Plxna1 and Plxna3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons

Roberto Oleari1, Alessia Caramello2,3, Sara Campinoti2,3, Antonella Lettieri1, Elena Ioannou2, Alyssa Paganoni1, Alessandro Fantin2,4, Anna Cariboni1,2*, Christiana Ruhrberg2*.

1 University of Milan, Department of Pharmacological and Biomolecular Sciences, Via G. Balzaretti 9, 20133 Milan, Italy
2 UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
3 current address: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
4 current address: University of Milan, Department of Biosciences, Via G. Celoria 26, 20133, Milan, Italy
* to whom correspondence should be addressed: anna.cariboni@unimi.it or c.ruhrberg@ucl.ac.uk

Keywords: GnRH neuron, olfactory bulb, testes, axon guidance, plexin, semaphorin, hypogonadotropic hypogonadism, Kallmann Syndrome

Running title: PLXNAs in GnRH neuron migration

Summary statement: PLXNA1 and PLXNA3 convey the pathfinding of olfactory and vomeronasal axons as a prerequisite for neuroendocrine neurons to migrate into the hypothalamus and release gonadotropins into the circulation.
Abstract

The gonadotropin releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary-gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human ortholog of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency.
Introduction:

GnRH-secreting neurons are hypothalamic neuroendocrine cells that regulate sexual reproduction in mammals by stimulating the pituitary secretion of the gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (Merchenthaler et al., 1984). GnRH deficiency is the common hallmark of two genetic reproductive disorders, hypogonadotropic hypogonadism (HH) and Kallmann syndrome (KS), which can be due to defective GnRH neuron development (Boehm et al., 2015; Stamou and Georgopoulos, 2018).

A key period in GnRH neuron development is their migration from the nasal placode, where they are born, to their final positions in the hypothalamus. In the nasal compartment, GnRH neurons migrate along the intermingled axons of olfactory (OLF) and vomeronasal (VN) neurons, whose cell bodies are located in the nasal placode-derived olfactory epithelium (OE) and vomeronasal organ (VNO), respectively (Fig. S1A). To enter the brain, GnRH neurons migrate along the caudal branch of the VN (cVN) nerve, also known as the cranial nerve 0 or terminal nerve (Taroc et al., 2017; Yoshida et al., 1995). The axons in this transient nerve turn caudo-ventrally into the brain at the level of the cribriform plate (CP), which separates the brain from the nasal compartment (Taroc et al., 2017) (Fig. S1A). Instead, other VN and OLF axons project to the main and the accessory olfactory bulb (OB), respectively (Fig. S1A). Finally, GnRH neurons settle in the medial preoptic area (MPOA) of the postnatal hypothalamus to project to the median eminence (ME), where they act as neuroendocrine cells to release GnRH into the hypophyseal portal circulation (Wierman et al., 2011) (Fig. S1B). Accordingly, GnRH neurons can be identified in several distinct compartments of the embryonic head that reflect their migratory route (Fig. S1C).

The importance of proper axon scaffolds for GnRH neuron migration is illustrated by the analysis of a human foetus with a KS mutation; in this foetus, GnRH neurons accumulated in neural tangles in the meninges at the level of CP (Schwanzel-Fukuda et al., 1989). Mice lacking the axon guidance cue SEMA3A similarly accumulate GnRH neurons within axon tangles at the CP and are therefore hypogonadal (Cariboni et al., 2011). Moreover, they have defective olfactory system, with many aberrant OLF axons (Schwarting et al., 2004). Agreeing with combined GnRH neurons and olfactory defects in mice lacking SEMA3A, SEMA3A mutations were subsequently identified in a subset of KS patients (Hanchate et al., 2012; Young et al., 2012). These findings support the idea that proper axon guidance is essential to ensure GnRH neuron migration through the nose and into the brain.
Moreover, these findings illustrate that mouse models are powerful tools to uncover genes that regulate GnRH neuron development and may be mutated in patients with inherited GnRH neuron deficiency.

