ (the metric described in section 4.3.4) of these two regions were calculated, and compared against each other, the caudal cortex was significantly higher than the rostral cortex (Figure 28 D; p<0.0001, difference between means = 1.421±0.1048)
Figure 28. Glymphatic inflow in the mouse brain cortex. (A) Representative T1-weighted structural images of % change from baseline over time showing pseudocoloured entry of Gd-DTPA. (B) MRI T1 signal intensity vs. time data acquired from grey matter regions of the mouse brain showing differences in rates and intensities of glymphatic inflow of Gd-DTPA in anatomically discreet regions over time. (C) IntensityMax values (maximal intensity achieved in region from sigmoidal fitting of data) in each of the brain regions in which raw data and sigmoidal curves are displayed in (A). (D) MRI contrast ‘penetration efficiency’ for the rostral and caudal cortex, in which raw data and sigmoidal curves are displayed in (B) and (C). N=5. Statistical significance denoted by asterisks ***=p<0.001.

Figure 29. Schematic illustrating direction of contrast agent flow into the brain following cisterna magna infusion, with inclusion of Time50 values (the time at which half the maximal intensity is reached), derived from modelling of MRI T1 signal intensity vs. time data (shown in Figure 28 B). Aqd = aqueduct; Chlm = cerebellum; Pon = pontine nucleus; Pit = pituitary recess; Pin = pineal recess; CCtx = caudal cortex; RCtx = rostral cortex; Olf = olfactory bulb. Light blue shaded region denotes the fluid filled cisterna magna. Dark blue arrows denote the proposed direction of CSF inflow based on the Time50 values.
4.4.2 Effect of pharmacological inhibition of aquaporin-4 on glymphatic function

The role of AQP4 in glymphatic inflow and clearance was tested by pharmacological blockade, with a specific inhibitor, TGN-020 [185]. To test glymphatic inflow, TGN-020 or vehicle were administered 15 minutes prior to cisternal infusion of Gd-DTPA, followed by serial acquisition of T1-weighted MR images in wildtype mice. Mice treated with TGN-020 exhibited significant reductions in MR signal enhancement in the brain (Figure 30). A hotspot of contrast was visible in the aqueduct, and close to the region near the middle cerebral artery, where the agent appeared to pool in TGN-020 treated animals. This is evident in the cortex, striatum and hippocampus, with significantly reduced MR signal being observed in TGN-020 treated animals from ~80mins after the start of infusion (Figure 31 A - C).

![Figure 30. Representative pseudocolored DCE-MRI scans of vehicle (20% Captisol) and TGN-020 treated animals with Gd-DTPA infusion. Image taken at the 60 minute time point, Inflow of contrast into the brain of the TGN-020 treated animal is visibly marred. Contrast agent appears to pool in the fourth ventricle (white arrow), but does not travel beyond this region.](image-url)
Figure 31. MRI T1 signal intensity vs. time data acquired from the (A) cortex, (B) striatum and (C) hippocampus during these experiments, demonstrating significant inhibition of glymphatic inflow in three aspects of the TGN-020 treated animal brain. Grey area denotes the infusion period. The maximum intensity from the curves in A – C are quantified in (D). (E) shows the time at which half the maximum intensity was reached in the three regions. The inhibition is further exemplified through the calculated Gd-DTPA ‘penetration efficiency’ data shown in (F). N= 4 per group. Statistical significance denoted by asterisks: * = p<0.05, ** = p<0.01, *** = p<0.001.
The maximum intensity achieved in the TGN-020 treated cortex and striatum was significantly reduced compared to vehicle treated animals (Figure 31 D; 62.7% less in TGN-020 treated cortex and 28.1% less in TGN-020 treated striatum, p<0.001). The rate of inflow, as calculated by Time_{50} (the time at which half the intensity is achieved) (Figure 31 E) revealed that the rate of inflow was impaired in the hippocampus (21.4 mins less in TGN-020 treated animals, p<0.05) and striatum (40.9 mins less in less in TGN-020 treated animals, p<0.001), with both regions achieving statistical significance. The ‘penetration efficiency’, which factors in both maximal intensity achieved per region and the time required to reach half that intensity, showed that the cortex had the highest contrast between regions compared (Figure 31 F), with this becoming significantly impaired with TGN-020 treatment (1.1 less in TGN-020 treated animals, p<0.01).

To determine if pharmacological blockade of AQP4 exhibited a similar reduction in clearance from the brain, intracerebral injections of tau followed by CSF measurements of tau were performed. Tau was chosen as a substrate to test clearance, given that a central theme of this thesis was to investigate its implication in glymphatic system. Thus, tau extract from the rTg4510 mouse model was used. Wildtype mice were treated with either TGN-020 or vehicle, 15mins prior to intrastriatal infusion of tau containing brain homogenate. CSF was then extracted from the cisterna magna, 15, 30, or 60mins later to determine the extent of clearance into CSF compartments. Reductions in the level of total and phosphorylated (pS199) tau detected in CSF were observed at all timepoints (for example, 15 mins post-striatal infusion, TGN-020 treated animal CSF Tau (pTau) content, 90.1(23.4)ng/ml vs. 953.0(285.0)ng/ml in vehicle treated animals) (Figure 32). Similar experiments were also performed in Aqp4/-/- mice, where vehicle or TGN-020 was given 15mins prior to intrastriatal infusion of tau containing brain homogenate and CSF extraction 30mins later. Both Aqp4/-/- vehicle and TGN-020 treated groups showed reductions in CSF tau, similar to TGN-020 treated wildtype animals (vehicle treated Aqp4/-/- mice CSF total tau, 72.2ng/ml, TGN-020 treated wildtype and Aqp4/-/- mice CSF total tau, 53.1ng/ml and 99.08ng/ml, respectively, all p<0.05 compared to vehicle treated wildtype mice) (Figure 32 D).
Figure 32. (A) Total tau and (B) pTau concentration of CSF samples extracted from mice injected with tau homogenate demonstrating reduced clearance of tau from the TGN-020 treated animal brain. Intrastriatal injection of tau containing brain homogenate was also performed in a cohort of Aqp4-/- animals after TGN-020 or vehicle treatment, and CSF extracted 30mins post-injection for quantification of tau in CSF extracts. (C) CSF tau concentrations demonstrate the specific nature of TGN-020 towards AQP4, given the lack of an effect observed of TGN-020 in Aqp4-/- animals. (D) shows the inhibition observed in MRI and injection experiments converted to a percentage from striatal regions. Abbreviations: NI, non-injected. N=5 per group. Statistical significance denoted by asterisks: *=p<0.05, **=p<0.01, ***=p<0.001.
4.5 Discussion

In order to assess glymphatic function in the mouse brain using MRI, a previously published protocol for measurements in the rat brain was adapted [194]. By scaling down both the volume and flow rate at which intracisternal MR contrast agent is administered as established in the previous chapter, glymphatic flow in the mouse brain was characterised. The small size of Gd-DTPA (938 Da) also meant that contrast was expected to travel through the glymphatic route with minimal resistance. This aligns with the observation reported in the previous chapter, where the smallest tracer, Alexa Fluor 594 Hydrazide (760 Da), travelled the furthest into the brain parenchyma (Figure 23).

In these experiments, regional glymphatic inflow was reproducibly imaged and quantified enabling real time visualisation of CSF ingress into the brain. Notably, the regional patterns of contrast ingress all plateued with time, giving no indication of clearance over the three hours scanned. Nonetheless, this observation and the spatial-temporal dynamics captured here paralleled patterns of glymphatic flow described in the brain using similar contrast infusion techniques in rats [194]. Another study investigating glymphatic flow in a model of stroke has also used a protocol similar to the one I used here, [185]. In that study, the pattern of contrast-enhancement qualitatively described closely followed the regional pattern observed here. However, detailed quantitative assessment was not carried out on discrete brain regions. Interestingly, they identified routes of CSF drainage along sinuses, lymph nodes and cranial nerves – an observation not made here. This may be explained by the higher scan resolution attained in that study enabling more detailed visualisation of contrast enhanced CSF transit. However, characterising the dynamic time course of CSF movement with higher resolution would require a longer scan time. This meant that the adverse implications to the mouse’s physiology over longer periods under anaesthesia had to be considered. Thus, a trade-off between resolution and scan time had to be reached. A further disadvantage of this MRI protocol is that the perivascular spaces cannot be resolved, and thus brings into question if the contrast enhancement is truly interstitial. However, based on the small size of the molecule, and the previous experiments using fluorescent dyes that
demonstrated parenchymal ingress, it is probably safe to assume the veracity of the observations made using DCE-MRI. This is further backed by a subsequent study which advanced the aforementioned rat brain glymphatic characterisation upon which this study is modelled, where the authors converted the dynamic T1-weighted MR signal enhancement to concentration maps to quantify parenchymal gadolinium in the rat brain [208].

Next, the role of AQP4 in glymphatic function was probed. The extent to which inflow can be dynamically imaged was tested by pharmacologically blocking AQP4 in wildtype mice. Glymphatic flow of CSF into the brain’s interstitium and its clearance out of the parenchyma, is thought to be facilitated by the expression and polarisation of AQP4 to the end feet of astrocytes surrounding blood vessels in the brain [158]. Original data supporting this hypothesis came from the use of AQP4 null mice, in which glymphatic function was impaired by ~70% compared to wildtype animals, resulting in a ~55% reduction in Aβ clearance from the brain [151]. Subsequently several independent groups have similarly demonstrated that astrocytic AQP4 is essential for fast glymphatic transport, using various approaches of AQP4 gene deletion [188–191]. Here I took an alternative approach, by pharmacologically inhibiting AQP4 function, and in doing so showed that a marked impairment in glymphatic function can be visualised. Pharmacological AQP4 inhibition visibly impairs glymphatic inflow captured by DCE-MRI. Scans of the TGN-020 treated animals did not demonstrate the characteristic pattern of interstitial inflow of Gd-DTPA, and curiously, the contrast agent did not advance beyond the fluid filled aqueduct and fourth ventricle. A pool of contrast was also observed around the region close to the middle cerebral artery. It is possible that the hindrance to AQP4 function caused the infused contrast agent to take the paths of least resistance, the large interconnecting fluid filled spaces and major periartrial spaces, in the absence of glymphatic ingress. The opposing direction of CSF production and flow through the ventricular system may have limited the extent to which the ventricular route could be taken by Gd-DTPA, thus causing it to light up as a bright pool in the third ventricle and aqueduct. Overall, an ~85% reduction in DCE-MRI quantified glymphatic inflow was observed by blocking AQP4.
To further validate these observations, glymphatic outflow was quantified using direct parenchymal injections of tau. These data showed that pathogenic tau is cleared from the wildtype brain and delivered into the CSF. A notable confounder of these experiments was the use of whole brain homogenate from aged rTg4510 brains. Such a crude suspension would include a myriad of non-specific tau conformations, altered neuroinflammatory components that come with the later stages of neurodegeneration [209], glial and neuronal cellular debris. How such a jumble of cellular fragments impacts glymphatic function is unknown, and may thus cloud observations here that are tau-specific. To overcome this, a refined modification of this experiment could be carried out by injecting tau fibrils purified from AD brains, which are known to behave in a more physiologically relevant manner compared to synthetic forms generated in vitro [210]. Given the crucial role of astrocytes in glymphatic function [151], possible neuroinflammatory changes resulting from the inoculum of tau homogenate into a healthy wild type brain must also be considered. Nonetheless, given that tau was detected in both the homogenate as well as in the circulating CSF of injected wildtypes, these experiments demonstrated that tau can indeed be cleared into the CSF from the parenchyma. Vitally, inhibition of AQP4 impaired tau outflow into the CSF to a similar degree to the impairment of tracer inflow observed using DCE-MRI in TGN-020 treated animals. This thus provides requisite evidence that tau is also a participant in glymphatic clearance.

The effect of AQP4 inhibition on glymphatic function may be seen as particularly striking given previous evidence of cerebral blood flow (CBF) elevation (~20%) in the mouse brain upon TGN-020 treatment [211] and thus could be expected to have an opposing effect to what is observed here on glymphatic function. However, increases in CBF can have a reducing effect on pulsatility [212] and given the intrinsic link between arterial pulsatility, and glymphatic function [156,199], a the suppressive effect observed here by the drug may be amplified. Indeed, the implication of AQP4 function is further supported by the observation in Aqp4-/- mice which showed that AQP4 ablation via gene deletion has comparable effect in supressing parenchymal clearance with or without TGN-020 treatment.
Consistent with data from others [184], these data suggested that tau, in the extracellular space, is a substrate for clearance via the glymphatic pathway. These findings demonstrate the importance of AQP4 for appropriate glymphatic clearance from the brain parenchyma, alongside studies using genetic deletion approaches [151,188–191] and suggest a role for AQP4 mediated clearance of tau from the brain, which therefore implies its importance in neurodegenerative tauopathies such as AD [204].

Given the observations reported in AQP4 null mice, this study would have benefited from DCE-MRI of Aqp4-/- animals to assess if the degree of inflow impairment can be visualised in real time. Due to the equipment downtime during the lifespan of these mice at our Centre, these experiments were not carried out. It must be noted however, that Aqp4-/- mice are reported to have reduced ventricular volume and intraventricular pressure, as astroglial and ependymal AQP4 play a role in extra-choroidal CSF production and homeostasis [213]. This indicates that complete and non-specific ablation of AQP4 in the mouse brain, by both genetic and pharmacological approaches, can significantly disrupt CSF dynamics and thus plausibly hinder glymphatic physiology as a consequence. Hence, disentangling the precise role of parenchymal AQP4 in glymphatic function crucially requires the development of a model system in which astroglial AQP4 can be blocked without impeding ependymal AQP4 function. This calls for the generation of an AQP4 mouse model that is inducible, with the ability to silence gene function in a cell-specific manner [214]. Notwithstanding, the work presented here shows that a transient pharmacological blockade of AQP4 can impede both glymphatic inflow and outflow of CSF substrates.

