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Abstract

This Thesis explores the formation of novel phases in Dirac systems that are driven
by strong many-body interactions and collective quantum fluctuations. The central
focus is the half-filled honeycomb lattice, which is the prototypical Dirac semimetal

with low-energy excitations described by Dirac fermions.

Of particular interest are exotic phases of matter that are not favoured at mean-
field but are stabilised by fluctuations. Self-consistent path integral techniques are
used to demonstrate that extended repulsive interactions favour charge order that
breaks translational and other lattice symmetries. This charge order outcompetes
interaction induced topological insulating phases, which are dominant at the mean-
field level. The interacting quantum critical point was found to be near the critical

point of a topological Lifshitz transition.

Interacting Dirac fermions exhibit perhaps the simplest example of fermionic
quantum criticality. Gross-Neveu-Yukawa field theories describe the universality
class of semimetal-insulator transitions, which are driven by on-site and nearest
neighbour repulsive interactions on the honeycomb lattice. The Dirac fermions
couple to the dynamical order parameter fields and play a crucial role in determin-
ing the universal behaviour. Naturally, this variety of criticality is outside of the
Ginzburg-Landau-Wilson paradigm. This idea is extended to include the transla-
tional symmetry breaking charge order. Here it is found that the breaking of crystal
symmetries corresponds to Lorentz violating effective field theories. The criticality

is analysed with the renormalisation group.

The low energy excitations at the topological transition are gapless semi-Dirac

fermionic quasiparticles that disperse linearly in one direction and quadratically in
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the other. The instabilities induced by generic short-range repulsions are investi-
gated. The criticality of this anisotropic system is analysed with the renormalisation
group in two spatial dimensions, and it is found to exhibit anisotropic order parameter

correlations.
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Chapter 1

Introduction

Emergence and universality are two ideas at the heart of modern physics, and in
particular the study of quantum matter. This is a topic that concerns both the
electrons in the most unexceptional of metals, as well as the interiors of neutron
stars [1]. At the heart of the principle of emergence is that "the whole is greater
than the sum of its parts" [2]. This correctly identifies that a macroscopic number
of interacting particles, acting as a collective, can exhibit phenomena that are pro-
foundly different to the properties of the non-interacting constituents. In doing so,
emergent phases of matter are formed. This is particularly true for quantum matter
in which Heisenberg’s uncertainty principle inhibits the distinction of the individual
particles. Such ideas are profoundly important when dealing with the seemingly
unsurmountable task of 10?° electrons, that are all interacting in accordance with

the laws of electromagnetism.

There are many strongly correlated systems that remain enigmatic. These
include the high-temperature superconductors [3] that also exhibit the mysterious
bad metal and pseudogap phases, as well as the quark-gluon plasma that is thought
to have formed within fractions of a second of the Big Bang. There are however
multiple examples of quantum matter that are well understood, such as the transport
of electricity in everyday metals, and the superfluid phase of low temperature helium.
To a large extent, these phenomena were explained by the two deep insights provided
by Landau: the Fermi liquid and the order parameter [4]. The Fermi liquid theory

posits that interacting fermions, typically in metals, can be described by emergent
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non-interacting fermionic quasiparticles with renormalised properties, such as the
increase of their mass. The concept of the order parameter ¢ measures long-
range correlations of collective fermionic  degrees of freedom ¢ ~ (¥ Ty), and
characterises the transformation of matter at a phase transition between a disordered,
high symmetry phase (¢ = 0) and an ordered, broken symmetry phase (¢ # 0).

Another principle of fundamental importance is that of universality, which
dictates that microscopically distinct physical systems can display identical long-
distance, low-energy properties. Universal features are often observed when the
emergent characteristic length scale, the correlation length &, is considerably larger
than all microscopic scales of the system. The prototypical example of universality is
a system in the vicinity of a classical finite temperature continuous phase transition.
The system transitions from disordered to ordered as the temperature is lowered past
the critical temperature 7.

At the critical point, the correlation length diverges as a power law & ~ (T —
T,)™”, indicating the system becomes scale invariant, or self-similar, with no well
defined length scale. This universal power law scaling behaviour is also observed
in the growth of the order parameter below T, ¢ ~ (T. — T)?, as well as in various
thermodynamic quantities such as the specific heat. Remarkably, it is only the
symmetry of the order parameter and the dimensionality of the system that govern
the universality class of a classical continuous phase transition. Hence, in physically
distinct transitions it is possible to observe the same set of critical exponents, which
include v and 5. A well known example is that the uniaxial ferromagnetic and
liquid-gas transitions both belong to the Z; Ising universality class.

The culmination of these ideas was the Ginzburg-Landau-Wilson fluctuating

order parameter theory of continuous phase transitions [5] described by the action

SoLw = /¢T(—(92 + m2)¢ + /1(154. (1.1)

The critical properties can be studied systematically within the framework of the
renormalisation group [6—9]. Through this it is understood that dimensionality plays

an important role. In fact, for a given theory there is a critical dimension, above



20

(a) (b)
g 2
3 iy 2 T*
s Quantum Critical S e strange metal
Q [}
Q. fall =
£ £ & Tx
8 S |g pseudo-gap 1
High Broken superconductivity e
Symmetry Phase Symmetry Phase
QCP QCP
. L .
Doping/Pressure/Interaction doping

Figure 1.1: (a) Generic phase diagram of a continuous quantum phase transition tuned
by a non-thermal parameter such as chemical doping, pressure or interactions
between particles. Above the quantum critical point (QCP) (black dot) is
the quantum critical fan, which persists to high temperatures determined by
microscopic properties of the system. (b) Generic schematic phase diagram
of the cuprate superconductors as a function of temperature and hole doping.
A superconducting dome forms in the vicinity of the quantum critical point
separating the antiferromagnetic insulator at low doping and the metal (Fermi-
liquid) at high doping. The two mysterious non-Fermi liquid phases are the
pseudogap, and strange metal that occupies a wide region reminiscent of the
quantum critical fan. Some phases, such as the charge order, have been omitted
for simplicity. Figure (b) is from Ref. [3].

which Landau’s mean-field theory exactly describes the criticality. However, below
this critical dimension interactions A and order parameter fluctuations are no longer

negligible, and become more potent as the dimensionality is lowered.

In recent years, the focus has shifted to phase transitions at the absolute zero of
temperature, where the physics is inherently quantum mechanical [1, 10, 11]. These
quantum phase transitions describe the distinct change in the properties of matter
due to a small variation in a non-thermal parameter, such as pressure or chemical
doping, which ultimately change the relative strength of interactions V between the
constituent (quasi-)particles, see Fig. 1.1(a). In the region of the quantum critical
point V, there is a vanishing characteristic energy scale A ~ &% ~ |V =V,|”*
associated with the diverging correlation length ¢ ~ |V —V,|™". Here z is the
dynamical exponent associated with the relative scaling of space and time, and

governs the ensuing gapless excitations w ~ k*.

Surprisingly, the quantum critical region extends to finite temperatures where

the system is ignorant of the finite energy gap kg7 < A, and is roughly bounded
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by kgT ~ A. Therefore quantum critical fluctuations can persist and dominate the
phase diagram to amazingly high temperatures. Such fluctuations can induce new
types of order, with the prototypical example being the cuprate high temperature
superconductor phase diagram between metallic Fermi liquid and antiferromagnetic
insulator states [3], see Fig. 1.1b. In the vicinity of the antiferromagnetic quantum
critical point, quantum critical fluctuations stabilise the superconducting phase to
remarkably high temperatures. Fathoming the underlying universal mechanisms
that may lead to room temperature superconductivity is an ongoing research area.
Finally, it is worth noting that non-universal physics will set in at energy scales

determined by microscopic properties of the system [12].

There are a growing number of instances where quantum criticality goes beyond
the Ginzburg-Landau-Wilson paradigm, that has had so much success in the classical
case. A prevalent example, and a central focus of this Thesis, is the impact of gapless
fermionic excitations, such as in a metal or semimetal, that couple to the dynamical
order parameter field. In short, if the fermionic spectrum & is gapless, then there
is no energy scale on which the fermions can be successfully integrated out in a
controlled manner, without also integrating out all order parameter modes. Without
being overly formal, this can be sketched out with the fermion-order parameter

(Hubbard-Stratonovich) action
t Al 4 152
S= [ WG +du+6'6 (1.2)

where G~! = §; + & is the fermionic propagator in imaginary time 7 € [0, i/k5T].
Here it is to be understood that in the broken symmetry state ($) # O the previously
gapless fermionic spectrum is now massive & ~ & + (¢). Although the fermions
can be formally integrated out at criticality, it is highly questionable [13] whether
trin(G™! + ¢) may be expanded (when () = 0) to obtain anything even remotely

resembling the Ginzburg-Landau-Wilson action Eq. (1.1)

S—>/tr1n(é—1+<£)+%q§*$ : /(ﬁ(%+trGAGA)q§+tr(G¢§)4+.... (1.3)
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Another way of thinking about this issue of fermionic quantum criticality, is that
the expansion would assume that there are well defined fermionic quasiparticles,
which is in contradiction to the fact that there are no sharp quasiparticle excitations
in the vicinity of a quantum critical point [1]. The resolution is to treat fermionic
and order parameter fields in Eq. (1.2) on equal footing. Another notable example
of quantum criticality beyond the conventional paradigm is the Landau-forbidden
continuous transition between ordered insulating states with fractionalised critical

excitations, which is known as deconfined quantum criticality [14].

Outline of Thesis

This Thesis explores the formation of novel phases in two-dimensional Dirac systems
that are driven by strong many-body interactions and collective quantum fluctuations.
The central focus is the half-filled (graphene) honeycomb lattice in two spatial
dimensions, which is the prototypical Dirac semimetal [15]. Remarkably, the low-
energy excitations are well described by linearly dispersing Dirac fermions [16, 17],
which couple to the order-parameter fields and play a crucial role in determining
the universal behaviour [1, 9, 18]. The symmetry breaking leads to the opening of
a gap in the fermionic spectrum and therefore goes hand-in-hand with a semimetal-
to-insulator transition [19, 20]. These nodal semimetals with point-like Fermi
surfaces represent perhaps the simplest example of fermionic quantum criticality.
In high energy physics this has been known for some time, and goes under the
guise of spontaneous fermion mass generation and chiral symmetry breaking in
the Gross-Neveu-Yukawa model [21, 22]. In recent years Gross-Neveu-Yukawa
models and sign-free lattice Quantum Monte Carlo simulations have helped to
push the understanding of fermionic criticality beyond the Ginzburg-Landau-Wilson
paradigm [23-32]. Ultimately, the study of quantum phase transitions in nodal
semi-metals might serve as a stepping stone towards an understanding of quantum

criticality in metals with extended Fermi surfaces [33].

An additional motivation to study Dirac systems is their susceptibility towards

topologically non-trivial phases of matter. An example are the quantum Hall insulat-
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ing states that exhibit quantised Hall conductance due to their topologically protected
metallic edge states [34-36]. Indeed, it was on the honeycomb lattice that Haldane
first proposed that there could be quantum Hall states in the absence of Landau level
quantisation, so long as there was a mechanism that induced complex chiral hopping,
or equivalently broken time reversal symmetry [37]. This idea was later generalised
to topological insulators that display a quantum spin Hall effect [38—40], which was
brought to experimental fruition in semiconducting heterostructures [36, 41]. Here
the key feature was spin-orbit coupling that induced helical chiral hopping. Even
the semimetallic state has a topological interpretation in which the Dirac points are
vortex-antivortex pairs with opposite chirality [42, 43]. These topological classifi-
cations are also beyond the Ginzburg-Landau-Wilson paradigm, as it is not possible
to construct a local order parameter that distinguishes a non-trivial quantum Hall
state from a topologically trivial band insulator [44]. What’s more, phase transitions
between topologically distinct phases result in critical phases with exotic gapless

excitations [45—48], which imply novel quantum critical properties [42, 49-56].

Chapter 2 presents an introduction to the physics of fermions on the half-
filled two dimensional honeycomb lattice. The remarkable fact that the low-energy
physics is well described by Dirac fermions is demonstrated. The semimetal-
sublattice charge density wave insulator transition driven by strong nearest neighbour
repulsion is discussed. The Landau free energy is obtained using standard mean-field
theory. An equivalent formulation using the path integral saddle point expansion
is presented. It is demonstrated that even at the mean-field level, the gapless Dirac
fermions play a crucial role, and the universality is not of the standard Ginzburg-

Landau-Wilson mean-field variety.

Chapter 3 concerns the broken symmetry state induced by strong next-nearest
neighbour repulsion on the honeycomb lattice. This work was motivated by the
proposal of Raghu et al. [57] that these interactions could dynamically generate the
complex chiral hopping of the Haldane model. Therefore, the interactions could
spontaneously break the symmetry into non-trivial topological states, referred to

as topological Mott insulating states. This was the first example unifying ideas of
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strongly correlated physics and topological band theory. Further examples on this
theme can be found in recent review articles [44, 58]. The topological Mott insulating
states turn out to compete with charge ordering that breaks the lattice translational
symmetry at the mean-field level. This competition implies that beyond mean-field

quantum fluctuations are pivotal to determining the phase diagram.

After first introducing Haldane’s model, the fate of the topological Mott in-
sulating states is analysed using a self-consistent path integral method to quadratic
order in the collective quantum fluctuations. An analytical treatment is achieved by
deriving the low-energy theory of the ordering. Although the topological phases are
stable at mean-field, it is concluded that fluctuations induce charge ordering. Sur-
prisingly, the low-energy excitations of the charge ordered broken symmetry state
are found to be of the gapless semi-Dirac form, with linear and quadratic dispersions

along perpendicular axes.

Chapter 4 presents a systematic study of the quantum criticality associated with
the lattice symmetry breaking charge order. This is motivated by the unconventional
low-energy excitations predicted in the fluctuation induced broken symmetry state.
It is first demonstrated that the translational and rotational symmetry breaking charge
order parameters on the lattice, couple to the Dirac fermions in the low-energy effec-
tive field theory as a combination of mass- and emergent non-Abelian gauge fields.
Following this, the Wilsonian renormalisation group and scaling analysis framework
to analyse universal properties is introduced. The one-loop renormalisation group
analysis of the Gross-Neveu-Yukawa field theory, relevant to the sublattice charge
density wave, is presented in detail. The coupling to the Dirac fermions plays a
crucial role in determining the quantum critical fixed point, which is endowed with
emergent Lorentz invariance: z = 1 and a single terminal velocity. In addition,
the quasiparticle residue vanishes as a power law indicating the breakdown of well

defined fermionic quasiparticles.

The study of the lattice symmetry breaking field theory then builds upon the
analysis of the Gross-Neveu-Yukawa theory. The former critical fixed point is un-

stable, and the system flows to a new fixed point that breaks the emergent Lorentz
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invariance, indicating new universal behaviour. In addition, lattice symmetry al-
lowed cubic terms in the Landau theory are found to vanish at the critical point.
These terms would otherwise indicate a first-order transition, but are suppressed
by the gapless fermionic excitations, making this an example of fermion-induced
quantum criticality. Finally, perturbing into the broken symmetry state reveals the
system is in the vicinity of a topological critical point hosting semi-Dirac excitations,
consistent with the path integral approach.

Chapter 5 studies the instabilities of a topologically critical system, hosting
semi-Dirac fermions, to strong generic short-range interactions. The ensuing crit-
icality is found to be distinct from that of conventional Dirac fermions, owing in
part to the enhanced density of states. What’s more, the anisotropy in the fermionic
sector induces anisotropy in the order parameter correlations.

Chapter 6 concludes the Thesis and suggests possibilities for further work.



Chapter 2

The Honeycomb Lattice and the

Semimetal-Insulator Transition

In the absence of interactions the two dimensional honeycomb lattice is in a
semimetallic state. At half-filling the low-energy physics is well described by
massless Dirac fermionic quasiparticles. At zero temperature, strong short-range
interactions drive continuous quantum semimetal-insulator phase transitions. Bro-
ken symmetries, such as the sublattice inversion, cause electronic insulating states
in which the Dirac fermions are massive. Even at the mean-field level it is clear that

the gapless Dirac fermions are pivotal in determining the critical behaviour.

2.1 Introduction

Single two-dimensional layers of carbon atoms arranged on a honeycomb lattice,
known as graphene, were successfully synthesised in 2004 [59]. Since then a num-
ber of amazing properties, such as its flexibility and strength, have been discovered,
but here the focus is on the electronic properties. The have opened and inspired new
frontiers in condensed matter physics including topological insulators [36], Dirac
and Weyl topological semimetals [43], and the search for further two-dimensional
materials [60]. The remarkable electronic properties [15, 61] of undoped graphene,
and more generally the honeycomb lattice, occur at the Fermi energy. In this region
the dispersion is conical, and vanishes linearly to a point right at the Fermi energy,

making graphene a semimetal. At this half-filling value, the low-energy physics
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is well described by emergent massless quasirelativistic Dirac fermionic quasipar-
ticles [16, 17]. The linear dispersion with a corresponding vanishing density of
states is distinct from a standard metal, with a typical quadratic dispersion and finite
density of states. From the perspective of strongly correlated physics this suggests
interesting quantum critical properties [19]. Furthermore, there is promising and
rapid progress in capturing this Dirac physics with cold atomic optical lattices [62]

and artificial graphene [63].

In this Chapter introductory remarks are provided on the honeycomb lattice.
Section 2.2 introduces the non-interacting lattice Hamiltonian and tight-binding
dispersion. It is then demonstrated that the low-energy physics of fermions hop-
ping on the lattice are well described by Dirac fermions, and characterised by an
isotropic linear dispersion in the vicinity of the Dirac points. Section 2.3 discusses
the semimetal-sublattice charge density wave insulator transition driven by strong
nearest neighbour repulsion V;. Mean-field theory is used to obtain the effective
Landau free energy. An equivalent formulation is presented using the path integral
saddle point expansion. Section 2.4 concludes this Chapter. The key message is
that even at the mean-field level, the universality is not of the standard Ginzburg-
Landau-Wilson mean-field variety, and the gapless Dirac fermions play a crucial

role.

Figure 2.1: The two-dimensional honeycomb lattice is a bipartite (A, B) triangular lattice,
with primitive lattice vectors a; . The primitive unit cell (grey area) contains
a single A and B site. The fermionic hopping ¢ is between nearest neighbour
sites.
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2.2 Non-Interacting Fermions on the Honeycomb

Lattice

The two-dimensional honeycomb lattice with 2L lattice sites is bipartite with L two
site unit cells on a triangular lattice, and is show in Fig. 2.1. The sites are labelled
by A and B. The primitive lattice vectors are a; = %(1, \/3), a, = %(—1, \/5),
and a(1,0) connects A and B sites with the lattice constant a. The symmetry
of the honeycomb lattice belongs to the crystallographic point group Cg,, which
contains sixfold rotational symmetry and mirror symmetries in the x and y planes.
Throughout this Thesis units where a = 1, Planck’s constant i = 1 and Boltzmann’s

constant kg = 1 are used.

The simplest non-interacting tight-binding Hamiltonian is described by the

hopping between nearest neighbour sites

H, =t Z(c; ¢ +he), 2.1)

(i.j)
where ¢ > 0 is the hopping amplitude, ¢; denotes the fermion annihilation operator
on site i, likewise cl.T denotes the creation operator, and h.c. stands for Hermitian
conjugate. For simplicity spinless fermions are considered. The fermion operators
have the following anticommutation relations {c;, cJT.} = 0ij, {ci,cj} =0, {cl.T, c;.(} =
0. To obtain the spectrum of H; it is convenient to use the Fourier transform to

momentum space k = (ky, ky),

1 BZ
ik-r
Ca=—§€ Cko 2.2)
r \/Z . o

as the eigenstates are Block waves. Here r = (x, y) is the spatial position, and the
pseudospin index o = A, B = . The sum is over all momentum modes within the

first hexagonal Brillouin zone (BZ), which is defined by the reciprocal lattice vectors
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Figure 2.2: (a) The tight-binding dispersion. The key feature is the conical dispersion at
half-filling located at the corners of the Brillouin zone. At these Dirac points
the low-energy physics is well described by Dirac fermions. (b) The hexagonal
Brillouin Zone. There are two distinct Dirac valleys K. at opposite momenta.
The effective theory is defined up to the ultraviolet cutoff A.

b, = %—Z(\@, 1), by = %(_\5 1). Then (up to an inessential phase factor)

BZ [ ¥ —ik-a ik-a
c 0 1+e L+ ™% ) [cra
H[ = —f Z kA . . s (23)
% CZB 1 + etkar 4 pmika 0 CkB
where T is the transpose, and the Dirac delta function §(k; —k;) = L™' 3, €'k 1—ka)r

has been used. The eigenvalues provide the electronic dispersion

(k) = 1|3 + 4 cos (%kx) cos (?ky) +2cos (\/§ky), 2.4)

and from this it can be concluded that the non-interacting honeycomb lattice is
neither a metal, nor an insulator. Instead it is a semimetal with a vanishing density
of states at half-filling D(g) « |g|. The dispersion is displayed in Fig. 2.2(a). It
is worth noting that additional hoppings between extended neighbours does not

qualitatively change the low-energy physics at half-filling [15].

2.2.1 Massless Dirac Fermions on the Honeycomb Lattice

The feature of the dispersion that is central to this Thesis is located at the corners of
the hexagonal Brillouin zone. At these Dirac points (although arguably Weyl points,

the convention in the “graphene” literature [15] is followed in this Thesis) the
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dispersion vanishes linearly about the half-filling value £ = 0. Remarkably the low-
energy, long wavelength physics is well described by massless Dirac fermions [16,
17]. This is evident from expanding around the two inequivalent Dirac points

K; = %(T, 0) (t = %), shown in Fig. 2.2(b). By doing so the Dirac Hamiltonian is

obtained
A d’k
(2ra)?

H, = v Yik)k - a ¥P(k), (2.5)

where vp = 3ta/2 is the Fermi velocity, and the low-energy theory is defined up to
the ultraviolet cut-off A ~ 1/a. A > |k| defines the momentum integration regime
up to which (k) = +vr |k| is a good approximation to the lattice dispersion. For
compactness, the 4-component spinor ¥ = (Y 4+, ¥ a—, ¥p+, Yp-) and tensor products
@y = 0y ® T, @y = 0y ® T, are introduced. Here o, 7, (u = 0, x, y, z) are the 4-
vectors of identity and Pauli matrices acting respectively on the sublattice oo = A, B

and valley 7 = + pseudospins.

2.3 The Sublattice Charge Density Wave Instability

At zero temperature, strong repulsive interactions drive continuous quantum
semimetal-insulator phase transitions [19, 64], see Fig. 2.3. Here the instability
to sublattice charge density wave (CDW) order driven by strong nearest neighbour

repulsion V; is considered in a mean-field treatment of the low-energy model.

(Vl )c

Vi |
Dirac Semimetalg CDW Insulator V;

Figure 2.3: Zero temperature phase diagram as a function of the nearest neighbour interac-
tion V; on the honeycomb lattice. At (V}). the system undergoes a continuous
transition from the Dirac semimetal into the sublattice charge density wave
(CDW) insulator phase. The charge modulation is shown relative to the half-
filling value.
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The lattice Hamiltonian is

H=—t Z(cjc,- +he)+ W Z hiftj, (2.6)

() ()
where 7; = cl.T ¢; denotes the density operator. From consideration of the classical
limit + — 0, it is clear that there is an energy cost V; for nearest neighbour A and B
sites to be occupied. Therefore at half-filling in the large V; limit, it is energetically
favourable for only a single sublattice (either A or B) to be occupied. This phase is

the sublattice, or inversion, symmetry breaking charge density wave (CDW), shown

in Fig. 2.3.

2.3.1 Mean-Field Theory of the Charge Density Wave Transition

The phase transition into the CDW state may be analysed with a mean-field approx-
imation to the many body interaction Eq. (2.6). This proceeds in the charge channel
by re-expressing the fermion bilinear 7 in terms of the sum of the expectation value
(1) and the fluctuations around this §7i. Then the mean-field decoupled interaction

is

iy = ({A;) + 0n;)({A;) + o),
~ <ﬁ,><ﬁj> + <ﬁi>5ﬁj + <ﬁj>5ﬁ,‘,

~ (i + ()i — (i) (7). 2.7)

The mean-field approximation has been applied in the second line, and amounts to
neglecting second order terms in the fluctuations 67;67;. The substitution 67; =
fi; — (Ai;) has been used in the third line. Naturally, the mean-field approximation fails
if the quadratic fluctuation term is not negligible, which is typically the case in the
regime of a quantum critical point unless the number of spatial dimensions is large.
Nevertheless, the mean-field approximation is an instructive first step in analysing
criticality and identifying broken symmetry states. Finally, it is worth noting that an

unbiased decoupling of interacting spinless fermions would include the bond order
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channel c;(cj
iy = Ry + (g — () (Ry) = (cfepdeler = (cleye]ej + (cfej)(cle), (2.8)

but for now this is neglected.

For the nearest neighbour interaction

Hy, = Vi Y ity = Vi ) (Ara + firsars + irsasa) s, (2.9)
(ij) r
where ), represents the sum over all unit cells (or lattice sites of the triangular

lattice). Under the assumption that the charge order is spatially uniform (i1, ,) = (7is)
Hy, ~ Y (ia)ipp + (Ag)ira — 3Vi(ia)(iip). (2.10)

Following the argument in the classical limit, the CDW ansatz {(fis) = po — ¢,
(fip) = po + ¢ is made. Here ¢ is the CDW order parameter describing the charge
imbalance between the A and B sublattices, and pg is the average charge occupation,
which for the half-filled lattice is fixed to pg = 1/2. In the following pq is neglected,
as it only acts to linearly shift the free energy. Expanding around the Dirac points,

the low-energy mean-field CDW Hamiltonian is obtained
Nk,
Hepw = 3Vig? + / R Yi(k) (vek - @ + 3Vipo, ® 1) P(k). 2.11)
Vs

The anticommutation {k - @, ¢o, ® 179} = 0 indicates that ¢ couples to the Dirac
fermions like a mass, and opens an insulating band gap, which can be seen from the

low-energy dispersion (v = +)

ey (k) = v\/v; |k|> + (3Vi¢)>. (2.12)

The excitations in the CDW ordered state are therefore described by massive Dirac

fermions.

To analyse the broken symmetry state, the free energy is calculated and min-
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imised. The zero temperature free energy density is obtained by integrating over the

occupied fermionic spectrum

2k
RETADI) / (‘21 5 (08 = (k). (2.13)

Here the sum 7 is over the two Dirac points, 6 is the Heaviside step function and y is
the chemical potential. This standard form of the free energy will be derived using

a path integral approach in the next section.

2.3.2 Path Integral Approach to Mean-Field Theory

Here the mean-field free energy is obtained by means of the coherent state path

integral representation of the fermionic partition function
Z = / D[Y', ¥le50~v . (2.14)

A detailed discussion of many-body path integration can be found by following

chapters 3, 4 and 6 of the textbook by Altland and Simons [65].