To exert its functions, SEMA3A usually binds to transmembrane receptors composed of a ligand binding subunit that is either neuropilin (NRP) 1 or NRP2, and a signal transducing subunit, typically a member of the A-type plexin (PLXNA) family (Alto and Terman, 2017). Accordingly, mice lacking SEMA3A signalling through NRP1 and NRP2 have similar axon and GnRH neuron defects as mice lacking SEMA3A (Cariboni et al., 2011). Mutations in NRP1, NRP2 and PLXNA1 have also been found in KS patients (Kotan et al., 2019; Marcos et al., 2017), although PLXNA1 loss affects the GnRH neuron and olfactory systems in mice only mildly (Marcos et al., 2017). These findings raise the possibility that PLXNA1 acts in partial redundancy with another A-type plexin. Here, we have compared the expression pattern of all four Plxna genes during GnRH neuron development in the mouse and examined whether Plxna1 synergises with Plxna3 during nasal axon guidance required for proper GnRH neuron migration.

Results and discussion:

Plxna1 and Plxna3 are co-expressed during GnRH neuron migration.

To establish which of the four Plxna genes is expressed in a pattern consistent with a role in guiding the axons that ensure GnRH neuron migration, we performed in situ hybridisation of sections through the wild type mouse embryo nose. Agreeing with prior reports (Marcos et al., 2017; Murakami et al., 2001; Suto et al., 2003), Plxna1 was expressed at E12.5 and E14.5 in both the VNO and OE, and Plxna3 had a similar expression pattern (**Fig. S2A,B**). Additionally, Plxna1 and Plxna3 transcripts were detected in the migratory mass (MM) (**Fig. S2A**), a mixed population of cells that includes neurons and olfactory ensheathing cells (OECs) (Miller et al., 2010). In contrast, Plxna2 and Plxna4 appeared only weakly expressed in the VNO, OE or MM cells (**Fig. S2A**). We therefore focussed subsequent work on Plxna1 and Plxna3.

To determine which cell types expressed PLXNA1 or PLXNA3 in the territories relevant to GnRH neuron migration, we immunostained sections through wild type mouse embryo heads. Double labelling with theTUJ1 antibody for neuronal-specific beta 3 tubulin (nTUBB3) showed that PLXNA1 and PLXNA3 localised to the MM at E12.5 and to axons emerging from the OE and VNO at E12.5 and E14.5 (**Fig. 1A,B**). Double labelling for the
OEC marker S100 showed that OECs lacked PLXNA1 and PLXNA3, but that they surrounded PLXNA1/PLXNA3 double-positive axons (Fig. 1C,D). Immunostaining of Plxna1−/− and Plxna3−/− mouse tissues validated antibody specificity (Fig. 1E). Double labelling for peripherin (PRPH), a marker of OLF and VN, including cVN axons (Fueshko and Wray, 1994; Taroc et al., 2017), confirmed that both PLXNs localised to E14.5 nasal axons; PLXNA1 was also prominent on cVN axons in the forebrain, whereas PLXNA3 staining of cVN axons was undetectable (Fig. 2). A prior study reported PLXNA1 immunostaining of E12.5 GnRH neurons (Marcos et al., 2017); in agreement, we observed low Plxna1 transcript levels in FACS-isolated E13.5 GnRH neurons (Cariboni et al., 2007). Nevertheless, GnRH neurons in the E14.5 nose and ventral forebrain lacked obvious PLXNA1 or PLXNA3 (Fig. 2).

Together, these findings raise the possibility that PLXNA1 and PLXNA3 pattern the axons that guide GnRH neurons, either directly or by regulating the behaviour of pioneer cells in the MM that act as guide-post cells for the first nasal axons (Miller et al., 2010). Additionally, GnRH neurons may themselves express PLXNA1 for some time during their development.

