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ABSTRACT

A simple model is presented of the formation of the spiral in the (z, v,) phase plane of solar-
neighbourhood stars that was recently discovered in Gaia data. The key is that the frequency €2,
at which stars oscillate vertically depends on angular momentum about the z-axis in addition
to the amplitude of the star’s vertical oscillations. Spirals should form in both (v4) and (vg)
whenever a massive substructure, such as the Sgr dwarf galaxy, passes through the Galactic
plane. The model yields similar spirals to those observed in both (vg) and (vg). The primary
driver is the component of the tidal force that lies in the plane. We investigate the longevity of
the spirals and the mass of the substructure, but the approximations inherent in the model make
quantitative results unreliable. The work relies heavily on a self-consistent, multicomponent
model of our Galaxy produced by the AGAMA package for f{J) modelling.
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1 INTRODUCTION

The second data release from the Gaia mission (DR2; Gaia Col-
laboration 2018) revealed an unexpected spiral pattern in the phase
plane (z, v,) associated with oscillations perpendicular to the Galac-
tic plane of stars that lie in a thin cylindrical shell around the Sun
and are located at similar Galactocentric azimuthal coordinates to
that of the Sun (Antoja et al. 2018). The spiral is barely visible in a
plot of the density p of stars in the (z, v,) plane but clearly visible
in a plot in this plane of (v,), the mean value of the component of
velocity in the direction of Galactic rotation. As Antoja et al. (2018)
remark, this feature is suggestive of the phase-winding of a group
of stars that start strongly clumped in the (z, v;) plane because such
a clump would shear into a spiral of the observed handedness as a
consequence of the vertical period of oscillation being an increasing
function of their amplitudes — the vertical oscillations of stars are
strongly anharmonic.

While we shall see that this intuition is sound, it does not explain
why the spiral is so much more clearly visible in (vg)(z, v.) than in
p(z, v,), nor does it explain the origin of the putative clump.

Here, we use the technique of f{iJ) modelling (Binney 2010;
Piffl, Penoyre & Binney 2015; Pascale et al. 2018) to show how an
‘intruder’, such as a dwarf galaxy or a pure dark-matter structure,
that passes through the disc near the pericentre of its orbit generates
a feature like that observed.

In Section 2, we outline both the model Galaxy and the data from
Gaia DR2 on which we rely. Section 3 contains the paper’s core:
a qualitative explanation of how a passing massive body perturbs

* E-mail: binney @thphys.ox.ac.uk

© 2018 The Author(s)

the disc leads in Section 3.1 to a simple quantitative model that
can produce a spiral like that observed. Then in Section 3.2 we
explain how the spiral emerges and in Section 3.3 we investigate
its longevity. In Section 3.4, we show that a similar but distinct
spiral is expected in vg, and we display this spiral in both the
model and Gaia data. Section 4 discusses the model’s strengths
and weaknesses, concluding that full N-body simulation is needed.
Section 5 sums up and looks to the future.

2 UNDERPINNINGS

2.1 The underlying Galaxy model

Our work involves perturbing a model Galaxy that has been fitted
to the subsample of Gaia DR2 that comprises stars with measured
line-of-sight velocities (Soubiran et al. 2018). These stars are so
numerous and cover such a significant range of radii that their
kinematics when binned in ranges of R and z suffice to constrain
strongly the structure of the Galaxy’s discs, stellar halo and dark
halo (Binney & Vasiliev in preparation). The model is defined by
distribution functions f{.J) that are analytic functions of the action
integrals J = (J,, J;, J5). The bulge, the stellar halo, the low-o
disc, the high-o disc, and the dark halo are all assigned an f(J)
and the parameters within the f{(J) are adjusted until the predicted
stellar kinematics provide reasonable fits to the DR2 data. After each
change of the parameters, the software package AGAMA (Vasiliev
2018) is used to solve for the potential that the bulge, discs, and
dark halo jointly generate alongside a fixed representation of the
mass of the interstellar medium. Hence, the final (axisymmetric)
model is fully self-consistent, and strongly constrained within the
radial range covered by the DR2 data. It very nicely reproduces the
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vertical density profile that Gilmore & Reid (1983) used to discover
the thick disc (now better termed the high-« disc).