In summary, this work showed that glymphatic inflow can be imaged in the mouse brain. Regional differences in inflow were seen between rostral and caudal cortical regions. Blocking APQ4, a key mediator of glymphatic fluid transit, demonstrably impaired the pattern of inflow observed by imaging, and clearance was also impaired to a similar degree, thus adding confidence to these observations. Tau was also shown to be a substrate for clearance via this AQP4-mediated pathway. In the next chapter, these findings are explored further by assessing glymphatic function in a tauopathy mouse model using MRI.
5. Glymphatic Function in a Tauopathy Model of Alzheimer’s Disease

In this chapter, whole brain glymphatic changes are characterised longitudinally in a mouse model of tau pathology, using magnetic resonance imaging, building on the work from the previous chapter.

5.1 Summary

Studying the clearance of pathogenic proteins from the brain such as tau can provide unique insights into the causative mechanisms in elusive diseases such as Alzheimer’s disease. The glymphatic system provides a novel approach to understanding the movement and clearance of such proteins from the brain. In this work, glymphatic flow is amassed in the rTg4510 model of tau pathology using magnetic resonance imaging. The early, mid and later stages of pathology are studied in order to understand if early changes on glymphatic function have a relationship to tau accumulation and neurodegeneration. Early changes in glymphatic inflow in the rostral cortex of the brain showed a relationship to tau burden, and late changes in glymphatic flow appeared to be affected by neurodegenerative changes in this model. Aquaporin-4 assessment revealed a loss of polarisation in the rTg4510 brain. This study provides evidence for time-dependant interactions between tau-pathology and measures of glymphatic function, which may be useful to inform future studies that target the role of the glymphatic system in neurodegenerative diseases such as Alzheimer’s disease.

The work in this chapter was performed in collaboration with Eli Lilly and Company. I would like to thank Zeshan Ahmed and Alice Fisher for providing the histology included in these data.
5.2 Introduction

Impaired brain clearance mechanisms that result in the accumulation of aberrant proteins that define Alzheimer’s disease (AD), provide new diagnostic and therapeutic opportunities to delay or prevent clinical symptoms. One such pathway for parenchymal protein clearance is the glymphatic system [153]. Its involvement in AD, however, is yet to be fully defined. AD is characterised by the extracellular accumulation of amyloid-β (Aβ) in the form of plaques, and intracellular accumulation of hyperphosphorylated tau in the form of neurofibrillary tangles (NFTs). Blood brain barrier clearance, intra and extracellular degradation, interstitial fluid (ISF) bulk flow clearance and cerebrospinal fluid (CSF) absorption pathways have all been implicated in removal of parenchymal Aβ [55,151,180,215], while tau is thought to be predominantly cleared by degradation, ISF bulk flow, and CSF absorption clearance mechanisms [184,216]. Recent evidence however has suggested that the glymphatic system may contribute to a larger portion of parenchymal clearance of these protein species than previously thought [151,179,183].

Previous studies of glymphatic function in mouse models of AD have focussed largely on Aβ pathology [217]. In human AD though, it is the tau burden, not Aβ load, that predicts both brain atrophy as well as cognitive status in patients with AD [218]. Furthermore, emerging evidence suggests that the extracellular space, which is cleared by the glymphatic system, acts as a conduit for neuron-to-neuron propagation and regional progression of AD tau pathology [176,219,220]. This raises the intriguing possibility that reduced glymphatic clearance of tau may potentiate disease progression via exacerbated neuron-to-neuron propagation of tangle susceptible tau protein, and as such, would be a powerful target for therapy.

Here I study the glymphatic system using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), in a mouse model which develops tau NFT pathology [95] similar to that seen in neurodegenerative diseases such as AD [16]. By using DCE-MRI, I assess the function of glymphatic clearance in rTg4510 mice across the whole brain using minimally invasive techniques. In addition, I examine the expression pattern of AQP4 in affected
regions. I hypothesised that changes in CSF dynamics may differ with the varying stages of tau pathology and neurodegeneration, and as such, studied three distinct timepoints in this model’s pathological timeline. This study provides the first demonstration of impaired glymphatic function in an animal model of tau pathology and implicates the role of AQP4 in the clearance of tau proteins from the brain.

5.3 Methods

5.3.1 Mice
Generation of homozygous rTg4510 transgenic mice has been described previously [221]. The rTg4510 and litter matched wildtype mice were licensed from the Mayo Clinic (Jacksonville, Florida, USA), bred for Eli Lilly by Taconic (Germantown, Maryland, USA), and imported into the United Kingdom for study at University College London’s (UCL) Centre for Advanced Biomedical Imaging. Female mice at 2.5 months, 5 months and 7.5 months of age were used. All animal work was performed in accordance with the United Kingdom’s Animals (Scientific Procedures) Act of 1986 and was previously approved by UCL’s internal Animal Welfare and Ethical Review Body. Mice had unrestricted access to food and water, and were housed under automatically controlled temperature, humidity, ventilation and 12h light/dark cycle settings.

5.3.2 Surgical preparation, magnetic resonance imaging and image analysis
The experimental methods employed in Chapter 4 were replicated for the MRI preparation, imaging and analysis in these experiments, and are detailed in sections 4.3.1 – 4.3.4.

5.3.3 Tau, GFAP and AQP4 Immunohistochemistry
Immunohistochemistry was performed in order to quantify cortical deposition of tau in rTg4510 mice. Mice were perfused with phosphate buffered saline (PBS) followed 10 % buffered formalin (VWR catalogue# 9713.1000) before being processed using the Tissue TEK VIP processor (GMI Inc.) and embedded in paraffin wax. 6μm thick sections of the
brain in the sagittal plane were collected using a rotary microtome and mounted on glass slides. Following de-paraffinisation and rehydration of the tissue sections, antigen retrieval was performed using the Lab Vision PT module system (Thermo Scientific), where sections were heated to 100°C for 20 min in citrate buffer (TA-250-PM1X; Thermo Scientific). Slides were transferred to a Lab Vision Autostainer (Thermo Scientific).

For tau immunohistochemistry, the following incubations were performed: 10 min in H₂O₂ (0.3%); 30 min in normal goat serum (1:20; Vector Laboratories); 60 min in primary antibody for tau phosphorylated at serine 409 (PG-5; 1:8000 from Peter Davies, Albert Einstein College of Medicine, NY, USA); 30 min in biotinylated goat anti-mouse IgG (1:200, BA9200; Vector Laboratories); 30 min avidin-biotin complex solution (PK-7100; Vector Laboratories); 5 min in 3,3′-diaminobenzidine (SK-4105; Vector Laboratories).

The following primary antibodies were used for glial fibrillary acidic protein (GFAP) and AQP4 immunohistochemistry: rabbit monoclonal GFAP (1:3000; PU020-UP, Biogenix) and mouse monoclonal AQP4 (1:200; ab9512, Abcam). Slides were incubated for 60 minutes in primary antibody; 30 minutes in biotinylated goat anti-rabbit (1:200; BA-1000, Vector Labs) or goat anti-mouse (1:200; BA-9200, Vector Labs) secondary antibodies; 30 minutes in avidin-biotin complex solution (PK-7100, Vector Labs); 5 minutes in 3,3′-diaminobenzidine (SK-4105, Vector Labs).

Apart from the last two steps, PBS with 0.05% Tween-20 (PBS-T) was used for diluting reagents and washes between steps. Sections were then counterstained with haematoxylin before dehydration and cover-slippping. Stained sections were digitised using the Scanscope AT slide scanner (Aperio) at 20× magnification.

To quantify PG-5-positive tau pathology, Imagescope software (version 11.1.2.780; Aperio) was used to view the digitised tissue sections and delineate boundaries of the rostral and caudal cortex, and somatomotor and visual cortex areas. PG-5 immunoreactivity was quantified using the positive pixel algorithm (Imagescope, version 11.1.2.780; Aperio), and performed in a blinded fashion.
To quantify GFAP and AQP4 expression, ImageJ software (version 1.44p) was used to view the digitised tissue and uniformly threshold for immunoreactivity. ROIs were drawn on each image for extraction of percentage immunopositive coverage (% immunoreactivity of whole brain region) for each region, in a blinded fashion.

5.3.4 AQP4 Immunofluorescence

Tissue sections for subcellular localisation of AQP4 in relation to cerebral blood vessels were processed as above and immunofluorescently stained for both AQP4 (1:60, ab9512, Abcam) and the blood vessel endothelial cell marker CD31 (1:25, ab28364, Abcam). Following deparaffinisation and antigen retrieval, tissue sections were incubated in a cocktail of primary antibodies overnight at 4°C (CD31, 1:25 (ab28364, Abcam); AQP4, 1:60 (ab9512, Abcam)), washed in PBS-T and then incubated in a cocktail of fluorophore-conjugated goat anti-rabbit (Alexa Fluor 488, 1:500; A11008) and goat anti-mouse (Alexa Fluor 568, 1:500; A11004) secondary antibodies (Invitrogen) for 2hrs at room-temperature. Finally, sections were washed in PBS-T and then dH$_2$O, before being cover-slipped in VECTASHIELD mounting medium with DAPI (H-1200, Vector Labs). All incubations were performed manually and in a humidity tray, with minimal exposure to light. Immunofluorescence images were taken using a Leica DMLB fluorescent microscope and Q Capture Pro7 software (QImaging). Images were acquired by single excitation of each wavelength (separately) and channels subsequently merged.

5.3.5 Quantification of AQP4 Expression Across Blood Vessel Cross Sections

Evaluation of the localisation of AQP4 to perivascular end feet and glial limitans was performed by measuring the pixel intensities of CD31 and AQP4 immunoreactivity across cross sections of blood vessels in each of the brain regions studied. For this, vessel containing ROIs were identified on DAPI images: identified using flattened nuclei, clusters or lines of nuclei out of focus compared to the surrounding tissue and ‘negative’ space between nuclei without background fluorescence. Fluorescent intensity for both CD31 and AQP4 markers were measured across a single 4μm axis perpendicular to the vessel orientation, and expressed as intensity, normalised to the intensity of a randomly selected background ROI.
in the same image for each antigen, to generate linear plots of fluorescence extending from
the brain tissue, into the vessel and again into the surrounding brain tissue.

5.3.6 Quantification of AQP4 Polarisation
Perivascular polarisation of AQP4 was measured as previously described [183]. Briefly, the
median immunofluorescence intensity of perivascular regions was measured. A threshold
analysis was then used to measure the percentage of the region exhibiting AQP4
immunofluorescence greater than or equal to perivascular AQP4 immunofluorescence
(AQP4 % area). Polarisation was expressed as the percentage of the region that exhibited
lower AQP4 immunoreactivity than the perivascular end feet. AQP4 vessel coverage was
measured by firstly delineating the area of the vessel from the CD31 channel image. This
ROI was then placed on the AQP4 channel image thresholded for immunoreactivity for
extraction of the percentage vessel coverage (% immunoreactivity of AQP4 of whole
delineated vessel).

5.3.7 Statistical analysis
Statistical comparisons between groups were performed via either a repeated measures two-
way analysis of variance (ANOVA) followed by post-hoc Bonferroni post-tests for multiple
comparisons (for MRI data), or a regular two-way ANOVA followed by post-hoc Bonferroni
post-tests for multiple comparisons (for all other grouped comparisons not containing
repeated measures). All statistical testing was performed using GraphPad Prism (v7 for
Windows, San Diego, CA, USA). All data is represented as mean ± SEM for the n number
of animals in each group, which are detailed in figure legends.
5.4 Results

5.4.1 Glymphatic inflow, tau and AQP4 in rTg4510 transgenic mice with age

The regions most affected by pathology in the rTg4510 model – the cortex and hippocampus, were analysed. Based on the observations in Chapter 4 (section 4.4.1), where a difference in contrast enhancement was seen between the rostral and caudal cortices, the cortex was also further separated into these sub regions. Contrast enhancement to the caudal cortex was elevated in the wild types at all ages compared to the rostral cortex, as previously observed (Figure 33). Compared to the wildtype group, in the transgenic group, glymphatic inflow was reduced in the caudal cortex at 2.5 months (Figure 33 D; p<0.05 from 48 – 60 mins, p<0.01 from 72 – 96 mins, p<0.001 from 108 – 180 mins) and then markedly elevated in the rostral cortex at 7.5 months of age (Figure 33 C; p<0.01 from 108 – 180 mins). This elevation of glymphatic function was also observed in the hippocampus of the transgenic group, but did not attain statistical significance during the time course (Figure 33 I). To then determine if these differences were a caused by differences in rates of contrast ingress into these regions, the slopes of the curves were calculated as a surrogate estimate of glymphatic inflow (Figure 34). In these analyses, the hippocampus showed the most marked difference in ingress rate, however, this did not achieve statistical significance.

Next, to further probe potential differences in the dynamic MRI timeseries data between the rTg4510 and WT groups, the ‘penetration efficiency’ was calculated as described in Chapter 4, section 4.3.4. This metric revealed an increase in the in the rostral cortex (Figure 35 A; mean difference = 0.51 more in the rTg4510s compared to wildtype, p=0.13) and hippocampus (Figure 35 I; mean difference = 0.18 more in the rTg4510s compared to wildtype, p=0.01) of the rTg4510s in the 7.5 month group when compared to their wildtype counterparts, with the hippocampus (Figure 35 I) achieving statistical significance at this age.