The starting point here is the effective field theory of Dirac fermions The

non-interacting local action of free Dirac fermions, in imaginary time 7, is

B
Sy = / d‘r/ ¥i(r, r)(dra0 + ivea Oy + ivray,0y)¥Y(t, 1), (2.15)
0 r

where ap = 0 ® 19 is the identity and 8 = 1/T is the inverse temperature. Here

d*k .
Y(r,r) = TZ / aral PRAARLER (MY 'S (2.16)

where w, = (2n + 1)xT is the fermionic Matsubara frequency. In addition there is

the local interacting action
p T t
SV1 = 4V1/ dr /(\IJAT()‘PA)(TBT()‘PB), (217)
0 r

where ¥, = (1/10'+’ l/’a'—)-
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In general, only the path integrals of Gaussian (quadratic) actions are known
/ DIy, yle™ 2140 = [det(A)] %, (2.18)

where ¢ = 1 for bosonic ¢ and { = —1 for fermionic (Grassmann) . One procedure
to deal with the quartic interaction terms is the Hubbard-Stratonovich transforma-
tion [66, 67], which is essentially the generalisation of the mean-field decoupling.
This transformation is effectively the field theoretic analogue of completing the

square, but in reverse, for the exponent of the Gaussian integral

exp (—xz) = (47)7 / dy exp (—y2 - 2ixy), (2.19)
or exp (xz) = (47r)_% /dy exp (—y2 - 2xy) . (2.20)
The idea is to decouple the interaction x> (where x ~ ¢ is bilinear in the fields of

interest) at the expense of introducing the auxiliary y. It is now possible to perform

Gaussian integrals over the initial fields, which now enter at quadratic order.

The sublattice CDW has a finite expectation value (¥ o, ®70 ). This motivates

rewriting the interaction using the decomposition
¥ ¥ _ (ot 2 _ gt 2
4(Y,10¥a)(¥y10¥p) = (P'ag¥) = (¥'o, ® 10'F)". (2.21)

The first term is the uniform density and will be neglected. The transformation

introduces the real auxiliary field ¢(t, r) conjugate to ¥ o, ® 7P,
o/ V(¥ oz@n¥) _ / D[dle” J(iF+2vig¥ o) (2.22)

Consequently the action is Gaussian in the fermions. Integrating out the fermions
and using the identity trln A = In detA (obvious in the eigenbasis of A), the partition

function is

7 = /D[(ﬁ]etr]n((§7+ivF(§X+ivF(§y+V1(5)—V1 /(52 (223)

This result is exact, but to proceed an approximation must be made. The standard
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procedure is to expand around the saddle point defined by 6S[$]/6¢ = 0, where the
zeroth order expansion reduces to the mean-field result, as will now be demonstrated.
As is generally the case, the action is extremised for the constant uniform field

é(t,r) = ¢, and produces the mean-field self consistent solution

%([f] = % [trIn(d; + ivrd, +ividy + Vi) + Vig?],
d’k Vig
> Vie=2 / )
1 Z,;‘ 2m)? w2 + V2 |k + (Vi)

_ d*k Vigng(s,(k))
_;/(277)2 le, (k)| (2.24)

In the zero temperature limit this reduces to the same result that would be obtained
from the mean-field free energy Eq. (2.13).
With the saddle point solution, the mean-field free energy can be obtained

directly from f = -T'In Z,

d*k .
f=Vi¢> =T Z / 2n)? Indet[B(-i®, + vk - @ + Vido,  19)],

=V, ¢? TZZ / T ln 1+e W’”)) (2.25)

T=+ y==+

As claimed, in the zero temperature limit this reduces to Eq. (2.13). The final
result has been obtained following standard procedures. First it can be verified
that det(—id, + H) = [],(-i®, + &,) by diagonalising H to obtain the matrix of
energy eigenvalues &, (with the correct unitary transformation). Then the properties
of the logarithm allows for log[[],(-i®, + &,)] = X, log(—-i®, + &€,). Finally
the Matsubara sum is evaluated using complex integration involving an auxiliary
function with poles at z = iw,,. This is a standard result whose lengthy step-by-step

calculation can be found in Chapter 4 of [65].
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2.3.3 Analysis of the Effective Free Energy

At half-filling (u = 0) and zero temperature, only the negative energies €_ are

integrated over in Eq. (2.13). Therefore

5 A de ) 5 5
f=3Vi¢= -2 v [k|” + (3Vi¢)7,

(27)2
s [erk2 GYeR])
B 3Vl¢ 371'\/'2 0’
et V3 gl [wFAF+%3V¢V] (226
- 7er 37rv '

It is crucial to recognise that the non-analytic cubic term |¢|> has been generated
from the gapless nature of the Dirac fermions in the infrared limit k — 0, and the
vanishing density of states [1]. This is unusual, and would not appear in the standard
symmetry based Landau expansion of the free energy, which assumes that the free

energy is an analytic function of the order parameter.

From the expansion in the critical region vpA > V)¢, the bounded Landau free

energy is
a b
f=5¢"+3 1o + 04", (227)
with 5
A 27V,
a=6V (1 o ) and b = —-. (2.28)
vF VL
a>0 = a<0
¢ ¢
Ial |

Figure 2.4: A sketch of the Landau free energy f = %(;52 + % |¢|? for: a > 0, where the
system is in the high symmetry state with the minimum (¢). = 0; a = 0, where
the system is critical; @ < 0 where the system has undergone a continuous
transition into the broken symmetry state with minima +(¢). = Fa.
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The free energy is sketched in Fig. 2.4. The free energy is critical when

9? 2
_J; 0= a=0= (V) = 2F (2.29)
I~ 1p=0

3A

The minimisation of the free energy determines the properties of the order parameter

and it’s scaling

%:O$(¢)C:—%OCV1—(V1)C$ﬁ: 1. (230)

d¢

Here the standard definition (¢). o (Vi — (V;).)? has been used to extract the critical

exponent 8 = 1.

2.4 Discussion

The conclusion is that the mean-field semimetal-insulator transition does not belong
to the standard Ginzburg-Landau-Wilson mean-field universality class with 8 = 1/2.
This would correspond to f = a¢? + c¢*. Instead it suggests that the universality
is beyond the Ginzburg-Landau-Wilson order-parameter paradigm, and that the
gapless fermions play an important role. In fact, this result can be thought of as the
“mean-field” of the Gross-Neveu-Yukawa universality class, which is perhaps the
best understood example of fermionic quantum criticality. This will be discussed in

detail in Chapter 4.



Chapter 3

The Fate of the Topological Mott

Insulator

The topological chiral nature of the Dirac fermions in a semimetal allows for topo-
logically non-trivial insulating states. Remarkably, extended repulsive interactions
on the honeycomb lattice can dynamically induce such quantum Hall states, dubbed
topological Mott insulators. However these phases turn out to be in competition
with novel charge order. Naturally, quantum fluctuations would play a crucial role
in determining the exotic phase behaviour. In this Chapter the impact of collective
Gaussian quantum fluctuations are self-consistently examined using a path integral
approach. The results are convincingly consistent with the general consensus of
numerical lattice calculations: charge order is favoured over the topological Mott
insulator. In the vicinity of the quantum critical point, the low-energy excitations
of the charge ordered state are found to be massless semi-Dirac quasiparticles. The
original work in this Chapter was published in Hidden Charge Order of Interact-
ing Dirac Fermions on the Honeycomb Lattice, E. Christou, B. Uchoa, F. Kriiger,
Physical Review B, 98, 161120 (Rapid Communications) (2018) [68]

3.1 Introduction

The extended, half-filled Hubbard model on the honeycomb lattice exhibits a rich
phase diagram, even at mean-field level [57, 69, 70]. The low-energy Dirac exci-

tations [61] couple to the order-parameter fluctuations, and are known to change
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Figure 3.1: Schematic phase diagram of the half-filled Hubbard model on the honeycomb
lattice. The on-site and nearest neighbour repulsions U and V; induce anti-
ferromagnetic (AFM) and charge-density wave (CDW) states, respectively. At
large next-nearest neighbour interactions V5, there is phase competition between
a topological Mott insulator and charge-ordered states with enlarged unit cell
(CDW3). The charge modulation is shown relative to half filling.

the universal critical behaviour to that of the Gross-Neveu-Yukawa (GNY) [21, 22]
variety. For the transitions from the Dirac semimetal to the antiferromagnetic Mott
insulator (see Fig. 3.1), driven by the on-site Hubbard repulsion (U), and to the
sublattice charge density wave (CDW) Mott insulator, driven by nearest neighbour
repulsion (V}), this has been well understood through a combination of the renor-
malisation group studies of the low-energy theories [19, 20, 71, 72], and sign-free
quantum Monte Carlo simulations on the lattice [26, 64, 73-77].

Remarkably, topological phases appear to be favourable for strong next-nearest
neighbour interactions V, [57], which can stabilise Haldane’s quantum anomalous
Hall state in the spinless model [37], as well as the Kane-Mele quantum spin
Hall phase in the spinful case [38, 39]. Those topological Mott insulating states
nevertheless compete with unconventional CDW3 charge order, see Fig. 3.1, that
extends beyond the honeycomb unit cell [70]. Note that in the literature this phase is
sometimes referred to as the sublattice charge modulated (CMs) phase. Due to this

competition, it is natural to expect that quantum fluctuations will play a crucial role
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Figure 3.2: The evolution of the phase diagram of spinless fermions on the honeycomb
lattice interacting with nearest neighbour V| and next-nearest neighbour V, re-
pulsions. Phases include: Dirac semimetal (SM), sublattice charge density wave
insulator (CDW/CDW 1), Haldane’s quantum anomalous Hall insulator (QAH),
translational and rotational symmetry breaking charge order (CDW3/CMs),
bond ordered Kekulé valence bond solid insulator (K). The phase diagrams are
for: (a) Mean-field theory in the standard A — B sublattice basis, adapted from
Raghu et al. [57]. (b) Unbiased numerical mean-field theory on the enlarged
unit cell, indicating competing CDW3 order, adapted from Grushin et al. [70].
(c) Infinite density matrix renormalisation group, as a representative for beyond
mean-field numerical simulations, adapted from Motruk et al. [83]. The key
point is the absence of the QAH phase. Note that the phases marked CDW II
and CDW III break additional translational symmetries, but are not discussed
here.

in determining the fate of the topological phases. In particular, there are additional
soft fluctuations associated with the breaking of continuous spin rotational symmetry
in the QSH phase. Unfortunately, the sign problem for large V, prevents the use
of quantum Monte Carlo methods [78]. Extensive numerical research into spinless
[79-84] and spinful [85-88] models using exact diagonalisation, variational Monte
Carlo, infinite density matrix renormalisation group, and functional renormalisation
group have been pivotal to determine the phase behaviour. Fig. 3.2 illustrates the
evolution of the numerical phase diagram for the spinless case. Mean-field and some
early numerical simulations supported the existence of the topological phases, but
simulations with increased resolution supported the charge order. Further details

are covered in the recent review article on this subject [89].

In this chapter the role of beyond mean-field collective quantum fluctuations for
the phase competition along the V; axis is analytically examined. As a preliminary
discussion, Section 3.2 introduces Haldane’s model of quantum anomalous Hall

insulators. The original work begins in Section 3.3 (topological Mott insulator)
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and Section 3.4 (CDW3 charge order), where the effective low-energy description
of the broken symmetry states is derived, and analysed at the mean-field level. In
Section 3.5 the leading instabilities are analysed in the presence of long-wavelength
order parameter fluctuation fields via a path integral approach. The analytic results
presented in Section 3.6 are convincingly consistent with the general consensus of
numerical lattice calculations, which suggest that CDW3 order is favoured over topo-
logical Mott insulating phases. The low-energy excitations of this CDW3 ground-
state are massless semi-Dirac quasiparticles [45, 47], which disperse linearly in one
direction and parabolically in the other.

This chapter ends with a discussion in Section 3.7. It is concluded that the
onset of CDW3 order does not produce a many-body Mott gap, but rather a novel
“hidden” metallic order. Naturally, this suggests the transition is not of the typical
Gross-Neveu-Yukawa variety, and motivates a study of the quantum critical point,

which appears in Chapter 4 of this Thesis.

3.2 Haldane’s Model: Quantum Hall Effect Without

Landau Levels

In a strong magnetic field, the two dimensional electron gas exhibits the integer
quantum Hall effect [34]. A strong magnetic field induces Landau level quantisation
into macroscopically degenerate electronic energy levels with &, = (n+1/2)heB/mc.
Naively the Hall conductivity oy = Ce?/h is found to depend on the number C of
filled Landau levels. However this quantisation persists against perturbations such
as disorder. It was realised by Thouless er al.[35] that this quantisation can be
explained by a topological property of the electronic wavefunction. More so, that
quantum Hall states are characterised by a topological invariant as opposed to
the spontaneous symmetry breaking of a local order parameter. This topological
invariant is known as the TKNN integer, or more generally the Chern invariant.
Following this, Haldane [37] realised that the integer quantum Hall state could
exist without Landau level quantisation. Rather the system had to break time

reversal symmetry. Remarkably, Haldane’s idea has been experimentally verified
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Figure 3.3: Haldane’s model with a staggered a, b flux pattern that is used to break time
reversal symmetry. The flux pattern is constructed such that there is no net
flux through the honeycomb plaquette. Fermions hopping between next-nearest
neighbours #, gain a Berry phase ¢ from anticlockwise hops around the pla-
quette, and —¢ from clockwise hops. Where as for nearest neighbour hopping
t there is no additional phase, as there is no net flux through the plaquette.

with ultracold fermions on an optical honeycomb lattice [90].

Haldane proposed a model of non-interacting spinless fermions on the half-
filled honeycomb lattice, in the presence of a staggered magnetic field. The field
was constructed with zero net flux per plaquette, as is shown in Fig. 3.3, and this
implies a periodic magnetic vector potential. Due to the field a fermion would gain
an additional Berry phase [91] exp(+i¢) upon hopping to a next-nearest neighbour.
The sign of the phase is dependent on whether the fermion made a left or right
turn. This is related to the Aharanov-Bohm effect [92], where an electron state
gains an additional relative phase £ f dr - A on orbiting a solenoid with associated
magnetic vector potential A. In the case of Fig. 3.3, the additional phase factor for
a next-nearest neighbour hop is ¢ = 27(2®, + @)/ Py, where @, are the fluxes

through the unit cell and @ = h/e is the magnetic flux quantum.

3.2.1 The Haldane Model

This phenomena is encapsulated by the Haldane model
Hy = —tZ (cjcj + h.c.) - Z (tzei‘pifc:cj + h.c.), 3.1
(i) i

with complex chiral next-nearest neighbour hoppings t,e'#i. Here ¢; ;= @ if the
hopping is in the anti-clockwise direction around a plaquette, and ¢;; = —¢ if it is

clockwise. It is evident that the complex hopping breaks time reversal symmetry
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(for ¢ # nm with integer n): a fermion hopping in the clockwise direction is no
longer equivalent to a fermion hopping in the anticlockwise direction (or a fermion

hopping backwards in time).

Here the case of ¢ = /2 is discussed. Deviation from this introduces a real
part to the hopping that breaks the particle-hole symmetry, but does not change the

conclusions. In the momentum representation

T
8z C;;A trs(k) (1 + e7*ar 4 gikary) [ep
Hy=-) | | . , 32)
K \Cp) \r(1+ elkar 4 pmik-azy —trs(k) CkB

where s(k) = 2[sink - a; —sink - a; —sink - (a; — a»)]. The spectrum is

2
. (33)

e(k) = £1,|3 + 4 cos (%k) cos (?ky) +2c0s (Vky ) + [%s(k)]

Similar to the CDW, breaking the time-reversal symmetry with finite #, opens a gap

in the spectrum at the Dirac points. Although the CDW and Haldane dispersions

look similar, the fermionic wavefunction and topological properties are different.
These properties are transparent in the low-energy theory, in which the Haldane

term my = 3V3t, also couples like a mass to the Dirac fermions

APk
H = / Y'(k)[vrk - @ + 0, ® (mcpwTo + mut;)| Y(k). (3.4
(2m)?

The valley (7) dependence of the mass myo, ® 7, is a manifestation of the time
reversal symmetry breaking, as under time reversal k — —k implying that the Dirac
points are time reversed pairs with K, — K_. More formally, the time reversal
operation is the antiunitary operator 7 = o ® 7,K (along with k — —k), where K

is complex conjugation [93]. Then it is evident that under 7~
myo,; ® 7, — ‘7"_1mH(TZ ® 1,7 = —myo,; 1, 3.5

hence time reversal symmetry is broken. In contrast, the CDW term preserves time
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reversal symmetry with mcpwo, ® 79 — mcpwo, ® 1p. Ultimately, Haldane’s state
with broken time reversal symmetry is topologically non-trivial, as is shown in the

following.

3.2.2 Calculation of the Topological Chern Invariant

It is convenient to analyse the two Dirac points (7 = =+) separately (temporarily

working in units with vy = 1) with Hamiltonian
He(k) = tkyoy + kyoy + (mcpw + Tmy)o. (3.6)

This can be mapped from k to a three dimensional space H;(k) = h.(k) - o with
the unit vector field [36, 91]

(ky, ky, mcpw + Tmy)

2
\/|k| +méDW +m%I

he(k) = ; (3.7)

and o = (07, 0y, 07). For a two level system the Berry flux Q., perpendicular to the

two dimensional k surface, is defined as
1
Q. (k) = E(akxhr X akyhT) - h, (3.8)

and is equal to half the solid angle element of the mapping k.. Therefore the integral
of the total Berry flux Q4 + Q_ is an integer multiple of 27, and this integer is the

topological Chern invariant

A—> 0 d2k

C = Z / = Qc(k)

Z ‘/'A_“X’ d’k T (mcpw + Tmy)

3
2 2
+m3)

b

|k| + mCDW

:Z Tmcpw + myg (39)

— 5 [ 2 2
= 2\ [Mepw T My

Clearly, each gapped Dirac point contributes half a Chern number, but whether or

not this results in a finite Chern number depends on the symmetry that is broken.
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The CDW insulator mcpw # 0, myg = 0 is topologically trivial with C = 0. Where
as when mcpw = 0, my # 0 the state is topologically non-trivial with C = sign(myy).
Haldane’s quantum Hall state from time-reversal symmetry breaking is known as

the Chern insulator.

3.2.3 Topologically Non-Trivial Insulators

The Chern insulator exhibits the quantum anomalous Hall effect: quantised Hall
conductance in the absence of a magnetic field. This is analogous to the anomalous
Hall effect observe by Hall in ferromagnetic materials with no external magnetic
field [94]. The quantised conductance is transported by a single topologically
protected gapless chiral edge mode. This can be understood as a consequence of the
bulk-boundary correspondence: metallic states must exist at the interface between
topologically distinct insulating states. This edge mode can be seen in the spectrum
of a tight-binding model solved on a finite strip geometry.

Some time later, Haldane’s idea was generalised to include spin by Kane and
Mele [38, 39]. In this case intrinsic spin-orbit coupling, or helical (spin dependent
chiral) next-nearest neighbour hopping, generates a mass term mgy s ® 0, @ T,, where
s = (s, 5y, 5;) are the Pauli matrices acting in real spin space s =T, |. A finite mgm
corresponds to a state with C = 0, but a finite Z, topological invariant [36]. This
state is known as the two dimensional topological insulator or quantum spin Hall
insulator that exhibits the quantum spin Hall effect. Assuming spin is a conserved
quantity, the quantised spin Hall conductance is transported by counter-propagating
spin-polarised helical edge states. The spin-polarised Chern number Cosy = C1—C|
in the same vein as the standard definition of spin-current js,in = j1 — jj.

The following discussion is concerned with the possibility that strong interac-
tions can dynamically generate complex chiral/helical hopping and spontaneously

break the symmetry into states with non-trivial topological classifications.

3.3 Topological Mott Insulator

Raghu et al. [57] devised a mean-field decoupling of the next-nearest neighbour

repulsive interaction on the honeycomb lattice that dynamically generated the Hal-
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dane and Kane-Mele terms. Here this is reviewed and the effective mean-field theory

derived for these topological Mott insulating states.

3.3.1 Bond Order Decoupling

To begin, the next-nearest neighbour interaction V; is mean-field decoupled in the

bond order channel (cjc ;) as follows

Hy, = Vs Y iy,
)

= Vo > > (el suei)clsue),
K@)
V2

= Z Z (c}sﬂcﬁ(c;sﬂc,-) - <c:s#cj)(c;s#c,-) - (c;sﬂc,-)(c;s#cj). (3.10)
B ()

Here s, = (50, §) is the 4-vector acting on ¢; = (cit, ¢;)), So is the identity in spin
space and p-sums are over u = 0, x, y, z. It is expedient to apply the translationally
invariant, sublattice dependent, and purely imaginary ansatz (cl.T sucj) = ix*o, with
x* areal valued 4-vector order parameter. This ansatz for the bond order is known
to minimise the free energy [57], as it was found that there is an associated energetic
cost to any real part of (cjs#c i), which breaks the particle-hole symmetry. Notice
that this maps the u = 0 directly onto Haldane’s model Eq. (3.1) with t, <> V5 x? for
¢ = nr/2. Likewise, the u = x, y, z maps onto the Kane-Mele hopping.

3.3.2 Effective Theory and Landau Free Energy

The effective mass terms are obtained by expanding around the Dirac points

3V3V, A d%k
2 (2rm)?

H, = Z 3VoxxH + ‘I’T(k))(“s# ® o, ® 7, ¥(k), (3.11)
u

with the eight component spinor

Y = (V144> Y14- V1B 1B W Avs Y A= W B4 U B-). (3.12)

The singlet (1 = 0) component of y* describes the order parameter of Haldane’s

quantum anomalous Hall (QAH) or Chern insulator phase, which spontaneously
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breaks time reversal symmetry, opening a Mott gap at the Dirac points. Simi-
larly, a non-zero triplet component (¢ # 0) describes the Kane-Mele quantum spin
Hall (QSH) or topological insulator state, which spontaneously breaks SU(2) spin-
rotational symmetry but preserves time reversal symmetry. The electron mean-field

dispersion takes the same form in both phases,

e (k) = i\/vlz, K2+ (3\/§v2)(ﬂ/2)2. (3.13)
u

The dispersion is degenerate for both spin and valley pseudospin flavours. Of
course, there is no coexistence between QAH and QSH because they have distinct
topological properties. In the following it is assumed that the spin bond order is
spontaneously polarised in the z direction with y* = 0 and x» = 0. The resulting

Landau mean-field free energy density is

St (xX) = @mex* + Bunt | x I (3.14)

with y = y" and y = x? in the QAH and QSH phases respectively. The mean-field
coeflicients do not depend on the channel in which the symmetry is broken, indi-
cating that at this level, the QAH and QSH phases are degenerate. The quadratic
coeflicient s = 3V5(1 — 9vy) with v, = AV, /4nv is obtained, whilst the cubic co-
efficient is positive definite with By = 27\/§V23 / 1671\/1%. This supports a continuous
phase transition between the semimetal and topological Mott insulators at a critical

coupling (v;). = 1/9.

3.3.3 Motivation to Include Quantum Fluctuations

In the spinful case it is natural to expect that quantum fluctuations play a crucial role
in determining the fate of the topological phases. Raghu et al. [57] argued that the
soft fluctuations associated with breaking of continuous spin rotational symmetry
would favour the QSH phase, which they confirmed with numerical functional
renormalisation group analysis. Here this will be demonstrated analytically. More

importantly, quantum fluctuations are paramount to determining the phase behaviour
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Figure 3.4: Classical (fermionic hopping ¢t = 0) charge instabilities from nearest neigh-
bour V; and next-nearest neighbour V, repulsive interactions on a honeycomb
plaquette. Vi > V, favours the sublattice CDW state. V, > V| favours the
translational and rotational lattice symmetry breaking CDW3 charge order. The
charge occupation is inverted on a single A — B bond of the plaquette, relative
to the sublattice CDW.

between topological phases and the competing CDW3 charge order discussed in the

following.

3.4 CDW; Lattice Symmetry Breaking Charge Order

Using unbiased numerical mean-field theory on the honeycomb with an enlarged unit
cell, Grushin et al. [70] discovered that there was competing CDW3 charge order at
large next-nearest neighbour V5. This order that spontaneously breaks translational
and rotational symmetries is motivated in the classical limit for large V,. Then the

effective theory is derived, and the Landau free energy analysed.

3.4.1 C(lassical Limit

The CDW3 or sublattice charge modulated order can be motivated from the classical

limit # — O of the Vi, V, Hamiltonian [70, 79]. The classical free energy density is

1
fa = 3 [Vi(na, + na, + na,)(np, + np, + ng,)

+ 3Va(na,na, + na,na, + nana, + npnp, + np,np, + nB3nBl)], (3.15)

where the index (Ay, ..., B3) runs over the six sites of the honeycomb plaquette.
Note the factor of 1/3 because there are L/3 plaquettes for 2L sites. Here it is
clear that there is an energy cost V, for neighbouring sites on the same sublattice
(next-nearest neighbours) to both be occupied. Considering one sublattice only, this

problem maps onto the classical frustrated triangular lattice Ising antiferromagnet.



3.4. CDWj Lattice Symmetry Breaking Charge Order 49

®

Figure 3.5: (a) The threefold enlarged unit cell (grey area) of the honeycomb lattice. Further
unit cells are outlined by the dashed lines. Also, the basis Ay, ..., B3 of the
plaquette is defined. (b) The corresponding reduced Brillouin zone (grey area).
Dirac valleys in the normal state (red and blue dots) fold into the center of
the zone. (c) A cut through the non-interacting tight-binding dispersion on the
enlarge unit cell.

However with the charge ordering on an entire honeycomb plaquette there is also
the constraint on charge conservation. At half-filling the energetically favourable
state is no longer the sublattice CDW but rather the CDW3, where the occupation
has been inverted between one A and one B site relative to the CDW, as is illustrated
in Fig. 3.4. Overall there is still one frustrated bond on the plaquette, and there is an
associated 18-fold degenerate classical ground state, which was confirmed by exact
diagonalisation [79]. In the following, these states are enumerated by Eq. (3.30) and
in Fig. 3.6, and are related by 27/3 rotations, translations and charge occupation

inversion.