Reduced GnRH neuron migration into the forebrain of Plxna1/Plxna3-null embryos

We next investigated whether combined loss of PLXNA1 and PLXNA3 impairs GnRH neuron migration more severely than loss of PLXNA1 alone. Thus, we analysed the number and position of GnRH neurons in wild type, single and double mutant embryos in litters from parents carrying Plxna1-null and Plxna3-null alleles (Cheng et al., 2001; Yoshida et al., 2006). GnRH immunostaining showed that Plxna1−/− and Plxna3−/− single as well as Plxna1−/−;Plxna3−/− double mutants had an overall similar number of GnRH neurons compared to wild type littermates at E14.5 (Fig. 3A,C and Table S1). Whereas Plxna1−/− and Plxna3−/− single mutants had a similar number of neurons as wild types in the forebrain, Plxna1−/−;Plxna3−/− double mutants contained significantly fewer GnRH neurons in the forebrain (Fig. 3A,C and Table S1). The loss of GnRH neurons from the brain of Plxna1−/−;Plxna3−/− double mutants was explained by the statistically significant retention of GnRH neurons in the nose, including at the CP (Fig. 3B,C and Table S1). Similar results were obtained by Gnrh in situ hybridisation (Fig. S3A). As the overall number of GnRH neurons was similar in all these genotypes at this stage, the primary GnRH neuron defect in double mutants is likely the impaired forebrain entry.

Combined PLXNA1 and PLXNA3 loss increases morbidity and causes GnRH
neuron, gonadal and olfactory system defects

To assess whether lack of GnRH neurons in the forebrain of E14.5 Plxna1\(^{-/-}\);Plxna3\(^{-/-}\) embryos results in an hypogonadal state in adulthood, we analysed postnatal Plxna1\(^{-/-}\);Plxna3\(^{-/-}\) mice. The analysis of 5 litters from parents with combined Plxna1\(^{-/-}\) and Plxna3-null alleles suggested that all genotypes were born at a normal Mendelian ratio (Table S2), but there was a high rate of pre-weaning mortality. As the Plxna3 gene resides on the X chromosome, males in these litters are either wild type or hemizygous for the Plxna3-null mutation, i.e. Plxna3\(^{y/+}\) or Plxna3\(^{y/-}\), respectively. In contrast, females are Plxna3\(^{y/+}\), Plxna3\(^{y/-}\) or Plxna3\(^{-/-}\). Pooled male and female mice lacking Plxna3 are therefore referred to as Plxna3\(^{y/-}\). We found that 2/5 juvenile Plxna1\(^{-/-}\);Plxna3\(^{y/-}\) mutants were small and appeared stressed when handled and had to be culled before weaning to prevent suffering. To avoid the birth of further mutants with such severe adverse effects, breeding was concluded, and all mutants obtained culled for analyses.

We next compared the GnRH neuron number in the MPOA of postnatal mutants and wild type controls, because this is the final position these neurons should attain. Whereas the GnRH neuron number in the Plxna3\(^{-/-}\) MPOA was similar to that of wild type littermates, 3/5 Plxna1\(^{-/-}\) mutants had slightly fewer and 4/4 Plxna1\(^{-/-}\);Plxna3\(^{y/-}\) mutants contained hardly any GnRH neurons in the MPOA (Fig. 3D,E and Table S3). Agreeing with a severely reduced GnRH neuron number, GnRH staining of the ME was nearly absent in Plxna1\(^{-/-}\);Plxna3\(^{y/-}\) mutants (Fig. 3F), despite normal hypothalamic projections of neuroendocrine neurons, such as those that secrete the corticotropin releasing hormone CRH (Fig. S3B). Moreover, overall brain size was similar in all genotypes (Table S4). All genotypes also had similar OB sizes (Table S4), but Plxna1\(^{-/-}\), Plxna3\(^{y/-}\) mutants had a smaller glomerular layer (GL) in the dorso-lateral OB compared to single mutants or wild types (Fig. S4). Accordingly, the combined loss of PLXNA1 and PLXNA3 causes defects in both the GnRH neuron and olfactory systems, the two co-existing hallmarks of KS.