GFAP, a marker of astroglial activation, increased with increasing burden of tau across ages and regions, with the most significance observed in the cortex at 5 months, a stage reflecting mature tangle formation (Figure 35 C, G; rostral cortex mean difference = 5.89% more in
rTg4510s compared to wildtype, p<0.0001; caudal cortex mean difference = 4.54% more in rTg4510s compared to wildtype, p=0.0005), and 7.5 months, during neurodegeneration (Figure 35 C, G; rostral cortex mean difference = 8.19% more in rTg4510s compared to wildtype, p<0.0001; caudal cortex mean difference = 11.22% more in rTg4510s compared to wildtype, p<0.0001). In the hippocampus, the most significant elevation was observed at 7.5 months (Figure 35 K; mean difference = 8.13% more in rTg4510s compared to wildtype, p=0.0002). AQP4 levels mirrored the elevations in GFAP levels, but did not attain significance (Figure 35 D, H, L).
Figure 33. MRI T1 signal intensity (% change from baseline) vs. time data acquired from the 2.5 month (n = 3 wildtype and 5 rTg4510), 5 month (n = 4 wildtype and 4 rTg4510) and 7.5 month (n = 4 wildtype and 4 rTg4510) animals. (A – C) shows time course data from the rostral cortex, (D – F) shows the caudal cortex and (G – I) shows the hippocampal data. Statistical significance denoted by asterisks: * = p<0.05, ** = p<0.01, *** = p<0.001.
Figure 34. Slopes of the sigmoidal curves of the time course data in each of the brain regions from Figure 32, as a surrogate measure of rates of glymphatic inflow.
Figure 35. MRI and histological analyses grouped by genotype and age. (A, E, I) MRI contrast penetration efficiency in each of the brain regions in which raw data and sigmoidal curves are displayed in Figure 32. Immunohistochemistry quantification of (B, F, J) tau, (C, G, K) GFAP and (D, H, L) AQP4 for the corresponding regions and groups in A, E, I). Statistical significance denoted by asterisks: *=p<0.05, **=p<0.001, ***=p<0.0001.
5.4.2 Regional differences between the rostral and caudal cortices of the rTg4510 mouse model

In order to tease out the differences in inflow between the rostral and caudal cortex and study the association to pathological burden, these two cortical regions of the transgenics were next analysed against each other (Figure 36). This was carried out to build on the findings from Chapter 4 (section 4.4.1), where higher contrast enhancement was observed in the caudal cortex compared to the rostral cortex (Figure 28 D).

Here, a significant impairment in contrast enhancement was apparent in the rostral cortex in the 2.5 month group (Figure 36 A; p≤0.05 from 96 – 168 mins, p=0.005 at 180 mins), a similar trend of which was also seen in the 5 month group (Figure 36 B). In the 7.5 month group however, this trend was reversed, with the caudal cortex showing impairment in contrast enhancement compared to the rostral cortex, but without statistical significance (Figure 36C). Visual assessment of the histological sections (Figure 36 E) revealed a modest increase in tau burden in the rostral cortex at 2.5 months and 5 months, compared to the caudal cortex. PG5 quantification too showed that the tau burden in the rostral cortex was elevated at 5 months compared to the caudal cortex (Figure 36 F; mean difference = 8.25% more in the rostral cortex). The corresponding penetration efficiency from the MRI experiments revealed that this metric was inversely related to tau accumulation at 5 and 7.5 months of age (Figure 36 D; mean difference = 0.33 less at 5 months and 0.6 more at 7.5 months in the rostral cortex).

On studying GFAP (Figure 36 G), this marker increased with age in both rostral and caudal regions, showing increased astroglial activation. A significant increase in GFAP was observed at 7.5 months of age during the most severe stage of pathology, in the caudal cortex compared to the rostral cortex (mean difference = 3.58% more in the caudal cortex compared to the rostral cortex, p<0.05). AQP4 also increased with age in both regions, with the caudal cortex having mildly higher levels at all ages (Figure 36 H).
Figure 36. MRI T1 signal intensity (% change from baseline) vs. time data acquired from the rostral and caudal cortices of rTg4510 (A) 2.5 month (n = 5), (B) 5 month (n = 4) and 7.5 month (n = 4) animals. (D) Penetration efficiency in each of the brain regions in which raw data and sigmoidal curves are displayed in A - C. Percentage immunoreactivity of (F) tau, (G) GFAP and (H) AQP4 in the corresponding regions from D. (E) Representative histological images with PG-5 staining demonstrating the gradient of tau accumulation in the rostral cortex from 2, 5 and 7.5 months. Statistical significance denoted by asterisks: * = p<0.05, ** = p<0.01.
5.5 Discussion

In this work, whole brain assessment of glymphatic inflow was carried out using the MRI protocol set up in the previous chapter. The rTg4510 model was assessed at 3 stages of pathology – 2.5 months, during the onset of tangle formation; 5 months, where the presence of mature tangles is expected; and 7.5 months, when neurodegeneration commences [94]. This approach attempted to tease out if glymphatic impairment was related to pathological tau burden, and if changes occurred early, prior to the onset of severe pathology. The rTg4510 model expresses pathological mutant tau throughout the cortex and hippocampus given the strong action of the CaMKIIa forebrain promoter [95]. Thus analyses were focused in these regions.

Notably, the overall percentage inflow in the wild type brains was lower compared to the previous C57BL/6J wild type experiments. A reasonable explanation for this variance may be the difference in background genetic strain, as the rTg4510 is on a mixed 129S6xFVB background, and littermates from the transgenic cohort were used here as controls. Strain differences can account for a myriad of brain differences. In one study that compared the 129S6 strain to the C57BL/6, they found the most significant morphological variances in areas corresponding to the motor and the anterior somatosensory cortices [222]. Interestingly, these regions are included in the rostral and caudal cortices analysed in the work presented here, and so regional glymphatic patterns can be expected to vary between morphologically distinct strains. In another study, analyses of vascular branching and cerebral blood flow in C57BL6 and BALB/c strains found morphological differences between arterial branching patterns, which then influenced the values of blood flow between strains [223]. Given the evidence for such inter-strain differences in the brain morphology and perfusion, changes to glymphatic function between strains may be expected. In light of these findings, a future comparison between commonly used inbred strains, which encompasses anatomical differences, blood flow variations and glymphatic changes, is warranted.
Given the difference in contrast intensity observed between the rostral and caudal cortices in the wild type characterisation in Chapter 4 (section 4.4.1), these subregions were segmented separately. This was particularly of interest in this study, given the early histological difference in tau deposition observed between these regions. If the levels of cortical tau in this model solely corresponded to the transgene expression, one would expect homogenous burden throughout the cortex given the strong forebrain CaMKIIa promoter driven pattern of the transgene [95]. The reduction in contrast penetration in the rostral cortex (Figure 35 D), as measured by MRI in the 5 month group, coupled with the increase in tau deposition in this region (Figure 35 F) suggests that the regional differences in glymphatic function may be a contributing factor towards the difference in pathological burden between these regions.

Improved glymphatic clearance in the caudal cortex of the mouse brain, prior to neurodegenerative changes, may be reducing the amount of deposited tau in that region. The subsequent loss of this effect by 7.5 months could be attributed to the continued robust expression of the transgene with age. At later stages in the pathological timeline, the severe tau accumulation throughout the forebrain may surpass the benefits of any regional glymphatic clearance efficiencies.

Neurodegenerative changes may also account for the differences observed between transgenics and wild types at 7.5 months. Previous MRI studies of the rTg4510 brain has revealed significant atrophy of the cortex and hippocampus [224] – the regions that suffer the most tau burden, with the progressive nature of this loss markedly detectable by 7.5 months using morphometric analyses [225]. In these data, the earliest tau pathology is apparent in the hippocampus and the rostral cortex (Figure 35E). This places the rostral cortex as the region that closely follows the hippocampus, with the caudal cortex coming in last in the pathological cascade. Taking this view, the elevation in contrast in the hippocampal and rostral cortical regions of the rTg4510s compared to wild types at 7.5 months indicates that the magnitude of inflow is related to the regional degree of tau pathology at this age. This can be explained by the corresponding degree of neurodegeneration within these regions. Extracellular volume [182] and tortuosity [161] are both factors that contribute to glymphatic
efficiency. If the extracellular space increases in volume and becomes less tortuous with increasing cell loss in these regions, the movement of solutes through these regions, including MR contrast agents, may accelerate.

Changes to cytoarchitecture during neurodegeneration may also manifest as glymphatic changes at a cellular scale. GFAP is an astrocytic marker which is known to be upregulated during aging and neurodegeneration [226]. The amount of GFAP in the rostral and caudal cortices closely mirrored the degree of tau pathology within these regions at all time points, demonstrating increasing astrogliosis with progression of pathology. AQP4 also increased with age. In mice, perivascular loss of AQP4 is a feature of the aging brain [183], is associated with glymphatic impairment, and this perivascular loss is accompanied by the redistribution of AQP4 to parenchymal processes of reactive astrocytes [153]. In a study exploring AQP4 in human AD subjects, the loss of perivascular AQP4 was accompanied by an increase in AQP4 expression [205]. It is likely that the regional observations here reflect these discrete cellular changes, brought about by mutant tau overexpression and the subsequent onslaught of the neurodegenerative process. However, it must be noted that experimental factors precluded the broader analysis and interpretation of immunofluorescence data (Section 5.3.6) which was performed to study AQP4 polarisation. Due to limited sample availability, combined with perfusion artefacts giving rise to mouse-on-mouse reactivity, a comprehensive analysis was hindered. This was further mired by the variation in vessel size across collected sections, as well as non-specific fluorescent signals arising from the nuclei and other organelles which pointed to an error in the immunostaining process.

Exploring distinct regional differences in the AD brain is of interest given the staged nature of pathology through the course of the disease. Studies mapping cytoarchitecture indicate that the human homologue of the mouse rostral cortex topographically maps to the human anterior cingulate cortex, whereas the mouse caudal cortex closely resembles the human retrosplenial cortex [227]. Studies segmenting these distinct regions in the brains of familial AD subjects note that volumetric differences exist between these regions despite their close connectivity [228]. As such, it is judicious to study fine and progressive fluctuations in
glymphatic function in the regions most vulnerable to AD pathology, in order to understand how rates of tau clearance may contribute to these detrimental neurodegenerative changes. Furthermore recent observations have suggested that tau, using the extracellular space as a conduit, is able to propagate from neuron-to-neuron via a prion-like mechanism [229]. The functional relevance of appropriate glymphatic clearance of extracellular tau may therefore be of prime importance in neurodegenerative tauopathies, in which propagating pathology is thought to occur.

An additional consideration to take is the recirculating nature of the glymphatic pathway and its contribution to ongoing pathology. CSF tau is highly stable compared to Aβ (12-14hrs half-life in CSF compared to 2hrs for Aβ) [230,231]. Once tau is cleared from the parenchyma into the CSF sink, tau-laden CSF may be re-internalised into the parenchyma itself, or at the very least, may enter the periarterial space [157]. Periarterial deposition is known to occur with other parenchymal proteins cleared via this pathway, such as Aβ, in the form of cerebral amyloid angiopathy (CAA). Interestingly, tau labelling has been shown to colocalise with CAA in AD brains [232]. As such, in understanding the glymphatic contributions towards the mechanisms of AD onset, both tau and Aβ pathologies must be investigated in tandem to elucidate a clear mechanistic picture. To that end, the study that follows this chapter probes the role of glymphatic function in amyloid pathologies.
6. Glymphatic Function in Amyloidosis Models of Alzheimer’s Disease

Following on from the previous chapter, here, whole brain glymphatic changes are investigated in two mouse models of amyloid pathology, using magnetic resonance imaging.

6.1 Summary

Cerebrospinal fluid levels of Aβ are a vital clinical marker of Alzheimer’s disease onset. Thus, understanding the transit of Aβ species through the fluid compartments of the brain and it’s causative mechanisms in plaque pathology is beneficial in understanding disease progression. Previous glymphatic studies of Alzheimer’s disease and related pathologies have had a particular focus on Aβ, but have not characterised amyloid-driven glymphatic changes taking a whole brain approach. This study aimed to address that gap and build on the previous work presented, which characterised glymphatic changes in disease models of tauopathy and aquaporin-4 dysfunction. Here, the whole brain magnetic resonance imaging methodology was replicated on two models of amyloid pathology – one which overexpresses mutant human amyloid and a second which expresses mutant amyloid at endogenous levels. This two-tiered approach was designed to elucidate any subtle changes in dynamic fluid exchange in the early stage of amyloidosis.

This work was performed in collaboration with the laboratory of Elizabeth Fisher at the UCL Institute of Neurology and Eli Lilly and Company. I would like to thank Katherine Sung for performing the histology included in these data.
6.2 Introduction

Understanding the various clearance mechanisms of Aβ and tau from the brain is surely a vital step towards developing new treatment strategies for Alzheimer’s disease (AD). Aquaporin-4 mediated glymphatic clearance of amyloid-β (Aβ) and tau and its role in AD onset is still not fully explored. However, given the presence of both molecules in cerebrospinal fluid (CSF) during AD progression [117], they both present as viable candidates for removal via the glymphatic pathway.

CSF levels of two amyloid species, Aβ40 and Aβ42, are clinically used biomarkers. Decreases in CSF Aβ42 correlates with disease progression and increasing plaque load, and although CSF Aβ40 levels are relatively unaffected, a decrease in ratio of CSF Aβ42:Aβ40 is associated with AD status [118]. If these decreases in CSF levels are caused by Aβ species being sequestered into plaques, it is important to understand if glymphatics play a part in propagating this pathology – either by recirculating glymphatic delivery of CSF species into the brain encouraging plaque formation, or by a lack of glymphatic removal contributing to an increase of these Aβ species within the parenchyma.