3.4.2 Derivation of the Effective Theory

In the following the effective theory of CDW3 order is derived from the lattice model

H==t) clej+Vi ) inj+Va Y. i, (3.16)

(i.j) (i) @)
at half-filling and zero temperature. For brevity the trivial spin dependence sg
(from decoupling in the charge channel) is temporarily suppressed. The CDW;
phase is characterised by an enlarged six-site unit cell covering an entire honeycomb

plaquette, see Fig. 3.1 and Fig. 3.5(a). In this case the lattice vectors are a; =
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37“(\/3, 1) and @, = 37“(—\/5, 1) (with @3 = —(@, + @,)), as opposed to the primitive

lattice vectors a| = %(1, V3), a; = %(—1, V3). Also the basis is increased to

c = (CAl’ CAys CA35 CB> CBys CB3)- (317)

The corresponding reciprocal lattice vectors of the down-folded Brillouin zone (see

Fig. 3.5(b)) are 51,2 = 33%0 (%1, \/§), as opposed to by, = %—Z(i\@, 1). The non-

interacting tight-binding Hamiltonian is

H = Z ¢ (k)H, (ke (k), (3.18)
k
0 T (k)
Hy(k) = , (3.19)
T(k) O
1 1 ek
Tk)y=-t| 1 eka 1 |. (3.20)
eka ] 1

The resultant down-folding of the bands increases the number of energy levels at a
given momentum threefold. This gives rise to six bands with an additional 2-fold
degeneracy in the spinful model, and maps the Dirac points onto the I" point (k = 0),
as shown in Fig. 3.5(b,c). High energy modes are integrated out by projecting into
the low-energy Dirac subspace ¥ = Pc, and this obtains the non-interacting Dirac

Hamiltonian
H,(p) = P{H,(0) + [ViH(k)]x=0 - p}P" = vip - . (3.21)
The projection P is formulated from the low energy (row) eigenvectors of H;(k = 0)

-1 -1 2 0 0 O

11Vv3 =30 0 0 0
Py = — _ (3.22)

610 0 0 -V3 V3 0
0O 0 0 -1 -1 2
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Figure 3.6: All 9 (18 with charge inversion) degenerate CDW3 charge patterns. Charge
modulation is shown relative to half-filling, with red for positive modulation,
and blue for negative modulation. The charge patterns are parameterised by «
and g, see Eq. (3.30). Different @ correspond to translational shifts of the unit
cell, whilst 8 correspond to C3 (271/3) spatial rotations.

It is useful to apply the additional unitary transformation, such that the projection is

P = e—i%og@‘rz e—izT”O'()@‘rz e—i%0'0®TxP0. (323)
The first exponential transforms into the basis @ = (0, ® 7;, 0y ® 79). The second

enacts a coordinate transformation. The third translates the unit cell into the form

displayed in Fig. 3.6. Decoupling in the charge channel

Hy = Z ¢ (K)Hy(k)c(k) + Ey.q, (3.24)
k

Bt = = [ViGia) + ) + ()G + (i) + )

+3V2 D (o Yio) + (i, )iy ) + (s Y] (3.25)
o=AB

3
Hy(k) = Vi )" diagonal((fis,), (5,), (As,), (Aa,), (a,), (a,))
L

1

+ Vo diagonal({ia,) + (fiay), (fia,) + (fias), (fia,) + (i, ),
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(ig,) + (Aip,), (fip,) + (Aip,), {fip,) + (Aip,)), (3.26)

where diagonal( ) are the diagonal entries of a matrix. The half-filling condition is

satisfied by

(fip,) + (fia,) + (fiay) + (fip,) + (fip,) + (fip;) = 0. (3.27)

The effective low-energy Hamiltonian is obtained from the projection Hy =

PHyPT. To leading order

[ vl
(Vs = Vi/2)[Ga,) + () + () = () = i) = i) o2 @ 70
#2040 = 20) + ) = (i) + 2im,) — (i)l B
B G 4 ) = i) + G -0 7)
BB Gy 4 i)+ ) — G- 1)

+ %[‘(ﬁm) +2(fia,) — (Aay) — (fip,) + 2{Aip,) — (fip,)] 00 ® T
+ (Vo + Vi /2)[{f1a,) + (fia,) + (fia,) + (i) + (fip,) + (fip;)] 00 ® To}‘P(k)-
(3.28)

This is simplified by making the CDW3 plaquette ansatz for the charge occupation

(f;) = po + p; with the deviation

(pAp pAza pA39 po sza pB3) = (pa _,0 - Aa P, _P, ,D + Aa _,0), (329)

from the half filling value py = N/2 (where Ny = 1 or 2 is the number of fermionic
spin flavours). The constraints 0 < A < p < pg and p + A < po ensure the
filling is devoid of pathology. This ansatz satisfies the half-filling condition. The
ansatz is motivated by the discussed classical analysis, and was also obtained from

unbiased numerical mean-field theory on the honeycomb lattice with an enlarged
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unit cell [70]. Such a phase spontaneously breaks translational symmetry and keeps

only one mirror: Cg, — Cj,.

Finally, the effective mean-field term is

A d’k
_ T
H, = (ZR)Z\P (k)so® {

2Vh(p + AJ2)[Sqo0 ® (SﬁTx - C,BTy) —Coo,; ® (CﬁTx + SﬁTy)]

+ 2V = V))(p - Ao, ® To}qf(k) +2Vap(p + 2A) + %(p —A?  (3.30)

where C, = cosa, S, = sina and @,8 = 2nn/3 for n = 0,1,2. Here a en-
codes translations and S rotations, which together enumerate the 9 possible charge

configurations in Fig. 3.6, which is doubled with charge inversion (p, A < 0).

3.4.3 Effective Dispersion and Landau Free Energy

The effective mean-field CDW3 dispersion

(k) = i{vF P+ [2Va(p + A/ + [(2Vs = V)(p = AP

1
2

£2(2Va(p + A/ \J(keCa + kS, + [(2V2 = Vi) - A)]z} . (33D

is rotated relative to the k, by a, but is otherwise invariant. This implies that the
free energy of the CDW3 broken symmetry states are degenerate. Therefore, it is
sufficient to analyse the charge pattern @ = § = 0, which is displayed in Fig. 3.1.
Collective fluctuations will be considered about this particular broken symmetry
state. It is noted that the dispersion is not of the putative massive Dirac form
Vi2 + m2. Underlying this is that certain charge order parameter combinations
couple as emergent non-Abelian gauge fields to the Dirac fermions, and have an

impact on the criticality. This is discussed in detail in Chapter 4.

Integrating over the occupied dispersion obtains the mean-field Landau free

energy

Fnt(0, X) = Gm(X)p* + Brnt(x) |01, (3.32)
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with the parameterisation A = xp for 0 < x < 1, and

v
Fme(x) = 2V5(1 +2x) + ?l(x 1)+

_ N [22V5 — V)2 (1 = x)* + 2W)*(1 + x/2)*], (3.33)
4nvp
Bt(X) = S EN AV = Vi1 = x)2(1 + x/2). (3.34)
2ﬂVF

Along the V, phase axis (V; = 0)

ame(x) = 2V5[1 + 2x — 6Nvo(1 — x + Zﬁ)], (3.35)
Bnt(x) = 4;2’T2Nsv23(1 —x)*(1 + x/2), (3.36)
JTVF

with Ny = 1,2 the spin degeneracy and v, = AV,/4nvp. By inspection, the state
with x = 0 (A = 0) is the leading instability within the CDW3 state manifold. This
state is critical at (7). = 1/(6Ns). In the ordered phase, the A = 0 state remains
energetically favourable until large values of V, outside the range of applicability of

the model.

3.44 Summary and Competition with the Topological Mott
Phase

To summarise, for the spinless case (Ny; = 1), the topological QAH Mott insulator
is the leading instability at a critical coupling (v;), = 1/9. On the other hand, in the
spinful model (Ng = 2) the transition into the CDW3 phase occurs at a critical value
(7). = 1/12, pre-empting the transition into the QSH phase. These findings are in
qualitative agreement with previous mean-field studies on the lattice [70, 87, 88].
The competing order and the similarity of the critical couplings indicate that beyond

mean-field quantum fluctuations will play a crucial role.

3.5 Self-Consistent Collective Quantum Fluctuations

The corrections to the Landau mean-field free energy from order parameter quantum

fluctuations are self-consistently calculated to quadratic order using a path integral



3.5. Self-Consistent Collective Quantum Fluctuations 55

approach. The aim is to determine the leading order instability from the semimetal
along the V; axis of the phase diagram. The conclusions are expected to hold in
the regime of the critical line extending out to finite V;. The cases of spinless and

spinful fermions are calculated and contrasted.

3.5.1 Topological Mott Insulator Fluctuations

The collective quantum fluctuation corrections 6a* to the free energy

FH00) = (@ + 6a)(x*)? + Bt X1 (3.37)

are self-consistently calculated to quadratic order around the topological Mott insu-

lating states. The fermionic lattice action in the bond order channel is

S[e’, c] = /ﬁ dt{ Z [Z c:s(%cis +t Z Cl-Tsts] - % i Z (cjs#cj)(c;sﬂci)}.

0 =1, i ) =0 ({i,j))
(3.38)

From here on the Einstein summation convention over the repeated index u =
0, x, y, z will be employed.

The interaction is decoupled in the bond order channel using the Hubbard-
Stratonovich transformation, which introduces the auxiliary bosonic fields )21‘; con-
jugate to c;s#cj. The purpose of this is to expand around the topological Mott
insulator broken symmetry states. The most general transformation would be to in-
troduce four complex fields, which is equivalent to introducing eight real fields. Yet
each additional field introduces a new source of error if not evaluated exactly [95].
Anticipating a truncation at Gaussian order, and following the mean-field analysis, it
is only necessary to introduce four real fields. These are the imaginary components
of the more general complex fields.

To formulate the self-consistent expansion, static and uniform components of
the Hubbard-Stratonovich fields y*(w = 0,k = 0) = y* are separated from the
finite frequency quantum fluctuations y*(w # 0,k) = y*(w, k). The static fields

x* are to be identified as the mean-field order parameter fields that solve the saddle
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point equations. The self-consistent expansion is equivalent to working with the
renormalised propagator G~! = Ga '+ 3. After expanding around the Dirac points,
the bare propagator is 65 = s5o®(—iwag+vrk - @) and the spin-resolved self energy
is 2 = #VQXSO'Z ® 7.. Here y; = x° or yy = sx? for the QAH and QSH phases
respectively, with s = + indexing the spin. The spin resolved inverse propagator is
then

A

3V3
G;l = —ia)a’o + VFk @+ T\/_VZXSO-Z ® 715. (339)

Inclusion of the finite frequency fluctuation fields y* amounts to the addition of a

Yukawa coupling to the low-energy effective action, S = Sy + Sy + Sy + S, with

Sy = /k \Pgé—l(li)%, (3.40)
3V3 T SH
IR o-;B /kk Yiotn @ T o X (4D
_3 SH oK
Sp=3% _ZA:B /k i (542
S, = 3Vaxtx*. (3.43)

Here k = (w, vpk) and

[k|<veA 2
/ - / dwd’k (3.44)
3 (2m)3v

The fermions are integrated out to quadratic order in y using the cumulant

expansion and the linked cluster theorem [65]

[oe) _S _ n
7 = / DY P, pleSeSe=Sv Z M

|
=0 n.

)

= /D[)E]e_sx—s)ﬁ/,;lndet(‘;—l(]}') exp [iw

n!

n=1

~ mf/D[f] exp [—S/\? - (S'{l);> + %(Sé,)ﬁ] . (3.45)
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Here the fermionic contraction

~ /D[\IJT’ lII]e—S‘I’(. )
[ DIYh,Yles

, (3.46)

is implicitly over connected diagrams, and the mean-field free energy is fnr =
—In Zys. The goalis to calculate Z = f)2 exp(-S), where S = S o+ (Swy)— (S&,)Q /2.
Wick’s theorem is used to evaluate the fermionic contractions with

(P T*’S> = G%_(k1)6(ky — k2)8y5rr, (3.47)

kio

as the propagator Eq. (3.39) is diagonal in momentum, as well as spin and valley

spaces, but not the sublattice pseudospin. The term linear in ¥ vanishes under the

contraction
3V3 ;
<S\FX> B TVZ Z k1k2<lP kyo Su®T: k20>Xz1 koo’
3v3 - -
="V / Ok = k)G, (R sy =0 (348)
sor < kik 27

as ¢t = 0 by definition. The quadratic term is finite
0o

3V31 /
s2 / P
< " ' ( ) (TZ' ki34 Xk‘_k20')(k3—k40"

(50 ® 750 ) (P 500 ® 75,0 ]

3V30 )’
:_( 2 - ‘/_:—>X~ ~# (Su)ss (Sy s sG (k+q)G (k)’
co'ss't ¥k
2
3V3V- L
:‘( 2 2) Z /q K K (S)ssr (Sy0) 1l 7)) (3.49)

Only the intra-valley long-wavelength bond order fluctuations survive.
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The fluctuation action

S _ M s’ U
S= [ 8ny (3.50)

-

decouples into the longitudinal §°, §* (s’ = s) and transverse ¢*, ¥ (s = —s)

sectors, with the matrix elements

S 3
AU’O”(q)ZEVZ

9 ss’ (=
S+ 77 V2 Z Hw,(q)) . (3.51)

In matrix form, the polarisation I1°(g) = I’ (§)o, where

, (]2 _ a~)2
H(S)S(c-i) ~ > (qZ + &%+ 4M2_2 + 8MSMS,) , (3.52)
32viq q
2 2 2
57 = vilql” - 2¢
I (§)~ —— (2q2 +vi|q* + 4M2F—2), (3.53)
32viq q
*(3) = 0, (3.54)
I (q) = 0, (3.55)

up to second order in My = 3V3/2V5 xs, with § = (&, vrq). Details of this calculation

are presented in Appendix A.1.

The constant y in Eq. (3.51) is a phenomenological parameter that has been
included to account for renormalisation of the vertex Vs y¥™W¥ from: (i) coarse-
graining the lattice in a Wilsonian sense; (ii) higher order y terms; (iii) the Fermi
velocity renormalisation as IT o 1/vr. Both the theoretical and experimental
evidence for graphene [96-98] suggests ¥ < 1. In addition, vy has the added benefit
of smoothly interpolating between mean-field (y = 0) and the bare coupling with

fluctuations (y = 1).

The Gaussian integrals over the fluctuation fields lead to the free-energy cor-
rections ¢ fy = trln A*', from which the fluctuation contributions to the quadratic

coefficients of the Landau expansion are obtained to infinite order in the Gaussian
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fluctuations,

p_ 10%f
Y 200xm?
1 / RAC 03, 11%(q)
2J); O+ YV %G| s

B (1 +yV2 XI5 (@) £, 7,115 (4)
s /é’ (1 +yVa X I15(§))? = 2y Vall(9))?

4y VIl ()07, 114(q)
i (1 +yVa XI5 (§)? - 2yValli(§))?

x=0

x=0

, (3.56)
x=0

mA%)

for s’ = +s, and Il, is independent s, s’. The form is reminiscent of the inverse
susceptibility in the random phase approximation. Remarkably, by first evaluating
the angular integral, it is possible to evaluate the expressions analytically using
standard integration techniques. Finally, the quadratic coefficients of the QSH order

parameter are

24V 1. Q?+3
da; = 2 [arccot?Q — = In i , (3.57)
yn? 2 Q2+1
54\/2
day = ———V5 (1 — Qarccot(?), (3.58)
Vi

for the contributions from longitudinal (L) and transverse (7') fluctuations, where
Q = /8/(97yv,) — 1. For the QAH order 6@2 = 50/2 = o0a;, and in this case the

calculation breaks down for v, > 8/97y due to the proximity to a pole.

3.5.2 CDWs; Fluctuation Calculation
Here the fluctuation correction to the quadratic coeflicient 6@ of the free energy
F(p. %) = [@mi(x) + 66(0)]0” + Bu(x) |1 (3.59)

is self-consistently calculated. The calculation presented here follows in the spirit
of the bond order calculation above. The only difference is the increased basis,

and the need to integrate out the high energy modes as discussed in the mean-field
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treatment. Starting once more with the lattice action

S[ct, ] = /ﬁ dT{Z[Z cl.TSHTc,S + tz 1+V, Z i}
0

s=Tl i (@.J) @)

the interaction is rewritten and decoupled in the charge channel

60

(3.60)

% -GiYgi
ZZqZU 1 1-GiUgijhgj _>/ exp{ VZZ Zp Gi qupq]+22 _q,pq,

using the density in momentum space

—ZZ e ﬁl.sforiE{A1,.--,B3}-

Here the matrix (in the basis of (3.17))

0O ej3 e;p 0 0 O

e;s 0 ez 0 0 O
R

€3 €12

0 0 0 e3 0 eg3

0 0 O e5 €3 O

comes from the Fourier transform of the extended interaction, with
ery = 1+ €00 4 688 =34 g (a, +a,) +0(qP)

—d,.

N
=1

(3.61)

(3.62)

(3.63)

(3.64)

Once more, to formulate the self-consistent expansion, static and uniform com-

ponents of the Hubbard-Stratonovich fields p;(w = 0,k = 0) = pg + p; are separated

from the finite frequency quantum fluctuations p;(w # 0, k) = p;(w, k). The projec-
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tion P is applied to the fermionic fields to obtain the low-energy effective action
S = ‘/‘Pﬁso Q [—iwag + vk - @ + 2Va(p — Ao, @ 19 — 2Va(p + A/2)0, ® Tx]‘Plz

T
+ 2V, Z Z . ‘I’1 PazSobe kszkl i +V22/p sz‘ pkj (3.65)
ab=1i=1 Ykik2 Fps

The fluctuation action is obtained by integrating out the fermions to quadratic order

inp
_ 6
S=v ) /q Uz + 2yVaNyTTg:15, (3.66)
ij=1
with the polarisation
4
T
Z / Pl Gt PoiP .Gt P (3.67)
d:

Further details on evaluating IT are presented in Appendix A.2.

Apart from the more complicated and larger matrix structure, the fluctuation
action is of the same form as for bond order fluctuations. By integrating over the

charge fluctuations the corrections to the free energy are
Sf = trlog(U™" + 2yVaN,IT). (3.68)

The fluctuation corrections to the quadratic coefficient of the Landau expansion in p
(with A = xp, 0 < x < 1) are most easily obtained by expanding the polarisation to
quadratic order l:[q = 5:0 ﬁg’)(x) ", and then expanding the logarithm to quadratic

order in p, which results in

27Ns1:1£2)
sa =V, / tr 1 - (3.69)
i Ug'+2yN,IT;

This can be evaluated analytically if the zeroth order approximation in g of the

Fourier transform matrix is taken, U, 7 I~ UO_ ' Further details are presented in
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Appendix A.3. Then it is found that

56 :8V2~v2{
mQ
B B arctan (@)
[384(2 +x)% +8(28 — 68x + 31620 + (12 — 20x + 11x2)92] \
VG
16 ~ 635 883
+—|-(1-x7°Q- 2(2 +x)% + (62 — —x + —x?)1log(2)
3 2 2 8
3 ) (VA + D) -Q
—5(1+X) Z L12( 3
o==1
5 13, ~ 7, ~
+(2- X+ o Ylog(2 — Q) — 16(1 — 5x + i Ylog(16 + Q)| },  (3.70)

where Q = 2myN,v; and Lix(z) = X7, 2" /n? is the dilogarithm function. The

series expansion in v, yields

V2

S5& = — Z(an — bpx + cux?)(yNgvp)"*2, (3.71)

5 n>0

with the coefficients b, > a, > ¢, > 0 that monotonically increase with n.

3.6 Results

The main results are summarised in Fig. 3.7. For the spinless model the leading
instability at short-range (y = 0) is to the topological QAH Mott insulator. Fluc-
tuations favour CDW3 order over the QAH state and are strong enough to cause
a continuous phase transition from the Dirac semimetal to the CDW3 phase for
y 2 0.62. This is precisely the nature of the transitions found within numerical
approaches [80, 82—84]. Similar fluctuation-driven changes of the ground state have
been recently discussed in terms of a fermionic quantum order-by-disorder mecha-
nism [99-102]. In the spinful model the transverse fluctuations in the QSH phase
stabilise the order, lifting the mean-field degeneracy of the QSH and QAH phases,
dagy <0 <daj = 6012 L The transverse fluctuations are not strong enough however
to suppress the CDW3 phase, which is the leading instability at mean-field. In the

presence of fluctuations the leading CDW3 instability remains as A = 0, which is in
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Figure 3.7: Lines of critical-instability along the v, = 47{’; V, axis in the presence of

fluctuations, renormalised by the phenomenological parameter y. The mean-
field instabilities are at v = 0, the cut v = 1 indicates the phase behaviour
without vertex renormalisation. While the critical interaction strengths depend
on the momentum cut-off A, the order of instabilities does not. In the regime
where the NN interactions are zero (V; = 0), the CDW3 phases are gapless
(A =0).

fact a gapless state with semi-Dirac fermionic quasiparticle excitations.

3.6.1 Semi-Dirac Excitations

In the absence of nearest neighbour repulsion, the favoured charge-ordered state
with p > 0 and A = 0 describes a smectic order with gapless excitations. This
broken-symmetry state remains semimetallic, with one pair of bands opening a gap
and another pair remaining gapless, as shown in Fig. 3.8. From the hybridisation
of the down-folded Dirac valleys there is a condensation energy gain from the gap
+ |2V, p|. This is to be compared with the topological Mott state with gaps + |V, x|
at the two Dirac points. The effective Hamiltonian matrix of the two gapless bands

in the CDW3 phase is

H(K) = vek, T" + viks /(4Vap)T, (3.72)

with energy spectrum |e.(K)| = vF\/k)% + v%k;‘. /(4V5p)2. The quasiparticles are
semi-Dirac fermions, which disperse linearly (relativistically) along the x direction
and have a quadratic (non-relativistic) touching along the y axis. Those touching

points sit at the high symmetry I' points of the folded Brillouin zone (see Fig. 3.8).
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Figure 3.8: Low energy bands of the CDWj3 state, for @ = 0,8 = 0,A = 0, around the I’
point. At half filling, the system is gapless, with semi-Dirac quasiparticles that
disperse linearly in the kdirection, but quadratically in the k direction.

3.7 Discussion

The transition to the gapless CDWj3 state (o > 0, A = 0) is highly unconventional
since the ground state remains semimetallic with semi-Dirac quasiparticles. It does
not belong to the class of putative Dirac semimetal-to-insulator transitions, with
Gross-Neveu-Yukawa universality. This “hidden” charge order eluded previous nu-
merical studies [79-88] that identified phase transitions through the opening of a
Mott gap. The onset of semi-Dirac behaviour may be resolved in large-scale density
matrix renormalisation group simulations on infinite cylinders, which are now capa-
ble of extracting the momentum-dependent excitation spectra of Dirac systems [103].
In addition, with the recent advent of “designer Hamiltonian” methods [26, 104] in
quantum Monte Carlo it seems possible to engineer the unconventional self-energy
terms of the CDW3 state.

As was demonstrated, the hidden CDW3 order is stable against Gaussian fluc-
tuations. A small nearest neighbour repulsion V; is expected to lead to finite A
when higher order and lattice terms are included in the free energy, and hence to the
opening of a Mott gap. Closer inspection shows that the semi-Dirac mode splits into
two massive Dirac cones along the quadratic touching direction. Unconventional
critical properties are still expected due to the proximity to the unusual critical point
atVp = 0.

It has been suggested [88] that the regime of dominant V> could become exper-
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imentally accessible by using silicon adatoms or ultracold atoms in double-layers of
triangular optical lattices. In the case of the optical lattice, the interaction strength
for charged fermionic molecules will depend only on the distance between the sites,
and so can be tuned to the Vo, > V) situation by spatially separating the layers.
In this case the next-nearest neighbours (intra-triangular layer) in the honeycomb
sense are spatially closer that the nearest neighbours (inter-triangular layer). The
hopping amplitudes depend on several parameters, and in principle can be tuned to

accommodate the layer separation.

In addition, it is interesting to note that a similar charge ordering has been
experimentally observed (below 7' ~ 340K) in YbFe,O4 [105, 106]. Here the Fe are
AB stacked on triangular layers, and can be mapped to the honeycomb lattice with
comparable inter- and intra-layer distances implying Vi ~ V,. However, in this case
the charge order is slightly incommensurate due to coupling between the bilayers in

the z direction. Also magnetic order sets in at 7 ~ 280K [107].

Although the topological Mott insulator is not stable on the honeycomb lattice,
the notion that interactions can spontaneously break symmetry into topological
phases is still robust [58]. There are proposals to bias towards the topological
phases using RKKY interactions [108], or extended hoppings [87]. Similarly the
topological Mott insulator phase was also found at mean-field in the semimetallic
n-flux square lattice model [69], but again there is numerical evidence indicating

fluctuations stifle these states [109].

More promisingly, there is evidence to suggest that topologically non-trivial
phases can be induced by interactions when the touching point is quadratic [110—
112]. This is because interactions are marginally relevant in the renormalisation
group sense, indicating that the non-interacting quadratic point, such as for bilayer
graphene [113], will be gapped for weak interactions. These weak interactions
are not able to stabilise competing phases like the charge order considered here.
To this end, there is numerical evidence of stable topological Mott phases on the
kagome [114, 115] and checkerboard [116, 117] lattices. However, it has been

shown that if linear terms are allowed by symmetry, then they are always generated
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by the weak interactions under the renormalisation group flow [118, 119]. In the
process, the critical interaction strength is pushed back up to finite values. It is worth
noting that this argument does not hold for the present semi-Dirac case, where the
bare electron dispersion is already linear. Only because of the matrix structure of
the Yukawa coupling for V| = 0, the symmetry breaking does not lead to the opening
of a gap but instead to a quadratic touching along the CDW3 order.

Motivated by the unconventional nature of the CDW3 broken symmetry state,

the critical properties are analysed in the next Chapter using the renormalisation

group.



Chapter 4

Novel Criticality of Dirac Fermions

from Lattice Symmetry Breaking

The role of spontaneous lattice symmetry breaking in strongly interacting two dimen-
sional Dirac systems is considered. The fermion induced quantum (multi-)criticality
is described by Dirac fermions coupled to a dynamical order parameter that is com-
posed of mass and emergent gauge fields. This is illustrated for the example of
translational and rotational symmetry breaking due to charge density wave order
on the honeycomb lattice. Using a renormalisation group analysis it is found that
the putative emergent Lorentz invariance is violated, resulting in unconventional
universal behaviour. Finally, it is identified that topological phase transitions are
well described by this effective field theory. The original work in this chapter was
made available as a preprint in Novel Criticality of Dirac Fermions from Lattice
Symmetry Breaking, E. Christou, F. de Juan, F. Kriiger, arXiv:1906.03892 (2019)
[120].

4.1 Introduction

Interacting Dirac fermions exhibit perhaps the simplest example of fermionic quan-
tum criticality. In high energy physics this has been known for some time, and goes
under the guise of spontaneous fermion mass generation and chiral symmetry break-
ing in the Gross-Neveu-Yukawa (GNY) model [21, 22]. The prototypical condensed

matter examples are semimetal-insulator transitions on the half-filled honeycomb
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Figure 4.1: Schematic phase diagram of Dirac fermions on the half-filled honeycomb lat-
tice with nearest and next-nearest neighbour repulsive interactions V; and V;.
Charge modulation is shown relative to half-filling. The CDW breaks sublat-
tice inversion symmetry. The CDW3 translation, rotation, mirror and inversion
symmetries.

Vg

lattice [19, 20], which are driven by strong on-site and nearest neighbour repulsive
interactions. The low-energy excitations are well described by Dirac fermions [17],
which couple to the order-parameter fields and play a crucial role in determining the
universal behaviour [1, 9]. In recent years GNY models and sign-free lattice Quan-
tum Monte Carlo simulations have helped to push the understanding of fermionic

criticality beyond the Ginzburg-Landau-Wilson (GLW) paradigm [14, 23-32].