Consistent with hypothalamic GnRH deficiency, 3/3 Plxna1\(^{-/-}\);Plxna3\(^{y/-}\) mutants had smaller gonads compared to single mutant littermates and wild types (2/2 males lacking both PLXNA1 and PLXNA3 had smaller testes and seminiferous vesicles, and 1/1 female lacking both PLXNA1 and PLXNA3 had smaller ovaries; Fig. 3G-H; Fig. S5A,B). Notably, 1/2 Plxna1\(^{-/-}\);Plxna3\(^{y/-}\) males examined only had one testis (Fig. S5A) and double mutant testes appeared immature and contained hardly any spermatids (Fig. S5C). We also detected PLXNA1 (Perälä et al., 2005) and PLXNA3 expression in the seminiferous tubules and interstitial cells of the testes, but not in the ovary or pituitary (Fig. S5D-F).
Thus the severe testes phenotype of double mutants may result from the combined tissue-specific loss of both plexins and hypothalamic GnRH deficiency.

A prior study reporting KS-like symptoms in adult Plxna1−/− mice had focussed on the analysis of males (Fig. 3 in Marcos et al., 2017). As we observed a genetic interaction of Plxna1 and Plxna3, it is conceivable that the mild and only partially penetrant defect observed in Plxna1−/− males might be explained, at least in part, by the hemizygous state of Plxna3 in males that impacts on GnRH neuron development. However, it is not known whether Plxna3 hemizygosity contributes to the increased incidence of KS in males compared to females. Notably, 2/2 adult Plxna1−/−;Pxna3+/− females had a severe reduction of GnRH neurons in the MPOA, which exceeded that seen in 3/5 Plxna1−/− male mutants (Table S3). The intermediate phenotype severity in these females between Plxna1−/− single and Plxna1−/−;Pxna3−/− double mutants may be explained by random X chromosome inactivation, as this has the potential to remove the functional copy of PLXNA3 in Pxna3−/− females and thereby decrease PLXNA3 dosage. Further work would be required to investigate this hypothesis.

Mispatterned OLF/VN axons in Plxna1/Plxna3-null embryos form axon tangles at the cribriform place that retain GnRH neurons

To better understand the underlying cause of abnormal GnRH neuron migration during embryogenesis, we examined the patterning of their PRPH+ axonal migratory scaffolds in E14.5 embryos from parents carrying both Plxna1- and Plxna3-null alleles. This was also important, because nasal axon defects were previously reported in 5/18 E14.5 Plxna1−/− mutants (Marcos et al., 2017). We found that 3/3 Plxna1−/− and 3/3 Plxna3−/− single mutants had similar PRPH+ axon organisation as wild type littermates, whereas 3/3 Plxna1−/−;Plxna3−/− double mutants contained PRPH+ mistargeted axons between the OBs and axon tangles at the CP (Fig. 4A,B). These axon defects therefore occur in areas in which GnRH neurons accumulate (Fig. 4B; see also Fig. 3B). Even though cVN axons emerged from the VNO in all genotypes analysed (Fig. S6A), double mutants lacked cVN axons in the forebrain (Fig. 4A,B). Moreover, double, but not single null mutants, had defasciculated and enlarged OLF axon bundles below the ventro-medial OBs (Fig. S6B) that may explain the small size of the glomerular layer (GL) in the OB of double null mutants (see Fig. S4).

In summary, the combined loss of PLXNA1 and PLXNA3 severely disrupts the axons that guide GnRH neurons through the nose and into the brain and additionally impairs olfactory development. Notably, the axonal defects are similar to those reported for Sema3a-null
mutants (Cariboni et al., 2011; Hanchate et al., 2012), supporting the idea that PLXNA1 and PLXNA3 serve as co-receptors for SEMA3A during VN and OLF axon development. Interestingly, partial PLXNA redundancy for SEMA3A-mediated axon targeting mirrors the redundancy for SEMA3A’s ligand binding receptors, as loss of semaphorin signalling through both NRP1 and NRP2 is required to elicit the full spectrum of VN and OLF as well as GnRH neuron migration defects that is observed in Sema3a-null mutants (Cariboni et al., 2007; Cariboni et al., 2011).