In the original work that characterised glymphatic function, the movement of Aβ via this pathway took the spotlight. In that work, Iliff et al. showed that clearance of radioactively labelled Aβ40 injected into the brain was cleared over time, and fluorescently labelled Aβ40 accumulated along large draining veins. Radioactive Aβ40 infused intracisternally also entered the brain in a pattern that was characteristic of other glymphatic solutes. Notably, they also showed a reduction in of all these measures in AQP4 null mice [151]. Subsequently, using a similar approach, Peng et al., showed glymphatic impairment in the APP/PS1 mouse model of AD. They found that brain uptake and clearance of radioactively labelled Aβ reduced with advancing age in APP/PS1 mice, with glymphatic impairment being apparent at an age prior to plaque formation. Additionally, by infusing fluorescently labelled Aβ40 and Aβ42, they showed that these species can enter the brain along penetrating arteries, with the infused Aβ40 having an affinity to gather around existing endogenous plaques [217].
Previous studies in this amyloidosis model have also shown that deletion of AQP4 exacerbates memory deficits and Aβ accumulation in these mice [204].

Taking these findings into account, the next experiments aimed to dynamically image glymphatic flow patterns in amyloidosis models of AD, using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). If perturbances in glymphatic inflow contribute to the aforementioned observations implicating Aβ as a substrate, I hypothesised that this will be observable by DCE-MRI and provide a wider, more detailed picture of these changes, above and beyond the single snapshot view enabled by florescent and radioactive tracers. Here, I aim to build on the work I presented in Chapter 4, where I showed that glymphatic inflow can be visualised in real time using MRI and this can be visibly altered by pharmacologically blocking AQP4, as well as the work in Chapter 5, where differences in glymphatic function were demonstrated in tauopathy. In this work, to surpass any macroscopic effects due to neurodegeneration and atrophy, the model J20 (PDGF-APPSw,Ind) was used, as it is one that which accumulates plaque pathology in the brain, but shows minimal neurodegeneration [96]. Given that a significant criticism that mouse models of AD are met with is the artificial exacerbation of phenotypes due to overexpression, a second newer amyloid model, the APP NL-F mouse model, was also included in this study. This mouse model expresses endogenous levels of APP, and develops plaque pathology slower and later in its lifespan [98], thus enabling a more timely study of the preclinical stages of disease.

6.3 Methods

6.3.1 Mice

Generation of homozygous J20 (PDGF-APPSw,Ind) [96] and APP NL-F [98] transgenic mice have been described previously. The J20 (n = 6) and litter matched wildtype (n = 8) mice were licensed from the J. David Gladstone Institute (San Francisco, California, USA). The NL-F (n = 9) and litter matched wildtype (n = 13) mice were licensed from the Riken
Institute (Tokyo, Japan). Both strains were imported into the United Kingdom, bred at the University College London (UCL) Institute of Neurology, and transferred for study at UCL’s Centre for Advanced Biomedical Imaging. For the J20 study, male and female mice at 6 months of age were used. For the NL-F study, male and female mice at 8 months of age were used. All animal work was performed in accordance with the United Kingdom’s Animals (Scientific Procedures) Act of 1986 and was previously approved by UCL’s internal Animal Welfare and Ethical Review Body. Mice had unrestricted access to food and water, and were housed under automatically controlled temperature, humidity, ventilation and 12h light/dark cycle settings.

6.3.2 Surgical preparation, magnetic resonance imaging and image analysis

The experimental methods employed in Chapter 4 were replicated for the MRI preparation, imaging and analysis in these experiments, and are detailed in sections 4.3.1 – 4.3.4.

6.3.3 Amyloid Immunohistochemistry

Immunohistochemistry was performed in order to quantify cortical deposition of amyloid in J20 and NL-F mice. Mice were perfused with phosphate buffered saline (PBS) followed by 10 % buffered formalin (VWR catalogue# 9713.1000) before being processed using the Tissue TEK VIP processor (GMI Inc.) and embedded in paraffin wax. 6μm thick sections of the brain in the sagittal plane were collected using a rotary microtome and mounted on glass slides. Following de-paraffinisation and rehydration of the tissue sections, antigen retrieval was performed using the Lab Vision PT module system (Thermo Scientific), where sections were heated to 100°C for 20 min in citrate buffer (TA-250-PM1X; Thermo Scientific). Slides were transferred to a Lab Vision Autostainer (Thermo Scientific).

The following incubations were performed: 10 min in H₂O₂ (0.3%); 30 min in normal goat serum (1:20; Vector Laboratories); 60 min in primary antibody for amyloid (b3D6; 1:1000 from Eli Lilly, USA); 30 min in biotinylated goat anti-mouse IgG (1:200, BA9200; Vector Laboratories); 30 min avidin-biotin complex solution (PK-7100; Vector Laboratories); 5 min in 3,3’-diaminobenzidine (SK-4105; Vector Laboratories).
Apart from the last two steps, PBS with 0.05% Tween-20 (PBS-T) was used for diluting reagents and washes between steps. Sections were then counterstained with haematoxylin before dehydration and cover-slipping. Stained sections were digitised using the Scanscope AT slide scanner (Aperio) at 20× magnification.

6.3.4 Statistical Analysis
Statistical comparisons between groups were performed via either a repeated measures two-way analysis of variance (ANOVA) followed by post-hoc Bonferroni post-tests for multiple comparisons (for MRI data), or a regular two-way ANOVA followed by post-hoc Bonferroni post-tests for multiple comparisons (for all other grouped comparisons not containing repeated measures). All statistical testing was performed using GraphPad Prism (v7 for Windows, San Diego, CA, USA). All data is represented as mean ± SEM for the n number of animals in each group, which are detailed in figure legends.

6.4 Results

6.4.1 Glymphatic inflow in J20 transgenic mice
Glymphatic inflow in the J20 transgenic mice was not altered compared to wildtype littermates at 6 months of age (Figure 37). Inflow in the cortex and hippocampus, areas vulnerable to plaque accumulation in this model, was low, however, this was no different to the wildtypes. Regions closest to the infusion site such as the cerebellum and hindbrain showed the most marked increases in contrast enhancement in all mice.

Histopathological study of the brains revealed few to no visible mature plaques in the cortical and hippocampal regions (Figure 38), confirming that this model did not have profound pathology at the age that was assessed and represents a preclinical phase in its timeline. Quantification of the plaque load confirmed that whilst % burden of pathology was relatively low, the highest amyloid immunoreactivity was seen in the hippocampus (Figure 39).
A notable observation in the J20 cohort was that they were very sensitive to anaesthesia. In order to maintain optimal depth of anaesthesia, the isoflurane levels were continually adjusted throughout the imaging time for some mice. This was particularly apparent in mice that were subsequently revealed to be wildtype (after unblinding, post-analysis), but not restricted to this group. Two mice from this cohort did not complete the MRI protocol due to a leak in the infusion line found after commencement of the experiment. Routine regenotyping results returned at the end of the project revealed that a further two mice were genotypically ambiguous. These mice were also eliminated from the study, thus resulting in the total loss of four mice in the cohort from the MRI analysis.

![Whole Brain](image)

Figure 37. MRI T1 Signal Intensity (% change from baseline) vs. time plots from J20 (PDGF-APPSw,Ind) \(n = 4\) and wild type (WT) animals \(n = 6\) at 6 months of age, demonstrating penetration of Gd-DTPA tagged CSF over time in whole brain and selected regions.
Figure 38. (A - D) Representative immunohistochemistry images of 6 month old J20 (top) and wildtype (WT) (bottom) sections stained with b3D6, taken at 0.3x (left) and 4 (right) magnifications. Limited plaque pathology is seen in J20 mice at this age.

Figure 39. Percentage immunoreactivity of amyloid quantified in a subset (n = 6) of brains in the mice from the J20 cohort. The cortex and hippocampal regions are presented as areas of high pathology and the thalamus is presented as a control region. Statistical significance denoted by asterisks: ***p<0.001.
6.4.2 Glymphatic inflow in NL-F transgenic mice

No changes in glymphatic inflow were observed between NL-F transgenic and wildtype littermates (Figure 40). However, the interpretation of these data were marred by several factors which I believe adversely affected this dataset. Due to delays in shipment, the mice had minimal in-house acclimatisation time. In addition, several mice arrived marked with health concerns, three of which got progressively worse during housing at our Centre, or during experimental set up. These mice were eliminated from the experiments based on advice from the Named Animal Care and Welfare Officer. Routine regenotyping performed at the end of the project also revealed nine further genotypic changes (with there being ambiguity between mutants and wildtypes), an observation also apparent in the phenotypic characterisation of plaques during histology (Figure 41). Thus, a total of twelve mice from this cohort were eliminated from the MRI analysis.

Figure 40. MRI T1 Signal Intensity (% change from baseline) vs. time plots from homozygous transgenic NL-F (\(n = 3\)) and wildtype (WT) animals (\(n = 7\)) at 8 months of age, demonstrating penetration of Gd-DTPA tagged CSF over time in selected brain regions.
A subset of histologically confirmed transgenic mice were quantified for amyloid burden in the cortex and hippocampus, regions expected to have high pathology, and thalamus, used as a control region (Figure 42). This analysis confirmed the significant elevation of plaque pathology in phenotypically confirmed NL-F homozygotes, some of which were shipped as wildtypes. Given these discrepancies, no further analysis was carried out on this cohort.

Figure 41. (A - D) Representative immunohistochemistry images of 8 month old NL-F (top) and wildtype (WT) (bottom) sections stained with b3D6, taken at 0.3x (left) and 4 (right) magnifications. Virtually no plaque pathology is seen in NL-F mice at this early age.

Figure 42. Percentage immunoreactivity of amyloid quantified in a subset (n = 8) of brains in the mice from the NL-F cohort. The cortex and hippocampal regions are presented as areas of high pathology and the thalamus is presented as a control region. Statistical significance denoted by asterisks: *=p<0.05, **=p<0.01.
6.5 Discussion
In this work, glymphatic changes in models of amyloid pathology were probed to advance the observations reported in the two previous chapters. Two different transgenic lines, at the relevant stage in each model’s timeline prior to the accumulation of plaques, were used to elucidate if glymphatic changes precede protein accumulation as previously described, and if these changes could be detected regionally and globally across the brain. In both models, no changes in inflow were observed using DCE-MRI, with histology confirming low levels or absence of plaques in the brain. This is at odds with the work published by Peng et al. [217], which this work aims to build on, which showed early glymphatic impairment in APP/PS1 mice. However, several procedural and experimental variances may have contributed to these discrepancies.

Looking first to the J20 cohort, at first glance it is tempting to speculate that no changes in glymphatic function are seen prior to plaque formation, and such changes may occur downstream of the neurodegenerative process, particularly taking into account the finding from the rTg4510 study in Chapter 5. But given that APP/PS1 amyloid mice show glymphatic changes even prior to plaque accumulation, which then progresses during pathology [217], it suggests that differences between varying strains of transgenic models may exist.

Previous studies in the J20 mouse have reported a reduction in cerebral perfusion in this model [233]. Changes in perfusion can interplay with a number of physiological parameters including perfusion pressure, vascular radius and changes in blood viscosity [234]. Given that arterial pulsations are thought to be a key driving force in CSF ingress into the brain [156], then it is plausible that changes in cerebral haemodynamics can also affect glymphatic influx by proxy. Additionally, pre-treatment with Aβ40 has been shown to reduce glymphatic inflow in the mouse brain [217], and interestingly, this is the species that is more abundant in the interstitial fluid of the J20 brain as early as 3 months [235]. These findings
would collectively imply that J20 mice would be expected to have reduced glymphatic inflow compared to wildtypes.

However, the cohort of J20 mice did not show differences between their wildtype counterparts, with even the wildtypes curiously not fully following the characteristic pattern of inflow previously described. Regions closest to the infusion site such as the cerebellum and hindbrain showed the most contrast enhancement, with deep brain structures such as the hippocampus, and regions furthest away from the route of glymphatic flow, such as the cortex, showing the least contrast. These characteristics point to an experimental shortfall.

A notable observation made during the J20 experiments was the ineptitude of this strain to tolerate isoflurane anaesthesia in the robust way observed in the wildtype C57/BL6J mice used in the TGN-020 experiments, or the rTg4510 transgenic cohort. Several but not all of the mice in the J20 cohort took longer to achieve a depth of anaesthesia required for surgical preparation, and once in the scanner, had to be carefully regulated to maintain an optimal physiological range in parameters that monitor the mouse’s welfare, including heart rate and core temperature, during the experiment. In a recent study that investigated glymphatic function under a variety of anaesthetic regimens, choice of anaesthetic was found to be a sensitive factor in determining glymphatic efficiency. Using fluorescent tracer experiments, Hablitz et al. showed that ketamine/xylazine anaesthesia enabled the highest tracer influx, and isoflurane had the least, however, influx under isoflurane was markedly increased when supplemented with dexmedetomidine [236]. This observation is in keeping with similar findings from a different study which found that a combination of low dose isoflurane with dexmedetomidine evoked a higher glymphatic response (as measured by DCE-MRI in rats) than a high dose of isoflurane alone. But the authors also noted that the depth of anaesthesia was deeper in the higher dose of isoflurane, as quantified using electroencephalography [237]. This study also noted a 2% increase in the CSF compartment volume in the animals treated with the combination of the two anaesthetics, which contributed to the increased glymphatic efficiency reported.
Isoflurane is also known to have a marked effect on cerebral blood flow and volume [238]. Given the continuous fluctuations in anaesthetic dose that were required to maintain the J20 mice at a physiologically safe and experimentally acceptable depth in this cohort, it is possible that this negatively affected cerebral haemodynamic stability and contributed to data drift, thus marring glymphatic observations during this study. The variable response to isoflurane in the J20 mice was intriguingly more apparent in, but not restricted to the wildtype mice in this study. Since the J20 mice are bred on the C57/BL6J background, a strain which tolerated isoflurane in the previous experiments, this then raises the intriguing possibility that differences in anaesthesia tolerances can differ between lineages of mice bred in different centres or conditions, even on the same genetic background, and thus consequently indirectly contribute to differences in glymphatic and other physiological measures. To rectify this, a repeat study of this nature would ideally benefit from utilising ketamine/xylazine anaesthesia. However, the prolonged dose required for dynamic imaging must be carefully considered, given the deleterious cardiac and respiratory effects brought about by high ketamine/xylazine exposure [239], which may also consequently affect glymphatic measures. This poses a trade-off between experimental design and data integrity when undertaking investigations in whole brain glymphatic function across different strains and lineages.

