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Summary
Background Deep learning offers considerable promise for medical diagnostics. We aimed to evaluate the diagnostic 
accuracy of deep learning algorithms versus health-care professionals in classifying diseases using medical 
imaging.

Methods In this systematic review and meta-analysis, we searched Ovid-MEDLINE, Embase, Science Citation Index, 
and Conference Proceedings Citation Index for studies published from Jan 1, 2012, to June 6, 2019. Studies comparing 
the diagnostic performance of deep learning models and health-care professionals based on medical imaging, for any 
disease, were included. We excluded studies that used medical waveform data graphics material or investigated the 
accuracy of image segmentation rather than disease classification. We extracted binary diagnostic accuracy data and 
constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. Studies undertaking an 
out-of-sample external validation were included in a meta-analysis, using a unified hierarchical model. This study is 
registered with PROSPERO, CRD42018091176.

Findings Our search identified 31 587 studies, of which 82 (describing 147 patient cohorts) were included. 69 studies 
provided enough data to construct contingency tables, enabling calculation of test accuracy, with sensitivity ranging 
from 9·7% to 100·0% (mean 79·1%, SD 0·2) and specificity ranging from 38·9% to 100·0% (mean 88·3%, SD 0·1). 
An out-of-sample external validation was done in 25 studies, of which 14 made the comparison between deep learning 
models and health-care professionals in the same sample. Comparison of the performance between health-care 
professionals in these 14 studies, when restricting the analysis to the contingency table for each study reporting the 
highest accuracy, found a pooled sensitivity of 87·0% (95% CI 83·0–90·2) for deep learning models and 86·4% 
(79·9–91·0) for health-care professionals, and a pooled specificity of 92·5% (95% CI 85·1–96·4) for deep learning 
models and 90·5% (80·6–95·7) for health-care professionals.

Interpretation Our review found the diagnostic performance of deep learning models to be equivalent to that of 
health-care professionals. However, a major finding of the review is that few studies presented externally validated 
results or compared the performance of deep learning models and health-care professionals using the same 
sample. Additionally, poor reporting is prevalent in deep learning studies, which limits reliable interpretation of 
the reported diagnostic accuracy. New reporting standards that address specific challenges of deep learning could 
improve future studies, enabling greater confidence in the results of future evaluations of this promising 
technology.

Funding None.

Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
The first paper indexed in MEDLINE with the MeSH 
term “artificial intelligence” (AI) dates back to 1951, when 
Fletcher described a tortoise robot in the seminal paper 
“Matter with mind; a neurological research robot”.1 Today, 
more than 16 000 peer-reviewed scientific papers are 
published in the AI field each year, with countless more 
in the lay press.2 The application of AI has already started 
to transform daily life through applications such as 
photo captioning, speech recognition, natural language 
translation, robotics, and advances in self-driving cars.3–9 

Many people anticipate similar success in the health 
sphere, particularly in diagnostics, and some have 
suggested that AI applications will even replace whole 
medical disciplines or create new roles for doctors to 
fulfil, such as “information specialists”.10–12

Medical imaging is one of the most valuable sources 
of diagnostic information but is dependent on human 
interpretation and subject to increasing resource 
challenges. The need for, and availability of, diagnostic 
images is rapidly exceeding the capacity of available 
specialists, particularly in low-income and middle-income 
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countries.13 Automated diagnosis from medical imaging 
through AI, especially in the subfield of deep learning, 
might be able to address this problem.14,15 Reports of deep 
learning models matching or exceeding humans in 
diagnostic performance has generated considerable 
excitement, but this enthusiasm should not overrule the 
need for critical appraisal. Concerns raised in this field 
include whether some study designs are biased in favour 
of the new technology, whether the findings are 
generalisable, whether the study was performed in silico 
or in a clinical environment, and therefore to what 
degree the study results are applicable to the real-world 
setting. More than 30 AI algorithms have now been 
approved by the US Food and Drug Administration.16 
In anticipation of AI diagnostic tools becoming imple-
mented in clinical practice, it is timely to systematically 
review the body of evidence supporting AI-based 
diagnosis across the board.

In this systematic review, we have sought to critically 
appraise the current state of diagnostic performance by 
deep learning algorithms for medical imaging compared 
with health-care professionals, considering issues of study 
design, reporting, and clinical value to the real world, and 
we have conducted a meta-analysis to assess the diagnostic 
accuracy of deep learning algorithms compared with 
health-care professionals.

Methods
Search strategy and selection criteria
In this systematic review and meta-analysis, we searched 
for studies that developed or validated a deep learning 
model for the diagnosis of any disease feature from 
medical imaging material and histopathology, and 
additionally compared the accuracy of diagnoses made 
by algorithms versus health-care professionals. We 
searched Ovid-MEDLINE, Embase, Science Citation 
Index, and Conference Proceedings Citation Index for 
studies published from Jan 1, 2012, to June 6, 2019, with 
no language restrictions. The full search strategy for each 
database is available in the appendix (p 2). The cutoff of 
Jan 1, 2012, was prespecified on the basis of a recognised 
step-change in machine learning performance with the 
development of deep learning approaches. In 2012, for 
the first time, a deep learning model called AlexNet, 
enabled by advances in parallel computing architectures, 
made an important breakthrough at the ImageNet Large-
Scale Visual Recognition Challenge.3 The search was first 
performed on and up to May 31, 2018, and an updated 
search was performed on June 6, 2019. Manual searches 
of bibliographies, citations, and related articles (PubMed 
function) of included studies were undertaken to identify 
any additional relevant articles that might have been 
missed by the searches.
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Research in context

Evidence before this study
Deep learning is a form of artificial intelligence (AI) that offers 
considerable promise for improving the accuracy and speed of 
diagnosis through medical imaging. There is a strong public 
interest and market forces that are driving the rapid 
development of such diagnostic technologies. We searched 
Ovid-MEDLINE, Embase, Science Citation Index, and Conference 
Proceedings Citation Index for studies published from 
Jan 1, 2012, to June 6, 2019, that developed or validated a deep 
learning model for the diagnosis of any disease feature from 
medical imaging material and histopathology, with no 
language restrictions. We prespecified the cutoff of Jan 1, 2012, 
to reflect a recognised change in model performance with the 
development of deep learning approaches. We found that an 
increasing number of primary studies are reporting diagnostic 
accuracy of algorithms to be equivalent or superior when 
compared with humans; however, there are concerns around 
bias and generalisability. We found no other systematic reviews  
comparing performance of AI algorithms with health-care 
professionals for all diseases. We did find two disease-specific 
systematic reviews, but these mainly reported algorithm 
performance alone rather than comparing performance with 
health-care professionals.

Added value of this study
This review is the first to systematically compare the 
diagnostic accuracy of all deep learning models against 

health-care professionals using medical imaging published to 
date. Only a small number of studies make direct comparisons 
between deep learning models and health-care professionals, 
and an even smaller number validate these findings in an 
out-of-sample external validation. Our exploratory 
meta-analysis of the small selection of studies validating 
algorithm and health-care professional performance using 
out-of-sample external validations found the diagnostic 
performance of deep learning models to be equivalent to 
health-care professionals. When comparing performance 
validated on internal versus external validation, we found 
that, as expected, internal validation overestimates diagnostic 
accuracy for both health-care professionals and deep learning 
algorithms. This finding highlights the need for out-of-sample 
external validation in all predictive models.

Implications of all the available evidence
Deep learning models achieve equivalent levels of diagnostic 
accuracy compared with health-care professionals. 
The methodology and reporting of studies evaluating deep 
learning models is variable and often incomplete. New 
international standards for study protocols and reporting that 
recognise specific challenges of deep learning are needed to 
ensure quality and interpretability of future studies.