2.2 Data from Gaia DR2

We use the radial velocity subset of Gaia DR2 (Soubiran et al.
2018), which comprises more than 7 million stars with full 6D
phase-space information, i.e. positions, parallaxes, proper mo-
tions, and line-of-sight velocity measurements. Heliocentric stel-
lar positions and velocities are translated into the Galactic frame
assuming the Sun’s Galactocentric radius and vertical position
are (Ro, z0) = (8.27,0.02) kpc) (Joshi 2007; Schonrich, Binney &
Dehnen 2010; Schonrich 2012), and its Galactocentric motion is
Uy, Vo, Wp) = (11.1, 250, 7.24) km s7!, so the Sun is moving in-
wards and upwards.

We assign distances to stars using the iterative method of
Schonrich & Aumer (2017), which has been validated on Gaia
DRI (Lindegren et al. 2016) matched with the RAVE (Kunder et al.
2017) and LAMOST surveys. By using a self-generated prior on
distance, this method ensures unbiased distances for every sample,
and statistically validates the distances.

The Gaia DR2 parallaxes have significant zero-point errors
(Lindegren et al. 2018). For the sake of simplicity, we here add
oo = 0.048 mas to all published parallaxes (Schonrich et al. in
preparation). We use only stars that (i) satisfy the parallax quality
cut o,/ < 0.2, (ii) have >5 visibility periods, and (iii) have ‘ex-
cess noise’ < 1 mas. In the plots below, we use stars that lie in the
region |R — Ry| < 0.5kpc, |y| < 4kpe, |z] < 1.5kpc.

3 THE PHYSICS OF THE PHASE-PLANE
SPIRAL

From the fact that the spiral appears clearly in a plot of (vy) in a
narrow range of R it follows that it is associated with a correla-
tion between the in-plane oscillations (radial epicyclic motion) and
oscillations perpendicular to the plane. The passage of an intruder
through the plane will inevitably generate such correlated oscil-
lations. Indeed, consider an intruder that passes vertically down
through the plane such that its velocity at z = 0 is in the —e, di-
rection. Throughout its passage the intruder attracts stars towards it
with the consequence that the vg and vy components of each star’s
velocity change steadily during the passage. The v, component,
by contrast is incremented as the intruder approaches from above,
but then decremented as the intruder recedes below the plane. The
decrement would cancel the increment perfectly if the star in ques-
tion were stationary during the passage, but on account of the star’s
motion they do not quite cancel, and the star receives a net kick,
which is on average downwards.

We decompose the motion of each star into two parts. The first
part is the star’s unperturbed motion, being part circulation and part
radial and vertical oscillation. Averaged over all stars this unper-
turbed motion brings stars neither closer to the intruder nor further
from it during the passage, so this motion does not give rise to a net
vertical impulse on the Galaxy by the intruder. On the other hand,
stars initially at 2 o’clock in Fig. 1, which are being carried towards
the intruder by Galactic rotation, will be closer to the intruder as
it recedes than they were as it approached. Hence, these stars will
receive a net downward impulse. Conversely, stars initially at 4
o’clock will receive a net upward impulse. From this discussion it
follows that the vertical impulse arising from rotation will be an odd
function of ¢ — @inyuger With ¢ defined as in Fig. 1 to ensure that
Galactic rotation corresponds to ¢ > 0. Rotation will most strongly
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Figure 1. Schematic of the impact on a star of an intruder passing through
the plane distance s from the GC.

impel stars downwards at ¢ — Pinguder ~ —7/2, Where stars are
moving almost directly towards the perturber, and will impel stars
most strongly upward at ¢ — Pinguder ~ 7/2 and have little effect
when this angle is 0 or 7 because then it will not be changing the
distance to the intruder. Given this pattern of up and down impulses,
we take the contribution from rotation to the downward impulse to
be —Bsin (¢ — Pinguder) times the in-plane impulse.