Surveying the NL-F data, the small number of mice that were retained in the preliminary analysis suggest that no changes in glymphatic inflow are apparent prior to the onset of plaque formation. However, given the unfortunate obstacles faced by the cohort in this study, it is imprudent to make hasty interpretations about this model from this dataset. The NL-F line was included in this experimental plan to study a model with more naturally progressing pathology, as it is not an overexpression model. Although artificial overexpression of amyloid in other models may be perceived as a problem, in practical terms, the extremely slow progression of NL-F mice may also hinder the experimental progress and diminish the high-throughput advantage of using mouse models. Although plaque pathology is expected by 6 months of age, in this study, very few plaques were observed, with very little phenotypic
distinction between transgenics and wild types. An alternative approach to study this model would be the use of the NL-G-F mouse model. Whilst the NL-F mice harbour the Swedish and Iberian familial APP mutations, the NL-G-F mice also carry a third additional mutation from an Arctic kindred, and develops plaque pathology as early as 3 months, but still without overexpression [98]. The use of this transgenic line would seem more practical whilst still presenting a realistic model of disease progression, and may thus be more useful in understanding the glymphatic changes that precede amyloid accumulation. Alternatively, a carefully timed older cohort of NL-F mice with slightly more advanced pathology may be worth studying. This may provide a view of glymphatic changes during the onset of endogenous Aβ accumulation. Given the logistics required to procure, breed, age and genotype these mice, it was infeasible to schedule these follow up experiments within the duration of this research programme.

With the ups and downs of this study, aquaporin-4 profiles were not characterised in this study. However, given the evidence presented earlier in this thesis and that available in the body of literature, studying the molecular signature of aquaporin-4 in mouse models of AD and in human brains may act as a conduit for glymphatic changes in the brain. In doing so, it may be possible to glean a better understanding of the relationship between altered clearance mechanisms and the onset of AD brought about by the hallmark accumulation of Aβ and tau lesions.
7. Relationships Between Alzheimer’s Disease Pathology and Aquaporin 4 in Humans

This chapter extends the theme of this thesis into human brain, by studying aquaporin-4 profiles in Alzheimer’s disease and assessing its relevance to the development of human pathology.

7.1 Summary

There is currently limited evidence that pertains to the function of the glymphatic system in the human brain. Given the invasive nature and challenging experimental set up required for dynamic imaging of the glymphatic system in animal models, quantifying glymphatic changes during Alzheimer’s disease progression in human subjects is currently infeasible. With the abundance of evidence showing the role of aquaporin-4 in maintenance of brain homeostasis and glymphatic function, probing this water channel provides a surrogate measure for gauging glymphatic function and possible perturbances to this system in the human brain. Here, by studying aquaporin-4 alongside the gold standard neuropathological confirmatory hallmarks of the disease, amyloid-β and tau, some barriers to studying changes to glymphatic components in humans are partially overcome. It's implication in the human disease is probed by comparing histological measures in Alzheimer’s, cognitively impaired and cognitively normal subjects. Additionally, the possible role of polymorphic changes in the aquaporin-4 gene in humans is examined, and changes to dystrobrevin, a protein linked to aquaporin-4, is investigated in mouse models.

The work in this chapter was carried out in the laboratory of Jeffery Iliff during a collaborative research placement at Oregon Health and Science University, USA. I would like to thank Randy Woltjer for preparing the human brain sections and guiding the hippocampal ROI drawings, Natalie Roese for performing the wet laboratory work on these human tissues and Marie Wang for harvesting the mouse tissue used in these experiments prior to the commencement of my placement.
7.2 Introduction

With the desperate lack of disease modifying treatments for Alzheimer’s Disease (AD), and no clear indication as to what brings about sporadic AD, much is yet to be resolved on disease onset and modification. The failure of clearance of amyloid beta (Aβ) causing build-up, and the prion-like spread of tau and accumulation into neurofibrillary tangles (NFTs), are research themes that provide targets of significant interest. The glymphatic system has been highlighted as a clearance pathway for Aβ [151] and tau [184] via exchange between cerebrospinal fluid (CSF) and interstitial fluid (ISF). Experiments in mouse models have provided evidence that these pathogenic molecules are participants in this clearance pathway, and that aging can deplete the dynamics of this system [183]. This therefore implicates glymphatic clearance as a potential target for the understanding and treatment of AD. Readily visualising this system in vivo requires the translation of contrast-dependant imaging techniques which pose several significant hurdles – performing long serial magnetic resonance imaging (MRI) scans in humans is impractical and the administration of contrast has clinical limitations. Furthermore, if arterial pulsations drive inflow [156], then humans would be expected to have slower dynamics than rodents, given the significantly lower heart rate, significantly larger brain volume and differential CSF production rates compared to rodents [240]. Indeed, the precise relationships between these parameters and glymphatic function remain to be seen.

Limited studies exist in demonstrating glymphatics in humans [241–243]. In one study glymphatics were measured in humans with idiopathic normal pressure hydrocephalus, a neurodegenerative disease which relies on CSF diversion as a treatment method. When a bolus of contrast agent gadobutarol was intrathecally administered, they observed the inflow of contrast along leptomeningeal arteries in both patient and healthy control groups, but delayed parenchymal enhancement in the patient cohort [241]. Interestingly, enhancement peaked overnight, which is in line with observations reported in rodents, where sleep was an enhancer of glymphatic function [182]. In another study tracing the draining route of CSF to peripheral lymphatics via glymphatic transit, cervical lymphatic enhancement of
galdobutorol coincided with enhancement in the parenchyma, and not ahead of this time, indicating that CSF was not directly draining into the lymphatic system [242]. These human experiments pave the way for the study of human glymphatic function.

Before these experiments can be extended to the more challenging scenario of AD, it is prudent to study the cellular and molecular components in isolation. Aquaporin-4 (AQP4) is a water channel known to modulate the dynamics of exchange between CSF and ISF. If glymphatics are altered during pathology in the mouse brain, and aquaporin-4 is a key mediator of these alterations [151], then probing AQP4 in human tissue offers a good starting point. Astrocytic AQP4 in rodents is highly polarised to the brain vasculature, but the distribution profile in humans is markedly different. The degree of polarisation to the end foot in humans is 1/3rd of that in mice and parenchymal astrocytic AQP4 expression is higher [244]. It is conceivable that this difference between species would change fluid exchange dynamics.

Loss of perivascular AQP4 associated with plaque formation has been shown in a mouse model of AD [244]. Additionally, recent work in human post mortem brains have shown that AQP4 in the cortex in AD brains is less polarised, and that expression patterns change in the aging human brain [205]. Genetic studies in human subjects with AD have revealed that single nucleotide polymorphisms (SNP) in AQP4 may be predictive of AD status as they show significant associations with AD biomarkers [245]. In particular, one SNP known as rs3763043, is emerging in ongoing studies as a significant candidate for AD prediction (data unpublished, personal communication J. Iliff, 2019). This may allude to a change in the astrocytic end foot profile of AQP4, and as such, associated end foot proteins are also of interest. One such candidate, dystrobrevin (DTNA), part of dystroglycan anchoring complex (DAC) which anchors AQP4 to the membrane (Figure 43), has also emerged as a gene of interest. Recent genetic and expression studies have revealed that DTNA shares a similar developmental expression profile to AQP4 [246], and hippocampal expression of DTNA in AD subjects is elevated, with this elevation being associated with P-tau pathology in the
temporal cortex [247]. Furthermore, SNPs of DTNA are also beginning to show associations with several AD biomarkers (data unpublished, personal communication J. Iliff, 2019).

In this work, these observations are extended upon by novel histological examination of human brain slices. Firstly, Aβ and tau pathologies are measured using a more comprehensive method than clinicopathological staging, by taking a region-by-region direct quantification approach in areas of interest specific to AD. Next, AQP4 is quantified for expression and polarisation in the same regions and subjects. These measures are then cross examined to establish regional relationships between AQP4 and AD pathology. The data is also interrogated to establish if SNPs in AQP4 can be predictive of AD pathology in the human brain. In addition, changes in DTNA during aging and during AD pathology are examined in mouse models, to build upon my findings from human brain samples.

Figure 43. Schematic representation of the dystroglycan anchoring complex and associated end foot elements, including aquaporin-4 and dystrobrevin. Reproduced from Simon et al, 2018 [246].

7.3 Methods

7.3.1 Human subjects and tissues

Human samples and subject clinical information (which included age, sex, Braak stage, CERAD score, clinical status, clinicopathological status and SNP genotype) were obtained from the Oregon Health and Science University (OHSU) Layton Aging and Alzheimer’s Disease Centre and associated post-mortem tissue repository, the Oregon Brain Bank. All tissue came from volunteers that already signed written informed consent. All subjects
underwent brain autopsy after consent was obtained from the next of kin and in accordance with OHSU guidelines. The research protocols for these studies were reviewed and granted ethical approval by the OHSU Institutional Review Board. A total of 76 subjects, both male and female, with an age range of 75 – 105 were included in this study. For the frontal cortex analysis, 54 of the immunostained sections were successfully quality controlled and analysed and 30 underwent Western blotting due to sample availability. For the hippocampal analysis, 36 of the immunostained sections were successfully quality controlled and analysed and 20 underwent Western blotting due to sample availability.

7.3.2 Immunostaining of human brain sections

Following post-mortem processing, brains were fixed for at least 2 weeks in 10% neutral buffered formalin and dissected into regions of interest, and then embedded into paraffin blocks. Sections were sliced on a microtome at 7μm thickness. Tissue sections, selected from the hippocampus and the frontal cortex, were deparaffinised and treated with 10% formic acid. Antigen retrieval was performed in sodium citrate buffer (pH 6.0) in a steamer for 20 minutes. Samples were incubated in the primary antibody in 4% normal serum in PBS with 0.3% Triton X overnight at 4°C. Primary antibodies used were as follows: rabbit anti-AQP4 (1:800; Millipore; catalogue #AB3594), mouse anti-human phospho-PHF-Tau monoclonal (AT8; 1:1000; ThermoFisher; catalogue #MN1020), and mouse purified anti-β-Amyloid, 17-24 (1:800; Biolegend; catalogue# 800701). Following overnight primary incubation, sections were incubated with secondary antibody for 1hr at room temperature. Secondary antibodies used were donkey anti-rabbit Alexa Fluor 488 (1:400; Life Technologies, catalogue #A21207) and donkey anti-mouse Alexa Fluor 594 (1:400; Life Technologies; catalogue #A21202). Two batches were stained for each subject and brain region, one batch for tau and AQP4 and a second batch from a consecutive section for Aβ and AQP4. Slices were mounted using Fluoromount-G mounting medium containing Hoechst 33342 nuclear stain (1:10000; Molecular Probes; catalogue #H3570). Immunofluorescence imaging was performed on the Zeiss Axio Scan.Z1 fluorescent scanner.
7.3.3 Western blotting of human brain sections

Human Western blot data was available for a subset of subjects also selected for this study, and blotting was performed and quantified prior to the commencement of this project as previously described [205,247]. Briefly, frozen frontal and hippocampal sections were homogenised on ice in tissue homogenization buffer (62.5 mM Tris (pH 6.8), 10% glycerol, and 2% SDS) and ultrasonicated. Total protein content in the supernatant was quantified using the Pierce™ BCA protein assay kit (ThermoFisher catalogue #23225). 0.1% bromophenol blue and 50 mM DTT were added to the sample and denatured at 95°C for 5 minutes. 50–100 µg of samples were loaded for electrophoresis. Gels were transferred using a BioRad Trans-Blot® Turbo™ Transfer System. Primary antibody used was rabbit anti-AQP4 (1:500, Millipore catalogue# AB3594) and secondary antibody used was anti-rabbit horseradish peroxidase (1:1000; GE Healthcare catalogue #RPN4301). Transferred blots were imaged on a BioRad ChemiDoc™ Touch Imaging System. Images were background subtracted and band intensities extracted using FIJI ImageJ software (version 1.52i). Bands were normalised to a β-actin loading control (1:1000, Novus Biologicals catalogue # NB600-501) and normalised values for each blot corrected against a nominated running control for each cohort. An average of two replicates for each sample was used. Quantification of the expression of the two isoforms by Western blot has also previously been described by this laboratory. This was performed by taking the dual band near the 35kDa mark, AQP4-M1 was defined as the upper band and AQP4-M23 was defined by the lower band [205].

