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Abstract 

Adaptive building envelopes can dynamically adapt to 

environmental changes, often supported by a control 

system. While building performance simulation (BPS) 

tools can be employed to test different design alternatives, 

representing control strategies within current BPS tools 

can be challenging, especially for systems with a fast, 

dynamic response. Another challenge in current BPS 

tools is the ability to tune and select parameters for the 

particular use case. In this study, a modelling approach is 

presented for the integrated analysis of control strategies 

of adaptive building envelopes linking thermal 

performance and control with an optimisation algorithm. 

The proposed modelling approach was evaluated using a 

case study with an automated motorised blind with two 

distinct control strategies. Simulation results suggest that 

the window heat gains were 72.7 % lower when the 

controller model was coupled with an optimiser to 

identify optimised controller parameters compared to a 

baseline control strategy. The results of this study are 

suggestive of the benefits that can be obtained from 

adjusting the dynamic aspects of the building envelope. 

The results support the thesis of using optimisation as 

standard building envelope design practice in the future. 

Introduction 

Adaptive building envelopes can dynamically adapt to 

changes in the external environment with the aim of 

improving the environmental performance of buildings 

(Loonen et al., 2016). Their dynamic behaviour is 

achieved either by dynamics of the building envelope 

itself, as in case of phase change material (PCM), or by 

mechanical actuation supported by a control system that 

generates actuation commands to drive the transition 

between operational states. Taking into account past, 

current and possibly forecast conditions, such a controller 

can determine actions and implement them to adjust 

building envelope characteristics to improve building 

performance as measured by relevant performance 

indicators.  

To optimise the use of such controllers, building 

performance simulation (BPS) tools can be employed to 

test different design alternatives. A vital aspect of this is 

the ability to simultaneously simulate the building 

envelope along with the control strategy to enable an 

integrated analysis of such interacting building systems 

(Mazzarella and Pasini, 2009). However, the types and 

ranges of control strategies that can be modelled in current 

BPS tools, such as EnergyPlus (National Renewable 

Energy Laboratory (NREL), 2018), are limited (Widl et 

al., 2014).  

An example of these limitations is the modelling 

assumptions in current BPS tools that hinder proper 

modelling and prediction of the influence of control 

decisions on the dynamic performance of building 

envelopes. This is evident in the case of time step and state 

event handling of current BPS tools (Nouidui and Wetter, 

2014). EnergyPlus, for example, has a minimum time step 

of one minute and cannot handle state events, which occur 

in a simulation if a value in the state variables of a model 

changes. This hinders EnergyPlus’ ability to simulate 

models that change dynamically. Another example of 

these limitations is, according to Favoino et al. (2016), 

that current BPS tools cannot be used to model control 

strategies that aim to optimise any selected objectives. 

Optimisation generally refers to an iterative process of 

selecting a near-optimal solution to a problem in the 

search space (Nguyen, Reiter and Rigo, 2014). If an 

optimisation tool (i.e., algorithm or strategy) is coupled 

with a BPS in an automated process, the literature tends 

to use the term simulation-based optimisation. Because 

current BPS tools are limited in simulation-based 

optimisations, Delgarm et al. (2016) coupled EnergyPlus 

through jEPlus (Zhang, 2009; Zhang and Korolija, 2010), 

an EnergyPlus simulation manager for parametric 

analyses, with MATLAB (MathWorks, 2018), a high-

level programming language, to optimise various design 

parameters, such as overhang characteristics, to improve 

the energy performance of four case study buildings. 

Comparing each case study building to a baseline model, 

Delgarm et al. (2016) found that the total annual energy 

consumption was reduced by 23 % to 42 % through the 

optimisation. Even though these savings by control alone 

are quite ambitious as indicated in BS EN 15232-1:2017 

(RHE/16, 2017) and highly depend on the choice of the 

baseline model, a well-tuned control strategy may have 

positive impacts on energy use, but also on thermal 

performance and occupant comfort (Treado, 2013). 