Conclusion. Here we show that PLXNA1 and PLXNA3 cooperate to pattern the SEMA3A/NRP-dependent axons that serve as migratory scaffolds for GnRH neurons en route from the nasal placodes to the brain and also contribute to olfactory axon patterning. Accordingly, the loss of both PLXNA1 and PLXNA3 from nasal axons impairs the development of the GnRH neuron and olfactory systems to cause a KS-like phenotype in adult mice (see working model, Fig. 4C). The human ortholog of Plxna3, like PLXNA1, should thus be considered a candidate gene for mutation screening in patients with KS. We further observed severe defects in testes formation in PLXNA1 and PLXNA3 mice that exceed those seen in KS, suggesting that these genes might also be mutated in other congenital diseases that affect gonad formation.

Acknowledgements: We thank Yutaka Yoshida, Alex Kolodkin and Valerie Castellani for the knockout mice, Laura Denti, Vasiliki Chantzara, Jessica Gimmelli and James Brash for technical assistance, John Parnavelas for access to equipment, the Biological Resources Unit of the UCL Institute of Ophthalmology for mouse husbandry and the imaging facilities at UCL and the Università degli Studi di Milano for maintaining microscopes.

Methods:

Mouse strains. Mice lacking Plxna1 or Plxna3 (Cheng et al., 2001; Yoshida et al., 2006) were used in a C57Bl/6 background for all embryonic studies or on a CD1 background to increase postnatal survival of double mutants. As the Plxna3 gene resides on the X chromosome, we have indicated whether postnatal mice were male (Plxna3^{-/-}) or female (Plxna3^{+/y}) and have referred to groups of both sexes as Plxna3^{-/-y}; the sex of mouse embryos was not determined, and we therefore refer to all embryos lacking PLXNA3 as Plxna3^{-/-}. To obtain mouse embryos of defined gestational ages, mice were mated in the evening, and the morning of vaginal plug formation was counted as embryonic day (E) 0.5.
Due to the severe phenotype in 5/5 postnatal double mutants in the 5 litters obtained, we abandoned further crosses to obtain additional adult mutants due to ethical considerations. Genotyping protocols can be supplied on request. All animal procedures were performed in accordance with Animal Welfare Ethical Review Body (AWERB) guidelines and under UK Home Office licence and Italian Ministry of Health licences.

Tissue preparation and cryosectioning: E12.5 and E14.5 embryos were fixed for 3 hours in 4% formaldehyde, whereas post-natal tissues were dissected after perfusion in 4% formaldehyde. All samples were then cryoprotected overnight in 30% sucrose, included in OCT and cryosectioned for immunohistochemistry or *in situ* hybridisation. Schematic drawings showing the anatomical levels and orientation of the sections are displayed in Fig. S7.

In situ hybridisation. Formaldehyde-fixed cryosections were incubated with digoxigenin (DIG)-labelled anti-sense riboprobes for mouse *Plxna1, Plxna2, Plxna3 or Plxna4* (Addgene plasmids no. 58237, 62353, 58238 and 58239, respectively; Schwarz et al., 2008) or mouse *Gnrh* (Cariboni et al., 2015). For labelling, we used the DIG RNA labelling kit (Roche). Hybridisation was performed in 50% formamide, 0.3 M sodium chloride, 20 mM Tris pH 7.5, 5 mM EDTA, 10% dextran sulphate and 1x Denhardt’s solution overnight at 65°C. Sections were washed in a saline sodium citrate buffer (50% formamide, 1x saline sodium citrate buffer, 0.1% Tween20), incubated overnight with alkaline phosphatase (AP)-conjugated anti-DIG IgG (1:1500; Roche) and developed overnight at 37°C with 4-nitro blue tetrazolium chloride and 5-bromo-4-chloro-3-indolyl phosphate disodium salt (Roche) dissolved in a buffer comprised of 100 mM Tris pH 9.5, 50 mM MgCl$_2$, 100 mM NaCl and 1% Tween 20.