The second part of the motion of stars is the motion arising from
the pull of the intruder. On average this moves stars towards the
intruder, and thus causes the downward pull as the intruder recedes
to exceed the upward pull as the intruder approaches. Hence, the
pull of the intruder towards its line of flight always generates a
net downward kick. This is essentially the physics of dynamical
friction.

3.1 A toy model

With AGAMA one can quickly sample the stellar DF subject to any
selection function g(x). We used this facility to choose phase-space
coordinates for a million stars that lie within the region

Ry —0.5kpc < R < Ry + 0.5kpc ¢ — po| < 0.25rad, (1)

and are biased towards shorter distances in the way characteristic
of the radial velocity subset of Gaia DR2. The orbits of these stars
were then integrated backwards for a time . Then we computed
the difference between the gravitational acceleration towards an
intruder at the location (R, z = 0, ¢ = @inwuder) ON (i) a star located
atx(— t) and (ii) a star located at the Galactic centre (R =0, z = 0).
By subtracting the latter acceleration from the pull of the intruder,
we take cognisance that we are working in the non-inertial frame
in which the Galactic centre remains stationary. The kicks stars
experience are proportional to the product M x T of the intruder’s
mass and the effective duration of the passage

2p

s
Vintruder

T =

@

where p = 10kpc is the impact parameter from the perspective of
the solar neighbourhood and vigyder 2 300 km s7!is the intruder’s
speed. M =2 x 10'"°My, and T = 66 Myr were adopted for the
figures.

Fig. 2 shows in black the current locations of 30 stars from the
solar-neighbourhood sample. The red arrows are centred on the
locations of these stars T = 200 Myr in the past as the intruder
(blue square) passed through the plane. The lengths of the arrows
are proportional to the kicks év that these stars had just received
from the intruder after allowing for the fact that the reference frame
has been kicked as if it were a particle at the Galactic centre.

The acceleration computed above multiplied by a characteristic
time-scale of the passage yields a velocity change §v,, that lies within
the plane. To this we must add a (downward) component dv that
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Figure 2. The centres of red arrows mark the locations 200 Myr ago of stars
that are currently close to the Sun (black dots). The arrows are proportional
to the tidal impulses the stars receive during the passage of the intruder,
which we see crossing the plane 200 Myr ago (blue square). The solar circle
is traced by the dotted black line.

arises because stars move during the encounter. As explained at the
head of this section, the Fourier expansion of this velocity change in
the azimuths of stars will be dominated by a constant term associated
with standard dynamical friction and a term proportional to sin (¢ —
Pintruder)- The magnitude of both terms will scale with the modulus
of the in-plane component. Pending a more elaborate treatment, we
adopt

vy =« ‘Svl\l [1 - ﬂ Sin(¢ - ¢imruder)]~ (3)

When g > 0 the downward kick is larger for stars that are initially
moving towards the intruder. Below we show results for («, §) =
(0.4, 0.5). Smaller values of o and larger values of § yield less
interesting figures. Setting 8 = 0 actually improves the clarity of
the figures.

In summary, except when estimating the vertical kick §v,, we
imagine that the intruder’s gravitational field is a Dirac delta-
function in time with a magnitude that is proportional to the in-
truder’s mass times the approximate duration of the passage in the
real world. Thus, we are essentially working in the impulse approx-
imation (Binney & Tremaine 1987, section 7.2.1).