See Online for appendix
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Eligibility assessment was done by two reviewers who 
screened titles and abstracts of the search results 
independently, with non-consensus being resolved by a 
third reviewer. We did not place any limits on the target 
population, the disease outcome of interest, or the 
intended context for using the model. For the study 
reference standard to classify absence or presence of 
disease, we accepted standard-of-care diagnosis, expert 
opinion or consensus, and histopathology or laboratory 
testing. We excluded studies that used medical waveform 
data graphics material (ie, electroencephalography, 
electrocardiography, visual field data) or investigated the 
accuracy of image segmentation rather than disease 
classification.

Letters, preprints, scientific reports, and narrative 
reviews were included. Studies based on animals or non-
human samples or that presented duplicate data were 
excluded.

This systematic review was done following the 
recommendations of the PRISMA statement.17 Methods 
of analysis and inclusion criteria were specified in 
advance. The research question was formulated 
according to previously published recommendations for 
systematic reviews of prediction models (CHARMS 
checklist).18

Data analysis
Two reviewers (XL, then one of LF, SKW, DJF, AK, AB, or 
TM) extracted data independently using a predefined 
data extraction sheet, cross-checked the data, and 
resolved disagreements by discussion or referral to a 
third reviewer (LMB or AKD). We contacted four authors 
for further information.19–22 One provided numerical data 
that had only been presented graphically in the published 
paper and one confirmed an error in their published 
contingency table. We did not formally assess the quality 
of the included studies.

Where possible, we extracted binary diagnostic 
accuracy data and constructed contingency tables at the 
reported thresholds. Contingency tables consisted of 
true-positive, false-positive, true-negative, and false-
negative results, and were used to calculate sensitivity 
and specificity.

To estimate the accuracy of deep learning algorithms 
and health-care professionals, we did a meta-analysis 
of studies providing contingency tables from out-of-
sample external validations (including geographical and 
temporally split data). If a study provided various con-
tingency tables for the same or for different algorithms, 
we assumed these to be independent from each other. We 
accepted this assumption because we were interested in 
providing an overview of the results of various studies 
rather than providing precise point estimates. We used a 
unified hierarchical model that was developed for the 
meta-analysis of diagnostic accuracy studies and plotted 
summary receiver operating characteristic (ROC) curves 
for the accuracy of health-care professionals and deep 

learning algorithms.23 The hierarchical model involves 
statistical distributions at two different levels. At the lower 
level, it models the cell counts that form the contingency 
tables (true positive, true negative, false positive, and false 
negative) by using binomial distributions. This accounts 
for the within-study variability. At the higher level, it 
models the between-study variability (sometimes called 
heterogeneity) across studies. The hierarchical summary 
ROC figures provide estimates of average sensitivity and 
specificity across included studies with a 95% confidence 
region of the summary operating point and the 95% 
prediction region, which represents the confidence 
region for forecasts of sensitivity and specificity in a 
future study.

Owing to the broad nature of the review—ie, in 
considering any classification task using imaging for 
any disease—we were accepting of a large degree of 
between-study heterogeneity and thus it was not formally 
assessed.

31 587 records identified
31 568 through database searching with duplicates

4308 from MEDLINE
14 551 from Scopus

9920 from Web of Science
2789 from IEEE

19 through other sources

20 530 records screened

122 full-text articles assessed for eligibility

82 studies included in qualitative synthesis

25 studies included in meta-analysis

11 057 duplicates removed

20 408 excluded

57 studies excluded due to insufficient 
information to allow contingency 
table extraction or for not 
performing out-of-sample 
external validation

40 excluded
6 no classification task
2 no target disease
2 no deep learning model

24 no comparison to health-care 
professionals

5 no outcomes
1 not imaging

Figure 1: Study selection
IEEE=Institute of Electrical and Electronics Engineers.
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Subspecialty Participants

Inclusion criteria Exclusion criteria Mean age (SD; range), 
years

Percentage of female 
participants

Number of participants 
represented by the 
training data

Abbasi-Sureshjani et al 
(2018)24

Ophthalmology NR NR NR (NR; 40–76) 51% NR

Adams et al (2019)25 Trauma and 
orthopaedics

Emergency cases of surgically 
confirmed neck of femur 
fractures

Other radiological pathology 
present (excluding 
osteoporosis or osteoarthritis); 
metal-wear in fractured or 
unfractured hip

NR NR NR

Ardila et al (2019)19 Lung cancer Lung cancer screening patients Unmatched scans to radiology 
reports; patients >1 year of 
follow-up

NR NR 12 504

Ariji et al (2019)26 Oral cancer Patients with contrast-
enhanced CT and dissection of 
cervical lymph nodes

NR Median 63 (NR; 33–95) 47% NR

Ayed et al (2015)27 Breast cancer NR NR NR (NR; 24–88) 100% NR

Becker et al (2017)28 Breast cancer Mammograms with biopsy 
proven malignant lesions

Surgery before first 
mammogram; metastatic 
malignancy involving breasts; 
cancer >2 years on external 
mammogram; in non-
malignant cases, patients with 
<2 years of follow-up

57 (9; 32–85) 100% 2038

Becker et al (2018)20 Breast cancer Mammograms with biopsy 
proven malignant lesions

Normal breast ultrasound or 
benign lesions, except if prior 
breast-conserving surgery was 
done; no radiological follow-up 
>2 years or histopathology 
proof

53 (15; 15–91) 100% NR

Bien et al (2018)29 Trauma and 
orthopaedics

NR NR 38 (NR; NR) 41% 1199

Brinker et al (2019)30 Dermatological 
cancer

NR NR NR NR NR

Brown et al (2018)21 Ophthalmology NR Stage 4–5 retinopathy of 
prematurity

NR NR 898

Burlina et al (2017)31 Ophthalmology NR NR NR NR NR

Burlina et al (2018)32 Ophthalmology NR NR NR NR 4152

Burlina et al (2018)33 Ophthalmology NR NR NR NR 4152

Byra et al (2019)34 Breast cancer Masses with images in at least 
two ultrasound views

Inconclusive pathology; 
artifacts or known cancers

NR NR NR

Cao et al (2019)35 Urology Patients undergoing robotic 
assisted laparoscopic 
prostatectomy with 
pre-operative MRI scans

Patients with prior 
radiotherapy or hormonal 
therapy

NR NR NR

Chee et al (2019)36 Trauma and 
orthopaedics

Patients aged ≥16 years with 
hip pain with osteonecrosis of 
the femoral head on MRI

>30 days between 
anteroposterior hip x-ray and 
hip MRI; history of hip 
operation with osseous 
abnormality in femoral head 
and neck; insufficient MRI and 
poor radiograph quality

48 (15; NR) NR NR

Choi et al (2019)37 Breast cancer Patients aged ≥20 years with 
breast masses on ultrasound

Undiagnosed breast mass and 
low-quality images

Median 47 (NR; 42–54) NR NR

Choi et al (2018)38 Hepatology Training set: pathologically 
confirmed cases
External validation set: 
pathologically confirmed cases 
with no previous liver surgery 
and CT acquired within 
5 months of examination

Tumour >5 cm; prior liver 
resection or transplant; 
anticancer treatment within 
6 months of liver pathology; 
lymphoma or amyloidosis

Training dataset: 
44 (15; 18–83)
Test dataset 1: 
48 (14; NR)
Test dataset 2: 
56 (10; NR)
Test dataset 3: 
53 (15; NR)