7.3.4 Manual counting of plaques and tangles

Micrographs were analysed using FIJI ImageJ software (version 1.52i) and the investigator was blinded to subject dementia status. For the cortex, 12 regions of interest (ROI) that were a 1000 x 1000 pixels were placed across the section (Figure 44 A), with 6 spread across the frontal cortex grey (FCG) matter and 6 across the frontal cortex white (FCW) matter. Composite micrographs were then separated into their single channel images for analysis. Each ROI was then extracted and a grid placed across it for ease of counting. For the sections stained for Aβ, the number of dense core, diffuse and cerebral amyloid angiopathy plaques
were tallied using the manual cell counter function and included as a total count per ROI. The ROI was then converted into mm2 area and the total counts were converted to calculate counts per mm2. These were averaged across the 6 ROIs to give each subject a single plaque count value. For the hippocampus, ROIs were drawn in the CA1, CA2 and CA3 regions by an experienced pathologist (Figure 44 B). Due to the availability of section, orientation of cutting and section quality, only a subset of hippocampal sections were analysed. Dense core, diffuse and cerebral amyloid angiopathy plaques were tallied using the manual cell counter function and included as a total count per ROI. Each ROI was then converted into mm2 area and the plaque counts converted to present them as counts per mm2 for CA1, CA2 and CA3 regions separately.

The method was then replicated across the sections stained for tau. ROI placement had to be manually adjusted to account for locational discrepancies between consecutive sections and preparations. FCG and FCW tau counts were presented as counts per mm2 across an average of 6 grey matter ROIs and 6 white matter ROIs per subject. Hippocampal CA1, CA2 and CA3 regions were presented as counts per mm2 for each region.
Figure 44. Widefield representative composite (red, green, blue) micrographs of human sections stained for AQP4 (red), nuclear stain DAPI (blue) and tau or Aβ (green). Consecutive sections were stained for either tau or Aβ. (A) Frontal cortex. Yellow squares indicate the 1000 x 1000 pixel ROI placements used for analyses: 6 in grey and 6 in white matter. (B) Hippocampus. Yellow ROIs indicate the placement of CA1, CA2 and CA3 regions. (C) Zoomed in view of green channel within one square ROI on Aβ stained section. Red triangle highlights a dense core plaque, red square highlights a diffuse plaque and red circle indicates CAA. (D) Zoomed in view of green channel within one square ROI on tau stained section. Red arrows indicate NFTs. A blue grid is placed for counting efficiency.

7.3.5 Threshold analysis of aquaporin-4

The tau-stained batch was selected for the AQP4 analysis, except where a micrograph was not of sufficient quality for analysis as determined by the blinded investigator, in which case the Aβ-stained section was used. Composite micrographs were separated into their respective channels, and ROIs used in the tau and Aβ analysis opened on the red channel. ROIs were occasionally moved in instances where the red channel section was out of focus. Each ROI
was duplicated and the mean unthresholded intensity and area was measured. A threshold was then applied to highlight the edges of vessels, which was designated as the vessel threshold, and the minimum value at this threshold recorded. A second threshold was then extended to capture the cellular threshold including the intensity at the fine processes of astrocytes where they could be readily identified. This was designated the cellular threshold and the mean value and area of this threshold was recorded. Area coverage and AQP4 polarisation ratio was calculated as described below in Figure 45. The average of 6 ROIs were taken for FCG and FCW per subject. Single values were obtained per subject for the hippocampal CA1, CA2 and CA3 regions.

![AQP4 channel from each ROI separated](image)

![Threshold applied to visualise vessel profile](image)

![Second threshold applied to visualise cellular profile](image)

<table>
<thead>
<tr>
<th>AQP4 Polarisation Ratio</th>
<th>Minimum vessel intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean cellular intensity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AQP4 Area Coverage</th>
<th>Area of cellular profile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unthresholded area</td>
</tr>
</tbody>
</table>

\[
\text{AQP4 Polarisation Ratio} = \frac{\text{Minimum vessel intensity}}{\text{Mean cellular intensity}}
\]

\[
\text{AQP4 Area Coverage} = \frac{\text{Area of cellular profile}}{\text{Unthresholded area}} \times 100\%
\]

Figure 45. Workflow used for analysing AQP4 stain on micrographs and the formulae used to compute the AQP4 measures investigated in these analyses.

7.3.6 Mice and tissue collection

All animals were treated in accordance with National Institute of Health (NIH) Guidelines for the Care and Use of Animals. All procedures were performed under approved Institutional Animal Care and Use Committee (IACUC) protocols. For the aging study, male and female wildtype (WT) C57BL6 mice that were 3 months (n = 9) and 15 months (n = 7) old were used. For the study of AD pathology, male and female Tg2576 (Tg) mice at
12 months (n = 5) on a C57BL6 background and WT C57BL6 (n = 5) were used. Mice had unrestricted access to food and water, and were housed under automatically controlled temperature, humidity, ventilation and 12h light/dark cycle settings.

Brains were perfused with saline and 1U/ml heparin, and then hemisected. One hemi section was snap frozen by dropping it in isopentane supercooled on dry ice, to maintain fresh tissue for Western blotting. The other hemi section was drop fixed in 4% paraformaldehyde overnight. Following fixation, it was fully sectioned coronally on a cryostat at 50μm thickness and cryoprotected in sucrose for long term storage.

7.3.7 Western Blotting of mouse brain samples
For Western blotting, frozen brains were homogenised on ice in Pierce™ RIPA lysis buffer (ThermoFisher catalog #89900) containing proteinase and phosphatase inhibitors and ultrasonicated for 5 minutes. Homogenates were spun at 1800 rpm for 5 minutes to remove cellular debris and the supernatant collected. Total protein content in the supernatant was quantified using the Pierce™ BCA protein assay kit (ThermoFisher catalog #23225). Equivalent volumes for 60μg of protein per sample were then prepared for loading in a mix of 5μl NuPAGE™ LDS sample buffer (ThermoFisher catalog #NP0007), 2μl NuPAGE™ sample reducing agent (ThermoFisher catalog #NP0009) and purified water made up to a total loading volume of 20μl. Preparations were denatured at 95°C for 5 minutes, allowed to reach room temp and then loaded on to Bio-Rad Mini-PROTEAN® TGX Stain-Free™ precast gels (Bio-Rad catalog #456-8085) in a Bio-Rad Mini Trans-Blot® Cell tank filled with Tris-glycine SDS buffer, immersed in ice. 5μl of 10 to 180 kDa PageRuler™ prestained protein ladder (ThermoFisher catalog #26616) was run alongside the samples on each gel. Gels were run between 90V and 120V for a total time of 1.5 hours. Proteins were then transferred to a mini PDVF membrane using the BioRad Trans-Blot® Turbo™ transfer system at 25V, 1A for 30 minutes. Following transfer, membranes were split between the 85 and 50 kDa mark. The top section was incubated with mouse anti-DTNA (1:500, BD catalogue #BDB610766) and the bottom section was incubated with mouse anti- β-actin (1:1000, Novus Biologicals catalogue # NB600-501) in 3% milk overnight. Primary
antibodies were washed with Tris-buffered saline with 0.1% Tween-20 (TBS-T) and anti-mouse horseradish peroxidase secondary antibody (1:10,000, Jackson ImmunoResearch catalogue #115-035-003) was applied for 2 hours at room temperature. Secondary antibody was washed with TBS-T and the membranes then incubated with chemiluminescent substrates for 5 minutes. For β-actin visualisation, Pierce™ ECL Western blotting substrate (ThermoFisher catalogue #32209) was used and for DTNA, SuperSignal™ West Pico PLUS Chemiluminescent Substrate (ThermoFisher catalogue #34577) was used. Blots were imaged on the BioRad ChemiDoc™ Touch Imaging System. Using FIJI ImageJ software (version 1.52i), images were background subtracted and band intensities extracted. Bands were normalised to the loading control (β-actin) and normalised values for each blot corrected against a nominated running control for each cohort. An average of two replicates for each sample were used.

7.3.8 Immunostaining of mouse brain samples

3 sections were selected per mouse, which included cortical and hippocampal regions. Slices were mounted onto Superfrost slides, and antigen retrieval was performed using sodium citrate buffer (pH 6) with steaming for 30 minutes. Primary antibodies rabbit anti-AQP4 (1:1000; Millipore catalog #AB3594) and mouse anti-DTNA (1:50; BD catalog# BDB610766) were prepared in donkey serum and applied overnight at 4°C. The next day, primary antibodies were thoroughly washed with phosphate buffered saline with 0.1% Triton-X and secondary donkey anti-rabbit Alexa Fluor 488 (1:400; Life Technologies catalog# A21207), donkey anti-mouse Alexa Fluor 594 (1:400; Life Technologies catalog# A21202) and Hoechst 33342 nuclear stain (1:10000; Molecular Probes catalog# H3570) antibodies applied and incubated at room temperature for 5 hours. All incubations were performed manually and in a humidity tray, with minimal exposure to light. Slides were then mounted using Fluromount medium, dried overnight and then imaged on the Zeiss Laser Scanning Confocal microscope at 20x magnification. Images were acquired by single excitation of each wavelength (separately) and channels subsequently merged. 3 ROIs were imaged per section, per mouse, within the hippocampus and the cortex (Figure 46).
Figure 46. Widefield example micrographs of hemisections of mouse brains used for DTNA analyses. A total of three sections were stained for each mouse. 3 cortical and 3 hippocampal ROIs were placed on each section (shown as grey squares on one section in this example image). Following data extraction, the average of 9 regional ROIs were used per mouse for each measure.

7.3.1 Statistical analyses

Statistical comparisons between groups were performed via either a Mann-Whitney test, a one-way analysis of variance (ANOVA) followed by Dunn’s test for multiple comparisons, or a two-way ANOVA followed by Sidak’s test for multiple comparisons. A linear regression was performed for correlation analyses. Unpaired t-tests were used for single comparisons. All statistical testing was performed using GraphPad Prism (v7 for Windows, San Diego, CA, USA). All data is represented as mean ± SEM for the n number in each group, which are detailed in figure legends.
7.4 Results

7.4.1 Measurements of plaque and NFT burden

In order to probe the sensitivity of the manual counting approach to the disease status allocated to each subject, data was assessed categorised by both clinical (in life) diagnosis – classified as “not demented” (ND), “mild cognitive impairment” (MCI) or AD, and clinicopathological (post mortem) diagnoses – classified as “probable AD” (AP) or AD (Figure 47). Using the manual counting approach, when classified by clinicopathological diagnosis, significantly elevated plaque counts were observed in the AD group in the FCG (p<0.0001 AP vs AD), and hippocampal CA1 (p<0.0001 ND vs AD) and CA3 (p=0.0014 AP vs AD) regions. FCW was not different between groups, and hippocampal CA2, though elevated in the AD group, did not achieve statistical significance. When separated by clinical status, significant elevations in plaque counts were seen in FCG in the AD and MCI groups when compared to the ND group (p=0.0001 ND vs AD; p=0.0058 MCI vs AD), as well as in the CA3 (p=0.0086 ND vs AD; p=0.0019 MCI vs AD) region. Plaques in the CA1 region of the AD group was significantly elevated from ND (p<0.0001 ND vs AD), and CA2 though elevated was not significant. FCW was not different between groups (Figure 47).

In the NFT counts, when classified by clinicopathological diagnosis, significantly elevated counts for AD were recorded in FCG (p=0.0034 AP vs AD), CA1 (p<0.0001 AP vs AD), CA2 (p=0.0001 AP vs AD) and CA3 (p=0.0025 AP vs AD) regions. FCW had no difference between groups. When categorised by clinical diagnosis, significantly elevated plaques in the AD group were seen in CA1 (p=0.0003 ND vs AD; p=0.019 MCI vs AD), CA2 (p=0.0007 ND vs AD; p=0.0051 MCI vs AD)and CA3 (p=0.0152 ND vs AD; p=0.0122 MCI vs AD) regions, with the counts being significantly elevated compared to both MCI and ND. By this categorisation, FCG had a trend towards increased NFTs in the MCI group, which increased further in the AD group, however, these differences did not attain statistical significance. FCW showed no significant differences between groups (Figure 47).
Figure 47. Manually counted plaque and NFT densities in frontal cortex grey matter, white matter and hippocampal CA1, CA2 and CA3 regions. The left panel shows data categorised by clinicopathological diagnosis: AP = Probable Alzheimer’s (n = 21 frontal cortex and 20 hippocampus); AD = Alzheimer’s Disease (n = 26 frontal cortex and 13 hippocampus). The right panel shows data categorised by clinical diagnosis: ND = Not Demented (n = 15 frontal cortex and 14 hippocampus); MCI = Mild Cognitive Impairment (n = 9 frontal cortex and 9 hippocampus); AD = Alzheimer’s Disease (n = 27 frontal cortex and 9 hippocampus). Statistical significance denoted by asterisks: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
To assess the robustness of these measures, manual counts were correlated against the clinically relevant CERAD and Braak scores. Positive correlations were observed for plaque counts in FCG ($r^2=0.4447$, $p<0.0001$), CA1 ($r^2=0.5729$, $p<0.0001$), CA2 ($r^2=0.1737$, $p=0.0142$) and CA3 ($r^2=0.2627$, $p=0.0027$) and for NFT counts in FCG ($r^2=0.1389$, $p=0.0108$), CA1 ($r^2=0.4294$, $p<0.0001$), CA2 ($r^2=0.4026$, $p<0.0001$) and CA3 ($r^2=0.2193$, $p=0.006$), thus validating these counts (Figure 48).