Strong parallels can be drawn between the high energy and condensed matter
settings. Remarkably, the quantum critical fixed point exhibits emergent Lorentz
invariance with a characteristic terminal velocity and dynamical exponent z = 1 [18,
121-123]. Also, the emergent chiral symmetry is spontaneously broken in the

ordered phase, opening a mass gap in the Dirac spectrum.

Yet it is precisely the reduction from Poincaré symmetry to the crystallographic
space groups that allows the solid-state to host exotic fermionic quasiparticles [124].
An example are the recently discovered multifolds that are higher spin generali-
sations of Weyl fermions with no elementary particle analogs [125, 126]. More
relevant to the current discussion are the semi-Dirac [45—47] fermions with rela-
tivistic and non-relativistic dynamics along orthogonal directions, which are known
to exist at the critical point of topological phase transitions in two and three spatial

dimensions [48].
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In this Chapter Lorentz violating quantum critical points in Dirac fermion
systems with spontaneously broken crystal symmetries are investigated. It is shown
that the effective field theories contain order parameter fields that couple to the
Dirac fermions as components of emergent gauge fields, in addition to the standard
mass fields. This is illustrated for the honeycomb lattice where strong next-nearest
neighbour repulsions induce charge density wave order (CDW3) with a three fold
increased unit cell [68, 70, 79-88] (see Fig. 4.1).

The fermion-induced (multi-)critical fixed point [23] is characterised using a
perturbative renormalisation-group (RG) analysis. The results show that the broken
symmetry state is in the vicinity of a topological critical point. This demonstrates
that topological phase transitions in Dirac systems can be comprehensively described
by effective field theories containing mass- and non-Abelian gauge fields.

The rest of this Chapter is organised as follows. Section 4.2 derives the low-
energy theory of lattice symmetry breaking charge order on the honeycomb lattice.
Section 4.3 presents an introduction to the renormalisation group. Section 4.4
presents the scaling of the low-energy theory. Section 4.5 discusses in detail the
Gross-Neveu-Yukawa theory, which describes the sublattice CDW quantum critical
point. The renormalisation group equations are derived in detail, and the critical
properties of the ensuing non-trivial fixed point analysed. Section 4.6 presents
the renormalisation group analysis of the lattice symmetry breaking effective field
theory and the criticality is contrasted with Gross-Neveu-Yukawa theory. Section 4.7
analyses the broken symmetry state by minimising the free energy obtained from
integrating out the fermions. Section 4.8 ends the chapter with a discussion of the

results.

4.2 Lattice Symmetry Breaking Charge Order on the

Honeycomb Lattice

As a concrete example of the effects of lattice symmetry breaking on fermionic
quantum criticality the honeycomb lattice at half-filling and zero temperature, subject

to nearest (V) and next-nearest (V) neighbour repulsive interactions are once more
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Figure 4.2: (Left) Honeycomb lattice with the primitive (a;>) and plaquette (@; ) lattice
vectors, as well as the plaquette labelings Ay, ..., B3. (Right) Brillouin zone
corresponding to the A — B unit cell. Low-energy Dirac fermion excitations are
located at K.

considered.

4.2.1 Dirac Fermions

In this discussion it is useful to highlight some algebraic properties of the effective

field theory of Dirac fermions [20]
Ly =¥ [0; +ivpa - 8]Y = V' [(—iko + vik - @] P, 4.1)

where @ = (0 ® 7,0, ® 19) and 4 = (0x,d,). With a; = 0, ® 7;, @ form an
SU(2) pseudospin algebra [a;, @] = 2i 37 _ € and {@;, a;} = 26, with the

(implicit) identity @y = o ® 79. Here € is the antisymmetric Levi-Civita tensor.

Eq. (4.1) is endowed with emergent intravalley spatial rotational symmetry
¥ — 029 [k — (k,cos6 — ky sin 6, k. cos 6 + k, sin )] and emergent global
SU(2) chiral/gauge symmetry ¥ — ¢’ Tzt 0T that is generated by 7' = —0y®Ty,
T’ =0y ® 1, and T° = 0 ® 7,. (T, T2 T3) also form a pseudospin algebra with
identity 7°, and commute with ¢;. In addition, Eq. (4.1) has emergent pseudo-
relativistic invariance where the “speed of light” is vr. This Lorentz invariance is
exposed using the Dirac gamma matrices y, in which covariant form is achieved,
Ly = Y ey ($70)7,0,¥ (temporarily setting vp = 1). The y matrices are

defined in Section 4.4.
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4.2.2 Symmetries from the Honeycomb Lattice

The low-energy effective Hamiltonian
A
H = / lI’,tH(k)‘I’k, with H(k) = vrk - @, 4.2)
k

also inherits the symmetries of the non-interacting honeycomb lattice Hamiltonian
H = —t ZW) c;cj (and Eq. (2.3)) that was discussed in Section 2.2 [20, 127].
There are the reflection symmetries in the x and y planes, which respectively are

Ry = o, T? = 0y ® 79 [ky — —ky] and R, = a,T? = 0 ® 7 [ky — —k,] such that
RyH(ky,—ky)R;" = H(ky, ky) and RyH(~ky, ky)R," = H(ky, ky). (4.3)

R, interchanges the sublattices, as can be seen from the lattice in Fig. 4.2. R,
interchanges the Dirac valleys, as can be seen from the Brillouin zone in Fig. 4.2.
Together R R, = a.T' = o, ® 7, [k — —k] defines spatial inversion, equivalent
to a C; & rotation. The honeycomb lattice also has three-fold rotational symmetry
Cs = e*27i%/3 [k — (—k, ¥ V3ky, +V3k, — ky)/2], which is constructed such
that [127]: it is diagonal in valley and sublattice, (C3)*> = 1 (hence 27/3), and it
commutes with C,. The translation symmetry under the primitive lattice vectors
a, = %(1, V3), as = ‘/75(—1, V3) is enacted by fay, = oK@ 2T o22miT3 3 yhere
K. = 47/3V3(z,0) is the location of the Dirac points. That 7% = o ® 7, is the
generator of translations follows from the action of a primitive translation on ‘Y,
where it is clear it must be valley dependent. From the properties of Bloch waves it

is the case that under primitive translations ¢ — etk a2, Tt then follows that

A - B+ B K- A+ iK_- A- K, B+ iK_- B-
(wk +9 wk s wk +’ wk ) - (el B al’zwk +’ el al,zwk ’ el * al’zwk +5 el al’zwk )’
4.4)
where it is understood that ¢;" = ¢“(k + K;) is the small k expansion around the

Dirac point K-.

In addition, the theory has the discrete time reversal 7, chiral S and particle-

hole C symmetries [93], XHX ' =HforX =T,8,C, and with 7S = C. Time
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reversal is the antiunitary operation 7~ = ozyTZV( =00 Q 7,K [k — —k], where K
is complex conjugation, from which it follows that 7H*(=k)7 ! = H(k). Also, it
is evident that 7 interchanges the Dirac valleys. Chiral symmetry S is a property
of any nearest neighbour hopping fermionic model on a bipartite lattice Hap =

i T
B’ cp — _CAa

2y i jc;c ;. It is the operation under which ¢4 — ¢ or equivalently
(ca, cg) = 04(ca, cg), where the minus sign accounts for fermion anticommutation.
Following this, here the chiral operation S = @.T> = o ® 79, and is sometimes
known as the energy reflection symmetry because SH(k)S~! = —H(k). Finally,
the particle-hole (or charge conjugation) operation is the combination of the two,
leading to C = a,T'K = -0, ® 7,X [k — —k], from which it follows that
CH*(-k)C™' = —H(k). Additional real hopping terms, such as the next-nearest
neighbour 7, would break the particle-hole symmetry, but particle-hole would still be

an emergent symmetry of the low-energy Dirac theory. In contrast, a finite chemical

potential that deviates from half-filling breaks the particle-hole symmetry.

4.2.3 Hubbard-Stratonovich Decoupling

Sufficiently strong V, stabilises CDW3 order (Fig. 4.1). The steps discussed pre-
viously to obtain the general effective field theory of charge order are repeated for
clarity. (1) The interaction is decoupled in the charge channel with the Hubbard-

Stratonovich transformation
o= J WV Sy Aidj+Va By i)

= / Dlp]exp {— / D IPL(@) - Vi - pr(c) + 20} (7) - Vi ~pk<r>]} . @)
Tk

This introduces six auxiliary charge fields p = (pa,, P4, PAs» OB, PBy> PBy), Which

are conjugate to the density 7 on each site of the plaquette. In addition, the transfor-
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mation matrix is introduced

0 Vaeis Voeq, Vi Vi V]Eik'dI
Voes 0 Voeos Vi V, etk Vi
Vi - _% Voes Vaes, (-)k.~ Vleik'di Vi Vi , (4.6)
Vi Vi Viett 2 0 Voers  Vaeq,
Vi Vietkds vy, Vaess 0 Vaeis
Vleik'dl Vi Vi Vae s Voes 0

with e, = 1 + ¢*@ 4+ ¢i%@m and G; = —d,, n = 1,2,3. Here @, = %(\/i 1) and
a, = 37“(—\/1 1) are the lattice vectors of the enlarged plaquette unit cell lattice. (2)
The high energy modes are integrated out, with the projection #. This obtains the

location interaction

Ly = lPT{(‘/Z - Vl/z)[pA1 + PA, t+ PA; — PB, — PB, — pB3]aZT3

V2
+ 7 lpar =20, + pas = s, + 205, = ps;la T

V3V,

+ [—pa, + pas — PB, + PBsJayT!
V3V,

+ 4 [_PA1 + PA; + PB; — pB3]a,xT2

V2
+ Z[—/OA1 +20a, = Pas — PB, + 208, — P layT?
+ (V2 +Vi/2)[pa, + pa, + pas + pB, + pB, + PBg]aoTO}‘P

+ Vi(pa, + pa, + pa;) (P, + P, + PB;)

+3Va(pa,PA, + PAPA; + PAsPA, + PB,PB, + PB.PB; + PB:LB,), (4.7)

where the Yukawa coupling matrices between fermions and dynamical order param-
eter fields have been expressed in terms of the @ and 7" matrices. Here the gradient
terms have been suppressed in the interest of brevity. The relevant gradient terms
are systematically included by the one-loop fermion bubbles, and are discussed in

more detail below. The half-filling condition is p4, +pa, + pa, + 0B, + PB, + PB; = 0.
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4.2.4 Low-Energy Theory

To analyse the criticality the charge order symmetry must not be broken by hand,
as it was in Chapter 3. It is convenient to introduce the dynamical order parameter

fields po, ¢, A' = (AL, A}), A> = (A2, A}) with

£0 V6 V6 V6 V6 V6 V6|\[pa
¢ V6 V6 V6 V6 —V6 —V6||pa,
V3 -2v3 V3 V3 2V3 —V3||pa,

@)}

ALl 1

’: =z : (4.8)
A, -3 0 33 0  -3]||ps
A2 -3 0 3 -3 0 3 ||ps

2] \vi 25 -5 -3 25 -3\,

and pg = 0 at half-filling. The corresponding charge patterns on the hexagonal unit
cell that are induced by ¢, A'? are shown in Fig. 4.3. In fact, the terms obtained are
precisely the irreducible representations of the point group C¢ = (1 + t4, + f4,)Cov
containing primitive translations #,,, [127, 128]. Here ¢ transforms as the B
irreducible representation and (A', A2) transform like the 4-components of G. The
components mix into each other under primitive translations ¥ — e*2mT 3y,
thereby breaking the translational symmetry of Cg, (the primitive unit cell). Also, it
is important to note that (A)lc, A;, AJZC, A%) are (even, odd, odd, even) under reflections

in the x axis (Ry), and (odd, even, odd, even) under reflections in the y axis (R,).

This can be seen by inspection of Fig. 4.3 and distinguishes each of the components.

Finally, the effective local Yukawa Lagrangian that couples Dirac fermions and

dynamical order parameter fields has the compact form
L, =9 (g¢¢aZT3 +oaa - A“T“) ¥, 4.9)

where the summation over repeated a = 1,2 is used throughout. The bare ef-
fective couplings are related to the lattice couplings (g4)o = v/3/2(V1 — 2V») and
(g4)o = V3/2V5. Note that L, preserves emergent spatial rotational and U(1) chiral

symmetry, but breaks breaks Lorentz invariance. In addition, the bare Hubbard-
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¢ = By

xT

A2 2 G(By) | A2 2 G(Ey,)

Figure 4.3: All possible charge instabilities in the 6-site unit cell on the half-filled honey-
comb lattice. Charge modulation is shown relative to half-filling. They are
labelled with the order parameter fields that couple to the Dirac fermions in
the effective field theory, as well as the corresponding elements in symmetry
groups C/' and Cg, in parentheses.

Stratonovich bosonic mass term is

Lus = v3/2(24)08% + Y3(ga)oA%. (4.10)

4.2.4.1 Mass Sector

In the regime V| > V) the order parameter ¢ describes the quantum phase transition
from the semimetal into the CDW insulator that spontaneously breaks sublattice
exchange symmetry, ¥ — R,¥, ¢ — —¢. This corresponds to Z, chiral symmetry
breaking in the low energy effective field theory [129], where the dynamics of ¢ are
encapsulated by the Lagrangian

Ly = %¢ (—63 T m;) é, @.11)
with 6% = 02+ 6y2. At the bare level of the Hubbard-Stratonovich (prior to integrating
out any fermionic or bosonic modes) the bosonic mass (mé)o =3/2(V} —2V,). The
convention in this Thesis is to always redefine the bosonic order parameter masses by
their fixed point values mé - mé - (mé)*. Then the fermionic quantum critical point
mé = 0 belongs to the Z, GNY or chiral Ising universality class. The properties of
this critical fixed point have been intensively studied with a variety of techniques,
see Refs. [130, 131] for a review. The basic properties are discussed at length in

Section 4.5.
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The anticommutation {Ho, ¥, T>¥} = 0identifies ¢ as a mass field that opens
a gap (g4¢) [132, 133]. All possible mass terms of 4-component Dirac fermions
are enumerated by M*a, T# for u = 0, 1,2, 3. Only the sublattice CDW mass [17]
(M3 = ¢) is considered here. The other terms arise from bond order (c;cj) on the
honeycomb lattice. The Haldane quantum anomalous Hall mass M%a,T° [37] was
discussed in Chapter 3. Additionally, (M'a.T', M?a,T?) correspond to the mass
fields of the Kekulé valence bond solid phase (shown in Fig. 3.2(b)), which form an
XY order parameter [23, 24, 134].

4.2.4.2 Emergent Gauge Sector

In the low-energy A'? minimally couple as components of an emergent SU(2) non-

Abelian local gauge theory generated by 7¢. This is revealed by the local Lagrangian
Ly + Ly, =¥ [0, +ia - (vpd — igaA“TY)] ¥, (4.12)

with 8 = (0, d,). To avoid integrating over the emergent gauge redundancies, the
theory is gauge fixed in the Ry gauge by following the Fadeev-Popov procedure,
which is discussed in further detail in Appendix B.1. The result is the gauge fixed

Lagrangian of the critical low-energy theory is

1 1-
La= ). 54 (—5”(53 + 0% +m3) - Tfaiaj) A, (4.13)
which is invertible for all finite €. It is convenient to use the Feynman-’t Hooft gauge

¢ =1, where the Lagrangian is isotropic
1
Ly=3A- (—63 — 2%+ mf\) A, (4.14)

The universal behaviour should not depend on the choice of gauge.

The bosonic mass mi is finite from the lattice Hubbard-Stratonovich transfor-
mation with the bare mass (m%)o = 3/2V,. This implies that A" can have finite
order parameter expectation values [135-137], which is expected from the lattice

model where A are linear combinations of charge order parameters. This is in
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contrast to the standard Yang-Mills theory, where mi = 0 is enforced by a Ward

identity.

4.2.4.3 Bosonic Self-Interactions

From symmetry considerations, or alternatively by integrating out high energy

fermionic modes, one obtains the bosonic self-interaction
Ly = p0* + 1A% + 25007 A% + Aym(A' x A%, (4.15)

where A = VA% - A, The Yang-Mills term Ay reflects the underlying emergent

non-Abelian gauge structure.

4.2.4.4 Bosonic Cubic Terms and Particle-Hole Symmetry

In the low-energy theory there is the symmetry allowed cubic term bp(A! x A?).
This is because A! x A% preserves the emergent global chiral symmetry ¥ —
e"gTa‘P, under which A! — Al'cos® — AZsin® and A2 — A'sind + A% cosd.
Spatial rotational symmetry ¥ — %W is also preserved, under which A% —
Afcos @ — Afsin6 and AT — A¥sin6 + Af cos 6. Note the useful double-complex
representation G = G + jGz with G, = A{ + A7, in which spatial rotations are
implemented by ¢’ and chiral transformations are implemented by e/?. Yet, the
non-interacting theory is particle-hole symmetric, see Section 4.2.2, where as the
Yukawa terms in L,, Eq. (4.9), are all particle-hole odd CL,C™! = —L,. Therefore

the cubic terms are forbidden as all loop corrections vanish by symmetry
(P o, TP o, TYY o, T"F) — —(VT o, PP o T*PY o, TPP) = 0. (4.16)

This is in accordance with Furry’s theorem [9], which states that odd-legged fermion
loops that are odd under a discrete Z, symmetry of the non-interacting theory must
vanish.

Similarly, the reduced lattice symmetry group C¢ allows for the lattice cubic
term bIm[G; — 3G1G2], where G, = A{ + iA%. This term is not generated by

the Dirac fermion loops, as they possess the higher continuous spatial rotational
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symmetry, which is discrete on the lattice. One way to identify this term is using the
double complex representation. The cubic term is identified by first decomposing

G? into the real (R) and imaginary (I) parts in complex i and j
G = (GO)re + j(GO)R +i(GP)ri +ij(G ). (4.17)

Each of the four terms is individually invariant under primitive translations G —
/273G and C; rotations G — ¢/*/3G. However, only (G*);1 = Im[G3 — 3G3G,] is
invariant under reflections R, ,, in x and y planes. This can be checked by inspecting

Im[G; - 3G{Ga] = —6ALATA} + 3 [(A})* — (A))” + (AD?] A5 — (A}, (4.18)
where (A}C, A;, A)%, Ai) transform as (+,—,—,+) in R, and (-, +,—,+) and in R,.
Repeating this type of analysis the symmetry allowed lattice quartic term is found

#G? results in ¢ Re[G? - 3GlG%].

However, even if the particle-hole symmetry is relaxed, these analytic low-
energy and lattice cubic terms vanish at the fermionic critical point, which is an
example of fermion-induced quantum criticality [23]. These terms will be ne-
glected in the main renormalisation group analysis, but this topic is addressed in

Section 4.6.4.

Finally, an important clarification is in order, as it may appear that finite order
parameter expectation values are forbidden by this symmetry. This is of course
not the case. Instead it indicates that spontaneous symmetry breaking is a non-
perturbative effect, and that it requires expectation values to be self-consistently
calculated with respect to the broken symmetry state. This is achieved in Chapter’s 2
and 3 with the saddle-point expansion where the order parameter explicitly enters the
fermionic self-energy, and is equivalent to an infinite order resummation of diagrams.
This feature is present but somewhat hidden in the coupled renormalisation group

equations.
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4.3 Introduction to the Renormalisation Group

Relevant aspects of the renormalisation group are introduced. A more complete
description can be found in the following selection of textbooks and review arti-
cles [1, 5, 8,9, 138, 139]. Quantum (multi-)critical points are described by scale
invariant fixed points of the renormalisation group (RG) transformation k; = ke,
ki = koe*!. Here z is the dynamical exponent indicating discrepancies in the scaling
of space x’ = x~¢ and imaginary time 7/ = te~*’. This allows for a mapping of a
d-spatial dimensional quantum field theory to a d + z classical field theory. Then the
perturbative Wilson momentum shell scheme [6] can be used to identify universal

features of the action § = /T , L, with

L=Ly+Ls+Lp+Lg+L,. 4.19)

The Wilson momentum shell formulation of the renormalisation group is
essentially a three step procedure. (1) Integrate over the infinitesimal fraction
of “fast” modes in the momentum shell Ae™®’ < |k| < A (and all frequency
modes —co < ky < o0) corresponding to the highest energies. Here ¢¢ is used
to emphasise the transformation is infinitesimal. (2) Rescale the “slow” modes
k — ki = k;e%¢, such that the resulting theory has the same integration re-
gion as the original theory kae_M — ka. (3) Identify the set of renormalised
coupling constants x;({ + 6¢) = x;(€) + F;({x;(€)})6f, where F; are the set of
renormalisation corrections that depend on the couplings. In the current case
X = (gé, g%, Ags Aas Aym, Agas mé, mf\). Steps (1-3) are repeated in a self-consistent
manner until no new couplings x; are generated. This iterative procedure is encapsu-
lated by the set of renormalisation group equations (coupled differential equations,

or recursion relations)

d
2750 = F({x;(D}). (4.20)

The solutions of Eq. (4.20) define scale invariant fixed points (x;). in the
coupling parameter space. Scale invariance implies that there is no defining length

scale, as is the case at a critical point of a continuous phase transition where the
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correlation length diverges, & — oo. Fixed points can be characterised by the

linearised RG flow in their vicinity

d
%xi = Z Mij(xj - (Xj)*), (421)
J
with the stability matrix
0 d
= X 422
T T (422)

Negative eigenvalues of the stability matrix corresponds to eigendirections in the
parameter space whose couplings converge to their respective fixed point values
under the RG flow. These define irrelevant perturbations at the fixed point. In
contrast, positive eigenvalues correspond to eigendirections where the couplings
diverge from the fixed point values. These define relevant perturbations at the fixed

point.

A critical fixed point is defined by a single relevant eigenperturbation m?,

with 6, the single positive eigenvalue of M, and which corresponds to the tuning
parameter of the continuous phase transition m?> ~ |V — V.|. This is related to the

correlation length exponent v
E~V =V = e~ |m . (4.23)

In addition, the correlation length is identified as the characteristic scale & = e’
of the flow at which m2e?=2% = 1 [1]. Thus m? = §_9m2 and therefore 6, = 1/v.
However, in the current context, there are two tuning parameters Vi, V5 of the lattice

model, which defines a quantum multicritical point. These corresponds to the two

2

relevant perturbations of L which are the bosonic masses m sA"

The correlation length exponent v, the dynamical exponent z, and the anoma-
lous dimension 7 can be extracted from RG analysis of the critical fixed point.
Assuming that the system satisfies hyperscaling, the standard scaling relations ob-
tain the remaining critical exponents [140]. The Josephson hyperscaling relation

2 —a = v(d + z) gives the specific heat exponent C = —T&% f ~|T-T.% The
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Fisher scaling relation y = v(2 — n) gives the order parameter susceptibility expo-
nent y = 6}% f ~ (-m?)™7, where h is the symmetry breaking field conjugate to
the order parameter ¢o. The Rushbrooke scaling relation a + 25 + v = 2 gives the
order parameter critical exponent ¢o = 5 f ~ (—m?*)?. Finally, the Widom scaling

relation y = B(6 — 1) gives the field exponent ¢ ~ |n|/°.

4.3.1 Perturbative Renormalisation Group

In the following the renormalisation group equations of L will be obtained to one-
loop order, the (multi-)critical fixed points identified and their universal properties
analysed. The one-loop corrections are obtained to all one-particle irreducible
vertex functions. This procedure can be formulated with the cumulant expansion.

The action is split S = Sp + Sint into non-interacting Sy and interacting Siy; parts

So = /L\p + L¢, + Ly and Siy = /Lg +L,. (4.24)

Each field is split into slow (¥<, ¢<, A<) and fast (¥~, ¢~, A”) fields where, for
example, ¢ contains only the slow Fourier components 0 < |k| < Ae™®¢, whilst ¢~

contains the fast Fourier components Ae~%¢ < |k| < A. The cumulant expansion is

Z

/ D[\PT’ ¥, ¢, A]e—(SO"'Sim),

_ i - o
= / DY, ¥, ¢, Ale™ [ / D[T*,\P,qs,A]e-So] Z( ﬂ) ,
n!

i i< > n=0

» T -8 ] S Sint 8
=| | DY, ¥, ¢, Ale™ Z _2ime) )

n!

) 1< \n=0 >

[ ] oo _SL n\ 1PI, con
= /D[\PT’ \II’ ¢’ A]e—SO e Zn:I( n! ) >> . (4.25)

u <

Here (- --). represents functional averages with respect to the fast modes of the
non-interacting action, and therefore only fields over fast modes can be contracted.
In the last line the linked-cluster theorem has been used to replace the logarithm
over all possible diagrams with the sum over connected diagrams. In addition,

the diagrams considered are restricted to the one-particle irreducible (1PI) vertex
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functions, as these correspond to the renormalisation corrections to the bare action.
In the following it assumed that all contractions are restricted to this variety, and
the notation "1PI, con" will be suppressed. At one-loop order the contributions are

from

- Sint " 1 ! 1 1
- <Z (__) > =(S))s — E(S§)> - 5(Sﬁ)> + 8(S§)> - ﬂ<5g>> + O(two-loop).
- (4.26)

4.3.2 Tree-Level Scaling of ¢* Theory

Before obtaining the one-loop corrections, the zeroth order is analysed, which is
also known as tree-level scaling. This procedure is illustrated in detail for the

d-dimensional generalisation of the non-interacting ¢ action

1 ) A
So =5 [ dko / A’k (kg + c; |k |* + my)¢, (4.27)

where k = (ky, ..., kg) is the d-dimensional momentum vector. Integrating out the
high energy modes produces an unimportant multiplicative constant to the partition

function. What remains is the action of the slow modes
1 00 A€76€ )
(Sp)< = 3 / dkg / dkp(k + 5 |k |* + my)p. (4.28)
Enacting the rescaling transformation k; — k] = k;e®", ko — k|, = koe®*

1 ® ’ A ’ ’ ’
(Sp)< = 5 [ _dkg / Ak e T (k2P0 1 [P €+ mY)g.  (4.29)

The rescaling of the ¢ fields, ¢ — ¢’ = ¢e‘@5f, ensures that the frequency term

ko is scale invariant
L [= A d 2 2402 2(1-2)8C 2 2766
(S4)< 25[00 dk(’)/ Ak’ ¢ (k) + c k') 17 1m0y (4.30)

Clearly if z = 1 then ¢4 is dimensionless and an invariant of the flow, but the mass

term m:ﬁz(f +60) = mé({’)ezz‘% grows under the flow. The non-interacting (Gaussian)
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2
¢

2
¢

The role of dimensionality is important when considering interactions. This is

fixed point is situated at m’, = 0, and m;, is a relevant perturbation at the fixed point.

illustrated for the A4 term

/l¢/¢4 — /l¢e(d—3z)5€ /,(¢/)4’ 4.31)

and therefore /1;5(6 + 00) = /l¢(€)e(3z‘d)‘5[. Taking z = 1 at tree-level, such that the
non-interacting action is scale invariant, it is evident that A4 is relevant (grows) for
d < 3 atthe non-interacting fixed point, butis irrelevant for d > 3. Thisdefinesd = 3
as the upper-critical dimension of the Lagrangian Ly + A4 f ¢*, where Ay is scale
invariant. The implication is that interactions are important below the upper critical
dimension, and render the non-interacting fixed point at 44 = 0 unstable. Beyond
tree-level it is well understood that the system flows to the Wilson-Fisher fixed
point. Where as, above the upper critical dimension the non-interacting fixed point

is stable, and Landau mean-field theory exactly describes the universal behaviour.