Training dataset: 
28%
Total test datasets: 
43%

7461

(Table 1 continues on next page)
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Subspecialty Participants

Inclusion criteria Exclusion criteria Mean age (SD; range), 
years

Percentage of female 
participants

Number of participants 
represented by the 
training data

(Continued from previous page)

Ciompi et al (2017)39 Respiratory disease Baseline CT scans from the 
Multicentric Italian Lung 
Detection trial

Lesion diameter <4 mm NR NR 943

Codella et al (2017)40 Dermatological 
cancer

NR NR NR NR NR

Coudray et al (2018)41 Lung cancer NR NR NR NR NR

De Fauw et al (2018)42 Ophthalmology All routine OCT images Conditions with <10 cases NR Training dataset: 
54%
Test dataset: 55%

7621

Ding et al (2019)43 Neurology, 
psychiatry

Patients participating in the 
Alzheimer’s Disease 
Neuroimaging Iinitiative 
clinical trial

Patients with no PET study 
ordered

Male: 76 (NR; 55–93)
Female: 
75 (NR; 55–96)

47% 899

Dunnmon et al (2019)44 Respiratory disease NR Images which are not 
anteroposterior or 
posteroanterior views

NR NR 200 000

Ehteshami Bejnordi et al 
(2017)45

Breast cancer Patients having breast cancer 
surgery

Isolated tumour cells in a 
sentinel lymph node

NR 100% NR

Esteva et al (2017)46 Dermatological 
cancer

NR NR NR NR NR

Fujioka et al (2019)47 Breast cancer Breast ultrasound of benign or 
malignant masses confirmed 
by pathology; patients with 
minimum 2-year follow-up

Patients on hormonal therapy 
or chemotherapy; patients 
aged <20 years

Training dataset: 
55 (13; NR)
Test dataset: 
57 (15; NR)

NR 237

Fujisawa et al (2019)48 Dermatological 
cancer

NR NR NR NR 1842

Gómez-Valverde 
et al (2019)49

Ophthalmology Aged 55–86 years in glaucoma 
detection campaign

Poor-quality images NR NR NR

Grewal et al (2018)50 Trauma and 
orthopaedics

NR NR NR NR NR

Haenssle et al (2018)51 Dermatological 
cancer

NR NR NR NR NR

Hamm et al (2019)52 Liver cancer Untreated liver lesions, or 
treated lesions that showed 
progression, or recurrence post 
1 year local or regional therapy

Atypical imaging features; 
patients aged <18 years

57 (14; NR) 48% 296

Han et al (2018)53 Dermatological 
cancer

All images from datasets For the Asan dataset, 
postoperative images were 
excluded

Asan 1: 47 (23; NR)
Asan 2: 41 (21; NR)
Atlas: NR
MED–NODE: NR
Hallym: 68 (13; NR)
Edinburgh: NR

Asan 1: 55%
Asan 2: 57%
Atlas: NR
MED-NODE: NR 
Hallym: 52%
Edinburgh: NR

NR

Han et al (2018)54 Dermatological 
cancer

For Inje, Hallym, and Seoul 
datasets: onychomycosis: 
positive potassium, oxygen, 
and hydrogen test or fungus 
culture result; or successful 
treatment with antifungal 
drugs; nail dystrophy: negative 
potassium, oxygen, and 
hydrogen test or culture result; 
unresponsiveness to antifungal 
medication; or responsiveness 
to a triamcinolone intralesional 
injection

Inadequate images and images 
of uncertain diagnosis

Asan 1: 41 (22; NR)
Asan 2: 46 (20; NR)
Inje 1: 48 (23; NR)
Inje 2: 54 (20; NR)
Hallym: 39 (15; NR)
Seoul: 51 (20; NR)

Asan 1: 55%
Asan 2: 59%
Inje 1: 56%
Inje 2: 48%
Hallym: 47%
Seoul: 54%

NR

Hwang et al (2018)55 Respiratory disease Active pulmonary tuberculosis 
≤1 month from treatment 
initiation

Non-parenchymal tuberculosis 
and non-tuberculosis chest 
x-rays

51 (16; NR) 82% NR

(Table 1 continues on next page)
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Subspecialty Participants

Inclusion criteria Exclusion criteria Mean age (SD; range), 
years

Percentage of female 
participants

Number of participants 
represented by the 
training data

(Continued from previous page)

Hwang et al (2019)56 Ophthalmology Age-related macular 
degeneration cases presenting 
to the hospital

Low-resolution images or 
improper format

NR NR NR

Hwang et al (2019)57 Respiratory disease Cases of clinically or 
microbiologically confirmed 
pneumonia or clinically 
reported pneumothorax; cases 
of pulmonary tuberculosis 
(where a chest x-ray was 
completed within 2 weeks of 
treatment initiation)

Chest x-rays >3 lesions for lung 
cancer; pneumothorax chest 
x-rays with drainage catheter or 
subcutaneous emphysema

Training dataset: 
51 (16; NR) normal 
images; 62 (15; NR) for 
abnormal images

Training dataset: 
55%
Test dataset: 38%

NR

Kermany et al (2018)58 Ophthalmology, 
respiratory disease

OCT: routine OCTs from local 
databases for choroidal 
neovascularisation, DMO, 
drusen, and normal images
Chest x-rays: retrospective 
cohort of 1–5 year olds

OCT: none
Chest x-rays: NR

Choroidal 
neovascularisation 1: 
83 (NR; 58–97)
DMO 2: 57 (NR; 20–90)
Drusen: 
82 (NR; 40–95) 
Normal: 
60 (NR; 21–68)
X-ray: NR

Choroidal 
neovascularisation 1: 
46%
DMO 2: 62%
Drusen: 56%
Normal: 41%
X-ray: NR

OCT: 4686
Chest x-ray: 5856

Kim et al (2012)59 Breast cancer Patients with solid mass on 
ultrasound

Breast Imaging Reporting and 
Data System: 0, 1, and 6

44 (NR, 22–70) NR 70

Kim et al (2018)60 Trauma and 
orthopaedics

Tuberculous or pyogenic 
spondylitis

Unconfirmed diagnosis; no 
pre-diagnostic MRI; early 
postoperative infection and 
cervical infectious spondylitis

Tuberculous 
spondylitis: 
59 (NR; 38–71)
Pyogenic spondylitis: 
64 (NR; 56–72)

Tuberculous 
spondylitis: 49%
Pyogenic spondylitis: 
40%

NR

Kim et al (2019)61 Maxillofacial 
surgery

Age >16 years with suspected 
maxillary sinusitis with a 
Waters’ view plain film 
radiographs

History of sinus surgery, 
fracture, or certain tumours 
involving the maxillary sinus

Training dataset: 
47 (20; NR)
Test dataset:
internal validation: 
54 (21; NR);
external validation:
temporal 49 (20; NR), 
geographical: 
53 (18; NR)

Training dataset: 
54%
Test dataset:
internal validation: 
56%;
external validation: 
temporal 47%, 
geographical 54%

NR

Kise et al (2019)62 Rheumatology Sjogren’s syndrome NR Sjogren’s syndrome: 
67 (NR; NR)
Control: 66 (NR; NR)

Sjogren’s syndrome: 
4%
Control: 97%

40

Ko et al (2019)63 Thyroid cancer Ultrasound and subsequent 
thyroidectomy, nodules 1–2 cm 
with correlating pathology 
results

NR Training dataset: 
48 (13; 12–79)
Test dataset: 
50 (12; NR)