From the velocity v(— 7) of each star that we have computed by
backwards integration we subtract §v computed as above to obtain
the star’s velocity before the intruder appeared. At the phase-space
location [x(— t), v(— 1) — §v], we evaluate the stellar DF f(J)
(the sum of the DFs of bulge, stellar halo, and discs) by using the
Stickel Fudge (Binney 2012) to evaluate the actions. By Liouville’s
theorem, this value,

Jo=flJ(x, v —3dv)], “

is the actual phase-space density at the current location of the star
near the Sun. By contrast, we sampled the solar neighbourhood
using the sampling density

fs = flJ(x, )], &)

where J comprises the actions reached after the kick, which are
conserved along the orbit from that time to the present. By the
principle of Monte Carlo integration, a valid estimate of the current
expectation value of any phase-space variable ¢ is the sum over stars

(q)=i§:q-& Q)
N i=1 lfsi.
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Figure 3. Upper panel: the average value of vy within the (z, v;) phase
plane computed for an impulsive passage of an intruder 400 Myr ago at a
Galactocentric distance of 20 kpc. Lower panel: the same average for stars
in Gaia DR2.

60

C g 3
20 L ]
« [ ]
E |
< ofp 7]
N
= r 4
—20 -
[ -
,40 L —
i el |
—60 -0.07

z/kpc

Figure 4. Density of model stars in the (z, v;) plane.

The result of applying this formula to g = vy for @ = 0.4, g =
0.5, T = 400 Myr is shown in the upper panel of Fig. 3. A spiral is
evident that is remarkably similar to that seen in the lower panel,
which after Antoja et al. (2018) shows (vy) in the Gaia DR2 data.

Fig. 4 shows the current density of model stars in the (z, v;) plane:
no spiral is evident just as in the corresponding plot in Antoja et al.
(2018).

3.2 Moving around your ellipse

To obtain a better understanding of how the phase-plane spiral
forms, the upper panel of Fig. 5 shows the distribution of stars in
the plane (\/J;, ;). /J; is the natural radial coordinate in the (z,
v.) plane: in this plane stars move clockwise on ellipses of area
27 J,. Stars lie in a broad swath that extends from large €2, at small
J, to small 2, at large J;, and it was to this trend of €2, with J, that
Antoja et al. (2018) appealed in their picture of phase-wrapping of
a clump of stars. As remarked in the Section 1, the problem with
this explanation is the invisibility of a spiral in the density p(z, v;).

MNRAS 481, 1501-1506 (2018)
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Figure 5. Upper panel: from Gaia DR2 we show the density of stars in the
plane (le/ 2, 2.). Lower panel: the mean value of vy within this plane.

Figure 6. Schematic of the (z, v;) plane showing the effect on the DF of
decrementing all values of v.. Initially the full ellipse, a curve of constant
J, is a contour of f. After velocities have been decremented, this contour
becomes the dashed curve, which is not a curve of constant J;,. Consequently,
on curves of constant J, stars are concentrated towards 0, = 7 since the
origin of 6, is conventionally at the top of the curves.

The lower panel of Fig. 5 reveals the reason for the width of the
swath by plotting (v,), the average value of v, in each pixel. This
forms a perfect rainbow, with low (vg4) at the top of the swath and
high (vg4) at the bottom. This correlation arises because all stellar
frequencies decrease as one moves out through the Galaxy, and
in the solar neighbourhood vy is tightly connected to J,, which
controls an orbit’s guiding-centre radius.

By Jeans theorem, in a relaxed Galaxy the distribution of stars
is stratified in the (z, v;) plane on ellipses of constant J,, so it
is independent of 6,. The intruder shifts the distribution of stars
down in the (z, v;) plane so it is no longer stratified by J, (Fig. 6).

MNRAS 481, 1501-1506 (2018)
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Figure 7. Upper panel: (vy) 100 Myr after a passage. Lower panel: (vy)
200 Myr after a passage.

Hence, the distribution is now a function of the conjugate angle 6,
in addition to J., with a concentration of stars at #. = 7.! After
the perturbation has been applied, each star moves around its newly
assigned ellipse at a rate 2. that varies systematically with v,.
Hence, in the top panel of Fig. 3 the colour of an ellipse varies
with location 6, around it. On account of the dependence of €2, on
J., the colouration evolves on smaller ellipses faster than on larger
ellipses. Hence, the emergence of the spiral depends essentially on
both functional dependencies of 2.(Jy, J,.).