The cumulant expansion truncated in the number of loops is an expansion
around the non-interacting fixed point - averages are all taken with respect to Sg.

Below the upper critical dimension Ay grows

d
iAo = (= d)s, (4.32)

and so this truncation cannot be controlled by assuming 14 < 1. Instead, analytic
control of quantum fluctuations can be obtained by expanding around the upper
critical dimension with the small parameter € = 3 —d. Here € allows for a systematic

expansion in the number of loops.

4.4 Scaling of L in d = 3 — € Spatial Dimensions

The scaling of the Lagrangian L = Ly + Ly + Ly + Lg + L, is presented. Under the

spacetime rescaling the fermion and boson fields rescale as

W(k') = W(k)e Grd-my (4.33)
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P(K) = pk)e Os+d=no% (4.34)
AY(K') = A%(k)e G0 (4.35)

where 7y 4 4 are the anomalous dimensions that account for the beyond tree-level
corrections to the field rescaling, and k = (ko, k) with the d-dimensional k. The

field rescalings impose scale invariance on the frequency components.

The non-interacting part of the action must be invariant under the spacetime

rescaling. At tree-level the velocities are invariant for z = 1

v — vpeE cé’A — qustEZ(z—l)rSf (4.36)

Criticality is accessed by tuning the relevant bosonic masses with scaling mé A

2 276€
$A°€

interacting fixed point for d < 3 spatial dimensions

m . The Yukawa and self-interactions are relevant perturbations at the non-

(82 4 Apapaym) — €SP (g2 Q44 saxm). 4.37)
&, o,

This motivates an € = 3 — d expansion. Further control is exerted by generalising to

a large number N of fermionic flavours

8mZA€
N

N
yhy Z Wi, (g5 Ap.agAYM) —

n=1

(85.4 A6.A.9AYM): (4.38)

which is known to favourably reorganise the perturbative expansion, and also enables
perturbative RG directly in d = 2 [141]. Physically, N could be a generalisation of

the number of spin flavours, which works well for charge ordering.

The dimensional continuation to d = 3 — € dimensions (for € > O or d < 3) is

best formulated with the anticommuting Dirac y matrices
Y0 = @I, y1 = iyow v2 = ivoy, v3 = T', 5 = T% 35 = ~iysys = T° (4.39)

with {y,, v»} = 20,0 for u,v = 0,1,2,3,5. The Lagrangian in continuous d < 3



4.5. Gross-Neveu-Yukawa Theory and CDW Criticality 85

spatial dimensions is

VN

A
- \/__1\7 (717314)16 + 72)’314; + 717514)% + 727’5145) ]‘P,,

4 %qﬁ (_(93 — c50:0; + mé) ¢+ %Aa : (—63 — 30,0, + mﬁ) A¢

N
= 8
L= § ¥, [31")’0 + VFai')/i + ¢~ ¢
n=1

1
ts [A60" + A4A* + 2pad” A% + Aym(A' x A%)?], (4.40)

where ¥ = ‘I’J'yo and the repeated summationoveri = 1, ..., d, suchthattry;y; = 4d.
Also N = N/87%A¢ is defined for brevity. Here and in the following the identity
matrix ag is implicit ¥¥ = Wao¥. Finally, the corresponding propagators are

i(koyo + vrkiyi) 1

and Gg a(ko, k) =
k2 +v2 k| k§+c§’A|k|2+m

Gy(ko, k) = (4.41)

2
A

4.5 Gross-Neveu-Yukawa Theory and CDW Critical-
ity

In this and the following sections it will be demonstrated that the Yukawa couplings

84,4 between Dirac fermions and dynamical order parameter bosons are relevant

perturbations at the putative Wilson-Fisher fixed points ({4;} # {0}, gsa = 0),

owing to the gapless nature of the fermion excitations. At the ensuing fermionic

critical fixed points ({4;, g4,4} # {0}) both the boson 774 4 and fermion 7y anomalous

dimensions are finite, which indicates the breakdown of the quasiparticle picture and

the onset of a non-Fermi liquid.

However, the coupling to a particular fluctuating order parameter field can
be rendered irrelevant if the related bosonic mass is tuned far from critical [22,
29]. In this case the bosonic field can be integrated out and the corresponding
fermion-fermion interaction, V ~ O(g?/m?), will be vanishingly small. This is now

schematically demonstrated for the scenario m% > (m?). and mé = (mé)*. With no

2

loss of generality, in the following the linear shift m 5.4

- m5, - (mé’A)* is made

2
A
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such that (mé’ )« = 0 by definition. Then in the large m? limit,

m3
SA+SgA+S/1:/7

2 2
my ny

2 2 . \? 2
g5 - m i A 0
:/—mf; Py + (A+—g§) +0(—2,—2) . (442)

A my nmy nry

. 2
28agawrali- 2 atol L
m;

where in the second line the square has been completed and the A fields can be
integrated out. The result is the Gross-Neveu model [22] with a vanishing four-
fermion interaction gf\ / mi‘i"l"i"{’. This corresponds to V; = (V1) and V, < (V2),
of the lattice model, where the system undergoes a continuous phase transition into

the sublattice CDW phase with (¢) # 0.

The criticality is described by the the Gross-Neveu-Yukawa theory

VN
1 a2 294 2 Ag 4
+5¢( 92 c¢8,(91+m¢)¢+ﬁ¢, (4.43)

N
— 8
Lgny = g ¥, (3770 + VEOy; + —¢~ ¢) ¥,
n=1

which more generally describes Dirac fermions coupled to a dynamical Ising order
parameter field, and has a non-trivial GNY or chiral Ising fermionic quantum critical
fixed point, outside of the GLW paradigm. Here the one-loop RG equations of the
GNY theory are calculated in detail, and the scaling properties of the fermionic
critical point are discussed. Following this, the full set of RG equations for L

defined in Eq. (4.40) are presented.

4.5.1 One-Loop Corrections

The one-loop corrections to the bare action
Sy = iy + (Si)s = S(SE ) — (ST ) + (S ) — (ST ), (444)
GNY ~ PGNY Ap7> 7 5 \Wgp/> T 5\, /> T g\ 1> T 5 4 gy /> :

amount to calculating the diagrams displayed in Fig. 4.4. The fields are split into

slow and fast modes ¥ = W< + ¥, ¢ = ¢< + ¢, and the fast modes are integrated
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(a) I (b) A ©Z (d)E )T, () Ty

Figure 4.4: One-loop Feynman diagrams used to calculate the renormalisation group equa-
tions. Internal lines are contractions over fast modes. External lines are slow
modes. The fermion propagator is denoted by the arrowed line. The boson
propagators are denoted by the wavy line.

out.

4.5.1.1 Renormalisation to the Dynamical Order Parameter Field Sy

The renormalisation to the ¢ propagator comes from contractions with two remaining

external slow ¢ legs

Ac PR |
¢ = S¢ - §<S§¢,>> + <S/l¢>>,
< 1 < < N 1 <
= S¢ + E./k 10 (—k)[ﬁl_[(k) + NA]¢ (k). (4.45)

Here the factors of N have been extracted from the fermion loop diagrams Fig. 4.4(a)
and 4.4(e), as well as the gé /N, Ag/N terms. This fermionic N is shown explicitly

for the fermion polarisation bubble/boson self-energy I1, shown in Fig. 4.4(a),

5 gé > <
_<Sg¢>> = __~/ / Oky—ky—k3 Oky—ks—ke ¥
N Jiy ko, kaks J ks ke
N

DT (k)Y (ko)™ (k3) P (ka) P, (ks) = (Ke)

n,m=1
g?p > <
== Oky—ky—k3 Oky—ks—ke X
N Jkikakaks J ks ke
N - —_—
Z (P, (ks)P, (k1))s (¥, (ko)W (ka))s ¢~ (k3)p=(ke),
n,m=1
gé > <
= = 6k1—k2_k36k4—k5_kﬁx
N Jkykokaks J ks ke
N
D Sy —ksOkr-kyr Gk )G (k)¢ (k3)p™(ke),  (4.46)

n,m=1
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where (¥,¥,,) = Gy, as the propagator is diagonal in the fermion flavour. It is
clear that an additional factor of N is obtained. In general, the loop contraction of
M Yukawa vertices, constrains M — 1 of the flavour sums, and the final free sum

produces the factor of N

<\Pn1 ‘i’ﬂz > <an2 \Pn3 > e <lPI’lM \i’nl >’

M=

1

—= i
M= 5

3

1l

—_

S

3

i
e e

3
I

M
) 67117126”2}13 e 6nMn1tr G\p»
1

1n,

trGY = -Ntr Gy (4.47)

Mz

1

=
I

Then the bubble is

>
M(q) = $7°A%g? / G (k + )G (k)

A 2/ dko [ d'k (ko + qo)ko + vi(k + q) - k ’
Qm)? [(ko + qo)* + v |k + qI*1[k2 + v2 |k|’]

= Hoqo + C¢H ql + 11 m2> (4.48)

where the identity try;y; = 46;; is used. In the final line the expansion to quadratic

(relevant) order in ¢g is made, such that

327Ag, VF |k|?
My = / dko / d k| k|
@ renst <k2 kP

2
3 — 850, (4.49)
F

v2 327‘1’1\6 k|“(1-
— F / dk()/ dlk'lk'dl (k2 | | ( )’
Ae=9¢

¢y (47T)d/2F(d/2) vz k| 2)3
2
= ——g;00, (4.50)
VFC¢
327Ag? 00 A 1
M,=-——— ¢ dkO/ dlk| k| ——
o (4miPT(A[2) oo Snera K2+ 02 [k

= ——gj,éf (4.51)
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Here the expansion to leading order in ¢ < 1 and € = 3 —d is made. The k integral

is radially symmetric, in which case

2
/ dkkik; f(|k|) = 6 / ddk%mkl), (4.52)
> dk g1 2
Qr)d /Ae_agdlk [kl (4m)421(d)2)" (4.53)

Here f(|k|) is an isotropic function of k, and 27%/2/T'(d/2) is the surface area of
a d-dimensional sphere. The identity k;k; — ¢;; |k|? /d is obvious, but can be
determined systematically by conjecturing that k;k; = 6;; |k|? x based on symme-
try, where x is unknown. Then acting with 6;; on both sides 6;;k;k; = d |k|2x
implying x = 1/d. This systematic approach is useful for dealing with higher order

numerators, for example

é‘abécd + 6a65bd + 5ad6bc
d(d +2)

/ dkkakpkoka FOK]) = / d'k K KD, (@54

The ¢’s in the numerator can be conjectured by symmetry, and following this the

d(d + 2) factor is found by acting on both sides with ¢;;0x;.

The tadpole diagram, shown in Fig. 4.4(b), is

>
A = 167°A A /k Gy(k)

>
1
:16712AE/1/
¢ k k%+cé|k|2+m2

[
2
= 167‘(21\6/1(;3 /> > 12 D) m; 2 +O(mg)
¢ RGP (R + k)
2 2.2 2
-5 (2A c2 - m¢) Ag0L. (4.55)
¢

Note the combinatorial factor of 2. The linear shift of mé such that (mé)* =0

amounts to neglecting the constant (mé independent) contribution to Hmé and A.
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4.5.1.2 Renormalisation to the Dirac Fermions Sy

The renormalisation to the W propagator comes from contractions with the remaining

external slow PV legs
o< _ ¢< 1 2
S\y - Sly - §<Sg¢>>,

N
1 <<
=8y +— P=(k)Z(k)¥=(k). 4.56
T+Nn§:1/k (k)Z (k) ¥ (k) (4:56)
The fermion self-energy X, shown in Fig. 4.4(c), is

>
2q) =820 [ Golk + )Gl
k
= i(Zokoyo + vrZikiyi), 4.57)
2
kO

(k3 + 3 k| ?2(k2 + v2 [k )

>
% = —167°Ag; /k

2
= ——=g;0¢, 4.58
colcy + vi)? 8¢ (4.58)
> AL
3 = —167°Acg> / ¢ :
P (R + KPR +vE 1K)
2(vp +2
oo Art20 g, (4.59)
3vpcg(cy + Vi)?
Note the combinatorial factor of 2. Here and in the proceeding calculations mé =

(mé)* = 0 such that the theory is tuned to the critical hypersurface. This is justified
when analysing the critical fixed points. However, to analyse the RG flow into the
broken symmetry state mé corrections to all parameters would need to be accounted

for, but this is not done here.

4.5.1.3 Renormalisation to the Fermion-Boson Yukawa Vertex S, o

The renormalisation to the Yukawa vertex comes from contractions with the remain-

ing external slow PW¢ legs

w1 1
< _ < 3
N (5g¢ * g<5g¢>>)’

-
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_ (s< +_Z / \pnuwn), (4.60)

where the action has been represented in r = (7, r) space where it is local. The

Yukawa vertex correction =, shown in Fig. 4.4(d), is

>
== 8% [ GubGHDGK)
k

>
1
:—8712A6g / ,
? Ji (k2 + 2 |k |2k +v2 |k |?)

2 3
= S¢, (4.61)
VFC¢(VF + C¢) ¢

where k;yikjy; = k? is used. Note the combinatorial factor of 6.

4.5.1.4 Renormalisation to the Order Parameter Boson Self-

Interaction S, o

The renormalisation to the bosonic self-interaction vertex comes from contractions

with four remaining external slow ¢ legs

loe 1o 1, 1,
ﬁSM - ﬁ [S/l¢ - E(S/1¢>> - ﬁ(sg¢>> )
1 <(1 N
== [Sj¢ + / (NI“M + Nrgd,) ¢4] : (4.62)
r

The self-interaction vertex correction I’y s from the self-interaction, shown in

Fig. 4.4(e), is

>
Iy, = 2887°A°A; /k Gy(k)Gy(k),
_ 36

C

/125{’ (4.63)
¢

Note the combinatorial factor of 2 (;) (g) = 72. The self-interaction vertex correction

I, from the fermion loop, shown in Fig. 4.4(f), is

>
I = 850 [ 0 Gu(bGH(0G(0G (k)
k
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= gg(%’. (4.64)

Note the combinatorial factor of 6. The integration was simplified using the radial
integration identity discussed above

é‘ab5cd + 5ac5bd + 5ad5bc 4
kokpk k k|", 4.65
akbKeKd — d(d " 2) | | ( )

as well as the trace identity

CYaYbYeYa = 4((5ab5cd = OacOpd + 5ad6bd), (466)
which follows from the anticommuting properties of y. In combination

tr (koyo + vikiyi)* — 4(k% + v |k|H)?. (4.67)
4.5.2 Gross-Neveu-Yukawa Renormalisation Group Equations

Enacting the final step in the RG procedure <. — Sony, the one-loop renor-

GNY

malised couplings are obtained

. - z
ST:/quf{[l—nT5€+N°

§¢:%/k¢{[1—n¢5€+ﬂo] kg +cy [1+ (22-2-ny) 60+ ;| k7

Z.
koyo + v 1+(z—1—nxy)6€+ﬁl

ki%’} Y,

(4.68)

+ [1+ (22— ng) 6] mj + M,z + %} b, (4.69)

A 1 1
Sg‘ﬁ:ﬁ{g(ﬁ 1+§(3Z—3+6—277\{J—T]¢)5€

§, = Ll s (323 o) 6€] + % 4T 4 471
=5 ¢[+(Z— +e- "¢)5]+W+ 2 ¢ 4.71)

+ N} / Py, (4.70)
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Following the tree-level procedure, the field rescalings (including anomalous di-

mensions 74 y) ensure the frequency terms are scale invariant

1 3o o
vl 4.72
™ENSe T 50 (472)
The velocity RG equations are
d 1% 1% -2
—VF = -1- —— -1+ = , 4.73
ac’t =" (Z T N&’) vE (Z TN ot ) (+73)
d 2 2 H 2 Hi - H()
ﬁcdjchﬁ (22 2 — n¢+5€) :C¢ (22—24-7). (474)

These are solved for z = 1 and ¢y = vp, as Z;—Zo o« (vp—cy) and I1; =TIy o< (vp—cgp).
This indicates that the putative critical fixed point is Lorentz invariant, with isotropic
space-time scaling indicated by the dynamical exponent z = 1, and a single velocity

scale set by vg. Units of the Fermi velocity are now used, vp = ¢4 = 1.

The RG equation for the Yukawa coupling is

d
780 = 84(€ =1y = 2nw) +

3
— 52 2
—g¢[e—(2+ﬁ)g¢

This indicates the existence of a non-trivial fixed point at (gi)* =€e/2+ %), which

(4.75)

. =
& m

is perturbatively controlled in € and N. The RG equation for the self-interaction is

d 1 F/1¢ ngs
Ly = Agle—21g) + ——2 4 52,
qt = Aol€ = 2m0) T gty
36
= A (€ —43) - T4 + g5 (4.76)

4.5.3 Wilson-Fisher and Gross-Neveu-Yukawa Fixed points

In the physical regime A4 > O there are two fixed points, which are shown
schematically in Fig. 4.5. The Wilson-Fisher (WF) fixed point, where the
fermions are decoupled (gé)* = 0, is located at (1g). = €N/36 (note that this is
(dg)+ = €/36 in the original A4). Along with this there is the GNY fixed point at
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(a) (b)
N
g gi‘ " =0

'y T \ /

0—e :’J' — GNY
R VO M

G WF /l¢

Figure 4.5: Schematic renormalisation group flow diagrams for d < 3 spatial dimensions.
The (renormalised) bosonic order parameter mass mé tunes to the critical sur-
face at (mi)* = 0, and is the relevant perturbation at the critical fixed points.
mé < 0 is the broken symmetry region. The boson self-interaction A4 and
fermion-boson Yukawa interaction g4 are relevant perturbations at the non-
interacting Gaussian (G) fixed point for d < 3. (a) The purely bosonic Wilson-
Fisher (WF) diagram where the fermions are (artificially) decoupled g4 = 0.
(b) The fermionic criticality diagram, where the coupling to the fermions is a
relevant perturbation at the WF fixed point, and the flow is to the Gross-Neveu-
Yukawa (GNY) fixed point. Negative A4 corresponds to an unbounded action
and is unphysical. Figure (b) is adapted from Ref. [20].

(Ag)+ = €(1 - %) /4. The RG flow in the region of the WF fixed point can be analysed

with the stability matrix, which is obtained by linearising around the fixed point,

(83 A9) = ((g3)« + 685 (Ag)s + 529),

d 6gé _ (€ —-Ne/9 5g35 . @77)
dt\sa,) \o —e J\6a,
The positive eigenvalue € of the stability matrix indicates the Yukawa coupling to
the Dirac fermions is a relevant perturbation at the WF fixed point and cannot be
neglected, see Fig. 4.5(b). Hence, this is a simple example where the presence of
gapless fermionic excitations change the universal nature of the criticality from the

paradigmatic GLW ¢* theory. Instead, the system will flow to the GNY fixed point

about which g4 and A4 are irrelevant perturbations

2 2
i 084 [ 15¢/2N 5g¢ . 4.78)
dt\sa, 0 —e—15¢/NJ\64,
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This identifies the GNY point as a quantum critical fixed point, that is tuned to by

the relevant perturbation >

¢

d , , A
L2 = (27— + =
e = 22— me) my +

= 2(1 — g; + 644/ N)mj,

= (2 - € — 3¢/2N)m}. (4.79)

As discussed earlier, this single positive eigenvalue of the stability matrix defines
the correlation length exponent v~! = 2 — e —3¢/2N. In the context of the sublattice
CDW it is clear to identify mé ~ (V1) — Vi, and therefore & ~ |m§5|_y. The finite

anomalous dimensions are
ny = €/4N, ny = €(1 = 3/2N), (4.80)

which indicate the breakdown of the fermion and boson quasiparticle pictures at the
fermionic quantum critical point.

In two spatial dimensions € = 1 and the large N limit v = 1, gy = 1, and
ny = 0. From these exponents, the order parameter exponent S = 1 is obtained
from the standard scaling relations & + 25 + ¥ = 2 (Rushbrooke), y = (2 — n4)v
(Fisher) by assuming hyperscaling @ = 2 — v(z + d), which typically holds below the
upper-critical dimension. Therefore, this limit is in good agreement with the Dirac
fermion mean-field discussed in Section 2.3.3.

This chiral Ising GNY model has been studied using a number of sophis-
ticated techniques [130, 131] (and references therein) including: four-loop per-
turbative RG, non-perturbative functional RG, conformal bootstrap and quantum
Monte Carlo. State of the art results for the spinful (N = 2) model using
field theoretic methods [131, 142—-144] agree rather well: 1/v =~ 0.88 — 0.99,
ng ~ 0.69—0.77 and ny =~ 0.02 —0.08. The disparity to Monte Carlo [145] is larger
(1/v,ng,nw) = (1.2,0.62,0.38), which could be due to corrections to scaling when
comparing the lattice to field theories [131]. There are similarly extensive studies

of the chiral XY (relevant to Kekulé criticality) and chiral Heisenberg (relevant to
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antiferromagnetic criticality) GNY models [131].

4.5.3.1 Equivalence to the Gross-Neveu Model

It is noteworthy that there is good agreement at € = 1 between the four-loop 3+ 1 —¢€
expansion [131] of the GNY model and the four-loop 1 + 1 + € expansion [143] of

the original Gross-Neveu model (vp = 1)
- V - ’
Lon = P07, ¥ + 5 (P¥). (4.81)

The former is an expansion around the upper critical dimension, while the latter is
an expansion around the lower critical dimension. That both models describe the
same critical point was first conjectured some time ago by Zinn-Justin [22]. This
was based on a comparison of the the one-loop RG equations in large N, which for
Eq. (4.81)is

d
V=V V2/n. (4.82)

In the Gross-Neveu model the fermionic interaction is an irrelevant perturbation at
weak coupling, and will flow to the Gaussian fixed point of the the Dirac semimetal.
The phase transition occurs at the non-trivial critical fixed point (V). = me, and for
V > (V). the system flows to the strong coupling broken symmetry state. Finally, by
integrating out ¢ from the GNY model in the region of the GNY fixed point (where
Ay is irrelevant), the equivalence V ~ gé /mgS can be seen [22]. This was already

evident from integrating out A in Eq. (4.42).

4.5.4 Correlations Functions and Scaling at Criticality

This discussion loosely follows chapters 4 and 7 of the textbook by Sachdev [1]. The

breakdown of the quasiparticle picture can be seen from the correlation functions [20]

wWYo + ivrkiy;

+1-7
W2k —w?) T

1
2z-n¢ °
(kP -0 T

(P(w, k) ¥(w, k) ~

, (4.83)

(0" (W, k)p(w, k)y ~ (4.84)
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where w = —ikg is the real frequency, following a Wick rotation from imaginary
to real time. The key feature is the absence of the well defined quasiparticle
excitations, which are otherwise seen from the pole structure away from criticality
where ny ¢ = 0. In contrast, at criticality this is replaced by a dissipative continuum
of excitations where ny 4 > 0. This is indicated by the branch cuts of ~ (k? — w?)™

for non-integer n [1].

The scaling of the correlation functions follows directly from the scaling of the

fields, for example
(PR (K) = (PRF(R))e M = (PRY () ~ k™75 (4.85)

More generally, the scaling in terms of the correlation length ¢ = (9 (the charac-

teristic length scale) is

(P(w, k)¥(w, k)) = E7M Fy, (e, kE), (4.86)

(97 (, k)p(w, k)) = E777 Fyo(WE, kE), (4.87)

where Fy 4. are universal scaling functions above and below the critical point. Note

that £7¢ is the scale of the energy gap.

In addition, the quasiparticle residues vanish as power laws in the vicinity of
the critical point

Zy ~ (mg)"™, Zy ~ (my)"", (4.88)

where the residues are extracted from the scaling of the spectral density (the imag-
inary part of the correlation function). For example, the non-interacting bosonic

spectral density is

1
Im{¢'¢) ~ lim Im )
-0 2 k|? - (w - i6)?
Z
2C¢ |k|

~

[0(cy |k| — w) = (cy |k| + w)], (4.89)

with the non-interacting bosonic residue Zs = 1. The imaginary part is extracted



4.6. Criticality of Lattice Symmetry Breaking Charge Order 98

with the Dirac identity trick limy_o+ Im(x — i0)~! = nd(x), and partial fractions.
The comparison of Eq. (4.89) and Eq. (4.87) implies Zs ~ €. Then, Eq. (4.88)

follows from & ~ (mé)“’.

4.6 Criticality of Lattice Symmetry Breaking Charge
Order

Renormalisation group analysis of the full theory Eq. (4.40) with ¢ and A fields
is now presented. The methodology is simply an extension of the Gross-Neveu-
Yukawa theory. The renormalisation group equations are obtained to one-loop order

using the € = 3 — d and large N expansions in the Wilson momentum shell scheme.

4.6.1 Lattice Cutoff and Ward-Takahashi Identities

Here it is demonstrated, using the Ward-Takahashi identity, that the emergent gauge
invariance implies the A bosonic mass mf‘ = 0 in the low-energy theory. The
argument follows Ref. [137]. The conserved Noether currents ji* of the infinitesimal

global chiral/gauge transformations ¥ — ¢/*7“W = ¥ + jg¢T*¥ are [146]

a:a oL

i = gy T = e T, (4.90)
]

where there is no summation over a. The associated Ward-Takahashi identity asserts
that the insertion 0;j into any correlation function vanishes (up to contact terms)
0 ji'j ]’.’ ceej ,{ j§ > = 0. The Ward-Takahashi identity for the two current correlator is
0 ji'j J’? > = 0, where the two current correlators are precisely the A?Aj? self energies
Hlf‘jb . At one-loop Hl.“jb =0; j(k(z) +k%+ mi) — kikj, prior to gauge fixing. The identity
a,-niajb = 0 implies, for example, k,T1¢2+ k,I192 = 0, or ko (k3 +kj+m3) = ky(kyky),
see Eq. (4.13). By dividing both sides by k,, it can therefore be seen that the mass
term is forbidden, limy, 0,40 mf‘ = 0. This is expected to hold to infinite order for
the low-energy theory. Note that this argument is trivial in the Feynman-’t Hooft
gauge where I;;,; = 0.