Training dataset: 
82%
Test dataset: 85%

NR

Kumagai et al (2019)64 Oesophageal cancer NR NR NR NR 240

Lee et al (2019)65 Trauma and 
orthopaedics

Training and test data: 
non-contrast head CT with or 
without acute ICH
Prospective test data: 
non-contrast head CT in 
4 months from the local 
hospital’s emergency 
department

History of brain surgery, skull 
fracture, intracranial tumour, 
intracranial device, cerebral 
infarct, or non-acute ICH

NR NR NR

Li C et al (2018)66 Nasopharyngeal 
cancer

Nasopharyngeal endoscopic 
images for screening

Blurred images or images with 
incomplete exposure

Training dataset: 
46 (13; NR)
Test dataset: 
46 (13; NR)
Prospective test 
dataset: 48 (13; NR)

Training dataset: 
30%
Test dataset: 32%
Prospective test 
dataset: 34%

5557

(Table 1 continues on next page)
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Subspecialty Participants

Inclusion criteria Exclusion criteria Mean age (SD; range), 
years

Percentage of female 
participants

Number of participants 
represented by the 
training data

(Continued from previous page)

Li X et al (2019)67 Thyroid cancer Patients aged ≥18 years with 
thyroid cancer; patients with 
pathological examination and 
negative controls

Patients with thyroid cancer 
with differing pathological 
report

Training dataset: 
median 
44 (NR; 36–54)
Test dataset: internal 
validation: median 
47 (NR; 24–41); 
external validation 1: 
median 
51 (NR; 45–59); 
external validation 2: 
median 50 (NR; 41–59)

Training dataset: 
75%
Test dataset: internal 
validation: 77%; 
external validation 1: 
78%; external 
validation 2: 80%

42 952

Lin et al (2014)68 Breast cancer Solid mass on ultrasound NR 52 (NR; NR) 100% NR

Lindsey et al (2018)69 Trauma and 
orthopaedics

NR NR NR NR NR

Long et al (2017)70 Ophthalmology Routine examinations done as 
part of the Childhood Cataract 
Program of the Chinese 
Ministry of Health, and search 
engine images matching the 
key words “congenital”, 
“infant”, “paediatric cataract”, 
and “normal eye”

NR NR NR NR

Lu W et al (2018)71 Ophthalmology Image containing only one of 
the four abnormalities (serous 
macular detachment, cystoid 
macular oedema, macular hole, 
and epiretinal membrane)

Images with other 
abnormalities than the four 
included or co-existence of 
two abnormalities

NR NR NR

Matsuba et al (2019)72 Ophthalmology Men aged >70 years and 
women aged >77 years

Unclear images due to vitreous 
haemorrhage, astrocytosis, or 
strong cataracts; previous 
retinal photocoagulation and 
other complicating fundus 
disease as determined by 
retinal specialists

Control: 77 (5; NR)
Wet age-related 
macular degeneration: 
76 (82; NR)

Control: 28%
Wet age-related 
macular 
degeneration: 26%

NR

Nakagawa et al (2019)73 Oesophageal cancer Patients with superficial 
oesophageal squamous cell 
carcinoma with pathologic 
proof of cancer invasion depth

Severe oesophagitis; 
oesophagus chemotherapy or 
radiation history; lesions 
adjacent to ulcer or ulcer scar

Median 69 
(NR; 44–90)

21% NR

Nam et al (2019)74 Lung cancer Training: malignant lung 
nodules chest x-rays proven by 
histopathology
External validation: chest x-rays 
with referential normal CTs 
performed within 1 month

Nodules ≤5 mm on CT, chest 
x-rays showing ≥3 nodules, 
lung consolidation, or pleural 
effusion obscuring view

Female: 52 (NR)
Male: 53 (NR)

Normal: 45%
Abnormal: 42%

NR

Olczak et al (2017)75 Trauma and 
orthopaedics

NR NR NR NR NR

Peng et al (2019)76 Ophthalmology NR NR NR NR 4099

Poedjiastoeti et al (2018)77 Oral and 
maxillofacial cancer

Panoramic x-rays of 
ameloblastomas and 
keratocystic odontogenic 
tumours with known biopsy 
results

NR NR NR NR

Rajpurkar et al (2018)78 Respiratory disease NR NR NR NR NR

Raumviboonsuk et al 
(2019)79

Ophthalmology NR Pathologies precluding 
classification of target 
condition, or presence of other 
retinal vascular disease

61 (11; NR) 67% NR

Sayres et al (2019)80 Ophthalmology NR NR NR NR NR

(Table 1 continues on next page)
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Subspecialty Participants

Inclusion criteria Exclusion criteria Mean age (SD; range), 
years

Percentage of female 
participants

Number of participants 
represented by the 
training data

(Continued from previous page)

Schlegl et al (2018)22 Ophthalmology Random sample of age-related 
macular degeneration, DMO, 
and retinal vein occlusion cases

No clear consensus or poor 
image quality

NR NR NR

Shibutani et al (2019)81 Cardiology Myocardial perfusion SPECT 
within 45 days of coronary 
angiography

NR 72 (9; 50–89) 19% NR

Shichijo et al (2017)82 Gastroenterology A primary care referral for OGD 
for epigastric symptoms, 
barium meal results, abnormal 
pepsinogen levels, previous 
gastroduodenal disease, or 
screening for gastric cancer

Helicobacter pylori eradication; 
presence or history of gastric 
cancer, ulcer, or submucosal 
tumour; unclear images

Training dataset: 
53 (13; NR)
Test dataset: 
50 (11; NR)

Training dataset: 
55%
Test dataset: 57%

735

Singh et al (2018)83 Respiratory disease Randomly selected chest x-rays 
from the database

Lateral radiographs; oblique 
views; patients with total 
pneumonectomy; patients with 
a metal prosthesis

NR NR NR

Song et al (2019)84 Thyroid cancer Patients aged >18 years with 
total or nearly total 
thyroidectomy or lobectomy, 
with complete preoperative 
thyroid ultrasound images with 
surgical pathology examination

Failure to meet American 
Thyroid Association criteria for 
lesions or nodules

Training dataset: 
NR (NR; NR)
Test dataset: 
57 (16; NR)

Training dataset: NR
Test dataset: 90%

NR

Stoffel et al (2018)85 Breast cancer Ultrasound scan and 
histologically confirmed 
phyllodes tumour and 
fibroadenoma

NR 34 (NR; NR) NR NR

Streba et al (2012)86 Hepatological 
cancer

Patients with suspected liver 
masses (with hepatocellular 
carcinoma, hypervascular and 
hypovascular liver metastases, 
hepatic haemangiomas, or 
focal fatty changes) who 
underwent contrast-enhanced 
ultrasound

NR 58 (NR; 29–89) 43% NR

Sun et al (2014)87 Cardiology Patients with paroxysmal atrial 
fibrillation or persistent atrial 
fibrillation

NR 60 (11; 29–81) 45% NR

Tschandl et al (2019)88 Dermatological 
cancer

Lesions that had lack of 
pigment, availability of at least 
one clinical close-up image or 
one dermatoscopic image, and 
availability of an unequivocal 
histopathologic report

Mucosal or missing or poor 
image cases; equivocal 
histopathologic reports; cases 
with <10 examples in the 
training set category

NR NR NR

Urakawa et al (2019)89 Trauma and 
orthopaedics

All consecutive patients with 
intertrochanteric hip fractures, 
and anterior x-ray with 
compression hip screws

Pseudarthrosis after femoral 
neck fracture or x-rays showing 
artificial objects in situ

85 (NR; 29–104) 84% NR

van Grinsven et al (2016)90 Ophthalmology NR NR NR NR NR

Walsh et al (2018)91 Respiratory disease High-resolution CT showing 
diffuse fibrotic lung disease 
confirmed by at least 
two thoracic radiologists

Contrast-enhanced CT NR NR NR

Wang et al (2017)92 Lung cancer NR PET/CT scan in lobectomy 
patients with systematic hilar 
and mediastinal lymph node 
dissection

61 (NR; 38–81) 46% NR

(Table 1 continues on next page)
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To estimate the accuracy of deep learning algorithms 
compared with health-care professionals, we did a 
subanalysis for studies providing contingency tables 
for both health-care professional and deep learning 
algorithm performance tested using the same out-of-
sample external validation datasets. Additionally, to 
address the possibility of dependency between different 
classification tasks done by the same deep learning 
algorithm or health-care professional within a study, we 
did a further analysis on the same studies selecting the 
single contingency table reporting the highest accuracy 
for each (calculated as proportion of correct classifi-
cations).