3.3 How long does a spiral last?

In Fig. 7, we show (vg) in the phase plane 100 Myr (upper panel)
and 200 Myr (lower panel) after an intruder passed through the
plane. In each case the intruder passed through the disc at what
was at that time the mean azimuth of the sampled stars. Hence, the
stars that contribute to the upper panel have gone half way round
the Galaxy since they were kicked, while those in the lower panel
have been round once. In the upper panel the spiral is still forming,
while in the lower panel it is less wound up that that seen in the
data. The amplitude of the spiral does not vary much between 100
and 400 Myr, all that varies is the degree of winding. Comparison
of Figs 3 and 7 with the data suggests that the spiral was created
400 £ 150 Myr ago as Antoja et al. (2018) proposed. Interestingly,
this is roughly how long in the past lies the previous pericentre
passage of the Sgr dwarf (e.g. Dierickx & Loeb 2017).

3.4 A spiralin vy

The intruder pulls stars outwards and thus causes an overdensity
of stars in the (R, vg) phase plane around 0z = 7/2 (maximum
outward speed) — the phase-plane geometry is extremely similar to

'We adopt the convention of T™ (Binney & McMillan 2016) that 6, = 0 as
stars move up through the plane.
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Figure 8. Upper panel: (vg) in the phase plane at 400 Myr. Lower panel:
the same mean over stars in Gaia DR2 that have |vg| < 30kms™!.

that shown in Fig. 6. If at this instant we were to plot (vg) in the
(z, v;) plane, the plot would show a coherent region of positivity
rather than the uniform zero characteristic of an equilibrium disc.
Now focus on the stars that lie at a point of the (z, v,) plane where
(vg) > 0. They have a common value of J, and move around a
common ellipse, but at rates €2, that increase as J,; decreases. As Jy
decreases €2,, like 2., increases, so the 6, values of the stars that
move fastest around the ellipse increase fastest. As 6, changes, so
do the vy values of these stars, so the contribution of these stars to
(vg) changes faster than do the contributions of the groups of stars
that lag them. It follows that the blob of colour signalling (vg) >
0 is sheared into a spiral that differs in the tightness of its winding
from the spiral seen in (vg) because vy and vg evolve differently as
6, increments.

The upper panel of Fig. 8 shows (vg) in the phase plane 400 Myr
after a passage. As expected, a spiral is evident that is similar to,
but different from, that seen in the corresponding plot for (vg4). The
lower panel of Fig. 8 shows a similar spiral in the Gaia DR2 data.

Plots of (vg) at 100 and 200 Myr show less tightly would spirals.

4 DISCUSSION

We have supposed the action of the intruder to be impulsive in order
to obtain the simplest physical picture that can explain the observed
phenomenon. In reality the impulse approximation will provide only
amediocre quantitative account of the passage through pericentre of
a galaxy such as Sgr. Indeed, the passage has a characteristic time-
scale T ~ 66 Myr (equation 2) while stars near the Sun have vertical
periods down to ~40 Myr (Fig. 5). The radial and azimuthal period
are longer, but rarely long enough for the impulse approximation
to be safe. The phase spiral is a phenomenon that involves several
comparable time-scales so is analytically intractable. Moreover, in
the limit vipuger — 00 in which the impulse approximation becomes
exact, the phenomenon under discussion will disappear because in

The origin of the Gaia phase-plane spiral ~ 1505

this limit v, /8v,, — 0. Hence, quantitative results extracted from
the model presented here should be regarded with some scepticism.

However, the major weakness of the present model is not its use
of the impulse approximation, which has a history of being more
successful than one has a right to expect (Alladin & Narasimhan
1982; Binney & Tremaine 1987, section 7.2.1), but in the use of
unperturbed frequencies €2,: when a whole section of the disc is
pulled down, stars will oscillate vertically with significantly longer
periods than 277/€2,. This principle is illustrated in extreme form by
the classic study of Hunter & Toomre (1969), who considered a disc
of razor-thin rings. To convert a galactic disc to a razor-thin disc we
must compress it along z until the density in the plane is infinite.
In this process every star’s frequency €2, diverges. Yet Hunter &
Toomre (1969) showed that material points on the spinning rings
oscillate up and down at perfectly finite frequencies because their
neighbours move with them. What the present model gets right is
the insight that the frequencies of vertical and radial oscillations
decrease as J, and thus vy increase. Qualitatively, the explanation
we have given is sound even though it is quantitatively significantly
off.