The hard-cutoff A scheme breaks the emergent gauge invariance of the low-

energy theory. The fermion bubble and tadpole diagrams generate constant correc-
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tions of O(A2~¢) to the bosonic mass mi, and so (mi)* is finite at the non-trivial fixed
point. In doing so, the Ward-Takahashi identity is violated. This is ultimately related
to the fact that the gauge structure is an emergent property of the continuum low-
energy field theory and not present on the lattice. In fact the lattice already breaks
the gauge invariance by generating a constant correction ~ (V; —2V5)¢? + V> A? at the
level of the lattice Hubbard-Stratonovich transformation, see Eq. (4.10). What this
means is that the A fields can have finite expectation values from tuning the lattice
interactions past the critical point into the broken symmetry state [135, 136]. It is
natural that the cutoff has this effect, as it is related to the inverse lattice constant

A~ 1/a.

Apart from the constant corrections discussed, a consistent set of RG equations
are obtained using the gauge invariant minimal subtraction scheme [9]. More so,
regardless of these subtleties the coupling /1¢A¢2A2 in Eq. (4.15) implies that the
condensation of the mass field ¢ will dynamically generate a finite expectation value
for the emergent gauge fields, which is reminiscent of a Higgs mechanism. In any

case, in the following the mass terms are shifted such that (m7 ,). = 0, and the

2
5.4)
constant corrections suppressed in the RG equations, as was enacted in the GNY

theory.

4.6.2 Renormalisation Group Equations

The RG equations for the velocities are

2 (o _ >
d 4 | 8, \Cp—VF 285V
Zvp=(z- v+ — o\co=ve) 2w : (4.91)
dt N \3cy(cp+vr)2  calca+vi)?

2(4,2 2
d , 2 28,0k —¢,)
%cq& =2(z - Dey + —v?, , (4.92)
d 402 (v2 — 2
L =2(z- 1) + 4ealr — i) (4.93)

dt v;
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Here the anomalous dimensions 17y 4 4 are determined by the scale invariance of the

0. terms. The RG equations for the Yukawa couplings are

d , S| 285 4 [ 85(co+2vr)  4g2 (ca+2vp)
2786 = 8 €+3(Z—1)——3—N >+ AIE
V3 covr (co +vi) 2 cavi(ca+vr)
(4.94)
d ) ) 4gi 4 2g§S (C¢ + 2\/1:) 4gi ]
2784 = 84 e+3(z-1)- 3TN 5 11 -
i vy 3cyvr (cy + vF) calca+vr) |
(4.95)
The RG equations for the boson order parameter field self-interactions are
2 4 2 2
d 4g¢ g8 4 9/l¢ /lqu
— A=A |le+3z-1)-— |+ —-—=|—+—|, 4.96
d 8¢2\ 4 (1222 A2, A, aa
ﬁ/lA:/lA(e+3(z—l)—i?)——( A M 08 TATM | (4.97)
3ve ] N\ ¢ 4ey  4cy cy
d 823\ 8gi 4 (245 12141
2 = A (6+3(z— 1) - gg‘) b 2T, DA g 08)
4 ] 3vi NI\ c cy
d 4g%  2g;\ 4gis;
%/1¢A:/1¢A(€+3(Z—1)—i?——3¢ + A3¢
v vy Ve
4 4/155,4 3Agdgpa  6dadga  AymAga
- — + Tt T+ 3 . (4.99)
N \cacy (ca +cyp) ¢, c 2c,
The RG equations for the boson order parameter field masses are
d g5 124 844
2 2 ¢ ¢ 297%¢
—ms =m - |- , 4.100
dae? Y ( v Ncg ) A Nc3 ( )
d , 483 2(1224 + Aym)| 5244
—my =my 2z - - -m . 4.101
e A ( 3v3 Ne3 “Nc; 19D

The RG equations are solved to O(1/N) to leading order in € as follows. First, z is
chosen to make vy scale invariant by solving Eq. (4.91). Then, the fixed points of
the boson velocities and Yukawa couplings are obtained simultaneously by solving

Eqgs. (4.92-4.95). The boson self-interaction fixed points are then obtained by
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solving Egs. (4.96-4.99).

The RG flow in the vicinity of the multicritical fixed point (mi A« = 0is
determined by linearisation in the couplings x; = (gé, gi, Ag, Ap, Aym, Aga, mé, mi).
At the putative continuous phase transition, the two relevant (positive) eigenvalues of

the stability matrix Eq. (4.22) are the inverse correlation length exponents vl‘; =y~

4.6.3 CDW; Multicritical Fixed Point

The CDW;3 fixed point is at mfb = (mé)* and mﬁ = (mi)*. At this multicritical fixed

point the Yukawa couplings take the values
(85)« =26 (1-6/N), (g4)2 = 3€ (1 + 1/2N) (4.102)

The resulting critical exponents are collected in Tab. 4.1, and are contrasted with the
GNY universality. In addition, there is good agreement from analysis of the CDW3
fixed point directly in the physical spatial dimension d = 2, which is perturbatively
controlled by large N (RG equations in Appendix B.2). The spontaneous lattice
symmetry breaking (finite g4) results in the violation of Lorentz invariance with
z=1+(g%):/2N = 1+ 3€/2N and cg4a = vp(l + 3/2N). This is in contrast
to the emergent Lorentz invariance of GNY fixed points with z = 1 and ¢y = vr
to all orders in N. It is important to highlight that divergent anisotropic velocity
renormalisation, preempting a fixed point, is encountered if the independent spatial
rotational symmetries of A! or A? are artificially broken.

In N — oo the correlation length exponents decouple to vip = v4 = vy = 1.
By assuming hyperscaling, the scaling laws can be used to obtain the rest of the
critical exponents, as was discussed at the GNY fixed point. The finite anomalous

dimensions indicate the breakdown of the quasiparticle picture at the critical point.

4.6.4 Cubic Terms and Fermion-Induced Criticality

The RG analysis indicates the existence of a continuous quantum phase transition.
However, relaxing particle-hole symmetry the reduced lattice symmetry group C¢
allows for the cubic term bIm[G; — 3G1G], where G, = A% + iA{. If this is finite,

the Landau cubic criterion would imply a first order transition of the Landau free
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Exponent | GNY (d =3—-¢€¢) | CDW3(d =3 -¢) CDW; (d =2)
-1 0 3e 56v2-75
2N N
ny - Z_e 54N2-72
N N N
ns e(1-5) e(1-%) | 4 24245
1 64V2-87
na € (1 + m) 1 4 287
7 _ Vl—l e(1=3/2N) e (1 + 112/\/%) 1+ 84—65\/§+\/Nl307—714\/§
7 _ V2—1 6 (1 + 112/\’%) 1+ 84—65\5—\/]\[1307—714\/5

Table 4.1: One-loop critical exponents at the GNY/Chiral Ising and CDW3 fixed points
to O(1/N?). The GNY fixed point describes the quantum critical point of the
semimetal-insulator transition into the sublattice CDW phase on the honeycomb
lattice. The CDW3 fixed point describes a new fixed point of interacting Dirac
fermions where lattice symmetries are spontaneously broken. For the CDW3
fixed point there is good agreement between the € = 3 — d expansion and the
direct evaluation in the physical dimension d =2 as N — 0.

energy fi, ~ m>—(b—b.)m> +m*. Naive tree-level scaling [b] = (5z—d)/2 suggests
that this is indeed the case. Yet, the large anomalous dimensions 174 o gf‘ render the
cubic term irrelevant at the d = 2 CDW3 critical point. Therefore the coupling to

gapless Dirac fermions induces a continuous transition [23].

To demonstrate this it is sufficient to calculate the leading order RG equation

47 12
inZbZ €+57— _ﬁ__ 3&+/1Y—M +O(b4), (4.103)
de v?, N ci cz

2A€ . . .
where the dimensionless coupling is b> — %bz. This required calculating the
contractions of (S,S,)- with three slow bosonic legs. Crucially, lattice terms are no
directly renormalised by the Dirac fermions because of the higher continuous spatial

rotational symmetry. At the CDW3 fixed point Eq. (4.103) reduces to

24
ib2:2b2[1—e——6
N

4
7 +O(bY). (4.104)

Therefore, to this order b is an irrelevant perturbation for € = 1 (d = 2), and the
fixed point value is (b), = 0. In N — oo, b is marginal to all loop orders [24].

Similar behaviour was found for the Potts clock term y° + y** ~ | x|* cos(3¢) for of
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complex Kekulé XY order parameter y coupled to Dirac fermions in d < 3 spatial
dimensions [23]. This highlights that fermion-induced critical points are inherently

different from Wilson-Fisher fixed points of conventional order-parameter theories.

Finally, notice that the same discussion applies to the low-energy bp(A! x A?)

term with the leading order RG equation

2 2
i]p:[;z e+51_3_8gA+6g¢_i 4/1A+3/1YM+ 8494
dt 3\% N Ci Ci cocalcp +ca) ||’
= 59

4.7 CDW; Broken Symmetry State

To analyse the nature of the CDW3 broken symmetry state, the free energy density
f(¢, A, A%) must be minimised. Infinitesimally close to the multi-critical point,
f is obtained from integrating over the fermions for static order parameter fields
with finite expectation values [141]. Although the criticality is universal, the broken
symmetry state is not. Instead it depends on the lattice model and the concomitant
path taken through the critical surface (04, 64) = 6(cos 6, sin ) with 645 4 = (mfb’ A~
m -

The analysis proceeds directly in d = 2 and is controlled with large N. In the
region of the critical surface it is assumed that the couplings are well approximated
by their fixed point values (mé’ s = 4A2, (gé)* = 4nA/N, (gf\)* = 2(g£)*, and

vr = 1. Integrating over the fermions obtains the Landau free energy density

00 A 2
f= —N/ dko d kz In det (—iko +a-k+ (80)- pa.T? + @a - AT
—eo 2T (2n) VN VN
2 2
m m
+ 7¢¢2 + TAAZ TIPS (4.106)

Here - - - indicate higher order terms that includes those depending on the lattice
model. The free energy is minimised for A' x A% = 0, as otherwise particle-hole

symmetry is broken, which is energetically unfavourable. Evaluating the frequency
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and momentum integrals by standard means

f(g Ay =292 - A2, u(gA)*(génA«zsz +oe, (4.107)
2 dr
- f(p,x) = 0 ((x —1)%cos 6 + 2(x + 2)* sin 6) 0°
4
% (= 12(x +2)(g)-(82)-Ap” + (4.108)
" 33n

To make connection to the lattice model the second line uses the CDW3 repre-

sentation

4p + 2A
V3

é=2/3(p—-A), (A, A?) = (CaCg, CaSp, SaCys SaSy), (4.109)

with C, = cosa, S, = sina, and parameterised A = xp for 1 > x > 0 and
(0¢,04) = 6(cos@,sin@). This representation is necessary for Vo > V; on the
honeycomb lattice, where unconstrained charge order has an ill-defined Hubbard-
Stratonovich transformation at tree-level. This is evident from the bare Hubbard-
Stratonovich bosonic mass Eq. (4.10) Lys = \/%(g¢)o¢2+\/§(gA)0A2, with (gg)o =
M(Vl —2V,) and (ga)o = V3/2V5. Therefore, it is expedient to constrain the
order parameter space to the physically valid CDW3 region. Numerical simulations
and semiclassical analysis [83] have identified the lattice ground state manifold
is restricted to 8 = vy and (a,B) = 2?”(n, m) for integers n,m = 0,1,2. Here
a encodes translations and S rotations, which together enumerate the 9 possible
charge configurations, displayed in Fig. 3.6. Naturally, the number of patterns is

doubled with charge inversion (p, A < 0).
The continuum free energy is independent of a, 8, where A' x A? = 0 enforces

B =1v. Solving for &£ a = 0 obtains the (partially) minimised free energy

472 (2(x +2)*sin @ + (x — 1) cos 6)3 53
(gA)*(gé)*27(7r —4)2(x = DHx +2)?

fulx) =— (4.110)

In general, the higher order, non-universal terms will select the minimizing value

of x or A (subject to constraints), for a given path 8 through the critical surface.
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Figure 4.6: Topological phase transition between the Dirac semimetal (¢ < A) and band
insulator (¢ > A), tuned by complementary mass ¢ and non-Abelian gauge A
fields. The topological critical point (¢ = A) hosts anisotropic excitations with
orthogonal relativistic and non-relativistic directions.

It is possible however to obtain the ground state in the limiting cases by assuming
generic bounding quartic terms. For § — x/27 it is found that A/p — 17 and
¢ — 07. In the other limit, § — 07, it is found that A/p — 07, ¢ — A™. In both
cases minimisation requires 8 = y, which causes ¢(A! x A?) to vanish independent
of particle-hole symmetry. Moreover, the lattice conditions (a, 8) = 2T”(n, m) are
determined by the vanishing of the lattice cubic term b, and the maximising of the
lattice quartic term ¢Re[G? - 3G1G%].

The latter limit, 86 — 0%, is precisely the condition for the broken symmetry
state to host the previously discussed gapless semi-Dirac [47, 48] excitations, which
disperse quadratically in the direction defined by the polar angle S8 and linearly
orthogonal to this. From the hybridisation of down-folded Dirac valleys there is
a condensation energy gain from the second set of bands that gap with + |¢ + A|.
In the previous chapter, such a metallic CDW3 state with semi-Dirac quasiparticle

excitations was found [68] for the case of the pure V interaction.

4.7.1 Topological Phase Transitions

The broken symmetry state with gapless semi-Dirac excitations (¢ = A) can be
interpreted as the critical point of the topological Lifshitz phase transition [48]
between a semimetal (¢ < A) and a topologically trivial band insulator (¢ > A) (see
Fig. 4.6). This notion for the d = 2 topological critical point can be generalised to
the case of the three masses a,M“T“ for a = 1,2, 3 and additional emergent gauge

fields A', A%, A3. This generalisation accounts for Kekulé masses (M -?) and gauge
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fields A3, which may be induced by strain on the honeycomb lattice [147]. Implicit
summation over repeated indices a, b, ¢ = 1, 2, 3 is used, and here M 2= M*M*% and
A% = A% A“.

Assuming full global SU(2) gauge rotational symmetry the analytic part of the

Landau free energy takes the form (up to quartic order)

f=CiM? + CA? + C3e* MPAb x AC + C4M? A% + CsM“A® - MP AP

+ CeM™* + C7A* + Cg(e9 AP x A°)? + CoA® - APA“ - AP, 4.111)

with unspecified coupling constants C;. The C3e** M?A?x A€ and CsM“A%- MPAb
terms must vanish to describe topological transitions. Subject to this, the topological

critical point of the Hamiltonian
H=k- -a+aMT"+a- AT, (4.112)

exists at |[M| = |A|. A finite C3 terms breaks particle-hole symmetry. A finite Cs
term induces a band gap for all finite M and A. These terms can also be identified
from the characteristic polynomial det(H — £1). There are a number of obvious

extensions including spin, dimensionality and the number of quadratic directions.

4.8 Discussion

Here it was demonstrated that spontaneous lattice symmetry breaking in interacting
Dirac systems is described by effective field theories of Dirac fermions coupled to
a combination of dynamical mass and emergent gauge order parameter fields. This
is a departure from the common wisdom that mass channels solely dominate the
energetic landscape [20, 133], which is an expectation motivated by the energetic
gain upon condensing into an insulating state (mass fields are defined as those that
anticommute with the non-interacting Hamiltonian, thereby acting to open a band
gap). As a result, the ensuing criticality considered here is found to be beyond the
GNY universality classes. The unconventional dynamical exponent z > 1 indicates

that the putative emergent Lorentz invariance associated with GNY criticality is
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violated.

As a concrete example the lattice symmetry breaking due to CDW3 order
of Dirac fermions on the half-filled honeycomb lattice was analysed. However,
the resulting effective field theory with mass and gauge fields has much wider
applicability. The important role of emergent gauge fields has been recognised in
the context of the Ising nematic transition in d-wave superconductors [18, 135, 136,
148, 149], and there is indeed a close connection with the gauge sector of the field

theory presented here.

That z > 1 raises the possibility that the long-range Coulomb interactions [19]

62

1
A(r) A(r')y —» —i¥Tag¥ + 73 lq| ao, (4.113)
e

=7

could be relevant and provide further non-trivial scaling at this novel critical

point [50]. The one-loop RG equation for the Coulomb coupling [20]

d
%ez ~ (z— 1)e* - dqze’, (4.114)

demonstrates that z > 1 defines e as a relevant perturbation. At the new CDW3
fixed point it is expected that z ~ 1 + (gi)* — xe? (x > 0) suggesting such relevance.
In contrast, the Coulomb interaction is irrelevant at the d = 2 GNY fixed point

z=1-xe? (x> 0)[19, 20].

This work shows that complementary combinations of mass and non-Abelian
gauge fields provide a natural playground for the study of topological quantum phase
transitions. Lifshitz transitions of merging Dirac cones are observed when tuning
through the broken-symmetry states close to the multi-critical point. These insights
could be relevant for a range of systems, including black phosphorus [150, 151],
optical honeycomb lattices [62, 152, 153], artificial graphene [63], TiO,/VO; inter-
faces [47, 154], and a(BEDT-TTF),I3 [155]. Additionally, there has been consider-
able recent interest in the properties of topological quantum critical points [42, 49—
56, 156], which in d = 2 are commonly described by effective Hamiltonians of

the semi-Dirac form H = k20, + kyoy. Here anisotropic velocity renormalisation
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needs to be regulated with non-perturbative infrared loop resummations [56], which
is discussed in more detail in Chapter 5.

A related open question is whether there is a similar description of other exotic
Lorentz violating fermions, such as the multifolds in topological chiral crystals [124—

126], and what this means for their quantum critical properties [123, 157].



Chapter 5

Quantum Criticality of Semi-Dirac

Fermions in 2+1 Dimensions

Semi-Dirac fermions in two spatial dimensions are quasiparticles that disperse lin-
early in one direction and quadratically in the other. Strong short-range interactions
drive instabilities of semi-Dirac fermions. In this Chapter, the instabilities towards
staggered charge and spin, as well as superconducting orders are considered. The
critical properties of semi-Dirac fermions coupled to dynamical order parameter
fields are analysed using the renormalisation group (RG). The RG equations are ob-
tained to one-loop order and analytically controlled by a large number N of fermion
flavours. The 1/Ny corrections are surprisingly small, suggesting that the expan-
sion is well controlled in the physical dimension. The order-parameter correlations
inherit the electronic anisotropy of the semi-Dirac fermions, leading to correlation
lengths that diverge along the spatial directions with distinct exponents, even at the
mean-field level. It is natural to conjecture that the proximity to the critical point
may stabilise novel phases with modulated order. The original work in this chapter
was made available as a preprint in Quantum Criticality of Semi-Dirac Fermions in
2+1 Dimensions, M. Uryszek, E. Christou, A. Jaefari, F. Kriiger, B. Uchoa Phys.
Rev. B 100, 155101 (2019) [158].


https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.155101
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.155101
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Figure 5.1: Schematic phase diagram. As a function of the band tuning parameter A the
system undergoes a topological Lifshitz transition between a Dirac semimetal
(with a pair of Dirac cones) and a band insulator. At the transition point
the system exhibits gapless “semi-Dirac" quasiparticle excitations. Sufficiently
strong short-range interactions leads to superconducting, or staggered charge or
spin orders, depending on the type of interaction. The symmetry breaking is
associated with the opening of a gap in the semi-Dirac spectrum.

5.1 Introduction

Dirac fermions generically describe quasiparticles with relativistic dispersion in
the vicinity of special points in the Brillouin zone [15, 36, 43]. In two spatial
dimensions (2D), the merging of two Dirac points results in a topological phase
transition separating the semi-metallic phase from a gapped insulating one [45,
46]. At the boundary between the two phases, the system exhibits gapless “semi-
Dirac” quasiparticle excitations [45, 47] that disperse relativistically (linearly) in

one direction and non-relativistically (quadratically) in the other, see Fig. 5.1.

Based on density-functional calculations, semi-Dirac quasiparticles were pre-
dicted to occur in single layers of black phosphorus under strain [159]. Following
this, the topological transition was observed by surfacing doping such black phos-
phorus [150, 151]. Semi-Dirac fermions have also been predicted to occur in a-
(BEDT-TTF),13 salt under pressure [160], VO,/TO; heterostructures [154, 161], and
in strained honeycomb lattices [45]. As discussed in this Thesis, it has recently been
suggested [68, 120] that strong next-nearest neighbour repulsions between fermions

on the honeycomb lattice can lead to a charge ordered state that breaks lattice sym-
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metries and exhibits semi-Dirac quasiparticles excitations. In addition, semi-Dirac
fermions have strongly anisotropic hydrodynamic transport properties [52], for ex-
ample the electrical conductivity is metallic in one direction and insulating in the
other direction. Even more strikingly, one of the electronic sheer viscosity com-
ponents vanishes at zero temperature, leading to a generalisation of the previously

conjectured lower bound for the viscosity to entropy density ratio [52].

The non-trivial scaling of the quasiparticle kinetic energy gives rise to novel
universal behaviour [42, 48—-50, 54-56, 162]. Moreover, it is expected that the in-
herent electronic anisotropy will be reflected in strongly anisotropic order parameter
correlations. This can have profound effects on the nature of broken-symmetry
states. For instance, in gapped superconducting phases, it has been suggested [51]
that an applied magnetic field may lead to the formation of a novel smectic phase
with a stripe pattern of flux domains near the quantum critical point. Accessing
the universal critical behaviour of 2D semi-Dirac fermions has proven difficult. Be-
cause of the different dispersion along the k, and k, directions, the generalisation to
arbitrary dimension and consecutive € expansion below an upper critical dimension
is subtle and not uniquely defined. This is in contrast to the Dirac case discussed in
Chapter 4. For a model with dy, linear and dg > 0 quadratic momentum directions,
the interactions become marginal at 2d;, + dq = 4, suggesting that the universal
critical behaviour of 2D semi-Dirac fermions (d, = dg = 1) could be accessible
within an e-expansion with di, = 1 and dg = 2 — € [56]. This expansion results
in a non-analytic ~ € In € dependence of the anomalous dimensions of the fermion
and order-parameter fields [56]. The non-monotonic behaviour and vanishing of
the corrections at € = 1, nevertheless, could indicate that the semi-Dirac case lies

outside the validity of the expansion.

In a complementary approach [42] generic short-range four-fermion interac-
tions were analysed in two spatial dimensions with a generalised dispersion ki” in
the non-relativistic direction. This construction allowed for a controlled ascent from
one dimension (n — o0). At finite n, fermionic interactions are rendered irrelevant

at weak coupling, but key aspects of one-dimensional physics such as spin-charge



5.1. Introduction 112

separation are preserved. Quantum fluctuations beyond 1D, controlled by ~ 1/n,

enter the RG through loop integrations that involve the dispersion along k.

In this Chapter the quantum criticality of semi-Dirac fermions directly in two
spatial dimensions is revisited. Universal critical properties are accessed by means
of the one-loop momentum-shell RG. Analytic control is achieved by introducing
a large number Ny of fermionic flavours. The additional Ny fermion flavours are
not involved in the symmetry breaking and remain degenerate across the quantum
phase transition. This complementary approach avoids tuning the dimensionality
or the form of the dispersion, and as such can act as an independent check to
the novel methods discussed above. A similar large Ny procedure was used to
analyse the criticality of 2D and 3D semi-Dirac fermions subject to weak, long-range
Coulomb interactions [49, 50, 162]. Where as, here the focus is on strong short-range
interactions that drive charge, spin and superconducting instabilities. This study is
motivated by the leading order RG analysis of Ref. [42], which deemed these to be
the dominant instabilities in the context of an extended Hubbard model comprised
of on-site (attractive and repulsive) and nearest-neighbour repulsive interactions.
These broken symmetry phases possess a fully gapped quasiparticle spectrum and
hence maximise the condensation energy gain. The results can be readily compared
to the analogous two-loop large Ny analysis of relativistic 2D Dirac fermions [19,
71, 163, 164], unravelling the effects of the peculiar form of the dispersion on the

universal behaviour.

It is found that the 1/N corrections to critical exponents are very small and
considerably smaller than for the case of 2D Dirac fermions, suggesting that the
expansion is well controlled. The mean-field limit, Ny — oo, recovers the results
obtained from the dyp = 2 — € expansion[56], evaluated at € = 1 and Ny — oo.
However the 1/Ny corrections differ, as they depend on the specific form of the
dimensional-dependent bosonic infrared (IR) propagator, which needs to be included
to regularise unphysical divergencies at the critical fixed point. As expected, it is
found that the order-parameter correlations inherit the intrinsic anisotropy of the

system, e.g. the correlation lengths along different spatial directions diverge with
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different powers. It is conjectured that this behaviour could help stabilise exotic
modulated ordered phases near the quantum critical point [56]. The Ny — oo
results are significantly different from the 2D Dirac case. This can be understood
by analysing the mean-field Ginzburg-Landau free energy, which is obtained from
integrating out the fermions in the broken symmetry state. Spatial anisotropies are
encoded in non-analytic gradient terms. Itis found that the critical exponents derived
from the RG for Ny — oo are in agreement with the exponents obtained from the
mean-field Ginzburg-Landau functional, suggesting that hyperscaling relations are

satisfied.

The rest of this Chapter is organised as follows. Section 5.2 motivates the
effective Yukawa actions for spin, charge and superconducting instabilities. Sec-
tion 5.3 discusses the Wilson RG procedure and the calculation of the RG equations
and critical exponents in the large Ny limit. Section 5.4 presents the non-analytic
structure of the mean-field theory. Section 5.5 ends the chapter with a discussion of

the results.

5.2 Effective Semi-Dirac Field Theory

The effective low-energy field theory of 2D semi-Dirac fermions coupled to dynam-
ical order parameter fields is presented. The non-interacting fermionic action is

given by

2

—ikoo + vkyoy + (—y +A P, (k), (5.1
2m

Ty

Ny .
Se=) /\P;(k)so ®
n=17k

where k = (ko, k) = (ko, kx, ky), with ko the zero temperature Matsubara frequency,
and f/? = f A %, which is subject to an ultraviolet cut-off A. Also, v is the
velocity in k, and m is the effective mass in k,. The Pauli spin s; and pseudospin
o; matrices (i = O for identities) act on the 4-component fermionic spinor fields
Y = (Y14 ¥1- ¥+, ). The pesudospin is some relevant quantum number of the

parent lattice model. For example it could be any sublattice, valley, or orbital degree

of freedom. The action has been generalised to a large number N of fermionic
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flavours ¥T¥ — Zi\zl Py,

The poles of the (real frequency) fermionic propagator, or alternatively the
eigenvalues of the Hamiltonian Hy(k) = so ® [vk oy + (k% /2m + A)o ], provide the

electronic dispersion

2o\
e(k) = 4| (vky)* + (ﬁ + A) , (5.2)

which is degenerate in spin s =T, | and fermion flavour n. The effect of the tuning
parameter A on the electron dispersion is illustrated in Fig. 5.1. For A < 0 the
dispersion contains two relativistic Dirac points K. = (O, im), while for
A > 0 the dispersion has an energy gap A. Hence A tunes a transition between a
Dirac semimetal and a band insulator. At A = 0, the system undergoes a topological
Lifshitz transition, corresponding to the merging of two Dirac points. At this point

the system exhibits the anisotropic semi-Dirac quasiparticle excitations.