<table>
<thead>
<tr>
<th>CERAD Score Vs Plaque Counts</th>
<th>Braak Stage Vs NFT Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal Cortex</td>
<td>Braak Stage</td>
</tr>
<tr>
<td>Plaques per mm2</td>
<td>NFTs per mm2</td>
</tr>
<tr>
<td>CERAD Score</td>
<td>Braak Stage</td>
</tr>
<tr>
<td>Frontal Grey</td>
<td>Frontal White</td>
</tr>
<tr>
<td>CA1</td>
<td>CA2</td>
</tr>
<tr>
<td>CA1</td>
<td>CA2</td>
</tr>
</tbody>
</table>

Figure 48. Manually counted pathology correlated to clinical scores. Solid line through data points indicates a significant correlation. Upper left: frontal cortex ($n=76$) plaques vs CERAD score (frontal grey $r^2=0.44$, $p<0.0001$); upper right: frontal cortex ($n=76$) NFTs vs Braak stage (frontal grey $r^2=0.13$, $p=0.01$). Lower left: hippocampal ($n=75$) plaques vs CERAD score (CA1 $r^2=0.57$, $p<0.0001$; CA2 $r^2=0.17$, $p=0.01$; CA3 $r^2=0.26$, $p=0.003$) lower right: hippocampal ($n=75$) NFTs vs Braak stage score (CA1 $r^2=0.43$, $p<0.0001$; CA2 $r^2=0.40$, $p<0.0001$; CA3 $r^2=0.22$, $p=0.006$).

7.4.2 Quantification of aquaporin-4

To test the AQP4 polarisation measure, a subset of ROIs were first manually scored as “polarised” or “not polarised” under a blinded analysis alongside the threshold approach (Figure 49). Following completion and unblinding, the metric (minimum vessel intensity to mean cellular intensity ratio) proved sensitive to detecting polarisation. Having verified this, all cases were subjected to the threshold analysis described above.
Figure 49. Test analyses of AQP4 polarisation ratio on a subset of ROIs, carried out on a mixed range of subjects with the user blinded to subject information. Based on visual intensity of the AQP4 stain at the vessels using the threshold analysis (Section 6.3.5), ROIs were classified as “polarised” or “not polarised” and ratios calculated using this threshold analysis. Of \(n = 60 \) square ROIs from frontal cortex grey sections analysed here, 25 were not polarised and 35 were polarised. Statistical significance denoted by asterisks: **** = \(p < 0.0001 \)

Figure 50. Composite micrographs of frontal cortex sections showing AQP4 (red) and DAPI nuclear (blue) stains. The left micrograph was taken from a representative non-demented (ND) subject and the right from an Alzheimer’s disease (AD) subject. Insets: zoomed in ROIs showing a high degree of AQP4 polarisation around vessels on the non-demented subject and depleted polarisation with patchy AQP4 staining with uniform astrocytic profiles on the Alzheimer’s disease subject.

FCG polarisation in the AD group was significantly reduced compared to ND when categorised by clinical diagnosis (\(p = 0.0301 \)) and the same was observed in the clinicopathological categorisation (\(p = 0.0209 \)), where AD polarisation was reduced compared to AP (Figure 52). Figure 50 shows an example the appearance of a very polarised
cortical section in an ND, with homogenous AQP4 expression also apparent through the cortical layers, compared to an AD individual with reduced polarisation, where a depletion of cortical AQP4 signal was also noted. Western blot data for a subset of subjects in this cohort has previously revealed no differences between AD and non-AD subjects [247]. Here, when reclassified by clinical status no differences are seen between groups (Figure 51).

No changes were observed in FCW in both categorisations. No differences in area coverage were seen between groups categorised by clinicopathological diagnosis. When classified by clinical diagnosis, in the hippocampus CA1, the MCI group had significantly reduced polarisation compared to AD (p=0.0467) but not ND. No other changes were observed in any other hippocampal regions in this analysis. When area coverage was measured, CA1 in the MCI group was significantly lower compared to ND (p=0.0196) but not AD (Figure 52).

Figure 51. AQP4 expression by Western blot. Data is categorised by clinical diagnosis: ND = Not Demented (n = 9 frontal cortex and 6 hippocampus); MCI = Mild Cognitive Impairment (n = 6 frontal cortex and 4 hippocampus); AD = Alzheimer’s Disease (n = 13 frontal cortex and 10 hippocampus).
Figure 52. AQP4 polarisation and area coverage measures calculated using threshold analyses in frontal cortex grey matter, white matter and hippocampal CA1, CA2 and CA3 regions. The left panel shows data categorised by clinicopathological diagnosis: AP = Probable Alzheimer’s (n = 21 frontal cortex and 20 hippocampus); AD = Alzheimer’s Disease (n = 26 frontal cortex and 13 hippocampus). The right panel shows data categorised by clinical diagnosis: ND = Not Demented (n = 15 frontal cortex and 14 hippocampus); MCI = Mild Cognitive Impairment (n = 9 frontal cortex and 9 hippocampus); AD = Alzheimer’s Disease (n = 27 frontal cortex and 9 hippocampus). Statistical significance denoted by asterisks: *=p<0.05.
Correlating AQP4 measures against measures of plaque and NFT counts revealed that there was a negative correlation between NFTs and area coverage in the FCG (Figure 53; $r^2=0.14$, $p=0.0113$). Next, these data were also correlated to the different isoforms of AQP4 quantified by Western blot in a previous study. The purpose of this exploratory analysis was to determine if protein expression levels had relationships to the novel measures of AQP4 polarisation and coverage developed here in this study. When AQP4 measures were correlated to Western blot expression of the different isoforms, a positive correlation was seen between polarisation ratio and total AQP4 ($r^2=0.3123$, $p=0.0037$), M1 ($r^2=0.3999$, $p=0.00007$) and M23 ($r^2=0.2307$, $p=0.0151$) isoforms. Area coverage positively correlated with the M1 isoform ($r^2=0.1674$, $p=0.0423$) but not with M23 or total AQP4 (Figure 53).
Figure 53. AQP4 polarisation and area coverage measures in the frontal cortex grey matter correlated to manual plaque counts (n = 53), manual NFT counts (n = 46) and AQP4 expression by Western blot (n = 30). Solid line through data points indicates a significant correlation. Upper right: NFT counts vs AQP4 coverage ($r^2 = 0.14, p = 0.01$). Lower left: AQP4 expression vs AQP4 polarisation (AQP4 total $r^2 = 0.31, p = 0.004$; AQP4-M1 $r^2 = 0.40, p = 0.0007$; AQP4-M23 $r^2 = 0.23, p = 0.02$). Lower right: AQP4 expression vs AQP4 coverage (AQP4-M1 $r^2 = 0.17, p = 0.04$).
7.4.3 Testing relationship to the rs3763043 SNP

To test if the rs3763043 SNP was influential on AQP4 and dementia status, subjects were assessed by SNP status and by dementia status (ND vs MCI & AD). rs3763043 SNP carriers had an increase in AQP4 polarisation which was not significant (Figure 54 A). When subjects were split by dementia status, MCI & AD subjects collectively categorised as the demented group (“cognitively impaired” - CI) had significantly increased polarisation in the FCG compared to undemented (“not demented” - ND) subjects used as controls (Figure 54 B; p=0.0114). AQP4 coverage showed no differences here (Figure 54 C). When burden of pathology was assessed by this categorisation, plaque load and NFT burden was lower in the rs3763043 SNP group within the demented cohort, but this did not achieve statistical significance (Figure 54 D & E).

Figure 54. AQP4 measures and pathology by SNP status. (ND = not demented; CI = cognitively impaired which includes Mild Cognitive Impairment and Alzheimer’s Disease subjects. 043 = rs3763043 SNP carriers; WT = wild type for rs3763043). (A) AQP4 polarisation by SNP status. (B – C) AQP4 measures by SNP and dementia status. (D – E) Plaque and tangle pathology by SNP and dementia status. Statistical significance denoted by asterisks: *=p<0.05.
7.4.4 Probing DTNA changes during aging and Aβ pathology in the mouse brain

Figure 55. Representative micrographs of young (A-C) and aged (D-F) mouse brain sections stained for AQP4 (red), nuclear stain DAPI (blue) and DTNA (green). Composite (red, green, blue) images (A, D) show merged channels and single channel images (B, C, E, F) show the same view of the individual stains.
Figure 56. Representative micrographs of wildtype (A-C) and Tg2576 (D-F) mouse brain sections stained for AQP4 (red), nuclear stain DAPI (blue) and DTNA (green). Composite (red, green, blue) images (A, D) show merged channels and single channel images (B, C, E, F) show the same view of the individual stains.

DTNA expression and polarisation was assessed in a cohort of Tg2576 APP mice. Figures 55 to 56 show representative immunofluorescence images for each cohort. No differences in
polarisation were observed between young and old mice (Figure 57 D, F). However, a reduction in overall whole brain expression was seen in the aged mice in the Western Blot analyses (Figure 57 B; p=0.0079). A reduction in polarisation of DTNA was observed in the cortex of Tg2576 mice (Figure 57 E; p=0.0465), but not in the hippocampus (Figure 57 G). Overall expression of DTNA was not different between the WT and Tg2576 groups (Figure 57 C).

Figure 57. (A) A single representative image of a Western blot indicating bands for DTNA and β-actin loading control, presented as an example blot and taken from the wildtype vs Tg2576 analysis batch. (B) Whole brain DTNA expression by Western blot quantified in young vs aged mice and (C) wildtype vs Tg2576 mice. (D) DTNA polarisation in the cortex and (E) hippocampus of young and aged mice. (F) DTNA polarisation in the cortex and (G) hippocampus of wildtype and Tg2576 mice. Statistical significance denoted by asterisks: *=p<0.05, **=p<0.01.
7.5 Discussion

In this section of my thesis, the work attempted to undertake a paradigm shift in the methodological approach to the study of glymphatic clearance in AD. By moving from preclinical mouse work to the clinical human condition I attempted to begin to bridge the gap between mouse and human studies of the glymphatic system. Possible changes to glymphatic function in human AD was probed by examining AQP4 profiles in human subjects diagnosed with AD, MCI and undemented individuals, and correlating these measures to Aβ and tau burden with precision. AQP4 polarisation was found to be reduced in the frontal cortex of AD subjects, and NFT burden inversely correlated with AQP4 coverage. Carriers of the rs3763043 SNP who had been diagnosed with MCI or AD had increased AQP4 polarisation in the frontal cortex.

The detailed histological characterisation of Aβ and tau employed here enabled a thorough evaluation of the relationship between these recognised correlates of AD and molecular features that are mechanistically important to glymphatic function. This approach also aimed to get a more refined value of pathology than the gold-standard of Braak and CERAD scoring, which takes a more global qualitative approach based on select brain regions [15,16]. In doing this, a more direct correlation to AQP4 was enabled, as the same smaller regions could be interrogated for AQP4 measures against Aβ and tau burden. Manual counting of a range of smaller ROIs has notable benefits. First, it does not assume uniform pathology across the whole anatomical region in question. By taking a more direct region by region count and averaging across multiple regions, it provides each subject with a value of Aβ and tau burden that is more representative as to the discreet, regional nature of the pathology across the brain. When these measures were categorised by clinicopathological status, it reliably separated confirmed AD subjects from probable AD on several measures, including FCG, CA1 and CA3 for plaque burden and FCG, and all CA regions for NFT burden. These counts were appraised by their positive correlation to CERAD and Braak scores. Of interest were the clinically diagnosed MCI and ND subjects who showed a high level of pathology that was histopathologically comparable to AD subjects. It is plausible that these subjects
represent the range of the AD pathological continuum, and this supports the notion that some individuals are protected from the neurotoxic effects of AD pathology. Previous studies have reported that high-pathology nondemented individuals do not suffer synaptic loss to the degree that symptomatic AD sufferers do [248], preserve brain morphology in the hippocampal regions usually vulnerable to neuronal loss [249], and have larger brains with higher volumes even in the face of pathology [250]. It is therefore conceivable that these individuals benefited from having a higher brain reserve, that is, they possessed greater brain volume or larger numbers of neurons that made them less likely to present with clinical outcomes. Or perhaps, they had a higher cognitive reserve, where their neural networks were more capable of coping with or compensating for the pathological changes that were occurring and prevented them from manifesting as clinical AD [39]. This could be further investigated by correlating pathological burden against measures of CNS volume, hippocampal volume or cognitive scores. However, in the prior data acquisition phase of this study, brain volume data were not collected for MCI subjects within this cohort and insufficient data on cognition was available for the already small number of MCI subjects, and thus could not be corroborated.

AQP4 expression was assessed in a subset of subjects and showed no differences in expression by Western blot, but a reduction in perivascular polarisation was observed in the frontal cortex of AD subjects. This is in keeping with previous findings. In mice, glymphatic impairment has been reported in the presence of Aβ pathology [217]. Loss of end foot processes along with reduced AQP4 polarisation has also been observed in the presence of CAA in both mice and humans [251]. Zeppenfeld et al. showed that loss of cortical perivascular AQP4 was associated with AD status and they suggested that this loss may contribute to impairments in glymphatic clearance, thus bringing about signature AD pathology [205]. In this study, the findings of Zeppenfeld et al. are extended upon, by quantifying regional Aβ and tau levels and correlating these to measures of AQP4 in the corresponding regions. Although an AD-related reduction in polarisation is reported, no correlations were observed between polarisation and Aβ and tau burden. However, a
negative correlation was observed between NFT burden and AQP4 area coverage across all subjects. Thus, this may suggest that a reduction in NFT burden may be brought about by a high amount of aquaporin-4 coverage across the brain. Studies in mice have shown that the loss of perivascular polarisation is accompanied by a redistribution of AQP4 to non-end foot domains [252]. Perhaps then, a greater distribution of AQP4 is more beneficial over greater polarisation in reducing tau pathology. Interestingly here, a positive correlation between AQP4 area coverage and the AQP4 M1 isoform is also observed. AQP4 M1 is known for its propensity to move freely across the plasma membrane and towards extending processes, thus facilitating cellular migration, over the M23 isoform which is responsible for the formation of rigid orthogonal arrays at the end foot [166]. This indicates that the M1 isoform is more beneficial in facilitating expansive coverage of AQP4 whereas the M23 isoform is more important in maintenance of polarisation integrity. Thus, the positive correlation between AQP4 M1 and AQP4 coverage here is appropriate.