As an exploratory analysis, we also pooled performances 
of health-care professionals and deep learning algorithms 
derived from internally validated test samples. As with 
the externally validated results, we selected a single 
contingency table for each study reporting the highest 
accuracy for health-care professionals and deep learning 
algorithms. The purpose of this analysis was to explore 
whether diagnostic accuracy is overestimated in internal 
validation alone.

Analysis was done using the Stata 14.2 statistics 
software package. This study is registered with 
PROSPERO, CRD42018091176.

Role of the funding source
There was no funding source for this study. The lead 
authors (XL, LF) had full access to all the data in the 
study and had final responsibility for the decision to 
submit for publication.

Results
Our search identified 31 587 records, of which 20 530 were 
screened (figure 1). 122 full-text articles were assessed for 
eligibility and 82 studies were included in the systematic 
review.19–22,24–101 These studies described 147 patient cohorts 
and considered ophthalmic disease (18 studies), breast 
cancer (ten studies), trauma and orthopaedics (ten 
studies), dermatological cancer (nine studies), lung 
cancer (seven studies), respiratory disease (eight studies), 
gastroenterological or hepatological cancers (five studies), 
thyroid cancer (four studies), gastroenterology and 
hepatology (two studies), cardiology (two studies), 

Subspecialty Participants

Inclusion criteria Exclusion criteria Mean age (SD; range), 
years

Percentage of female 
participants

Number of participants 
represented by the 
training data

(Continued from previous page)

Wang et al (2018)93 Lung cancer Solitary pulmonary nodule, 
histologically confirmed 
pre-invasive lesions and 
invasive adenocarcinomas

Previous chemotherapy or 
radiotherapy that can cause 
texture changes; incomplete 
CT; patients with ≥2 lesions 
resected

56 (10·6; NR) 81% NR

Wang et al (2019)94 Thyroid cancer Ultrasound examination with 
subsequent histological 
diagnosis

NR 46 (NR; 20–71) NR NR

Wright et al (2014)95 Nephrology NR Equivocal reports; artefacts; 
bladder inclusion and residual 
uptake in the ureters; 
horseshoe kidney

9 (NR; 0–80) 70% 257

Wu et al (2019)96 Gastric cancer Patients undergoing OGD Age <18 years; residual 
stomach content

NR NR NR

Ye et al (2019)97 Trauma and 
orthopaedics

Patients with ICH Missing information or serious 
imaging artefact

Non-ICH :42 (15; 2–82)
ICH: 54 (17; 1–98)

Non-ICH: 55%
ICH: 35%

NR

Yu et al (2018)98 Dermatological 
cancer

Benign nevi or acral melanoma 
with histological diagnosis and 
dermatoscopic images

NR NR NR NR

Zhang C et al (2019)99 Lung cancer CT scans from lung cancer 
screening

Images with no ground truth 
labels available

60 (11; NR) Training: 44% NR

Zhang Y et al (2019)100 Paediatrics, 
ophthalmology

NR Blurry, very dark or bright, or 
non-fundus images were 
excluded

NR 56% 17 801

Zhao et al (2018)101 Lung cancer Thin-slice chest CT scan before 
surgical treatment; nodule 
diameter ≤10 mm on CT; no 
treatment before surgical 
treatment

NR 54 (12; 16–82) NR NR

NR=not reported. OCT=optical coherence tomography. DMO=diabetic macular oedema. ICH=intracranial haemorrhage. SPECT=single-photon-emission CT. OGD=oesophagogastroduodenoscopy.

Table 1: Participant demographics for the 82 included studies
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Target condition Reference standard Same method for 
assessing reference 
standard across 
samples

Type of internal validation External 
validation

Abbasi-Sureshjani et al 
(2018)24

Diabetes Histology Yes Random split sample validation No

Adams et al (2019)25 Hip fracture Surgical confirmation Yes Random split sample validation No

Ardila et al (2019)19 Lung cancer Histology; follow-up No NR Yes

Ariji et al (2019)26 Lymph node 
metastasis

Histology Yes Resampling method No

Ayed et al (2015)27 Breast tumour Histology Yes Random split sample validation No

Becker et al (2017)28 Breast tumour Histology; follow-up No Study 1: NA
Study 2: temporal split-sample 
validation

Yes

Becker et al (2018)20 Breast tumour Histology; follow-up No Random split sample validation No

Bien et al (2018)29 Knee injuries Expert consensus Internal validation 
dataset: yes
External validation 
dataset: NR

Stratified random sampling No

Brinker et al (2019)30 Melanoma Histology Yes Random split sample validation Yes

Brown et al (2018)21 Retinopathy Expert consensus Yes Resampling method Yes

Burlina et al (2017)31 Age-related macular 
degeneration

Expert consensus Yes Resampling method No

Burlina et al (2018)32 Age-related macular 
degeneration

Reading centre grader Yes NR No

Burlina et al (2018)33 Age-related macular 
degeneration

Reading centre grader Yes NR No

Byra et al (2019)34 Breast tumour Histology; follow-up No Resampling method Yes

Cao et al (2019)35 Prostate cancer Histology; clinical care notes 
or imaging reports

Yes Resampling method No

Chee et al (2019)36 Femoral head 
osteonecrosis

Clinical care notes or imaging 
reports

Yes NR Yes

Choi et al (2019)37 Breast tumour Histology; follow-up No NA Yes

Choi et al (2018)38 Liver fibrosis Histology Yes Resampling method Yes

Ciompi et al (2017)39 Lung cancer Expert consensus Yes Random split sample validation Yes

Codella et al (2017)40 Melanoma Histology No Random split sample validation No

Coudray et al (2018)41 Lung cancer Histology Yes NR Yes

De Fauw et al (2018)42 Retinal disease Follow-up Yes Random split sample validation No

Ding et al (2019)43 Alzheimer’s disease Follow-up No NR Yes

Dunnmon et al (2019)44 Lung conditions Expert consensus Yes Resampling method No

Ehteshami Bejnordi et al 
(2017)45

Lymph node 
metastases

Histology No Random split sample validation Yes

Esteva et al (2017)46 Dermatological cancer Histology No Resampling method No

Fujioka et al (2019)47 Breast tumour Histology; follow-up No NR No

Fujisawa et al (2019)48 Dermatological cancer Histology No Resampling method No

Gómez-Valverde 
et al (2019)49

Glaucoma Expert consensus Yes Resampling method No

Grewal et al (2018)50 Brain haemorrhage Expert consensus Yes NR No

Haenssle et al (2018)51 Melanoma Histology; follow-up No NR No

Hamm et al (2019)52 Liver tumour Clinical care notes or imaging 
reports

Yes Resampling method No

Han et al (2018)53 Onychomycosis Histology; expert opinion on 
photography

No Random split sample validation Yes

Han et al (2018)54 Skin disease Histology; follow-up No Random split sample validation Yes