The aim is to describe interaction-driven quantum phase transitions of semi-
Dirac fermions. Enforcing A = 0 whilst increasing the strength of interactions
requires fine tuning. Depending on the experimental system, this may be achieved

with strain, pressure, or surface doping [150, 151, 154, 159-161].

5.2.1 Staggered Instabilities

Similar to Chapter 4, the critical theory is constructed from semi-Dirac fermions
coupled to a Ginzburg-Landau-Wilson dynamical order parameter theory via a
Yukawa coupling. Typically, a theory of this type can be obtained by performing
a Hubbard-Stratonovich decoupling of a generic strongly interacting four-fermion
interaction in the appropriate order parameter ¢ channel, which is schematically
(PT¥)? — ¢ + PT¢P. In contrast to the previous Chapters on the honeycomb
lattice, here the microscopic origins of this critical theory are not provided. Instead,
it is assumed there is a sufficiently strong fermionic interaction that spontaneously
stabilises the order of interest. Similarly, phase competition and multicriticality is

left for future investigation.
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The local Yukawa action is

Nf Ny
WA GGG 53
n=1 i=1 "
where 7 = (7, r) is the imaginary time 7 and position r vector. Here N, is the number
of components of the bosonic order parameter field ¢ = (41, . .., ¢n,) For the case
of staggered charge order N, = 1, and the Yukawa coupling matrix ¥; = 5o ® 0.
In the instance that the pseudospin is a sublattice index, this would correspond to a
sublattice charge density wave (CDW). For convenience it will be referred to as CDW
order. Likewise, V, = 3 has the natural interpretation as sublattice spin density wave
(SDW) order, with ¥; = 5; ® o, fori = 1,2,3 = x,y,z. Finally, N, = 2 could be
interpreted as describing s-wave superconducting (SC) pairing with ¥; = s5; ® o9
fori = 1,2 = x,y. Naturally, this requires a redefinition of the spinor basis to the
reduced Nambu (particle-hole doubled) space ¥ = (2T wf_, wTT_) [165, 166].
In this case Hy(k) = s, ® [vk oy + (kg /2m + A)o,]. These Yukawa terms describe

U(1) s-wave pairing with the complex order parameter

O = (cos oYY+ + ¥ Ypy + hoc) +isinpWr_y . + ¥ 7y —hc)), (5.4)

where ¢ = (Re®, Im®). It is natural to associate the flavour symmetry with time
reversed points in the Brillouin zone (similar to Dirac valleys), such that the Cooper
pair has zero total momentum. A concrete example of a time reversal symmetric

tight-binding Hamiltonian with a pair of semi-Dirac points can be found in Ref. [51].

In principle, what has been described is semi-Dirac fermions coupled to Ising
Z> (Np = 1), XY O(2) (Np = 2) and Heisenberg O(3) (N, = 3) order parameter
fields. In each instance, the order parameter fields couple like “masses” to the
fermions in the sense that they anticommute with Hy(Hp) and therefore induce an

insulating gap upon condensing (¢ = ¢ - @)

2o\
e(k) = 4| (vky)* + (—y + A) +(g0)>, (5.5)
2m
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which is independent of the basis. These instabilities were found [42] to be dominant
from renormalisation group analysis of an extended Hubbard model containing on-
site and nearest neighbour interactions. For superconductivity it is required that the
on-site interaction is attractive, in which case the textbook microscopic origin would
be electron-phonon coupling.

In addition to the ¢*> = ¢ - ¢ term that arises from the Hubbard-Stratonovich
transformation, the successive elimination of high-energy fermion modes under the
renormalisation group will generate gradient terms, as well as a ¢* vertex and higher
order terms. However, ¢* and higher order terms turn out to be irrelevant in the
RG sense. For now the Ginzburg-Landau-Wilson functional for the order parameter

S¢ + S, is considered, with

1 . )

S = 5 #‘/’(Q) . (ngg + c)%q)zc + c§q§ + qub) é(q), (5.6)
q

Sy = 4 #¢4(7)‘ 5.7)

7

As was the case for the Gross-Neveu-Yukawa type theories in Chapter 4, here the

order parameter mass term tunes through the putative quantum critical point, and

2
¢

To summarise, the effective field theory describing the criticality of semi-Dirac

the convention m’; — mé - (mé)* is used.

fermions in 2+1 dimensions, to be considered in the following, is given by
S =8¢ +8s+ S5, +Sa. (5.8)

There is a caveat, however. As will be discussed in Section 5.3, the bosonic propa-
gator G 4(q) develops an unphysical singularity under the RG scheme. It is therefore

necessary to regularise this divergence by including an infrared contribution in Sy.

5.3 Renormalisation Group Analysis

In this Section, the universal critical behaviour of CDW, SDW and superconducting
instabilities in the presence of semi-Dirac fermions is analysed. To do so a similar

RG scheme to Chapter 4 is applied.
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5.3.1 Shell Procedure

In the following the RG flow is obtained by successively integrating out high-energy

modes from the infinitesimal 2+1 dimensional shell (defined for A = 0)

Ae™ < (k2 + &2(k) < A, (5.9)

followed by a rescaling of frequency and momenta at each step,
ko — ki = koe*®, ky — k}, = Ke*®, ky — k), = Kje¥ ", (5.10)

In the definitions of the 2+1 dimensional shell Eq. (5.9), and the rescaling Eq. (5.10),
the frequency k¢ and the momentum along the relativistic direction k, are treated
on an equal footing, and are both rescaled with a dynamical exponent z relative to
the k, direction. This can be viewed as having one space-like (k) and two time-like
(ko, k) directions. For greater clarity, the scaling dimension z, of the momentum
ky has been introduced. Later it will be set to z, = 1. Under successive mode
decimation and rescaling, the cut-off A remains invariant if z = 2z,. The shell

integration is performed using the coordinate transformation

ko = &sinfcosq,
vk, = e&sinfsing, (5.11)
k2
ﬁ = &coso,

with & € [Ae ¢ A], 6 € [0, 51, and ¢ € [0, 27]. The Jacobian of the transformation

is

V2m siné 302

,0,¢) =
p(e, 6, ¢) > Veoid

(5.12)

5.3.2 Tree-Level Scaling

Under the fermionic field rescaling

(k') = W(k)e Gty (5.13)
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Sy is scale invariant. The velocity v is an invariant of the flow, as ko and k, scale
in the same way, and so it is justified to work in units where v = 1. The anomalous
dimension ny is chosen to ensure that the linear terms are scale invariant beyond
tree-level. Similarly, the effective mass m associated with the quadratic k, dispersion
remains invariant at tree-level when z = 2z,. Beyond tree-level z will gain O(1/Ny)
corrections, and is chosen to ensure m is scale invariant. Thus, it is also justified to

work in units where 2m = 1.

The distinct scaling of momenta, used to ensure the invariance of the cutoff and
the fermionic action, mean that the bosonic velocity c% in Sy will scale differently

to CS and ¢2. Under the bosonic field rescaling

¢ (k') = (ke 105 (5.14)

c§ is invariant at tree-level, and 14 can ensure invariance beyond this, such that units
where c§ = 1 are used. However, under this scaling the other bosonic velocities
are rendered strongly irrelevant at tree-level with scaling dimensions [c(%] =[c2] =
—z. Therefore, even with loop corrections, both velocities will flow to zero and
are effectively omitted from the bare bosonic propagator. Surprisingly, this shell
integration has introduced the unphysical divergence in the IR limit g, — 0,where
there is now a pole in the bosonic propagator for all gg, g,. The resolution to this
problem involves regularisation from the IR bosonic self-energy, which is discussed

in Section 5.3.3.

Finally, the field rescalings indicate that the Yukawa coupling is a relevant

perturbation g — ge®%¢/2

, but the bosonic self-interaction is strongly irrelevant
A — Ae~°% and is therefore neglected in the following. It is natural to redefine the

Yukawa coupling , g2 — g>VA/2N  such that

Ny N,
A N
Sy = g\/% o / W] (7)Y, (F) ¥ (7). (5.15)

n=1 i=1
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I, /1T

Figure 5.2: The one-loop fermion polarisation bubble diagram that describes the infrared
regulator of the bosonic propagator when modes outside of the Wilsonian
momentum shell are integrated out. Alternatively it describes the self-energy
correction of the bosons when the modes inside the shell are integrated out.
The fermion propagator is denoted by the arrowed line.

5.3.3 Infrared Regularisation

In order to regularise the unphysical divergence of the bosonic propagator in the
limit g, — 0, the IR contribution must be included. As pointed out before [50], in
2+1 dimensions the bosonic propagator has different asymptotic forms in the UV
and IR limits. Since the RG flow is generated by a successive integration of modes
from a shell near the UV cut-off, the IR (¢ — 0) contribution is not generated or
renormalised under the RG. Instead the IR boson self-energy needs to be computed
separately by integrating the fermion polarisation (see Fig. 5.2) over the frequency

and momentum range outside of the infinitesimal shell [50],

. _ g VA - -
@) = S0 | HGv @Gtk + (5.16)

where the fermionic propagator for the CDW and SDW channels is

ikooo + ko + kiO'y

2 12, 14
ky + ki + k3

Gy(k) = 5o ® (5.17)
The propagator in the SC channel is obtained by replacing so — s,. For the
multicomponent order parameters the polarisation is diagonal, I1;;(g) = I1(§)d;;,
reflecting the underlying O(N,) symmetry. It is possible to evaluate the integral in
Eq (5.16) analytically for g, — 0, resulting in

2VA i
Hma=ng%+é). (5.18)
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(a) T (b) E

Figure 5.3: The one-loop (a) fermion self-energy and (b) vertex correction to the Yukawa
coupling. The bosonic propagator is represented by the wavy line while the
fermionic propagator by the straight line. Internal lines are contractions over
high-energy shell mode. External lines are modes outside of the shell. The
fermion propagator is denoted by the arrowed line. The boson propagators are
denoted by the wavy line.

This is achieved using the procedures discussed in Appendix A.1, and an almost
identical calculation can be found in Ref. [SO]. This IR self-energy contribution to
the kernel of Sy regularises the bosonic propagator in the IR at the critical surface

(mé =0), 1

. VA
G,'@ = a3y +* (q5+q,%) . (5.19)

5.3.4 Self-Energy and Vertex Corrections

One-loop UV shell corrections are now calculated. The one-loop bosonic self-
energy is
2 VA

>
1°(g) = ?mtr A Y;Gy(k)Y;Gy(k + g), (5.20)

where /]; indicates integration over the UV modes within the frequency-momentum
shell defined in Eq. (5.9). The IR part is not renormalised under the RG. The
important corrections are in the g, direction and to the bosonic mass mé. To leading

order I17(g) ~ qu§ + Hmémé, and for A =0

11
IT, = n 5738 2z6¢, Hmé =0. (5.21)

The one-loop fermionic self-energy, shown in Fig. 5.3(a), is

2(k) = —g*5— , Z / %Gy(k + §)Y:Gy(G). (5.22)
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Integrating over the shell,
2(k) = 50 ® [Zo(kooo + kyoy) + (Zyk2 + ZpA)0ry]26¢, (5.23)

where for m2 = 0

¢
Np 2 Ny 2
o=X, = —F ot, 2, = —F o0t, ZA =0, 5.24
0 2N, 1(87)z0¢, Zy oN; 2(87)z0C, T (5.24)
and the integral functions (see Fig. 5.4) are
s 3
1 2 (cos 0)2 sin 6
Fi(x) = —/ do , (5.25)
4n? Jo x~1cos6 + Vsinf
1 [ 20 +2cos40 sind
Fy(x) = _2/ cos cos sin . (5.26)
4= Jo x~1cos 6 + Vsin 8 Vcos 6

Similarly, the one-loop correction to the Yukawa vertex, shown in Fig. 5.3(b),

is

VA _ VA P . .
2= || 2 [ Ge@meu@nGay. 620
2Ny 2Ny | = Ja
H=— F ( ) st, 528
oN; 3187z (5.28)
1 3 1 sin 6
F3(x) = — / d9 . (5.29)
4n? Jo x~1cos8 + Vsin 8 Vcos 0

Note that the vertex correction to the Yukawa coupling g has opposite sign for
the CDW (N, = 1) and SDW (N, = 3) instabilities and vanishes in the case of the

SC (Np = 2), as reported in previous studies [56].

5.3.5 Renormalisation Group Equations

Following from the definitions set in Section 5.3.2

v == = 2 F(gd)s 5.30
™ =56 T 2N, 1872 ©-30)

2zy

7 =2z, + ny = z7= (5.31)

y
ot I+ 3w [Fa(8?) - Fig))]
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Figure 5.4: The integrals F; (gz) as a function of the dimensionless Yukawa coupling g.
To order 1/Ny, the critical exponents at one-loop order depend on the values
of F; evaluated at the critical point in the Ny — oo limit, g2 = limpy, e g’ =
2172 /22.

m 11,
o="s¢ = 2128 © (5.32)

Therefore, there is the single RG equation for the Yukawa coupling

dg*
a8 _ 2y — s +2
al 8 (Zy Ty — ¢

—
b
[

o)’

N 11 2 - N,

2 b 2 2 b 2

= - —F - —87— F: ( ) . 533
g (Zy N, 1(8%)2 = 57582 N, 1318 ) (5.33)
This depends on the integral functions F;, which are smooth functions of g2, as

shown in Fig. 5.4.

5.3.6 Fixed Point and 1/N; Expansion

In the following z, = 1. The Yukawa RG equation and z are solved self-consistently
order by order in Ny as follows. In Ny — oo, z = 2 and the fixed point is
(g2). = 217%/22. In order to obtain the leading 1/N + correction to the fixed point,
the ansatz (g%). = (82)« + Nif +0(1/ N]%), is made. To this order the approximation
a = F (ggo) is valid. Then to leading order in Ny the following relations are

obtained for the non-trivial fixed point values

Np Ny g%
<= 2+ _(a/l - CYZ), ny = —aj, 77¢ = 5 (534)
Ny Ny 8%
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2

. N, 2 — N,
& - 2 (Say - ap) -2
2 2N, N;

as. (5.35)

The above 1/N; corrections are small, and about an order of magnitude smaller
than for the purely relativistic case of Dirac fermions in 2+1 dimensions [71]. In
the latter case, the l/N]% corrections computed to two-loop order [163, 164] are
comparable to, or even larger than, the 1/N corrections when Ny = 1. Where as
for semi-Dirac fermions at one-loop order, the 1/ NJ% corrections are proportional
to derivatives F/ (gfo) ~ 107*, and hence are approximately an order of magnitude
smaller than the 1/N; correction. This suggests that the 1/Ny expansion at the
physical dimension is better controlled for the case of semi-Dirac fermions. However,

the evaluation of two-loop diagrams would be required to investigate this further.

5.3.7 Ciritical Exponents

It is easily verifiable that the critical fixed point at g. is stable along the g axis. Near
this multicritical point there are two relevant perturbations, A and m?2, which are
the tuning parameters for the topological phase transition and the broken symmetry

state respectively.

Semi-Dirac quasiparticle excitations emerge in the semi-metallic phase when

A is fine tuned to zero. The case that A remains equal to zero across the symmetry-

breaking phase transition is first considered. In this case the RG equation for mé is
equal to

dm?

¢ _ 2 _ 1 2

7 - (2 - n¢) Ny = v~ my. (5.36)

Then to leading order
Np 2—-Np
=1-—5a - -2 . 5.37
v 2Nf( ar — @) N (5.37)

The electronic dispersion of semi-Dirac fermions with linear and quadratic
directions is strongly anisotropic. Therefore it is expected that the order parameter
correlations inherit this anisotropy. For spatially isotropic systems, the correlation

length along the imaginary time direction diverges as a power of the spatial correla-
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tion length, & = &, where z is the dynamical exponent. For the choice z, = 1, the
dynamical exponent z sets the scaling dimension of length along the x direction, im-
plying that § ~ &, = £§. The spatial anisotropy of the order-parameter correlations
is therefore reflected in correlation length exponents v, = zv and v, = v, along the

x and y directions, respectively. In the limit Ny — oo this gives v, =2 and v, = 1.

Assuming that the system satisfies hyperscaling, the standard scaling relations
can be applied to obtain the remaining critical exponents. Josephson’s hyperscaling

relation yields the specific heat exponent,

2—-v(2z+ 1),

S
I

2-N

Q

N
3+ ﬁ(zlal —a) + 10 . (5.38)

Note that the effective dimension that enters in the hyperscaling relation is equal to
D = 2z + 1 corresponding to one space-like and two time-like directions. Fisher’s

scaling law gives the susceptibility exponent
y=(2-ng)v=1+0(/N}). (5.39)

Rushbrooke’s scaling law a + 28 + ¥y = 2 is used to obtain the order-parameter

critical exponent

1
ﬂ = 1_5(0/"')’),
2—Np

Q

N
2 - ﬁ(ﬂal —a)-5 . (5.40)

Finally, from the Widom identity y = 5(6 — 1) the field exponent is computed

s = 1+,
B
3 Nb 52—Nh
~r -+ 2la; - + - . 541
> 16Nf( @) — @) AN, @3 (5.41)

A complete list of critical exponents with numerical values for the coefficients «;

can be found in Tab. 5.1.



5.3. Renormalisation Group Analysis 125

2y 1
z 2+0.0123
" 0.0125 32
N, 2-N
n | 1-0.0310 2 —0.10695%
N, 2-N
v | 1-0.0310 5 —0.106975"
@ | =3+0.1307 £ +0.5345 =0
f f
0% 1
N, 2-N
B | 2-0.0653 i —0.2672 Tk
3 N 2-N,
6 | 3+0.0163 3 +0.0668 =

Table 5.1: Critical exponents for symmetry-breaking phase transitions of semi-Dirac
fermions in 2+1 dimensions, calculated at one-loop order and including 1/Ny
corrections in the number of fermion flavours. N; is the number of order-
parameter components: N, = 1 for the CDW, N}, = 2 for the superconducting
and N, = 3 for the SDW instabilities.

5.3.8 Multicriticality

Section 5.3.7 summarised the universal critical behaviour of semi-Dirac fermions
associated with spontaneous symmetry breaking due to short-range interactions.
The semi-Dirac quasiparticle excitations in the disordered, semimetallic phase are
obtained by fine tuning the system to the point of a topological phase transition
between a Dirac semimetal with two separate relativistic Dirac points and a band
insulator. In the free-fermion action (5.1) the semi-Dirac point corresponds to
A = 0. Spontaneous symmetry breaking leads to the opening of a gap in the fermion
spectrum, making it challenging to ensure A = 0 across the transition in any real

material.

Since the tuning parameters of the symmetry-breaking and topological phase
transitions, mé and A, are both relevant perturbations at the fixed point (g = g.,
A= m(% = 0), the fixed point should be viewed as multicritical. The coupled RG

equations for mé and A are

dmé )
W = (2 - 7]¢) m¢ + ani, (542)
dA
= 2-nw)A+zZp, (5.43)

dt
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where the renormalisations Hmé and X, are coming from the bosonic self-energy

(Fig. 5.2) and fermionic self-energy (Fig. 5.3(a)) and are equal to

2 2
Nb 2 2 2
2y = ol |F(e?) A+ B () mi]. 5.45
A o, 1 8 |A+Fs(g"|my (5.45)

The additional integration functions

1 3 cos 20 sin @

Fi(x) = — do , (5.46)
72 Jo x~ 1 cos@ + Vsin 8 Vcos 8
1 [z Vcos 6 sin 6

Fs(x) = — [ a8 cos7 e (5.47)

7% Jo (x~1cos @ + Vsing)*

are shown in Fig. 5.4. Linearising around the multicritical fixed point obtains the
stability matrix M, see Section 4.3. The two positive eigenvalues 8 and 8, of M are

inversely proportional to correlation length exponents, v; = 1/6;. These are found

to be
N, 28 2-Np
= 1 —— |5 - - — -2 5.48
Vi 2Nf( ) — a2 11“5) N; as, (5.48)
1 Ny 14
- 45 —_ - . 54
2T VAN, (“1 ¥4 11“5) (5.49)

5.4 Mean-Field Analysis

The critical exponents are expected to recover the mean-field values in the limit
Ny — oo. Inthis limit, the anomalous dimension of the fermion fields vanishes, ny =
0, indicating that Fermi-liquid behaviour is recovered. However, the anomalous
dimension of the order parameter field (5.34) remains finite, 74 = 1. This results
in a correlation length exponent v = 1/(2 — n4) = 1 and an unusually large order-
parameter exponent S = 2, which are found by using the scaling relations. These
exponents are very different from the usual mean-field exponents (7, = 0, v = B =
%). This unusual behaviour is a result of the appearance of non-analytic terms in

the mean-field free energy, which lead to unconventional quantum criticality and
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arise due to the unusual scaling of the density of states p(g) ~ /e around the Fermi

points.

The mean-field free energy for a gapped phase of semi-Dirac fermions is equal

to [51]

— 1 2 dzk 2 4 2
Jmi($o) = §¢o - ‘/k§+k‘y‘s/\2 W\/kx + ky + ¢ (5.50)

fui(B0) = a(68)¢3 + blgol? + O(8Y), (5.51)

where A is the UV energy cut-off, 6g = (g. — g)/gc and a,b > 0. As in the case
of relativistic Dirac fermions, the mean-field free energy contains a non-analytic
term |¢0|%, which arises from the evaluation of the integral in the k — 0O limit.
Minimising finf(¢) with respect to ¢y one obtains |@g| ~ |dg|Pn with B = 2, in
agreement with the RG and scaling analysis in the Ny — oo limit. In contrast, as
was discussed in Chapter 2, the density of states of Dirac fermions vanishes linearly,
p(g) ~ &, resulting in the non-analytic cubic term |¢o|> and the mean-field exponent
Bme = 1.

The spatial anisotropy of the system, which appears in the anisotropic dis-
persion of the quasiparticles, also reflects in the form of the gradient terms in the
Ginzburg-Landau functional. These terms can be computed by allowing for small,
long-wavelength modulations of the order parameter. For a finite homogeneous
component ¢ one can expand in the momentum ¢ of the modulation. This gives
rise to terms q)%\/lfﬁ_ol and q§|¢o|% [51], from which the estimations can be made for

the correlation lengths &, and &, along the x and y directions respectively. Since
&716017 = £ 2100]> = |5810] (5.52)
by dimensional analysis, this leads to the quantum critical scaling
€1 ~ |90l 2 |og] ™" ~ log] 3w, (5.53)

€2 ~ |gol 2 16g|™" ~ |5g| T+ 3m), (5.54)
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Using B = 2, this simple scaling analysis of the mean-field free energy recovers
the correlation length exponents v, = 2 and v, = 1, in agreement with the RG result
in the limit Ny — oo.

The anisotropic scaling of the correlation length along the x and y directions
could have very interesting implications for ordered phases in the vicinity of the
quantum critical point. In general, the order parameter becomes relatively softer
to spatial modulations along the direction where the quasiparticles have parabolic
dispersion, and more rigid in the other direction, permitting the emergence of
modulated order and stripe phases [51]. In the superconducting case, the system
may effectively respond to an external magnetic field as a type II superconductor
in one direction and as a type I in the other [51]. This unconventional state could

stabilise stripes of magnetic flux rather than conventional vortex lattices.

5.5 Discussion

The critical behaviour of quantum phase transitions in semi-Dirac fermion systems
that are driven by strong short-range interactions have been analysed. Here the focus
has been on the staggered charge and spin instabilities, as well as s-wave supercon-
ductivity. These fully gap the quasiparticle spectrum in the broken symmetry state,

making them energetically favourable.

This criticality was previously studied using an e expansion in the number
of quadratically dispersing directions within the Yukawa formalism [56], and by
generalising the quadratic dispersion to k%”, facilitating a 1/n expansion in generic
four-fermion interactions around the one-dimensional limit [42]. In the complemen-
tary approach presented here, a large number Ny of fermion flavours was introduced
to gain analytic control in two spatial dimensions. Using a one-loop RG analysis of
the effective Yukawa actions, the critical exponents have been computed up to order
1 / N f-

The 1/N; corrections to critical exponents depend on the peculiar form of the

1
IR order-parameter propagator in 2+1 dimensions, G,' ~ (qg + q)%)Z + ¢;. This

IR contribution, which is not renormalised by integrating out electronic UV modes,
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needs to be incorporated to regularise unphysical divergencies [50, 56].

The frequency ko and the momentum k, along the relativistic direction were
treated on an equal footing, and a single “dynamical” exponent z that describes the
scaling of ko, k, relative to the quadratically dispersing direction k, was introduced.

This can be viewed as having one space-like and two time-like directions.

It was found that the 1/N corrections to critical exponents are smaller than for
the case of Dirac fermions, and seem to fall off more rapidly when increasing the
order of 1/Ny. This suggests that the 1/Ny expansion is well controlled even when
the number of flavours Ny = O(1). However, calculations beyond one-loop order

are required to confirm this conjecture.

In the mean-field limit Ny — oo, the anomalous dimension 7, of the fermion
fields vanishes, signalling a recovery of conventional Fermi-liquid behaviour. On the
other hand, the anomalous dimension of the order-parameter fields remains finite,
ngy = 1. This has important consequences. It gives rise to a correlation length
exponent of v = 1 instead of the conventional mean-field v = 1/2. Since the y
direction was defined as the reference length (z, = 1, z, = z = 2), this corresponds

to vy = zyv = 1 and v, = z,v = 2 along the two spatial directions.

The atypical correlation length exponent and the unusually large order parame-
ter exponent 8 = 2 + O(1/Ny) suggest that the mean-field order-parameter theory is
highly unusual [51]. As was discussed, the vanishing density of states at the Fermi
level gives rise to a non-analytic |¢|>/? term in the Landau free energy. This results
in Bvmr = 2, in agreement with the RG result for Ny — oco. The highly anisotropic
order-parameter correlations correspond to different non-analytic gradient terms in

the mean-field theory.

It is interesting to compare to previous results in the literature [42, 56]. The
freedom in how to define the scaling dimensions in semi-Dirac systems explains the
apparent contradiction with Ref. [42] that reports v = 2 at leading order, compared
to v = 1 here and in Ref. [56]. A close inspection shows that in this work the
relativistic direction was used to define the reference length scale. In the notation

used here this corresponds to the choice z = z, = 1 and z, = 1/2, leading to the
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same correlation length exponents v, = 2 and v, = 1. Then to leading order there
is complete agreement on the correlation length exponent.

However, there is a strong disparity in the order parameter anomalous dimen-
sions found here ny = 1 + O(1/Ny), and in Ref. [56], g ~ leeln €. Not only does
the latter vanish for e = 1, but it is also O(1/Ny). As was discussed in Sec. 5.4,
our n4 ~ 1 gives rise to the same order parameter exponent 5 = 2 in Ny — oo as
that from the non-analytic mean-field free energy. This acts as a consistency check
of our RG analysis. Likewise, the fermion anomalous dimension 7, ~ Nifelne
calculated in Ref. [56] vanishes at € = 1, where as here it is finite 7, = O(1/Ny).
These discrepancies may arise from the invalidity of the extrapolation of the novel
leading order € expansion to € = 1. At the leading one-loop order, it is not possible
to extract the anomalous dimensions from the RG analysis of the model containing
four-fermion interactions studied in Ref. [42]. In the future it will be interesting
to compare beyond leading order results for the critical exponents in this difficult
problem.