Immunofluorescence labelling. 25 μm cryostat sections of formaldehyde-fixed embryos were incubated with serum-free protein block (DAKO) after permeabilisation of sections with 0.1% TritonX-100. We used as primary antibodies rabbit anti–peripherin (1:100; Merck Millipore, cat. no. AB1530), rabbit anti-GnRH, previously validated to recognise both the pre-hormone and the processed hormone (Taroc et al., 2019) (1:400; Immunostar, cat. no. 20075), rabbit anti-S100 (1:400, DAKO, cat. no. Z0311), mouse anti-TUBB3 (1:500, clone Tuj1, Covance, cat. no. MMS-435P), goat anti-OMP (1:200 WAKO, cat. no. 019-22291), goat anti-PLXNA1 (1:200; R&D Systems, cat. no. AF4309) and goat anti-PLXNA3 (1:200; R&D Systems, cat. no. AF4075). Secondary antibodies used were Cy3-conjugated donkey anti-goat and 488-conjugated donkey anti-rabbit Fab fragments (1:200; Jackson Immunoresearch). Nuclei were counterstained with DAPI (1:10000; Sigma).
Immunoperoxidase labelling. 25 µm cryostat sections of formaldehyde-fixed samples were incubated with hydrogen peroxide to quench endogenous peroxidase activity, and sequentially incubated with 10% heat-inactivated normal goat serum in PBS or serum-free blocking solution (DAKO) and then immunostained with the above antibodies to GnRH (1:1000), PLXNA1 (1:500) and PLXNA3 (1:500) or antibodies to CRH (1:400, Proteintech, cat. no. 10944-1-AP) and an appropriate species-specific biotinylated antibody (1:400; Vector Laboratories). Sections were developed with the ABC kit (Vector Laboratories) and 3,3-diaminobenzidine (DAB; Sigma). To determine the total number of GnRH neurons at E14.5, 25 µm coronal sections through each entire head were immunolabelled for GnRH and all GnRH-positive cells in the nose, CP area and forebrain were counted, as previously reported (Cariboni et al., 2011; Cariboni et al., 2015). To help distinguish individual GnRH neurons found in cell clumps at the CP of double mutants, high magnification images were analysed. To determine the number of GnRH neurons in the MPOA of postnatal adult male brains, 25 µm coronal sections through the MPOA from a position around 200 µm after the end of ME to the area in which the two hemispheres separate (60 sections/brain) were immunolabelled and all GnRH-positive cells counted in all sections.

Haematoxylin and eosin staining (H&E). 8 µm sections of formaldehyde-fixed testes from P60 mice were stained as previously described (Macchi et al., 2017).

Statistical analysis. Sample sizes for expression and mouse phenotyping analyses were estimated based on prior experience and those in the existent literature. Typically, embryo samples were taken from at least three different litters for each group. Randomization was not used to assign samples to experimental groups or to process data, but samples were allocated to groups based on genotypes. The researcher analysing the data was blind to the genotypes during analysis. Loss of sections during cryosectioning of embryo heads, damaged tissue and unspecific immunostaining were pre-established criteria for sample exclusion, otherwise all samples were included in the analyses. All data are expressed as mean ± standard deviation (s.d.); error bars represent the standard deviation. We used a one-way ANOVA followed by a Dunnett’s test to determine the statistical significance between values in multiple comparisons; a P-value of <0.05 was considered significant; P-values of <0.05, <0.01, <0.001 or <0.0001 were indicated with one, two, three or four asterisks, respectively. Statistical analysis was performed using Prism4 software (GraphPad Software, San Diego, CA, USA).
Competing interests: The authors have no competing or financial interests to declare.

Author contributions: R.O. performed experiments, analysed data and contributed to manuscript writing; A. Caramello, S.C., A.L., A.P., A.F. and E.I. performed experiments; A. Cariboni and C.R. designed experiments, analysed and interpreted results and wrote the manuscript.

Funding: This research was funded by the Biotechnology and Biological Sciences Research Council (BB/L002639/1) to C.R., Fondazione Telethon (GGP13142) and CHARGE Foundation to A. Cariboni. R.O. received a Boehringer Ingelheim Fonds travel fellowship.

References:

olfactory explant cultures: an in vitro model for neurophilic neuronal migration. Dev.