Hwang et al (2018)55 Pulmonary tuberculosis Laboratory testing; expert 
opinion

Yes NR Yes

(Table 2 continues on next page)
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Target condition Reference standard Same method for 
assessing reference 
standard across 
samples

Type of internal validation External 
validation

(Continued from previous page)

Hwang et al (2019)56 Age-related macular 
degeneration

Expert consensus Yes Random split sample validation Yes

Hwang et al (2019)57 Lung conditions Expert consensus Yes Random split sample validation No

Kermany et al (2018)58 Retinal diseases OCT: consensus involving 
experts and non-experts
X-ray: expert consensus

No Random split sample validation No

Kim et al (2012)59 Breast cancer Histology Yes Random split sample validation No

Kim et al (2018)60 Maxillary sinusitis Histology; laboratory testing Yes Resampling method No

Kim et al (2019)61 Spondylitis Expert consensus; another 
imaging modality

Yes NR Yes

Kise et al (2019)62 Sjogren’s syndrome Expert consensus Yes NR No

Ko et al (2019)63 Thyroid cancer Histology Yes Resampling method No

Kumagai et al (2019)64 Oesophageal cancer Histology Yes NR No

Lee et al (2019)65 Intracranial 
haemorrhage

Expert consensus Yes Random split sample validation Yes

Li C et al (2018)66 Nasopharyngeal 
malignancy

Histology Yes Random split sample validation Yes

Li X et al (2019)67 Thyroid cancer Histology Yes NR Yes

Lin et al (2014)68 Breast tumour Histology Yes NR No

Lindsey et al (2018)69 Trauma and 
orthopaedics

Expert consensus Yes NR Yes

Long et al (2017)70 Ophthalmology Expert consensus Yes Resampling method Yes

Lu W et al (2018)71 Macular pathology Expert consensus Yes Resampling method No

Matsuba et al (2019)72 Age-related macular 
degeneration

Expert consensus Yes NR No

Nakagawa et al (2019)73 Oesophageal cancer Histology Yes NR Yes

Nam et al (2019)74 Lung cancer Expert consensus; another 
imaging modality; clinical 
notes

No Random split sample validation Yes

Olczak et al (2017)75 Fractures Clinical care notes or imaging 
reports

Yes Random split sample validation No

Peng et al (2019)76 Age-related macular 
degeneration

Reading centre grader Yes NR No

Poedjiastoeti et al 
(2018)77

Odontogenic tumours 
of the jaw

Histology Yes NR No

Rajpurkar et al (2018)78 Lung conditions Expert consensus Yes NR No

Raumviboonsuk et al 
(2019)79

Diabetic retinopathy Expert consensus Yes NR Yes

Sayres et al (2019)80 Diabetic retinopathy Expert consensus Yes NR No

Schlegl et al (2018)22 Macular diseases Expert consensus Yes Resampling method No

Shibutani et al (2019)81 Myocardial stress 
defect

Expert consensus Yes NR Yes

Shichijo et al (2017)82 Helicobacter pylori 
gastritis

Standard-of-care diagnosis 
based on laboratory testing

No Random split sample validation No

Singh et al (2018)83 Lung conditions Clinical care notes or imaging 
reports; existing labels in 
open-access data library

No NR No

Song et al (2019)84 Thyroid cancer Histology Yes Resampling method No

Stoffel et al (2018)85 Breast tumours Histology Yes Random split sample validation No

Streba et al (2012)86 Liver tumours Another imaging modality; 
histology; follow-up

No Resampling method No

(Table 2 continues on next page)
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oral cancer (two studies), nephrology (one study), 
neurology (one study), maxillo facial surgery (one study), 
rheumatology (one study), nasopharyngeal cancer (one 
study), and urological disease (one study; table 1). One 
study included two different target conditions.58 Study 
characteristics are summarised in the tables (tables 1, 2, 3).

72 studies used retrospectively collected data and 
ten used prospectively collected data (table 3). 25 studies 
used data from open-access repositories. No studies 
reported a prespecified sample size calculation. 
26 studies reported that low-quality images were 
excluded, 18 did not exclude low-quality images, and 
38 did not report this. Four studies19,42,51,80 also tested the 
scenario where health-care professionals are given 
additional clinical information alongside the image, and 
one study19 tested single image versus the addition of 
historical images for both health-care professionals and 
the deep learning algorithm. Four studies also 
considered diagnostic performance in an algorithm-
plus-clinician scenario.69,74,85,87

Reference standards were wide ranging in line with 
variation of the target condition and the modality of 
imaging being used, with some studies adopting multiple 
methods (table 2). 38 studies used histopathology; 
28 studies used varying models of expert consensus; one 

study relied on single expert consensus; nine studies 
used clinical follow-up; two studies used surgical 
confirmation; three studies used reading centre labels 
(such as when clinical trial data were used); eight studies 
used existing clinical care notes or imaging reports or 
existing labels associated with open data sources. Four 
studies used another imaging modality to confirm the 
diagnosis and three studies used laboratory testing.

69 studies provided sufficient information to enable 
calculation of contingency tables and calculation of test 
performance parameters, with a total of 595 tables across 
these studies. Within this group, sensitivity for deep 
learning models ranged from 9·7% to 100·0% (mean 
79·1%, SD 0·2) and specificity ranged from 
38·9% to 100·0% (mean 88·3%, SD 0·1).

Of the 69 studies, 25 studies did an out-of-sample 
external validation and were therefore included in a 
meta-analysis.21,28,30,34,36–39,43,53–56,61,65–67,70,73,74,79,81,90,91,99 In line with 
the aims of this review, all eligible studies were included 
regardless of the target condition. The meta-analysis 
therefore included diagnostic classifications in multiple 
specialty areas, including ophthalmology (six studies), 
breast cancer (three studies), lung cancer (two studies), 
dermatological cancer (three studies), trauma and ortho-
paedics (two studies), respiratory disease (two studies), 

Target condition Reference standard Same method for 
assessing reference 
standard across 
samples

Type of internal validation External 
validation

(Continued from previous page)

Sun et al (2014)87 Atrial thrombi Surgical confirmation; 
another imaging modality; 
clinical care notes or imaging 
reports

No Random split sample validation No

Tschandl et al (2019)88 Dermatological cancer Histology Yes NR Yes

Urakawa et al (2019)89 Hip fractures Clinical care notes or imaging 
reports

Yes Random split sample validation No

van Grinsven et al 
(2016)90

Retinal haemorrhage Single expert Yes Random split sample validation Yes

Walsh et al (2018)91 Lung fibrosis Expert consensus Yes NR Yes

Wang et al (2017)92 Lymph node 
metastasis

Expert consensus Yes Resampling method No

Wang et al (2018)93 Lung cancer Histology Yes Random split sample validation No

Wang et al (2019)94 Malignant thyroid 
nodule

Histology Yes NR No

Wright et al (2014)95 Renal tissue function Clinical care notes or imaging 
reports

Yes Random split sample validation No

Wu et al (2019)96 Gastric cancer Histology Yes Resampling method No

Ye et al (2019)97 Intracranial 
haemorrhage

Expert consensus Yes Random split sample validation No

Yu et al (2018)98 Melanoma Histology Yes Resampling method No

Zhang C et al (2019)99 Lung cancer Expert consensus Yes Resampling method Yes

Zhang Y et al (2019)100 Retinopathy Expert consensus Yes Random split sample validation No

Zhao et al (2018)101 Lung cancer Histology Yes NR No

Blinded assessment of reference standard was not reported in any of the studies. NR=not reported. OCT=optical coherence tomography. DMSA=2,3-dimercapto-succinic acid.

