UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The Gaia-ESO Survey: Hydrogen lines in red giants directly trace stellar mass

Bergemann, M; Serenelli, A; Schonrich, R; Ruchti, G; Korn, A; Hekker, S; Kovalev, M; ... Bestenlehner, JM; + view all (2016) The Gaia-ESO Survey: Hydrogen lines in red giants directly trace stellar mass. Astronomy & Astrophysics , 594 , Article A120. 10.1051/0004-6361/201528010. Green open access

[thumbnail of aa28010-15.pdf]
Preview
Text
aa28010-15.pdf - Published Version

Download (2MB) | Preview

Abstract

Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples: age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows determining stellar masses and ages with an accuracy of 10−15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < Teff < 5000 K, 0.5 < log g < 3.5, −2.0 < [Fe/H] < 0.3, and luminosities log L/LSun < 2.5. Our analysis provides observational evidence that the Hα spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows obtaining simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies such as Andromeda or the Magellanic Clouds even with current instrumentation, such as the VLT and Keck facilities

Type: Article
Title: The Gaia-ESO Survey: Hydrogen lines in red giants directly trace stellar mass
Open access status: An open access version is available from UCL Discovery
DOI: 10.1051/0004-6361/201528010
Publisher version: https://doi.org/10.1051/0004-6361/201528010
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: techniques: spectroscopic – stars: fundamental parameters – stars: late-type – Galaxy: stellar content
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery.ucl.ac.uk/id/eprint/10083334
Downloads since deposit
7Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item