Photonic integrated circuit extended cavity passively mode-locked dual absorber symmetric ring laser

MU-CHIEH LO1,2, DOMINIK AUTH3, CHRISTOPH WEBER3, PATRICK FIALA3, PASCAL SAUER3, GUILLERMO CARPINTERO1, AND STEFAN BREUER3,*

1 Universidad Carlos III de Madrid, Av de la Universidad, 30. 28911 Leganés, Madrid, Spain
2 University College London, London WC1E 7JE, UK
3 Institute of Applied Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
*Corresponding author: stefan.breuer@physik.tu-darmstadt.de

Optical Society of America

OCIS codes: (140.4050) Mode-locked lasers; (140.5960) Semiconductor lasers; (250.5300) Photonic integrated circuits.

http://dx.doi.org/10.1364/ao.XXXXXXXX

A photonic integrated circuit extended cavity passively mode-locked semiconductor ring laser with two saturable absorbers in a symmetric ring geometry fabricated using an InP generic integration technology platform is presented for the first time. The laser emits 1.4 ps short optical pulses with a time-bandwidth-product of 0.96 (Gaussian shaped pulses) at a fundamental repetition rate of 23.3 GHz. The laser exhibits a beat-note line width of 80 kHz, corresponding to a pulse-to-pulse timing jitter of 31.7 fs. The emission is centered at 1570 nm and maximum spectral bandwidth amounts to 10.2 nm (-3 dB) and 19.7 nm (-20 dB). © 2019 Optical Society of America

Monolithic passively mode-locked semiconductor lasers are promising compact sources for generating coherent frequency combs and ultra-short optical pulse trains for metrology, spectroscopy and millimeter wave/terahertz applications [1]. They reconcile technical simplicity in chip-scale monolithic integration and constant current operation, thus obviating external optical pumping [2]. Compared to their Fabry–Pérot counterparts [3–5], mode-locked semiconductor ring lasers (SRLs) feature the intrinsic mirror symmetry with respect to the central saturable absorber and therefore allow for colliding pulse (CP) mode-locking (ML) [6–10]. By doubling the pulse-narrowing effect, CP ML is expected to decrease the pulse width (PW) and improve the pulse train stability [11, 12]. In early works, a monolithic passively mode-locked GaAs/AlGaAs quantum well based SRL emitting at 860 nm with a 1 mm radius and a single absorber yielded oscillations at 80 MHz to 110 MHz with an inter-mode beat line width (IB LW) of 50 kHz [13], a monolithic passively mode-locked GaAs/AlGaAs quantum well based SRL emitting at 874 nm with a 0.15 mm radius and a single 50 µm long absorber yielded 1.3 ps short optical pulses at an inter-mode beat frequency (IBF) of 86 GHz with a minimum time-bandwidth-product (TBP) of 0.42 [6]. At telecom wavelengths, a monolithic passively mode-locked InP quantum dot SRL emitting at 1505 nm with a length of 18 mm and a single 0.3 mm absorber yielded 55 ps short optical pulses at 5 GHz with an IB LW of 300 kHz (-20 dB), indicating an integrated or root-mean-square (RMS) timing jitter (TJ rms) of 25 ps (integrated from 10 kHz to 80 MHz) [14]. A monolithic passively mode-locked bulk InGaAsP SRL emitting at 1530 nm with a length of 5.291 mm, incorporating two 30 µm or 60 µm long absorbers, generated 4 ps short optical pulses at an IBF of 15 GHz with IB LWs ranging from 2.5 MHz to 5.5 MHz (-20 dB), indicating a TJ rms of 7.1 ps (integrated from 20 kHz to 80 MHz) and a minimum TBP of 0.42 [12]. A monolithic actively mode-locked GaAs/AlGaAs quantum well based SRL emitting at 1543 nm with 3 mm radius and two 0.5 mm long absorbers yielded 27 ps short optical pulses at 9 GHz with a minimum TBP of 0.46 [15]. A passively mode-locked InP quantum well photonic integrated circuit (PIC) SRL emitting at 1583 nm with 33 mm length and a single 50 µm long absorber fabricated using an InP generic integration technology platform generated 9.8 ps short optical pulses, an IBF of 2.5 GHz with an IB LW of 6.13 kHz (-3 dB) at IBF signal-to-noise ratios (SNRs) of >50 dB and optical spectral widths exceeding 3 nm [9]. A PIC InP generic integration technology platform based passively mode-locked quantum well SRL emitting at 1544 nm with 4 mm length and a single 30 µm long absorber yielded estimated 5.6 ps short optical pulses (Gaussian fit to Gaussian shaped pulse) and 0.9 ps (sech²-fit to pulse signature) at an IBF of 20 GHz, an IB LW of 800 kHz (-3 dB) and an IBF SNR of 41 dB [16]. A passively mode-locked InP quantum well SRL with a symmetric ring CP ML geometry on a PIC with 3 mm length and a single 40 µm long absorber emitting at 1565 nm generated 1.9 ps short optical pulses at an IBF of 12 GHz with an IB LW of 390 kHz (-10 dB), an IBF SNR >50 dB and spectral widths exceeding 40 nm (-20 dB) [10]. A monolithic passively mode-locked SRL built on an active GaAs/AlGaAs double quantum well platform, emitting at an unknown wavelength, with a length of 3.1 mm and either a single or dual absorbers with 50 µm lengths yielded estimated 9 ps short optical pulses at an IBF of 25 GHz. A symmetric dual-absorber geometry was reported where an increase in ML regime and reduced PWs were expected by pulses colliding only in the absorbers [11]. This dual-absorber SRL could be mode-locked, yet with fewer
modes resulting in broader PWs. Additionally, both output waveguides and optical couplers were electrically pumped, thus potentially adversely affecting the generated PW and pulse train stability [11, 12, 17].