To better address systems or controls with a fast, dynamic 

response and to better tune and select controller 

parameters, a modelling approach for the analysis of 

control strategies of adaptive building envelopes is 



proposed. This will aim to establish an efficient 

methodological approach to link the whole-building 

simulation of thermal performance and control with an 

optimisation algorithm. Although similar approaches 

have been considered in the context of HVAC systems, 

less attention has been paid to adaptive building 

envelopes. The modelling approach was evaluated 

through a case study of a closed cavity façade with an 

automated motorised blind for an office development in 

London with two distinct control strategies. 

Background: simulation-based optimisation 

A growing body of literature has recently investigated 

simulation-based optimisations used to identify optimised 

controller parameters for adaptive building envelopes 

with the overall aim of satisfying several conflicting 

design criteria, such as minimising cost while maximising 

performance (e.g., Evins, 2013; Attia et al., 2013). To 

develop an understanding of the application of 

simulation-based optimisations, Attia et al. (2013) 

conducted interviews with 28 optimisation experts and 

found that EnergyPlus and IDA ICE (EQUA Simulation 

AB, 2018) are the most used BPS tools and that 

MATLAB and GenOpt (Wetter, 2016a), an optimisation 

tool for the minimisation of a cost function evaluated by 

an external BPS tool, are the most widely-used tools for 

simulation-based optimisations among interviewees.  

One of the main challenges for the integration of 

optimisations into the design process identified by this 

study is a “lack of awareness and confidence in the use of 

optimisation” (Attia et al., 2013, p. 3703). The key 

problem with this finding is that optimisation algorithms 

offer an effective way to create workflows less prone to 

human errors, thus increasing simulation capabilities and 

ultimately guiding the design thanks to established, quick 

and reliable workflows. As such, research into solving the 

problem of integrating optimisations into the design 

process is already underway, and numerous studies have 

attempted to develop frameworks for the optimisation of 

controller parameters for adaptive building envelopes. As 

an example, Favoino, Jin and Overend (2017) proposed a 

framework for optimising design and control aspects of 

adaptive insulation. To take account of the simultaneous 

variation of both design and control aspects, the authors 

coupled EnergyPlus to predict building performance and 

MATLAB to perform optimisation and coordinate the 

process. MATLAB is extensively used for simulation-

based optimisations due to the high-level nature of the 

language that avoids intricacies like active memory 

management as well as easy interfacing with external 

tools and robust implementation of optimisation 

algorithms. Despite its capabilities, a potential 

shortcoming of MATLAB and other similar programming 

languages is that they were not explicitly designed for 

simulation-based optimisations and, as a result, require 

some programming skills to use that may not be available 

in design practices (Nguyen, Reiter and Rigo, 2014). A 

more focused tool developed for simulation-based 

building optimisations is GenOpt. It offers, however, 

limited support to address multi-objective optimisation 

problems. Consequently, researchers examined other 

tools to identify optimised controller parameters for 

adaptive building envelopes. This includes 

GENE_ARCH (Caldas, 2006), an evolution-based 

generative design environment, which was used, for 

instance, by Wang and Beltran (2016) to optimise the 

control sequence for varying window and wall properties, 

or the Building Controls Virtual Test Bed (BCVTB) 

(Wetter, 2016b), a software environment traditionally 

used for co-simulation, which was employed, for 

example, by Evins, Pointer and Vaidyanathan (2011) to 

optimise ventilation control of a double-skin façade.  

An alternative tool that can be utilised for the optimisation 

of controller parameters for adaptive building envelopes 

is Python (Python Software Foundation, 2018), a high-

level programming language. Although Python and 

MATLAB are at first sight very similar, Python has 

various advantages over MATLAB (Ozgur et al., 2017): 

• Cost. Python is a free programming language. 

• Portability. Python can run on all operating systems. 

• Libraries. Python provides numerous libraries, e.g., 

for co-simulation and optimisation problems. 