Table 2: Model training and validation for the 82 included studies
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and one study each for cardiology, gastroenterology or 
hepatology, gastroenterological or hepatological cancer, 
maxillofacial surgery, thyroid cancer, neurology, and 
nasopharyngeal cancer. These studies included 141 patient 
cohorts. Six studies included prospectively collected data, 
whereas all others used retrospective data. Nine studies 
used data from open-access repositories. In total, 
161 contingency tables were included in the meta-analysis 
(appendix pp 3–6).

Hierarchical summary ROC curves of these 25 studies 
(161 contingency tables) are shown in figure 2. When 
averaging across studies, the pooled sensitivity was 88·6% 
(95% CI 85·7–90·9) for all deep learning algorithms and 
79·4% (74·9–83·2) for all health-care professionals. The 
pooled specificity was 93·9% (92·2–95·3) for deep learning 
algorithms and 88·1% (82·8–91·9) for health-care 
professionals.

Of these 25 studies, only 14 used the same sample for 
the out-of-sample validation to compare performance 
between deep learning algorithms and health-care 
professionals, with 31 contingency tables for deep 
learning algorithm performance and 54 tables for health-
care professionals (figure 3). The pooled sensitivity was 
85·7% (95% CI 78·6–90·7) for deep learning algorithms 
and 79·4% (74·9–83·2) for health-care professionals. 
The pooled specificity was 93·5% (89·5–96·1) for deep 
learning algorithms and 87·5% (81·8–91·6) for health-
care professionals.

After selecting the contingency table reporting 
the highest accuracy for each of these 14 studies (ie, 
14 tables for deep learning algorithms and 14 tables for 
health-care professionals), the pooled sensitivity was 
87·0% (95% CI 83·0–90·2) for deep learning algorithms 
and 86·4% (79·9–91·0) for health-care professionals. The 
pooled specificity was 92·5% (85·1–96·4) for deep 
learning algorithms and 90·5% (80·6–95·7) for health-
care professionals (figure 4).

As an exploratory analysis, we also pooled performances 
of health-care professional and deep learning algorithms 
derived from matched internally validated samples 
(37 studies). Again, we selected a single contingency 
table for each study reporting the highest accuracy. In 
this sample, all accuracy metrics were higher, with a 
pooled sensitivity of 90·1% (95% CI 86·9–92·6) for deep 
learning algorithms and 90·5% (86·3–93·5) for health-
care professionals and a pooled specificity of 93·3% 
(90·1–95·6) for deep learning algorithms and 91·9% 
(87·8–94·7) for health-care professionals (figure 4).

Discussion
To our knowledge, this is the first systematic review and 
meta-analysis on the diagnostic accuracy of health-care 
professionals versus deep learning algorithms using 
medical imaging. After careful selection of studies with 
transparent reporting of diagnostic performance and 
validation of the algorithm in an out-of-sample population, 
we found deep learning algorithms to have equivalent 

sensitivity and specificity to health-care professionals. 
Although this estimate seems to support the claim that 
deep learning algorithms can match clinician-level 
accuracy, several methodological deficiencies that were 
common across most included studies should be 
considered.

First, most studies took the approach of assessing deep 
learning diagnostic accuracy in isolation, in a way that 
does not reflect clinical practice. Many studies were 
excluded at screening because they did not provide 
comparisons with health-care professionals (ie, human vs 
machine), and very few of the included studies reported 
comparisons with health-care professionals using the 
same test dataset. Considering deep learning algorithms 
in this isolated manner limits our ability to extrapolate 
the findings to health-care delivery, except perhaps for 
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Figure 2: Hierarchical ROC curves of all studies included in the meta-analysis (25 studies)
ROC=receiver operating characteristic.
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performance between health-care professionals and deep learning algorithms (14 studies)
ROC=receiver operating characteristic.
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mass screening.102 Only four studies provided health-care 
professionals with additional clinical information, as they 
would have in clinical practice; one study also tested the 
scenario in which prior or historical imaging was 
provided to the algorithm and the health-care professional, 
and four studies also considered diagnostic performance 
in an algorithm-plus-clinician scenario. It is worth noting 
that no studies reported a formal sample size calculation 
to ensure that the study was sufficiently sized in a head-
to-head comparison. Although we acknowledge that 
sample size calculations can be challenging in this 
context, a lack of consensus on principled methods to 
perform them is no justification to ignore them in the 
design of a study.

Second, there were very few prospective studies done 
in real clinical environments. Most studies were 
retrospective, in silico, and based on previously 
assembled datasets. The ground truth labels were mostly 
derived from data collected for other purposes, such as in 
retrospectively collected routine clinical care notes or 

radiology or histology reports, and the criteria for the 
presence or absence of disease were often poorly defined. 
The reporting around handling of missing information 
in these datasets was also poor across all studies. Most 
did not report whether any data were missing, what 
proportion this represented and how missing data were 
dealt with in the analysis. Such studies should be 
considered as hypothesis generating, with real accuracy 
defined in patients, not just datasets.

Third, a wide range of metrics were employed to report 
diagnostic performance in deep learning studies. If a 
probability function is not reported, the frequency of 
true positives, false positives, false negatives, and true 
negatives at a specified threshold should be the minimum 
requirement for such comparisons. In our review, only 
12 studies reported the threshold at which sensitivity and 
specificity were reported, without justification of how the 
threshold was chosen; choice of threshold is often set at 
the arbitrary value of 0·5, as is convention in machine 
learning development. Metrics commonly used in the 
field of computer science, such as accuracy, precision, 
dice coefficient, and F1 score, are sometimes the only 
measure for reporting diagnostic performance. Since 
these tests are usually performed at a prevalence of 50%, 
these parameters are less comprehensive and useful for 
clinical practice.

Fourth, there is inconsistency over key terminology used 
in deep learning studies. Distinct datasets with inde-
pendent samples should be defined in the development of 
a deep learning model from the initial training set through 
to one or more test sets that support validation. We found 
that the term “validation” is used variably, with some 
authors using the term appropriately for testing of the final 
model but others using it for the tuning of a model during 
development. It is crucial that the validation test set 
contains data independent to training or tuning data and is 
used only for assessing the final model. In several studies, 
we found a lack of transparency as to whether the test set 
was truly independent due to this inconsistent use of 
terminology. A standard nomenclature should be adopted. 
We suggest distinguishing the datasets involved in the 
development of an algorithm as training set (for training 
the algorithm), tuning set (for tuning hyperparameters), 
and validation test set (for estimating the performance of 
the algorithm). For describing the different types of 
validation test sets, we suggest adoption of the suggestion 
by Altman and Royston: internal validation (for in-sample 
validation), temporal validation (for in-sample validation 
with a temporal split), and external validation (for out-of 
sample validation).103

 Finally, although most studies did undertake an out-
of-sample validation, most did not do this for both 
health-care professionals and deep learning algorithms. 
Moreover, only a small number of studies tested the 
performance of health-care professionals and deep 
learning algorithms in the same sample. In this review, 
we accepted both geographically and temporally split 
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test data, as well as the use of open-access datasets, as 
external validations. For internal validation, most studies 
adopted the approach of randomly splitting a single 
sample into training, tuning, and test sets, instead of 
preferred approaches such as resampling methods (eg, 
bootstrapping and cross validation), which have been 
recommended in clinical prediction model guidelines.18 
Our finding when comparing performance on internal 
versus external validation was that, as expected, internal 
validation overestimates diagnostic accuracy in both 
health-care professionals and deep learning algorithms. 
This finding highlights the need for out-of-sample 
external validation in all predictive models.