Hanchate, N. K., Giacobini, P., Lhuillier, P., Parkash, J., Espy, C., Fouveaut, C.,
involved in axonal pathfinding, is mutated in patients with Kallmann syndrome. PLoS
Genet. 8, e1002896.

Kotan, L. D., Isik, E., Turan, I., Mengen, E., Akkus, G., Tastan, M., Gurbuz, F., Yuksel,
Genet. 95, 320–324.

Macchi, C., Steffani, L., Oleari, R., Lettieri, A., Valentì, L., Dongiovanni, P., Romero-
induces hypogonadism in male mice via extrahypothalamic mechanisms. Mol. Cell.
Endocrinol. 454, 135–145.

Marcos, S., Monnier, C., Rovira, X., Fouveaut, C., Pitteloud, N., Ango, F., Dodé, C.
and Hardelin, J.-P. (2017). Defective signaling through plexin-A1 compromises the
development of the peripheral olfactory system and neuroendocrine reproductive axis

Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell

Miller, A. M., Treloar, H. B. and Greer, C. A. (2010). Composition of the migratory mass

Murakami, Y., Suto, F., Shimizu, M., Shinoda, T., Kameyama, T. and Fujisawa, H.
(2001). Differential expression of plexin-A subfamily members in the mouse nervous

hormone (LHRH)-expressing cells do not migrate normally in an inherited
hypogonadal (Kallmann) syndrome. Mol. Brain Res.

Figure legends:

Figure 1. Expression of PLXNA1 and PLXNA3 on neuronal cell bodies and axons.

(A,B) Expression of PLXNA1 and PLXNA3 on neurons and axons. Coronal sections of E12.5 (A) and E14.5 (B) mouse heads were immunolabelled at the level of the VNO for nTUBB3 together with PLXNA1 or PLXNA3. The corresponding single PLXNA1 or PLXNA3 channels are shown below each image. White boxes indicate areas shown at higher magnification on the right of the corresponding panel. Arrows and arrowheads indicate examples of PLXNA1 and PLXNA3-positive neurons and axons, respectively.

(C,D) PLXNA1 and PLXNA3 are not expressed by S100-positive cells. Coronal sections of E12.5 (C) and E14.5 (D) mouse heads at VNO level were immunolabelled for S100 to detect OECs and PLXNA1 or PLXNA3. White boxes indicate areas shown at higher magnification on the right of the corresponding panel. Clear arrowheads indicate lack of PLXNA1 or PLXNA3 co-localisation with S100.

(E) Specificity of PLXNA1 and PLXNA3 antibodies. Coronal sections from E14.5 Plxna1- and Plxna3-null mice at VNO level were immunostained for PLXNA1 or PLXNA3; lack of staining indicates antibody specificity.

All sections were counterstained with DAPI.

Abbreviations: OE, olfactory epithelium; OB, olfactory bulb; NS, nasal septum; VNO, vomeronasal organ; OEC, olfactory ensheathing cells.

Scale bars: 150 or 50 μm for lower and higher magnifications, respectively.

Figure 2. PLXNA1 and PLXNA3 localise to nasal axons.

(A-D) Coronal sections of E14.5 mouse heads were immunolabelled for PLXNA1 (A,B) or PLXNA3 (C,D) together with PRPH (top panels) or GnRH (bottom panels). Sections are shown at the level of the VNO (nose) or MPOA (forebrain). White boxes indicate areas shown at higher magnification on the right of the corresponding panel, with single channels shown also adjacent to the panel. Arrowheads in (A-C) indicate examples of PRPH-positive axons with PLXNA1 and PLXNA3, respectively. Clear arrowheads in (D) indicate examples of PRPH-positive axons that lack PLXNA3. Clear arrows in (A-D) indicate examples of GnRH neurons that lack PLXNA1 and PLXNA3, respectively. All sections were counterstained with DAPI.
Abbreviations: OE, olfactory epithelium; OB, olfactory bulb; VNO, vomeronasal organ; MPOA, medial preoptic area.

Scale bars: 150 or 50 µm for lower and higher magnifications, respectively.