Due to the benefits presented above, Python was chosen 

for this study to perform a simulation-based optimisation 

to identify optimised controller parameters for an adaptive 

building envelope. In the literature, only a few 

investigations that optimise building envelope 

characteristics or properties through Python were 

identified. An example of this is a study conducted by 

Cascone, Capozzoli and Perino (2018), who coupled a 

building model with PCM implemented in EnergyPlus 

with an optimisation algorithm written in Python to 

optimise energy and cost by varying, among others, the 

thickness and thermo-physical properties of PCM.  

Since the work presented in this paper focuses on the 

optimisation of controller parameters for an adaptive 

building envelope, it necessitates the use of a tool that 

offers modular and flexible modelling and simulation 

methods for control systems, as in case of the Modelica 

environment Dymola (Dassault Systèmes, 2018; 

Modelica Association, 2017). Hence, this study extends 

the optimisation approach by Cascone, Capozzoli and 

Perino (2018) by coupling EnergyPlus to simulate the 

thermal dynamics and Dymola to host the control logic 

through the Functional Mock-up Interface (FMI) standard 

(MODELISAR, 2010), an open interface for 

communication and information exchange in co-

simulation setups. The FMI standard had been favoured 

over, e.g., the BCVTB because it is a non-proprietary 

industry standard that enables model reuse (Wetter, 

Grahovac and Hu, 2018). Linking this co-simulation with 

the optimisation algorithm implemented in Python, the 

modelling approach developed in this study offers the 

potential to identify optimised controller parameters for 

adaptive building envelopes.  



Methods 

To investigate the application of the modelling approach, 

the research design used in this paper adopted a case study 

approach due to the exploratory nature of the research 

(Yin, 2014). A case study approach was also used to yield 

insights into the operation of control strategies for 

adaptive building envelopes in their real-life setting 

mimicked by the simulation. To represent a broader set of 

cases, a common case was selected, which was an 18 m2 

bay of a typical floor of a 50-storey office development in 

Central London. The South-oriented closed cavity façade 

of the case study had an automated motorised blind with 

two distinct control strategies as the subunits (i.e., subject) 

of the analysis, as illustrated in Figure 1.  

 

Figure 1: Embedded case study design 

A thermal simulation model developed in EnergyPlus was 

combined in a co-simulation setup with a control model 

developed in Dymola. To exchange information at each 

time step between EnergyPlus and Dymola, the 

EnergyPlus model was encapsulated and shared as a 

Functional Mock-up Unit (FMU) and imported into 

Dymola, where the FMU appeared as input/output block 

to be connected to other models. The data exchange 

between EnergyPlus and Dymola was ensured through the 

FMI standard. This integrated model was then wrapped 

with an optimiser to understand and fine-tune controller 

parameters and to indirectly select control strategies. The 

methodology adopted can be subdivided into three main 

phases: (i) pre-processing, (ii) simulation and 

optimisation and (iii) post-processing. To automate these 

phases, this study used Python v3.6.6 with Spyder v3.1.1 

(Spyder Project Contributors, 2018), a scientific Python 

development environment. Python particularly facilitated 

the integration of Dymola and EnergyPlus with the 

optimisation package DEAP for controller parameter 

optimisation. Other commonly used Python packages 

were BuildingsPy (Lawrence Berkeley National 

Laboratory (LBNL), 2018) to automatically instantiate 

and initialise Dymoly simulations, DyMat (Rädler, 2015) 

to read and process Dymola results files and Matplotlib 

(Hunter, 2007) to plot and visualise data. 

Pre-processing 

The pre-processing included the development and 

structuring of the co-simulation of thermal performance 

and control and of the optimisation algorithm. The first 

step was to implement the room model, whose simulation 

parameters are presented in Table 1, in EnergyPlus v8.9.0. 

To couple EnergyPlus to another simulation tool, the 

External Interface of EnergyPlus, whose objects received 

their inputs from Dymola at each time step, had to be 

activated. The software package EnergyPlusToFMU 

v2.0.3 (Nouidui, Lorenzetti and Wetter, 2018) was used 

to export the case study modelled in EnergyPlus as an 

FMU for co-simulation using the FMI standard v1.0. This 

FMU slave was then imported in and executed by Dymola 

v2019 FD01 as master simulation tool, which supported 

the import of the FMU for co-simulation and was 

responsible for coordinating the overall simulation and 

data transfer. 