An encouraging finding of this review is the 
improvement in quality of studies within the last year. 
58 (71%) of the 82 studies satisfying the inclusion criteria 
were newly identified in the updated search, suggesting 
that the past year has seen a substantial increase in the 
number of studies comparing algorithm accuracy with 
health-care professionals. Only five studies additionally 
did external validation for algorithms and health-care 
professionals and were eligible for meta-analysis before 
the updated search, whereas a further 20 studies were 
suitable for meta-analysis in the review update. 
A persistent problem is studies not reporting contin-
gency tables (or of sufficient detail for construction of 
contingency tables), as we were unable to construct 
contingency tables for two (9%) of 22 studies in the 
original search and 11 (18%) of 60 studies in the updated 
search.

Our final comparison estimating the differences in 
diagnostic accuracy performance between deep learning 
algorithms and health-care professionals is based on a 
relatively small number of studies. Less than a third of the 
included studies were eligible for meta-analysis. This is a 
direct consequence of poor reporting and lack of external 
validation in many studies, which has resulted in 
inadequate data availability and thus exclusion from the 
meta-analysis. We acknowledge that inadequate reporting 
does not necessarily mean that the study itself was poorly 
designed and, equally, that poor study design does not 
necessarily mean that the deep learning algorithm is of 
poor quality. Accordingly, there is considerable uncertainty 
around the estimates of diagnostic perfor mance provided 
in our exploratory meta-analysis and we must emphasise 
that reliable estimates of the level of performance can only 
be achieved through well designed and well executed 
studies that minimise bias and are thoroughly and 
transparently reported.

We have not provided a systematic quality assessment 
for transparency of reporting in this review. This decision 
was made because existing reporting guidelines for 
prediction models, such as the Transparent Reporting of 
a Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) statement, are focused primarily 
on regression-based model approaches, and there is 
insufficient guidance on how to appropriately apply 

its checklist items to machine learning prediction 
models. The issues we have identified regarding non-
standardisation of reporting in deep learning research 
are increasingly becoming recognised as a barrier to 
robust evaluation of AI-based models. A step in the right 
direction was the Delphi process undertaken by Luo and 
colleagues104 to generate guidelines for developing and 
reporting machine learning predictive models. However, 
these guidelines have not been widely adopted, nor are 
they currently mandated by journals. An initiative to 
develop a machine learning version of the TRIPOD 
statement (TRIPOD-ML) was announced in April, 2019.105

Although most of the issues we have highlighted are 
avoidable with robust design and high-quality reporting, 
there are several challenges that arise in evaluating deep 
learning models that are specific to this field. The scale of 
data required for deep learning is a well recognised 
challenge. What is perhaps less recognised is the way 
that this requirement skews the types of data sources 
used in AI studies, and the relative paucity of some of the 
associated data. For example, in many studies, historical 
registry data collected from routine clinical care or open-
source databases are used to supply sufficient input data. 
These image repositories are rarely quality controlled for 
the images or their accompanying labels, rendering the 
deep learning model vulnerable to mistakes and 
unidentified biases. Population characteristics for these 
large datasets are often not available (either due to not 
being collected, or due to issues of accessibility), limiting 
the inferences that can be made regarding generalisability 
to other popu lations and introducing the possibility of 
bias towards particular demographics.

Traditionally, heavy emphasis for developing and 
validating predictive models is on reporting all covariates 
and model-building procedures, to ensure transparent 
and reproducible, clinically useful tools.106 There are 
two main reasons why this is not possible in deep 
learning models in medical imaging. First, given the 
high dimensionality of the images, there are often 
too many individual datapoints driving predictions to 
identify specific covariates. Second, this level of influence 
and transparency of the algorithm is fundamentally 
incompatible with the black box nature of deep learning, 
where the algorithm’s decisions cannot be inspected or 
explained. Few methods for seeing inside the black box—
the black box deconvolution—are available, but new 
methods are being actively explored. An important 
example is the use of saliency or heat maps, which many 
studies adopt to provide some qualitative assessment of 
predictive features within the image.20,28,45,46,58,107 Other 
recent approaches such as influence functions and 
segmentation can offer additional information alongside 
saliency or heat maps.42,108 However, these approaches 
remain crude as they are limited to highlighting the 
location of salient features, rather than defining the 
pathological characteristics themselves, which would 
then allow a reproducible model to be built. Due to the 
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inability to interrogate a deep learning model, some 
caution should be exercised when making assumptions 
on a model’s generalisability. For example, an algorithm 
could incorrectly form associations with confounding 
non-pathological features in an image (such as imaging 
device, acquisition protocol, or hospital label) simply due 
to differences in disease prevalence in relation to those 
parameters.109,110 Another consideration is the trans-
parency of reporting deep learning model building 
procedures. These studies often do not report the full set 
of hyperparameters used, meaning the model cannot be 
reproduced by others. There are also issues of underlying 
infrastructure that pose similar challenges. For example, 
those building the AI model might use custom-built or 
expensive infrastructure that is simply not available to 
most research groups, and thus present concerns around 
reproducibility and the ability to scrutinise claims made 
in peer review. Cloud-based development environments 
can support code sharing between researchers without 
compromising proprietary information, but more work 
is needed to establish gold standards in reporting results 
in this domain.

Any diagnostic test should be evaluated in the context 
of its intended clinical pathway. This is especially 
important with algorithms where the model procedures 
and covariates cannot be presented explicitly. A 
randomised head-to-head comparison to an alternative 
diagnostic test, in the context of a clinical trial, could 
reveal and quantify possible clinical implications of 
implementing an algorithm in real life. Moreover, a 
common problem of test evaluation research could be 
overcome by testing these algorithms within a clinical 
trial: classification tasks are typically assessed in isolation 
of other clinical information that is commonly available 
in the diagnostic work-up.111 Prospective evaluations of 
diagnostic tests as complex interventions would not only 
reveal the impact of these algorithms upon diagnostic 
yield but also on therapeutic yield.112 In this context, the 
reporting of AI and machine learning interventional 
trials warrant additional consideration, such as how the 
algorithm is implemented and its downstream effects on 
the clinical pathway. In anticipation of prospective trials 
being the next step, extensions to the Consolidated 
Standards of Reporting Trials and Standard Protocol 
Items: Recommendations for Interventional Trials 
reporting guidelines for clinical trials involving AI 
interventions are under development.113–115

Diagnosis of disease using deep learning algorithms 
holds enormous potential. From this exploratory meta-
analysis, we cautiously state that the accuracy of deep 
learning algorithms is equivalent to health-care 
professionals, while acknowledging that more studies 
considering the integration of such algorithms in real-
world settings are needed. The more important finding 
around metho dology and reporting means the credibility 
and path to impact of such diagnostic algorithms might 
be undermined by an excessive claim from a poorly 

designed or inadequately reported study. In this review, 
we have highlighted key issues of design and reporting 
that investigators should consider. These issues are 
pertinent for ensuring studies of deep learning 
diagnostics—or any other form of machine learning—are 
of sufficient quality to evaluate the performance of these 
algorithms in a way that can benefit patients and health 
systems in clinical practice.
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