Careful comparison of the upper and lower panels of Figs 3 and 8
reveals quantitative weaknesses. Most obviously, the model spirals
seem stretched along the velocity axis with respect to those in the
Gaia DR2 data, implying that the model’s potential is not quite
right.

The mass and impact parameter of the intruder are significant
issues. Uncomfortably large values of the product MT of intruder
mass and passage duration were required to obtain clear model
spirals. With such large values of MT stars receive significant kicks
and the ratio fy/f; of the values taken by the unperturbed DF at
a star’s location before and after kicking differ considerably from
unity. Comparison of the colouring in the upper and lower panels of
Fig. 8 suggests that the model passages are generating larger values
of vg than they should be.

Another issue is the adopted magnitude of the applied downward
kicks v, (equation 3). As was explained at the start of Section 3,
the relationship of this kick to the in-plane kick depends on the
intruder’s speed. We have not attempted to compute it, but simply
adopted a value that generates reasonable spirals. The value we have
adopted is on the large side, but smaller values do not yield good
figures.

Large values of §v, imply a slow intruder, which implies peri-
centre of a tightly bound, low eccentricity orbit. The Sgr dwarf
has just such an orbit (Dierickx & Loeb 2017). However, our im-
pulse approximation is least justifiable in this regime: an individual
passage will be slow, and the data may contain signals from more
than one passage, so our picture could be seriously oversimplified.
Moreover, the orbit of the Sgr dwarf cuts the disc at a significantly
oblique angle rather than at right angles as in our model.

To overcome the weakness of our approach both with respect to
the likely slowness and recurrence of the passages and the need to
recognize that whole sections of the disc are moved up and down,
full N-body modelling is required. Such models (e.g. Laporte et al.
2018; Tepper-Garcia & Bland-Hawthorn 2018) are orders of mag-
nitude more expensive than our approach,? and they do not provide
the same insight, but they are essential for proper exploitation of
the beautiful data that are now to hand.

2The plots shown here can be computed in a few minutes on a laptop.
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5 CONCLUSIONS

A simple model based on the impulse-approximation in which an
intruder plucks the disc out and down produces a spiral in the (z,
v.) plane very like that discovered in (v,4) by Antoja et al. (2018).
We have displayed from the Gaia DR2 data a clear spiral in (vg)
and shown that our model can reproduce this spiral also. There
are indications that the intruder is not on a highly eccentric orbit,
with the consequence that our use of the impulse approximation
is questionable and that full N-body modelling will be required to
explain the data satisfactorily.

Whatever the orbit of the intruder, our model necessarily neglects
the fact that the intruder plucks downwards whole segments of the
disc rather than individual stars from the disc, with the consequence
that our model uses vertical frequencies that are systematically too
high. This is a serious weakness of the model, and relegates it to
‘toy’ status: it captures important aspects of the problem and delivers
valuable insights but oversimplifies to the point that it cannot be
trusted quantitatively.

This investigation illustrates nicely an aspect of the power latent
in f{J) modelling. Specifically it shows the value of being able to
sample our corner of the Galaxy densely: if we assume the disc has
scale length Ry = 2.5 kpc, only 0.38 per cent of the disc’s stars lie
in the region we have sampled, so an N-body model providing the
same resolution in the (z, v,) plane would require in excess of 200
million disc stars, not counting particles needed to represent the
bulge, dark halo, etc. A simulation on this scale is computationally
expensive. While it is true that with current f{J) software it is not
possible to model correctly the collective response of the disc, so
ultimately N-body models are essential, the software does provide
the initial data for an N-body simulation that most closely approach
an equilibrium and thus eliminate unwanted transients (Vasiliev
2018). Consequently, the way forward would seem to be speedy
exploration of possibilities by f(J) modelling followed by a few
high-quality N-body simulations with initial conditions furnished
by the most successful f{J) models.