Table 1: Simulation parameters of room model 

Parameter Condition 

Closed cavity façade Centre-pane U-value: 0.9 W/m2K 

g-value: 0.12 - 0.52 

Visible light transmittance: 5 - 65 % 

Blind Slat width: 80 mm 

Slat distance: 72 mm 

Colour: light grey 

Solar reflectance: 65 % 

Visible reflectance: 71 % 

Occupancy 07:00 - 19:00 

Air change rate -0.3 h-1 

Thermostat setpoints 24 °C 

Table 2: Control thresholds for each blind position 

Blind 

position 

Control thresholds * 

Open SolRad < 240 

Horizontal 240  SolRad < 330 AND SolAlt > 42.0 

Tilt 30° 330  SolRad < 530 AND 42.0  SolAlt > 24.8 

Tilt 45° 530  SolRad < 770 AND 24.8  SolAlt > 15.3 

Tilt 60° 770  SolRad < 920 AND 15.3  SolAlt > 3.90 

Closed 920  SolRad AND 3.9  SolAlt 

* SolRad – incident solar radiation [W/m2] 

   SolAlt – site solar altitude [°] 

The next step was to set up the model for the blind 

controller in Dymola to actuate the blind position yBlind 

and the slat angle ySlat of the EnergyPlus model. The two 

control strategies studied were: 

• S1 – Rule-based control strategy as a baseline. 

Both yBlind and ySlat were based on (i) the intensity 

of the incident solar radiation (SolRad) to control 

solar heat gains and (ii) the site solar altitude (SolAlt) 

to prevent direct sunlight passing through the façade. 

Control thresholds are apparent from Table 2 and 

were selected based on the resulting g-value 

calculated to limit solar heat gains to 100 W/m2 of 

floor area based on a 4.5 m floor depth. When the sky 

was cloudy with a global horizontal illuminance 

(HorIll) lower than 15,000 lux, the control strategy 

was overridden, and the blind was fully retracted.  

• S2 – Control strategy with optimised controller 

parameters. To being able to reuse the baseline 

model and to simply overwrite yBlind and ySlat with 

a set of controller parameters obtained by the 



optimisation algorithm, conditional clauses for the 

components yBlind and ySlat were added in Dymola 

to make them mutually exclusive of the components 

of the baseline model, as shown in Figure 2. 

Including only necessary components in the 

simulation helped to reduce the computational weight 

of calculating results that were not needed or used. 

 

Figure 2: Controller model in Dymola with components 

to overwrite yBlind and ySlat 

After setting up the co-simulation, the optimisation 

algorithm was written in Python. The optimisation aimed 

to find the set of values that the controller parameters 

should adopt to optimise the objective functions. The 

controller parameters under investigation were the blind 

position (discrete) and the slat angle (continuous) as can 

be seen from Table 3.  

Table 3: Design variables 

Variable Value 

Blind position yBlind 0 (open) or 9 (closed) 

Slat angle ySlat 0° to 90° 

To take account of various conflicting criteria that may 

occur during building operation, such as to improve the 

quality of human life while maintaining the capacity of 

the ecosystem, this study used a multi-objective 

optimisation approach with energy use and thermal 

comfort as objectives. Given the two-dimensional design 

variable vector x = {X1, X2} in the solution space X, the 

proposed multi-objective optimisation algorithm should 

find the vector 𝑥∗ that minimises the given set of objective 

functions: 

 Z(x*) = {Z1(x*), Z2(x*)} (1) 

The first objective was the minimisation of the total 

energy use per unit of floor area Etotal [Wh/m2] calculated 

as shown in Equation 2, where Eheating and Ecooling were the 

energy uses for space heating and cooling over the period 

of one simulation time step of 3600 seconds and where A 

was the conditioned room area. 

 min Z1(x) = Etotal = (Eheating + Ecooling) / A (2) 

The second objective was the minimisation of the 

percentage of occupied hours characterised by indoor 

thermal discomfort DH [%] as shown in Equation 3, 

where dh was the number of hours characterised by 

thermal discomfort with an average predicted mean vote 

(PMV) ± 0.5 and where h was the number of occupied 

hours. 

 min Z2(x) = DH = dh / h · 100 (3) 

The final step of the pre-processing was to execute the 

setup of the simulation, including simulation parameters 

(e.g., start/end time and time step) and solver settings 

(e.g., type and tolerance) with BuildingsPy. 