In a study that mathematically modelled AQP4 mediated water movement, a reported observation was that the removal of non-perivascular connecting astrocytic units resulted in a reduction in fluid flow between periarterial and perivenous compartments [162]. This indicates that the formation of a network of an AQP4 via a continuous astrocytic syncytium is crucial for fluid movement, above and beyond the perivascular presence of AQP4, to maintain solute movement through the brain parenchyma. It has been reported that perivascular astrocytic AQP4 is a third less in human astrocytes compared to mice, due to a higher degree of AQP4 expression in parenchymal astrocytes [244]. Continuous parenchymal expression may be more beneficial in glymphatic movement of solutes such as tau from the parenchyma and may explain the negative correlation observed here between NFT burden and AQP4 coverage.

Curiously, in the hippocampal CA1 region, a reduction in polarisation and area coverage of AQP4 was observed in the MCI group. However, no associations were observed between AD pathology and AQP4 measures. The CA1 region is known to suffer both tau and Aβ pathology from the mid to late stages of the disease [14], and in the subjects tested here,
significant pathology was observed in this region. In the mouse brain, hippocampal astrocytes express higher AQP4 in the CA1 region in particular [253]. Reactive astrogliosis is a feature of the AD brain, and studies using transgenic mice have also shown that astroglial atrophy with diminished processes and decreased numbers are associated with increasing AD pathology [254]. Taken together, it is plausible that AQP4 changes are no longer detectable in the hippocampal regions given the significant pathological changes. Nonetheless, this study for the first time reports an association between cortical tau pathology and AQP4 in the human brain.

Looking to the AQP4 rs3763043 SNP associations, while I report that AD subjects have reduced polarisation, I found that the demented carriers of this SNP had increased polarisation, with a trend towards reduced plaque and tangle pathology in these subjects. In the study that originally identified this as one of several SNPs associated with AD outcomes, the rs3763043 SNP was associated with faster cognitive decline [245]. Interestingly, this SNP has been investigated in the context of other brain anomalies including sudden infant death syndrome [255], traumatic brain injury (TBI) [256], neuromyelitis optica [257,258], oedema [259], migraine [260] and intracerebral haemorrhage [261]. In these studies, the rs3763043 SNP was associated with poorer outcomes in TBI [256] and higher incidence of neuromyelitis optica [257], both neurodegenerative conditions. Given these findings and the growing body of experimental evidence implicating AQP4 changes in glymphatic clearance of Aβ and tau pathology, further pursual of this SNP in the AD setting is warranted.

In this study, I find that in the dementia setting in the presence of this SNP, AQP4 is more polarised than usual. Thus this may suggest that this SNP offers a protective effect towards maintaining AQP4 end foot integrity. An ongoing larger cohort study indicates that the rs3763043 SNP is associated with reduced tau, P-tau and rate of change of cortical thickness (data unpublished, personal communication J. Iliff, 2019). If these isolated findings are taken in concert, it then drives new mechanistic hypotheses: it is conceivable that this SNP improves AQP4 profile, and therefore may help clear more tau, thus reducing CSF tau levels and slowing atrophy to a certain degree. Perhaps this helps these individuals maintain a
higher brain and cognitive reserve even in the face of AD. Given that individuals who have a high cognitive reserve suffer a faster cognitive decline once diagnosed with AD [39], the previous observation of faster cognitive decline with this SNP may allude to this phenomenon. The data here do not enable such conclusive connections to be made, but helps drive future experimental design around these hypotheses. In order to test this, an ideal cohort requires a large group of AD and healthy age matched subjects, containing both carriers of the SNP and wild type alleles, studied longitudinally, with cognitive measures and brain volume measures longitudinally collected from the point of diagnosis, and followed up post-mortem with detailed histological study for AQP4 measures and pathology. Collecting these detailed in-life and post-mortem measures in the same subjects will tease out if the rs3763043 SNP of AQP4 modulates brain changes in the mechanistic way hypothesised here.

The precise molecular pathways through which this SNP acts to change pathology by changing AQP4 profile also needs to be verified. rs3763043 is a noncoding SNP found in the 3’ untranslated region (3’ UTR) of the AQP4 gene [245]. The 3’ UTR can post-translationally influence the expression a gene via a myriad of regulatory mechanisms: from altered translation which can change overall protein expression levels, to variants via alternative splicing [262]. Biological aspects of this noncoding region could be explored to understand how these SNPs change AQP4 structure, function or location. The previous study that found reduced polarisation of AQP4 in AD subjects reported that the ratio of AQP4-M1 to AQP4-M23 was decreased, and was thought to contribute to this altered polarisation [205]. It is plausible that SNPs may contribute to such a mechanistic change, however, this was not probed in that study. The Western blot data in this study was unable to probe isoform expression levels by SNP status due to a lack of sample numbers on this assay, but probing this in a future comprehensive study is of benefit given the previous findings. In order to overcome the limitations of studying the human brain in vivo, these mechanisms could be modelled and studied in vitro. Generation of human induced pluripotent stem cells (iPSC) from SNP carriers enables a feasible in vitro laboratory approach to study the influence of SNPs on protein behaviour, as well as their response to experimentally controlled modifiable
factors [263]. This may provide a novel window into the study of the components of human glymphatics in AD.

In trying to understand how glymphatic changes play out in human AD, exploring other astrocytic end foot elements, particularly those associated with AQP4, may offer additional pieces in the puzzle. AQP4 is anchored to the astrocytic end foot by the DAC [264], of which DTNA is also member [265]. In addition to DTNA expression being predictive of AD status [247], a large ongoing cohort study is revealing several DTNA SNPs to be associated with AD markers (data unpublished, personal communication, J.Iliff 2019).

Here, I observed a decrease in age related expression of DTNA but not polarisation and a decrease in DTNA polarisation in the presence of Aβ pathology in mice. Previous studies have shown that AQP4 polarisation is reduced in the aging brain [183,205]. These data suggest that DTNA does not undergo the same polarisation change despite having a reduction in overall expression with age. However, AQP4 polarisation has been reported to be reduced with the presence of Aβ pathology [252]. Given that DTNA and AQP4 share expression profiles [246], it is conceivable that this decrease is also expected with Aβ pathology. Yet in humans, an increase in DTNA is associated with cortical tau pathology [247]. Thus, alterations in DTNA profiles may be distinct between the two pathologies or even species. Nonetheless, this is the first time DTNA has been probed directly in models of aging and amyloid pathology, and these findings warrant further investigation. Verifying these changes in expression and polarisation against other models that that demonstrate AQP4 mislocalisation would be beneficial – one such example would be knockout mice of alpha1-syntrophin (SNTA), another DAC candidate. SNTA has been shown to colocalise with AQP4 at the astrocytic end feet in mice, and mice lacking SNTA show an absence of polarised AQP4 [266].

The pursuit of gene variants that are associated with AD has the potential to uncover as yet undiscovered mechanisms in the AD continuum. If glymphatic failure in clearance of pathogenic proteins is one pathway towards disease onset, studying gene variants of the molecular components of the glymphatic system is prudent. In understanding the
relationships between the molecular components of the glymphatic system and the proteinaceous aggregates implicated in AD, we may be able to modulate this mechanism via AQP4 and related proteins, thus exposing a unique therapeutic target. As such, understanding these mechanisms in the laboratory setting of mouse models as well as in the clinical context of the human disease will help paint a clearer mechanistic picture. The data presented here provide a step in this direction.
8. Concluding Remarks

Despite significant research advances in various avenues of Alzheimer's disease (AD) research, finding a disease modifying cure has been challenging. The precise mechanisms that bring about the pathogenic accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles (NFTs) are still a conundrum. These however have been major focal points in the AD research sphere and studying these proteins have given rise to several strands of new and interesting research areas.

Clearance of proteins from the brain via the glymphatic system is one such novel research avenue. Both Aβ and tau have been implicated as candidates for clearance via this system, demonstrated via a myriad of experiments including two photon imaging, fluorescence microscopy, radioactive counting and histological analyses [151,179,183,217]. However, these studies only provided a snapshot view of isolated components of the glymphatic pathway, and thus gave room for whole brain characterisation and real-time observation of glymphatic flow. In the work presented in this thesis, I attempted to address this gap by using magnetic resonance imaging (MRI) on mouse models of AD.

By first reproducing parts of the experimental work in Iliff et al.’s seminal publication [151], I demonstrated the size based dependence of the spatial pattern and ingress of solutes from the cerebrospinal fluid (CSF) into the brain tissue. These experiments provided the foundations for the large part of the subsequent methods used in this thesis, and revealed the intricacies of working with a surgically manipulated mouse model system of CSF-ISF exchange measurement. The work enabled me to attain a suitable flowrate to use in long MRI experiments which aimed to use dynamic contrast enhancement (DCE) to track and quantify solute ingress in real time. However, a key learning point that was highlighted through these and the succeeding MRI experiments in the tau and amyloid mouse models was that when undertaking experiments of this nature, several other factors need to be considered. Burdens to physiology as a result of surgery and anaesthesia, genetic background strain, origin of mouse cohort and health status all contributed to variability in quantifying glymphatic ingress by DCE-MRI.
Despite these challenges, I show here that glymphatic inflow can be characterised in the mouse brain, with temporal and special clarity, and this pattern was diminished with pharmacological blockade of the water channel aquaporin-4 (AQP4). The demonstration of AQP4 blockade was crucial in this characterisation given the imperative role of this protein previously demonstrated in glymphatic study and its association with neurodegeneration.

Whilst the MRI protocol does not resolve the perivascular space, the question of whether it was indeed glymphatic ingress that was observed in the DCE-MRI experiments was supported here with these observations.

The regional pattern in the cortex of wild type C57BL/6J mice combined with the early observation of a corresponding regional variance in tau deposition in the rTg450 mice provides evidence that clearance rates can potentiate levels of pathology at an early stage. This was buoyed by the observations in the experiments that injected tau into the brain and observed a reduction in clearance when AQP4 was blocked. Further indications towards the role of glymphatic function in tau burden was also alluded to in the human post mortem investigations, with an increase in AQP4 coverage showing decrease in tau burden.

The data investigating human brains also paved way for several novel hypotheses to be investigated. In particular, understanding the role of single nucleotide polymorphisms (SNPs) in AQP4 function, as well as the link to dementia status could provide novel, as yet undiscovered genetic markers for AD. Furthermore, exploring other cellular components related to AQP4, such as dystrobiervin (DTNA) or associated dystroglycan anchoring complex proteins may also provide new markers and biological insights into the relationship between fluid exchange, clearance and disease onset.

Several challenges currently exist with this field. First, the precise driving mechanisms underlying glymphatic function need to be fully resolved and reproducibly quantified. Additionally, the body of evidence towards perivascular fluid movement and clearance in the direction opposing blood flow [267] as well as the recently discovered meningeal lymphatics in the mouse brain [152] must also be considered. A key question that remains to be answered in the body of neuroscience research being undertaken in clearance...
mechanisms, is the precise contributions and coexistence of these various pathways. It remains to be seen if one specific pathway failure contributes to the specific cascade of events that bring about AD. Quantifying these in tandem presents a major challenge for this field given the scarcity of combined data in these emerging strands of research, but also presents as a necessity. More broadly, the existence of glymphatic clearance in the human brain needs to be confirmed. While some imaging studies have functionally alluded to this [241–243], emerging studies that are attempting to characterise perivascular spaces may provide the requisite physiological evidence of the physical features that form this clearance network in the human brain [268].

A key advantage of working within the glymphatic component of the various fluid networks of the brain is that, first, it provides an alternative route to the blood brain barrier (BBB). Second, if AQP4 can be pharmacologically manipulated to stop CSF ingress, it may also theoretically present a therapeutic target. Drugs to help speed up the clearance of toxic proteinaceous molecules via AQP4 mediation may provide a promising approach; one such agent, TGN-073 [269] is currently being investigated for its neuroprotective potential in a murine model of tauopathy, within our laboratory.

A significant limitation in the work presented in this thesis, is the inability of the techniques used here to resolve the perivascular space in the rodent brain. But new work emerging from our laboratory, that stemmed from the work I presented here, is showing promise towards this goal [270]. Given the invasive nature and technical setup required to quantify glymphatic function, the next major challenge this body of work presents is the ability to quantify glymphatic changes non-invasively and without the use of contrast. The development of a non-invasive imaging method is particularly crucial if we are to develop a protocol that can be clinically translated to clearly quantify glymphatic changes during the onset of neurodegenerative pathologies. The work I presented here provides significant insights into the relationship between AQP4 and AD pathology in the context of glymphatic clearance, and as such, paves the way for the development of non-invasive characterisation of glymphatic function.
References

Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of

cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.

Brain.

[75] Mutations Search | ALZFORUM.

[90] Alzforum: AlzRisk AD Epidemiology Database.

[92] Research Models Search | ALZFORUM.
197

[101] Therapeutics Search | ALZFORUM.

multiparametric MRI. *Neurobiol. Aging* **39**.

optical methods. *Neurophotonics* 3, 031411.

underlying mechanism]. Zhonghua Yi Xue Za Zhi 95, 501–6.