In this letter, we report the realization and experimental investigation of a SRL with extended cavity symmetric ring CP ML geometry employing two absorber sections and fabricated using an InP active-passive generic integration technology platform. The PIC laser emits optical pulses as short as 1.4 ps, generates spectral widths exceeding 10 nm (-3 dB) and 19.7 nm (-20 dB) at an IBF of 23.3 GHz with a minimum IB LW of 80 kHz (-3 dB), a clear improvement in PW over the state-of-the-art SRL fabricated by an InP generic integration technology platform.

The cavity design is point symmetric and schematically depicted in Fig. 1(a). It comprises four 300 µm long semiconductor optical amplifiers (SOAs), two 30 µm long saturable absorbers (SAs) and four electro-optic phase modulators (EOPMs). Both SOA and SA sections use the same active layer stack, based on InGaAsP/InP quantum well gain media. The passive straight and curved waveguides form the circulating cavity resonance path. The passive waveguides are deeply etched, of 1.5 µm width, minimum bending radii of 100 µm and propagation losses are of the order of 1 dB/cm. Two 2x2 multimode interference (MMI) couplers provide the optical output from the cavity in both, the clockwise (CW) and counter-clockwise (CCW), propagation directions through the output waveguides 1-4 at the edge-cleaved emission facet at the right-hand side. The ring cavity length amounts to ≈3.5 mm, corresponding to an IBF of 23 GHz (refractive index of 3.7). The entire PIC laser design occupies an area of (2.1 x 0.75) mm². The laser was fabricated within a multi-project wafer run through the Jeppix foundry co-

![Fig. 1.](image-url)
(a) Blue: Passive straight and curved waveguides. Green: Active components such as semiconductor optical amplifier (SOA)-based gain sections, absorber sections (SAs), booster amplifier (Boost), and phase modulators (EOPMs), and passive components such as multimode interference (MMI) couplers. Red: Metal routing. (b) Optical microscope picture with dimensions and sketch of the experimental setup. Two DC input signals \(I_{\text{SOA}} \) and \(V_{\text{SA}} \) bias the active sections. Laser emission coupled by a lensed fiber is in part amplified by an erbium-doped fiber amplifier (EDFA) and studied by the measurement instruments: electrical spectrum analyzer (ESA), optical spectrum analyzer (OSA), intensity autocorrelator (right). Close-up: lensed fiber near laser facet.

![Fig. 2.](image-url)
Fiber-coupled average optical laser output power versus \(I_{\text{SOA}} \) at (a) \(V_{\text{SA}} = 0 \) V, (b) \(V_{\text{SA}} = 1 \) V, (c) \(V_{\text{SA}} = 2 \) V and at (d) \(V_{\text{SA}} = 3 \) V. Fiber coupling losses are ≈5 dB. Clockwise (CW, Out 4), counter-clockwise (CCW, Out 1) emission, „up“ denotes increasing and „down“ decreasing injection current. Note the different y-axis scaling.