Simulation and optimisation 

To optimise the objective functions, the first step of the 

simulation and optimisation phase was to pseudo-

randomly generate an initial population in DEAP based 

on the aforementioned design variables. As the 

optimisation algorithm was implemented in Python while 

the evaluation of the objectives needed the use of Dymola, 

a data exchange mechanism between Python and Dymola 

was required. This was achieved through a coupling 

function written in Python and schematically shown in 

Figure 3. This coupling function made it possible to: 

• convert the multidimensional sets of individuals into 

a Dymola syntax with the help of BuildingyPy’s 

addParameters function that added parameter 

declarations to the simulator and allowed to change 

data on the same simulation model; 

• execute the start of the simulations with the updated 

sets of individuals in batch mode; 

• save the Dymola results files to the corresponding 

result directory; and  

• process the Dymola results files in Python to evaluate 

the objective functions with reference to each 

individual. 

To find a near-optimal solution to the multi-objective 

optimisation problem, a Pareto-based approach was used. 

This approach allows examining a set of trade-off optimal 

solutions from the best-known Pareto set. The set of all 

nondominated solutions, which represents the set of 

solutions that is not better than another set of solutions, is 

called trade-off or Pareto front. A frequently used method 

to produce a representative subset of the Pareto set is 

stochastic population-based algorithms, such as the 

nondominated sorting genetic algorithm (NSGA-II) 

introduced by Deb et al. (2002). A key advantage of 

NSGA-II compared to other genetic algorithms, a search 

heuristic inspired by natural evolution, is that its selection 

operators had been specially designed to work in multi-

objective optimisation problems. For instance, NSGA-II 

does not select its best individuals through fitness values, 

but through a combination of values obtained by (i) 

nondominated sorting, which sorts a population according 

to the levels of nondominance and identifies 

nondominated fronts, and (ii) crowding distance 

algorithms, which guide the selection process to obtain a 

uniformly spread-out Pareto front. 



 

Figure 3: Coupling between Python and co-simulation with Dymola as co-simulation master 

The implementation of the NSGA-II algorithm in the 

modelling approach through DEAP used the parameters 

listed in Table 4. These parameters were selected based 

on Grefenstette’s (1986) attempt to determine an ideal set 

of parameters for genetic algorithms. He found that good 

performance of genetic algorithms with small populations 

(20 to 40) can be achieved through “either a high 

crossover rate combined with a low mutation rate or a low 

crossover rate combined with a high mutation rate” 

(Grefenstette, 1986, p. 127). While following 

Grefenstette (1986) seems to be reasonable for this 

exploratory study, future research should carry out a 

convergence test based on the hypervolume indicator that 

evaluates the performance of multi-objective genetic 

algorithms by calculating the space covered by solutions 

in the objective space.  