MNRAS 481, 1501-1506 (2018)

ACKNOWLEDGEMENTS

This work was stimulated by conversations with J. Bland-Hawthorn.
It has been supported by the UK Science and Technology Facili-
ties Council under grant number ST/N000919/1 and by the Royal
Society of London.

REFERENCES

Alladin S. M., Narasimhan K. S. V. S., 1982, Phys. Rep., 92, 339

Antoja T. et al., 2018, preprint (arXiv:e-prints)

Binney J., 2010, MNRAS, 401, 2318

Binney J., 2012, MNRAS, 426, 1324

Binney J., McMillan P. J., 2016, MNRAS, 456, 1982

Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press,
Princeton, NJ

Dierickx M. I. P,, Loeb A., 2017, ApJ, 847, 42

Gaia Collaboration, 2018, preprint (arXiv:e-prints)

Gilmore G., Reid N., 1983, MNRAS, 202, 1025

Hunter C., Toomre A., 1969, AplJ, 155, 747

Joshi Y. C., 2007, MNRAS, 378, 768

Kunder A. etal., 2017, AJ, 153, 75

Laporte C. F. P., Minchev 1., Johnston K. V., Gémez F. A., 2018, preprint
(arXiv:e-prints)

Lindegren L. etal., 2016, A&A, 595, A4

Lindegren L. etal., 2018, A&A, 616, 2L

Pascale R., Posti L., Nipoti C., Binney J., 2018, MNRAS, 480, 927

Piffl T., Penoyre Z., Binney J., 2015, MNRAS, 451, 639

Schonrich R., 2012, MNRAS, 427, 274

Schonrich R., Aumer M., 2017, MNRAS, 472, 3979

Schonrich R., Binney J., Dehnen W., 2010, MNRAS, 403, 1829

Soubiran C., Jasniewicz G., Chemin L., Zurbach C., 2018, A&A, 616, 7

Tepper-Garcia T., Bland-Hawthorn J., 2018, MNRAS, 478, 5263

Vasiliev E., 2018, preprint (arXiv:e-prints)

This paper has been typeset from a TEX/IATEX file prepared by the author.

6102 1990190 0} U0 Josn (uopuo 869]10 Asioniun) TON Ag 29€880S/L0S |/2/L 8/10EAISqE-0|oILE/SEIU/WOD dNO"IWISPEDE//:SA)Y WOI) PIPEOJUMOQ


http://dx.doi.org/10.1016/0370-1573(82)90009-6
http://arxiv.org/abs/e-prints
http://dx.doi.org/ 10.1111/j.1365-2966.2009.15845.x 
http://dx.doi.org/ 10.1111/j.1365-2966.2012.21757.x 
http://dx.doi.org/ 10.1093/mnras/stv2734 
http://dx.doi.org/ 10.3847/1538-4357/aa8767 
http://arxiv.org/abs/e-prints
http://dx.doi.org/ 10.1093/mnras/202.4.1025 
http://dx.doi.org/ 10.1086/149908 
http://dx.doi.org/ 10.1111/j.1365-2966.2007.11831.x 
http://dx.doi.org/ 10.3847/1538-3881/153/2/75 
http://arxiv.org/abs/e-prints
http://dx.doi.org/ 10.1051/0004-6361/201628714 
http://dx.doi.org/ 10.1051/0004-6361/201832727 
http://dx.doi.org/ 10.1093/mnras/sty1860 
http://dx.doi.org/ 10.1093/mnras/stv938 
http://dx.doi.org/ 10.1111/j.1365-2966.2012.21631.x 
http://dx.doi.org/ 10.1093/mnras/stx2189 
http://dx.doi.org/ 10.1111/j.1365-2966.2010.16253.x 
http://dx.doi.org/ 10.1093/mnras/sty1359 
http://arxiv.org/abs/e-prints