Semi-Dirac fermions correspond to an intermediate case between Dirac
fermions and ordinary metals in two spatial dimensions. The quadratic disper-
sion along one of the momentum directions leads to an increased density of states
at low energies as compared to Dirac fermions, making instabilities comparatively
easier due to the enlarged phase space for quantum fluctuations. An interesting ques-
tion for future studies is whether the enhanced electronic fluctuations near quantum
critical points combined with the anisotropy of the correlations could stabilise novel

phases such as modulated order.



Chapter 6

Closing Remarks

Here a summary of the results presented in this Thesis are provided. Detailed
discussions can be found at the end of each Chapter. Following this, future lines of

research are suggested.

6.1 Summary

In this Thesis the role of strong repulsive fermionic interactions to induce novel quan-
tum criticality, and exotic phases of matter, was investigated in two-dimensional
Dirac systems using analytical methods. The focus was on the following three
topics: (i) The impact of collective quantum fluctuations in determining the fate
of the interaction induced topological Mott insulator, which was predicted at the
level of mean-field theory. (ii) The novel fermionic quantum criticality that en-
sues when translational and rotational lattice symmetries are spontaneously broken,
corresponding to an effective field theory containing emergent gauge degrees of free-
dom. (iii) The interplay of topological and symmetry breaking continuous phase
transitions, resulting in a quantum multicritical point with anistropic semi-Dirac
quasiparticle excitations. A central theme throughout this work was the pivotal role
played by the gapless fermionic quasiparticles.

All three topics were motivated by considerations of the extended fermionic
Hubbard model on the honeycomb lattice, which is the prototypical Dirac semimetal
athalf-filling. From these lattice models low-energy effective field theories of Dirac-

like fermions coupled to dynamical order parameter bosons could be derived. The
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energetics of the competing broken symmetry states considered in topic (i) were
calculated using a self-consistent path integral approach. Here the fermionic modes
were formally integrated out and the resulting Gaussian order parameter fluctuations
were accounted for. Complementary to this, the universal properties investigated in
topics (ii) and (iii) employed a renormalisation group scheme that treated the critical

fermions and order parameter bosons on an equal footing.

(i) In Chapter 3 the fate of the topological Mott insulator on the honeycomb
lattice was investigated. This phase was first found by a mean-field decoupling of
strong next-nearest neighbour repulsions in the bond order channel. The interac-
tions dynamically generate complex Haldane or Kane-Mele type hopping. Hence,
the condensation of the bond order parameter signifies the opening of a topolog-
ically non-trivial bulk insulating gap, and corresponding protected metallic edge
states. However, this phase competes with CDW3 charge order that extends beyond
the primitive unit cell, as well as spontaneously breaking the honeycomb rotational
symmetry. The self-consistent path integral approach employed here demonstrated
that beyond mean-field collective quantum fluctuations played a crucial part in de-
termining the phase diagram. It was found that fluctuations induce the charge order,
thereby stifling the possibility of topological Mott insulating phases. These analyt-
ical results were in agreement with the general consensus of the various numerical
techniques used to simulate interacting fermions on the lattice. Surprisingly it was
discovered that the low-energy quasiparticle excitations of the CDW3 state are de-
scribed by gapless semi-Dirac fermions that disperse linearly in one direction, and
quadratically in the other. This indicated that the transition was not of the putative

semimetal-insulator variety, and would display novel quantum critical properties.

(ii) In Chapter 4 the quantum critical properties of Dirac systems subject to
spontaneously broken lattice symmetries were investigated. The work in Chapter 3
provided a concrete lattice model of the semimetal-CDW3 transition. The universal
properties of this transition were analysed with the renormalisation group. The
derived critical theory was found to comprise of dynamical order parameters fields

that couple to Dirac fermions as mass and emergent gauge fields. Owing to the gap-
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less nature of the fermionic excitations, these couplings are relevant perturbations
to the paradigmatic Ginzburg-Landau-Wilson fluctuating order parameter theory.
As a result, the criticality of the mass sector coupled to Dirac fermions describes
the aforementioned semimetal-insulator transitions, and is known to belong to the
fermionic Gross-Neveu-Yukawa universality class. At the quantum critical point
the Landau quasiparticle picture breaks down, with the quasiparticle residue van-
ishing as a result of finite anomalous dimensions. An additional defining feature
is the emergent Lorentz invariance at the critical fixed point, which is categorised
by a single terminal velocity, and isotropic scaling of space and time with dynam-
ical exponent z = 1. In contrast, the CDW3 criticality is described by a novel
fixed point that violates Lorentz invariance, with z > 1, because of the coupling
to the emergent gauge fields. These fields are directly related to the spontaneous
breaking of translational and rotational lattice symmetries, and are believed to be
generic. In addition, this work showed that complementary combinations of mass
and non-Abelian gauge fields provide a natural playground for the study of topolog-
ical quantum phase transitions, and CDW3 broken symmetry states are germane to

host semi-Dirac excitations.

(iii) Following on from Chapters 3 and 4, in Chapter 5 the quantum multicrit-
icality of Dirac fermions at the intersection of topological and symmetry breaking
phase transitions was analysed. In two spatial dimensions the Dirac points of op-
posite chirality can annihilate, undergoing a topological phase transition to a band
insulator. The topological critical point hosts gapless semi-Dirac quasiparticle ex-
citations that disperse linearly in one direction and quadratically in the other. The
critical behaviour of quantum phase transitions in semi-Dirac fermion systems that
are driven by short-range interactions were analysed using the renormalisation group.
Instabilities towards staggered charge and spin instabilities, as well as s-wave super-
conductivity, were considered. The universal behaviour, even at the mean-field level,
was found to be strongly distinct from regular Dirac fermions. In addition, it was
found that the order parameter correlations inherit the anisotropy of the semi-Dirac

fermions.
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6.2 Future Research

The path integral approach employed here is a generic framework to self-consistently
include collective quantum fluctuations. For example, a similar approach was em-
ployed to look at metallic systems [99-102, 167-169]. In the context of Dirac
semimetals it has proven rather successful in comparison to the aggregated numeri-
cal lattice simulations. It can be seen as a complementary tool that does not suffer
from system size effects, and so is able to probe the region of the critical point. This
is particularly true when a problem is not accessible to sign-free quantum Monte
Carlo. Furthermore, it complements a renormalisation group study of the critical
point, as it can suggest what type of order is energetically favourable in the presence

of fluctuations.

Therefore, it is worth applying this method to other nodal systems. A first test
of the ability to predict fluctuation induced order would be the -flux square lattice,
where the topological Mott phase that is stable at mean-field is outcompeted by
stripe charge order [69, 109]. Beyond this, the increased density of states of semi-
Dirac fermions implies an enlarged phase space for quantum fluctuations. These
enhanced fermionic fluctuations near quantum critical points combined with the
anisotropy of the correlations could stabilise novel phases such as modulated orders.
Additionally, it could be fruitful to look at systems with quadratic band touching
points on the kagome [114, 115] or checkerboard [116, 117] lattices. Also, it is
expected that there are interesting phases in the recently discovered topological

chiral crystals [124—126], with multiband touching points.

There are a number of follow up questions to the CDW3 charge order on the
honeycomb lattice. The infinite density matrix RG (iDRMG) simulations found that
the charge order was accompanied by bond order. It turns out that both orders couple
in the low-energy as A’ (in the notation of Chapter 4), and so the universal properties
are not changed. However, the lattice ground state may change from the additional

bond order, especially in the presence of finite nearest neighbour interactions.

The novel critical properties found in this Thesis relied on the identification

that dynamical order parameters can couple as both mass and emergent gauge fields
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to Dirac fermions. This is a departure from the common wisdom that mass channels
solely dominate the energetic landscape [20, 133]. Such wisdom is based on the
fact that the condensation of mass order parameter fields induces insulating band
gaps, which is energetically favourable in the simplest cases. This generically maps
the problem onto Gross-Neveu-Yukawa models. However, the important role of
emergent gauge fields has been previously recognised in the context of the Ising
nematic transition in d-wave superconductors [18, 135, 136], which are also Dirac
systems. Here the fourfold lattice rotational symmetry is spontaneously reduced to
twofold with an Ising order parameter. In the notation of Chapter 3 the effective
Yukawa coupling is A¥'(ay + a,)T>¥. Similarly, on the 7-flux lattice [69, 109],
sublattice (A¥7a,T'W¥) and stripe (A;‘PTaxTZ‘P) charge order parameters both
couple as emergent gauge fields, but this has not been identified in the literature.
This case is interesting because topological Mott order couples as a mass field, but
is destabilised by beyond mean-field fluctuations. In both instances, the existence of

emergent gauge fields is tied to the breaking of lattice symmetries.

To test the predictions in this Thesis there are a number of avenues of study.
Naturally, higher loop RG and non-perturbative functional RG calculations are re-
quired. In addition, with the advent of “designer Hamiltonian” methods [26, 104] in
quantum Monte Carlo, it should be possible to engineer unconventional self-energy
terms that have complementary mass and gauge fields, such as for the CDW3 state.
Also, iDMRG simulations are now capable of extracting momentum-dependent

excitation spectra of Dirac systems [103].

In Chapter 5 it was discussed that critical theories of semi-Dirac fermions need
to be regularised in the vicinity of a critical fixed point. Perhaps this would not be
the case if the semi-Dirac point was studied by the complementary combinations of
mass and non-Abelian gauge fields identified in Chapter 4. It is conceivable that
the encountered divergence of semi-Dirac theories is associated with integrating out

some of the emergent gauge degrees of freedom in an uncontrolled manner.

Finally, a question that has not been addressed in the literature is the role of a

finite chemical potential on the critical properties of Dirac systems. The chemical
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potential is expected to be a relevant perturbation in the RG sense, indicating that
the system will flow to some metallic non-Fermi liquid scaling regime. It would be
interesting to understand the cross over from the Gross-Neveu-Yukawa criticality.
It is expected that there is a competition of energy scales between the chemical
potential and the condensation energy gain from spontaneous symmetry breaking.
The study of doped Dirac systems could shed new light on the problem of metallic

quantum criticality and non-Fermi liquid theory [33].



Appendix A

Appendix: The Fate of the
Topological Mott Insulator

A.1 Calculation of Massive Dirac Fermion Polarisa-

tion Bubbles

The techniques presenter here are general, but are illustrated for the specific case of

the free Dirac fermion propagator dressed with topological Mott broken symmetry

states
s 7 lwffga, +Vp[thy(0y)oor + ky(o-y)(ro-’] +TM(07) o
G;(k)= 5 5 ,
k* + M;
TS , I_C)
— g‘W—()’ (A.1)
k? + M?

where M, = 3\/_‘/2)( or M 3‘/_‘/2 X5 M2 = M?, k = (w, vrky, vrky) and

k* =k - k. The polarisation bubble components
EAUEDY / Gis, (F + )GES, (), (A2)

can be calculated using standard field theoretic machinery [139] of Feynman param-

eters

1 T(a+b) ! x4 11 = x)b!
ABP - T@IB) Jo “[xA+ (1 - B

(A.3)
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and the integrals of dimensional regularisation

dPk 2m 1 F(% +m) I'(n—m—D/2) M P+2m=n)

QoL K2+ M2"  (4n)DP2 r® ) . (A4

with integer m > 0 and where the Gamma function I'(z+ 1) = zI'(z), ['(n) = (n—1)!
for positive integer n, and F(%) = +/mr. Note that odd powers of k in the numerator

vanish by symmetry.

The regulation of ultraviolet divergences A — oo is necessary for internal
diagram lines such as the polarisation bubble. The mean-field free energy terms are
technically ultraviolet divergent, but can be made cutoff independent by rescaling

the coupling V. — V/A.

Application of the above machinery yields

55’ pon g™ (k+ (1 - x)§)g™, (k - x§)
o (@) = Z/ / [k2 + (=x2 + x)g? + M?)?> ~ (A-5)

where the linear transformation k — k — xq has been used to make the denominator
rotationally symmetric in k. Before applying (A.4) to (A.5), the spherical angular

averages are evaluated using the identity [170]

F()C(y)

5
=2 / do sin?*~1(0) cos?0 D (), (A.6)
[(x+y) 0

or more specifically

. Ne+1 r ne+1 r ny+1
ﬁw"“’k;lxkyyf(k) i i il )/k"“’+"X+"’f(k) (A7)

% 2ﬂ_r(nx+n);—nw+3

where f(k)is isotropic in k. Having evaluated the momentum integrals, the Feynman

parameter integrals of the general form

1 m
x"dx
Ji (AS)
0 [-

—x2+x+ M2

are evaluated with the help of the following recursion relations [170]. Note that



A.1. Calculation of Massive Dirac Fermion Polarisation Bubbles 139

the ¢ dependence has been scaled out for brevity. Forn > 0, m > 0 (with R =

—x% +x + M?)
"d
m) = [
[-x2+x+M2]72
m—1 m—2n— 1
(2n—):n)R% - 22(2n2_m)1 I(n,m—-1)- (mzn )HA:I I(n,m—2), Vm # 2n,
—lem + 1I(n 2n—1)—I(n-1,2n-2), Vm = 2n,
2n-1)R
d
10.0)= [ T
[-x2+x+ M2 7
B 22x —1)
(2n — 1)(4M?
n—1 k k .
8R Hizl(n_l)
[”2(41\42“) T 2= -1 Va1,
k=1 j=1 2
1-2
1(0,0) = —arcsin (—x) .
4M? + 1
Similarly, forn = -1, m > 0
I(-1,m) = [ dxx"V-x%+ x+ M2,
XIRY 2m+ (m—1)M?
= + I(—l,m—1)+— I(—l,m—2),

m+2  2m+2) +2

(2m - 1)VR . 4M? + 1
4 8

1(~1,0) = 1(0,0).

Finally, it is useful to express the polarisation in terms of the sublattice pseudospin
Pauli components I1**'(§) = 3, u Hff'(c_j)aﬂ where the sum is over 4 = 0, x, y, z. The

polarisation components are

’ 1 2 + ~2 2 _ ~2 2
Iy’ (cj):—z{arctan( q ) 7o + M2 3w +—M5MS/]
4nvy 2|M| 4q q q
+
Y }
24>
1 2 2 s 3
= 20l {q + @ +4M 7 + 8M;My + O(M )}, (A9)
F
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’ l 22+v2 2 V2 2_22
H;S(Q)=—W{arctan( q ) q qul + M2 F|‘I| (]]

3
F 2|M| 4q q
2% +vZ|q)?
+|M| 2—5},
q
1 V2 2_2 2
=-— 2q2+v%|q|2+4M2L2q+0(M3) . (A.10)
32viq q
I (9) = 0,
I1%%(§) = 0.

Notice that the quantum anomalous and spin Hall bubbles are distinguished by only

one term in HSS/. Also X -, stf'(Zj) =0 for s’ = +s.

In addition, it can be demonstrated that v will account for renormalisation of

the Fermi velocity. The general structure of the polarisation is

() ~ ——(q? + M + O(M>)).
VE

Applying the rescaling é = g/vrA to keep track of factors of vp, and noting that
any factor that can be scaled out of the integrand is negligible (as the logarithm is
taken), it is seen that

X-

-

5~VFV2/ i
0

1 (., M
L+yV, — Q" + —-
vEQ 133

1(Q)

The internal factors of vr can be absorbed into the order parameter, and then it is clear

that IT o 1/vp and so y < 1 accounts for the increase of vz under renormalisation.
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A.2 Further Details of the CDW; Polarisation Calcu-

lation

Here details are presented of the calculation of the CDW3 polarisation
4
. = f i
Mgij = Z /l? PiaG13+E1ab50bjchGI?ca,'pdi‘ (A.11)
abed=1

The spin diagonal fermionic propagator dressed with the charge order is

G-

tap = sO[—ia) +vpk @+ 6100 + 020, ® Tx];;, (A.12)

with 81 = 2Va(p — A), 62 = 2Va(p + A/2). To apply the field theoretic machinery
outlined in Section A.1 it is crucial to express the propagator in terms of massive

Dirac fermion propagators ~ [p*> + M?]~!. Inverting Glgl and using partial fractions

Giéab = gkab Z . ’
48y \[VEKE + 67 V=% p2 + 62 + 62 — v[2624vEKE + 67]

where g is some complicated matrix that is polynomial in k and 6; with combined

(A.13)

cubic order. Then expanding the denominator in the critical region, p,d; — 0,
the propagator can be expressed in terms of “higher order” massive Dirac fermion

propagators

(A.14)

2n
¥ 212 2
g, i 265\ [VEKE + 62
]2 n=0 k

kab (k2 + 6% + 62 2452 462

Following the procedure in Section A.1, f[q may be evaluated to arbitrary order in
N. However, to obtain all terms up to quadratic order in p, it is only necessary to use

N = 1. This procedure is achieved using computer algebra, such as Mathematica.

The exact form is too lengthy to show.
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A.3 Further Details of the CDW; Fluctuation Cor-

rection Calculation

The fluctuation corrections to the quadratic coefficient are

2)/st[£2>
sa = V2/ tr d 5 (A.15)
i Ug'+2yN,IT;

The reduces to

VszQ

5 =
“ 212

1
/ d*¢ / dq qte{(Ux, +Qqﬁ?)—lﬁg>], (A.16)
0

where the rescaling § — vrAg is made, and the radial component of IT is extracted
ﬁé") = qu‘"ﬁg’). Here ¢ = (¢, ¢,) are the azimuthal and polar angles respectively,
and Q = 27y Nyv;.

The final difficulty involves inverting the 6 X 6 matrix. This turns out to be
possible in an analytically tractable manner if U;l is approximated by the zeroth
order expansion Uy !, This is justified via numerical analysis from which it is found
that the higher order terms in Aq do not qualitatively change the phase behaviour
over a large range of A, implying that the terms neglected are a small perturbation.

In terms of 3 X 3 blocks there are the following structures

A 0 - A By\ . A B
Ut =" LQqt@ =" T a7 T2 aa
0 Ay Bl Ay Bl D,

The aim is to calculate the inverse of M = U;! + QgI1°, which can be rewritten as

M = MM, with

Ay + Ag 0 1 By 1A
M, = , My = , Bo = (Ay + Ag)” By. (A.18)
0 Ay + Ag BT 1

0
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Using (M M>)~' = M;'M;" and the properties of the inversion of block matrices

1 —Bo\[(1 - ByBI)™! 0
M5! = 0] ({1~ BoBy) , (A.19)
-B 1 0 (1-BoB))™!
., 1 -Bp\[M 0
- Ml = . (A.20)
-B] 1 J\o M
where M = (1 - BOBg)‘l(AU + Ag)~ L.
Then evaluating the trace over the block structure results in
Va1 Q - ! U - -
Sa = ;sz / d*¢ / dq qtr{M(A, + Dy) - (BoM B} + B M B},
T 0
VanQ Sl - -
oa = 2v§ /d2¢/ dqg qtr{MA; —BOMBZT}, (A.21)
u 0

where trM A, = trM D;. The final result is obtained by evaluating the integrals in

the order radial, azimuthal, polar, which yields the result quoted in the main text

oa =

8Vovy {
Q)

[

)

5 B arctan.(
[384(2 +x)? +8(28 — 68x + 31x2)Q + (12 — 20x + 11x2)92]

4NQ
16 - 63 88
+—|-(1-x7°Q- 2(2 +x) + (62 - 05, . —3x2) log(2)
3 2 2 8
3 ) (VA + Q) -0
~5(1+) Z le( >

o==*1

5 13 ~ 7 ~
+(2- Sx §x2) log(2 — ©) — 16(1 — 5x + sz) log(16 + Q)

}. (A.22)
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Appendix: Novel Criticality of Dirac
Fermions from Lattice Symmetry

Breaking

B.1 Gauge Fixing the Emergent Gauge Sector

Here properties of the emergent gauge sector are further discussed, and details are
provided of the Fadeev-Popov gauge fixing procedure in the Ry gauge [146, 171].

The action is invariant under the local spatial gauge transformation
U(r) = exp{~igal0'(r)T" + 0*(r)T* + °T°]}, (B.1)

where it is important to note that ¢;0> = 0 for i = x,y, such that 8%(r) =
(61(r), 6*(r), 6°). Therefore the theory does not posses a local SU(2) gauge struc-
ture, which is equivalent to the statement A% = 0. In addition, 8,6 = 0. The gauge

transformation can be built from the infinitesimal @ transformations
U(r) = ag —iga0“(r)T". (B.2)
The gauge covariant derivative is

(Do, D) = (8; a0, & — i‘i—?A“T“). (B.3)
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Gauge invariance of the Lagrangian requires that under the transformation ¥ — U,
YT — WiUT, the derivative transforms as D — UDU". Using the infinitesimal

transformation it is clear that the gauge field transforms as

AT > UAUT + LUauT, (B.4)
8A
3
LAY AT 90— gy ) €A, (B.5)
b,c=1

This implies that there is an emergent gauge freedom or redundancy in the low-
energy theory for each choice of A2, as claimed. The issue is that for each physical
field configuration of D[A"?] in the functional integration measure, there are an
infinite number of equivalent configurations given by the choice of 8%(r). To avoid
integrating over the emergent infinite degeneracy, it is important to fix the gauge.
In the following it will be demonstrated that this is crucial to the path integral
definition of the low-energy effective theory. For brevity the spatial part of the
theory is considered, and the trivial imaginary time part is neglected. The A2
sector has the Yang-Mills structure

1
Sk = Z/trFiiji’ (B.6)

where there are sums over repeated indices i, j = x, y. The action is defined in terms

of the gauge field strength

Fij = —[D;, Dj] = 8;A°T" — 8, A°T* — igo[A°T*, ALT"]. (B.7)
gA J J

Expanding this out and integrating the quadratic terms by parts

1
Sr =5 / [Ag(—a,-jaZ +0:0))AT + 2g5(A! x A?)?| . (B.8)

Note that both of these terms are also obtained from integrating over fermion modes

in Chapter 4. It is crucial to identify that the kinetic term signifies a non-invertible
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propagator, with the matrix structure

T

A\ [k -k -k —kok Al
X X Xy , X ’ (B9)
AL\ —keky K-k —K2)\AC

which is non-invertible with zero determinant of the kernel.

This is a manifestation of the gauge redundancy. The resolution presented here
loosely follows the standard treatment found in the textbooks of Srednicki [146] or

Peskin and Schroeder [171], where further technical details may be found.

The following simple example motivates the gauge fixing. The path integral is
considered

Z / dxdye ™, (B.10)

[(S¢]
where y is a redundant variable that does not enter the action. The restriction of the
integration can be implemented with the delta function, which can be shifted by an

arbitrary function f(x)

Z:/dxdyé(y)e_s(x) = /dxdyé(y—f(x))e_s(x). (B.11)

Equivalently the function G(x, y) can be defined with G(x, y) = 0 to have a unique

solution at y = f(x) for fixed x. From the properties of the delta function

_ o0y = f(x))
o(G(x,y)) = 3G9y (B.12)
where it is assumed 0G/dy > 0 at y = f(x). Then aty = f(x)
_ / oG -8(x)
Z = [ dxdyé(G)—e . (B.13)
dy

This motivates the Fadeev-Popov gauge fixing procedure. Here G is the gauge

fixing function

G r)=9-A%r)—wr), (B.14)

where w is a fixed arbitrary function. The functional generalisation of Eq. (B.12)
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is
oG
1= /D[G]det(g) 0(G), (B.15)

which is inserted into Z o / D[A]e™5F to fix the functional integration over the

physical configuration. Under the gauge transformation Eq. (B.5)

60G(r) _

= —6%9%5(r — 1), B.16
507 (r—r’) (B.16)

which is crucially independent of 6, and so is a trivial multiplicative constant to the Z.
The functional integral over A is now restricted by 6G. The final step in the so-called
R¢ gauge fixing procedure is to introduce the Gaussian action S, = / wiw®/2&, and

integrate over w

7 o« / D[A, w]6(8 - A® — wh)eSv5F,

oc/D[A]eXp [%/A?(dij32+lé:iaiaj)A?—Zgi(Al xA%?|.  (B.17)

B.2 Renormalisation Group Equations in d = 2

The RG equations are calculated directly in the physical dimensions d = 2, control-

ling the expansion with large N

s al 5 ) 8rA
YW 3 WP, (85 40 A) — ~

n=1

(8540 Ai)- (B.18)

The RG equations for the velocities are

2 _ 2

d 1 [ & (cs—2vF) 8g%
—vp=vp|lz-1+— — , B.19
ac F l N (c¢vF (co+vP)2 calca+vp)? ( )

2 2 202
d , 2, %0 (VF ¢
—c;=2(z- 15 + ————, B.20
de? ( ) ¢ v}3: ( )
d » 2 gi (V% - 2ci)
—cy =2(z-1 + = B.21
d{’cA (z )CA ZV% ( )
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The RG equations for the Yukawa couplings are

d , >3 5 285 1 [ 16g%(ca+2vp)  4g; (co+2vF) B2
ﬁg¢_g¢ t-2-—+ |- 5= 51> (B.22)
_ Ve cavr (ca + VF) coVr (cp + vF)
d » gt 1 163 2g; (cg +2vF)
dggA_gA 3z2-2-—=+ ~ 1 5~ 511 (B.23)
» v calca+vr) coVF (cp + VF)
The RG equations for the boson order parameter field self-interactions are
d 4g7\ &y 1 [ 4 3645
df/1¢_/1¢ 32-2-—|+F5+<|-—S )| (B.24)
vy vy N ey ¢
2
i/lA =As(32-2~- ﬁ - i + 1 —/ld)A - 48/1’%‘ _dadvm A%M
dt vi | 8vi N\ ) ) S
(B.25)
d 2 g 83y 48141
A = A (3z —2- %) —;‘ ( v _ ZEATM) (B.26)
VF 2vp €A
d g1+ 2g¢ 38385
—Apa = Apa [32-2—
qp oA = Aea (2 3
VF
L1 32A§A C2Madga 120gdga  2Avmidga B27)
N \cacy (ca +cyp) ci c; ci ' '

The RG equations for the boson order parameter field masses are

d g\ 1 1240 8mddea  8A? (3eads +2coda)
df 2m¢ v3 - + B

+ —_ —
b N c(:; ci CAC¢
(B.28)
imz 2 2 % l B zmé/lqu _ 2mf\ (1224 + Aym)
e A v;, N c; ci
AN? (cadpp + ¢ (1224 + A
N (cadga + g (1224 YM))). (B.29)
CACy

The lattice allowed cubic term is also irrelevant in this treatment

d 3g2 121 4au+ 2
=1 [sz - ‘iA 2w - YM)} + oY), (B.30)
VF €A
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with the dimensionless coupling »* — 212, At the CDWj fixed point this reduces

to

d
— b =2
de

RT3V o). (B.31)

Therefore, to this order b is an irrelevant perturbation and the fixed point value is

b, =0. In N — oo, b is marginal to all loop orders [24].
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