Table 4: NSGA-II parameters 

Parameter Value 

Population size 20 

Maximum number of generations 5 

Crossover probability 70 % 

Mutation probability 30 % 

For each simulation time step starting on 2 July 

(15,811,200 seconds), the beginning of a typical three-day 

summer period, a Pareto front was generated. The fast 

nondominated sorting approach by Deb et al. (2002) was 

used to select the “best” control strategy indirectly, and 

the corresponding Dymola results file was stored for post-

processing. The optimisation then moved forward in time 

to repeat the process for the next time step until the stop 

time of 16,070,400 seconds was reached. While the 

controller parameters were optimised per time step, 

simulations were run for the three-day period as 

EnergyPlus requires a simulation length of a multiple of a 

day. Each simulation and optimisation run took 

approximately thirty minutes on Parallels Desktop 14 for 

Mac with two cores (2.7 GHz Intel Core i5 processor) and 

8 GB memory. 

Post-processing  

The post-processing aimed to compare the predicted 

performance of the case study with the two distinct 

control strategies S1 (rule-based control strategy as a 

baseline) and S2 (control strategy with optimised 

controller parameters) by utilising window heat gains and 

losses, which refer to the total heat flow through a 

window, as performance indicators. To automatically 

combine the predicted data of S1 and S2 into one dataset, 

DyMat was used. The data of the dataset were then 

statistically analysed and graphically presented and 

compared by using, among others, Matplotlib. 

Results 

Simulation results suggest that the control strategies S1 

and S2 significantly influenced the predicted performance 

of the case study. As can be seen in Figure 4, the mean 

window heat gains of S2 were 72.7 % lower than the mean 

window heat gains of S1 (S1: 243.3 Wh, S2: 66.4 Wh), 

especially during the day. Besides, the S2 mean window 

heat losses were 8.7 % higher than the S1 mean window 

heat losses (S1: 21.9 Wh, S2: 23.8 Wh).  

 

Figure 4: Window heat gains  

These differences can be explained by the optimisation’s 

objective function that aimed, among others, at 

minimising the energy use. The simulation results point 

out that the energy use could be best minimised with low 

window heat gains and high window heat losses, which 

result in a lower cooling load within the building and 

hence a lower energy use. This was confirmed by the 

mean energy use for space cooling, which was 24.5 % 

lower in the case of S2 than of S1 (S1: 522.9 Wh, 

S2: 394.8 Wh). As illustrated in Figure 5, S2 had lower 

window heat gain values consistently for each specific 

value of the energy use than S1. 

The results confirm that the modelling approach was able 

to decrease the energy use for space cooling by optimising 

controller parameters compared to the baseline control 

strategy S1. However, objectives not taken into account 

in the optimisation were energy use for artificial lighting 

and visual comfort that can be assessed through the key 



factors of risk of glare and outside viewing possibilities. 

To allow conclusions to be drawn on energy use for 

artificial lighting and visual comfort, the percentage of 

time each blind position occurred during occupied hours 

was analysed. As shown in Figure 6, the blind was more 

often open in S1 (47.2 %) than in S2 (0.0 %) indicating 

that the blind was shut down 52.8 % of the time during 

occupied hours in S1 and 100 % of the time in S2. Even 

if the blind was shut down in S1, it occurred less often in 

tilted or closed position in comparison to S2 (77.8 %). 

 

Figure 5: Window heat gains as a function of energy use 

 

Figure 6: Blind positions during occupied hours 

These differences can be again explained by the objective 

function that could minimise the energy use best when the 

blind was shut down and more often in tilted or closed 

position. As no direct sunlight passed through the building 

envelope in case of S2, it can be assumed, on the one 

hand, that the energy use for artificial lighting was 

increased compared to the baseline. On the other hand, the 

risk of glare might be decreased and visual comfort might 

thus be improved. On the contrary, the outside view was 

obstructed since the blind was shut down all the time, 

which limited occupants’ possibilities to look outside and, 

as a result, might diminish visual comfort. A further study 

with more focus on energy use for artificial lighting and 

on well-being of occupants in the presence of daylight, 

e.g., by constraining the illumination at desk level, will, 

therefore, be undertaken.  

Discussion 

The modelling approach developed in this study aimed to 

identify optimised controller parameters for adaptive 

building envelopes. Although energy use for artificial 

lighting and visual comfort were not taken into account, 

the results of this study support the idea that the developed 

modelling approach offers benefits that would not be 

expected from current BPS tools: 

• Capability. The proposed modelling approach 

automatically searched for the optimised solutions 

from a set of available controller parameters, which 

may have helped to identify automatically and 

verifiably proper tuning of control to achieve the 

design objectives. 