To simplify the operation of the device and avoid breaking the symmetry, the contact pads of the pair of SAs are shorted on the chip. The four SOAs are electrically connected by metal routing. Therefore, the four gain sections are forward-biased with a combined gain current \(I_{\text{SOA}} \) through one DC probe. Similarly, the two SAs are reverse-biased at the same voltage level \(V_{\text{SA}} \) by a second DC probe. The EOPMs are left unbiased. A 200 µm long SOA (Boost) is located prior to waveguide Out 3 and can be forward biased by \(I_{\text{BOOST}} \) to amplify the chip output power when necessary. To minimize parasitic back-reflections, the four output waveguides, corresponding to CW and CCW propagation directions of each 2x2 MMI, are tilted upwards by 7° as shown in Fig. 1(a). The cleaved facet is anti-reflection coated reducing the power reflection coefficient to \(10^{-4} \). Signals Out 1 and Out 3 (with booster) correspond to the CCW propagating pulse train, while Out 2 and Out 4 allow access to the CW direction. In the experiment, the light emitted from optical outputs at the facet are coupled into a lensed fiber as shown in Fig. 1(b). Analysis of the static and spectral laser emission is performed by an optical power meter and an optical spectrum analyzer (OSA) (spectral resolution 10 pm). A nonlinear intensity auto-correlator (AC) characterizes the generated optical PWs. An extended C-band erbium-doped fiber amplifier (EDFA) and a polarization controller increases the output power level and ensures the required polarization state. The IBFs and IB LWs in the pulsed regime are analyzed with a high-speed photo-diode (electrical bandwidth 45 GHz) followed by an electrical spectrum analyzer (ESA) (electrical bandwidth 50 GHz). The laser is biased through direct probing the metal contact pads with DC needles by an external low-noise DC current source and a DC voltage supply. The laser is placed on a copper carrier temperature stabilized at 20°C. The light-current (L-I) characteristics of the laser are presented in Fig. 2 for reverse biases of \(V_{\text{SA}} = 0 \) V (Fig. 2(a)), 1 V (Fig. 2(b)), 2 V (Fig. 2(c)) and 3 V (Fig. 2(d)) for both propagating directions (CCW Out 1 and CW Out 4). The gain section injection current \(I_{\text{SOA}} \) is varied from 5 mA to 255 mA (increasing currents,
5 mA to 255 mA in increments of 10 mA and V_{SA} ranging from 0 V to 3 V in increments of 0.5 V. The gray region denotes below lasing threshold operation and indicates the increase in threshold current with increasing V_{SA}. For low gain currents and low absorber reverse bias voltages (blueish colored region), low RF IBF SNRs up to 12 dB, are identified. However, orange to red colored data points indicate IBF SNRs exceeding 15 dB. The transition between the regions is abrupt, the emission within the area indicated by a dashed line in Fig. 3(a) is regarded as passively mode-locked operation. Second, we perform detailed PW studies within the identified region of strong IBF SNR. The deconvoluted optical PWs recorded for I_{SOA} ranging from 150 mA to 240 mA and for V_{SA} ranging from 2.1 V to 3.1 V are depicted in Fig. 3(b). For all investigated biasing conditions, AC time traces indicate optical pulses that can be well fitted by well-matching Gaussian functions. Recorded PWs are well below 2.8 ps.

In general, broader pulses are measured for lower reverse bias voltages, due to faster absorption recovery, and for higher injection currents, as the absorber stronger saturates and low intensity part of the pulse become less absorbed. For $I_{SOA} = 150$ mA and $V_{SA} = 3.1$ V, an IB LW of 80 kHz (-3 dB) at an IF of 23.3 GHz is identified with a SNR of 30 dB, shown in Fig. 4(a). A zoom into the IBF, depicted in Fig. 4(b), depicts a pulse-to-pulse timing jitter (τ_{ppt}) of 31.7 fs (Lorentzian fit) [19, 20]. A low-frequency signature becomes apparent which is 25 dB below the IBF peak power and of spurious origin. It differs from Q-switched mode-locking as it is not apparent around the IBF. The shortest PW amounts to 1.41 ps and is obtained at $I_{SOA} = 150$ mA and $V_{SA} = 3.1$ V as shown in Fig. 4(c). Additional pulse broadening of the 1.41 ps long pulse by the EDFA (5 m internal fiber length) and 0.05-ps/nm dispersion [21] is not expected. The broadest obtained optical spectrum is centered at 1575 nm with a bandwidth of 10.2 nm (-3 dB) and 19.7 nm (-20 dB) as shown in Fig. 4(d). About 52 modes are spaced equally by 0.19 nm within the -3 dB spectral bandwidth and 102 modes within the -20 dB bandwidth.

Third, we aim to study the spectral widths of the generated optical spectra in dependence on the gain currents and reverse bias...
In conclusion, we designed and experimentally studied a photonic integrated circuit mode-locked extended cavity ring laser with two absorbers in a point symmetric geometry, manufactured in an InP-based generic foundry. Phase-locked 10.3 nm broad optical spectra been generated at an inter-mode beat frequency of 23.3 GHz. The minimum IB LW of 80 kHz corresponds to a pulse-to-pulse timing jitter of 31.7 fs. The shortest optical pulses were 1.4 ps accompanied by the lowest time-bandwidth-product value of 0.96.

FUNDING

EU Horizon 2020 Marie Skłodowska-Curie actions FiWiN5G (642355), and MULTIPLY (713694); Spanish Ministerio de Economía y Competitividad grant iTWIT (TEC2016-76997-C3-3-R); Adolf Meszer Foundation (doctoral fellowship); German Research Foundation (38919332).

ACKNOWLEDGEMENTS

The authors thank E. Bente, D. Lenstra, and J. Javaloyes for fruitful discussions, W. Elsäßer for support and two anonymous reviewers for their constructive criticism.

REFERENCES

FULL REFERENCES