• Flexibility and extensibility. The use of the 

Modelica environment Dymola led to a high working 

efficiency, which can be illustrated by the reuse of the 

controller model for both control strategies studied. 

• Workflow automation. The modelling approach 

was entirely automated through a Python script to 

perform many common repetitive or technically 

intensive tasks. This may have simplified and 

speeded up the process of, e.g., simulation input file 

generation and reduced error rates. 

However, the modelling approach has also several 

possible limitations: 

• Usability. As mentioned earlier, a potential 

shortcoming of programming languages, such as 

MATLAB or Python, is that they were not 

specifically designed for simulation-based 

optimisations and, consequently, require high 

expertise to use. This may lead to diminished 

confidence in the use of this approach.  

• Efficiency. A general limitation of simulation-based 

optimisations is the lack of a standard systematic 

approach, which may lower the efficiency regarding 

time and performance improvement. Although this 

study adopted many existing Python packages to 

assist in achieving a higher level of efficiency, basic 

skills in programming, data processing and statistical 

analysis are required. 

• Coupling barrier. Missing interfaces that integrate 

and link BPS tools and optimisation seamlessly may 

inhibit the use of simulation-based optimisations in 

practice. While this study used, for instance, the FMI 

standard as a non-proprietary industry standard, it 

may be possible that not all BPS tools support the 

FMI standard, which may impose a coupling barrier 

on the modelling approach. 

Notwithstanding these limitations, the present results add 

to the growing body of literature on simulation-based 

optimisations in at least two major respects. Firstly, the 

study investigated the development of a simulation 

method that coupled an optimisation approach with a BPS 

tool to simulate the thermal dynamics. Following this, a 

novel environment to host the control logic was 

established to determine the energy saving potential of 



adaptive building envelopes. An implication of this is that 

the proposed modelling approach has the potential to 

overcome the difficulties of trial-and-error typically 

associated with stand-alone simulations. Secondly, this 

work highlighted a process that used co-simulation to 

generate a detailed parametric model of adaptive building 

envelopes, with key parameters being controller 

parameters. This parametric model can then be invoked 

by optimisation tools to explore parameter search spaces 

and to identify automatically and verifiably proper tuning 

of control to achieve design objectives. Therefore, the 

proposed modelling approach could potentially contribute 

to the use of optimisation methods as standard practice 

within the design of adaptive building envelopes in the 

near future.  

Conclusion 

This study aimed to evaluate the proposed methodological 

approach through a case study that included an automated 

motorised blind with two distinct control strategies, where 

optimisation was utilised to identify optimised controller 

parameters using a stochastic population-based algorithm 

to fine-tune and select controller parameters. In the light 

of the exploratory nature of this study, the controller 

parameters were optimised over just a typical three-day 

summer period. The results of this evaluation show that 

the mean window heat gains and the mean energy use for 

space cooling of the control strategy with optimised 

controller parameters were considerably lower than those 

of the baseline control strategy. Since these results are 

suggestive of the benefits that can be obtained from 

adjusting the dynamic aspects of the building envelope 

and that are only partly supported by current BPS tools, 

they have two important implications for future research: 

• The present objective function only aims to minimise 

the energy use and the number of hours characterised 

by thermal discomfort. This results in a control 

algorithm that keeps the blind shut down for most of 

the day even though the office is occupied possibly 

affecting the well-being of occupants as well as the 

energy use for artificial lighting. Consequently, the 

first implication of the results is to undertake further 

studies to take account of energy use for artificial 

lighting and visual comfort to keep the blind more 

often open during occupied hours.  

• While the results of this study provide some 

quantitative evidence that the proposed modelling 

approach can find the “optimal” controller 

parameters for the three-day period, it might be 

possible that the studied control strategy is not the 

best when looking at longer periods, i.e., the whole 

cooling season. It might, for instance, be better to 

keep control parameters constant or to follow the 

model-predictive control (MPC) paradigm and 

change the parameters on a more regular basis. As a 

result, a second implication of the study results is that 

various control strategies will be investigated over 

longer periods in the future to establish validity and 

reliability of the control algorithm.  
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