Figure 3. Combined PLXNA1 and PLXNA3 loss decreases GnRH neuron number, ME innervation and testes size in adult mice.

(A-C) Embryonic GnRH neuron analysis. (A) Coronal sections of E14.5 mouse heads with the indicated genotypes were immunolabelled for GnRH. The OB boundaries are indicated with black dotted lines in the wild type panel. Arrowheads indicate examples of GnRH neurons at the CP (top panels), in the nasal parenchyma (middle panels) and in the MPOA (bottom panels). The black arrow and open arrowheads indicate GnRH neuron clumps between the OBs and at the CP, respectively. Δ indicates a lack of GnRH neurons in the MPOA. (B) High magnification image of double mutant E14.5 embryo showing example of GnRH neurons accumulated cells at the CP and between OBs. (C) Quantification of GnRH neuron number in the E14.5 head; data are shown as mean ± s.d.; ***P<0.001, **P<0.01, *P<0.05 (one way ANOVA with Dunnett's test).

(D-F) Adult GnRH neuron analysis. Coronal sections of P60 brains with the indicated genotypes at the level of the MPOA (D) and ME (F) were immunolabelled for GnRH. Δ indicates a lack of GnRH staining. (E) Quantification of GnRH neuron number in the P60 MPOA; data are shown as mean ± s.d.; *P<0.05, ****P<0.0001 (one way ANOVA with Dunnett's test).

(G-H) Adult gonad size. Micrographs show paired testes (G, left panel), seminal vesicles (G, right panel) and ovaries (H) of P60 littermate mice.

Abbreviations: OB, olfactory bulb; CP, cribriform plate; MPOA, medial preoptic area; ME, median eminence; sem. ves., seminal vesicles.

Scale bars: 150 µm (A,E), 500 µm (C), 3 mm (F,G), 1.5 mm (H).

Figure 4. Combined PLXNA1 and PLXNA3 loss impairs nasal axon and GnRH neuron distribution.

(A,B) Adjacent coronal sections of E14.5 mouse heads of the indicated genotypes at the level of the CP (A) and MPOA (B) were immunolabelled for PRPH to reveal OLF, VN and cVN axons (top panels) and GnRH neurons (bottom panels). The OB boundaries are
indicated with dotted lines in the wild type panel. Solid arrows and open arrowheads indicate examples of ectopic axons and GnRH neurons between the OBs and at the CP, respectively. Solid arrowheads indicate cVN axons in the MPOA. A lack of GnRH neurons and cVN axons in the MPOA is indicated with Δ.

Abbreviations: OB, olfactory bulb; CP, cribriform plate; MPOA, medial preoptic area.

Scale bar: 150 μm.

(C) Working model summarising the observed defects in GnRH neuron (green) migration and axon organisation in wild type embryos vs. SEMA3A pathway mutants. Normal axon projections are shown as continuous black lines, abnormal projections are shown as continuous red line; the interrupted red line in mutants represents the missing cVN branch. The corresponding, predicted signalling pathways are shown adjacent to each head schematic.
SUPPLEMENTARY MATERIAL

6 supplementary figures with legends
4 supplementary tables
Fig. S1. Head structures relevant to GnRH neuron migration and position.
(A) Sagittal view of an E14.5 mouse head; dashed lines (1, 2) indicate the anatomical levels at which coronal sections were obtained for immunostaining in this study. The adjacent schematics show coronal views of the structures present in these sections. Nasal axons and their cell bodies are differently colored: OLF axons in blue, VN in orange and cVN/TN in purple; GnRH neurons are shown in green.
(B) Sagittal view of an adult brain; dashed lines (1-3) indicate the anatomical levels at which coronal sections were obtained for immunostaining in this study. The adjacent schematic shows that GnRH neurons in the adult MPOA project their axons towards the ME.
(C) Coronal view of an E14.5 mouse head at nasal (left panel) and MPOA (right panel) level. The anatomical compartments referred to in this study and used as reference points for for GnRH neuron number quantifications are distinguished by different shades of grey.
Abbreviations: OB, olfactory bulb; MPOA, medial preoptic area; VNO, vomeronasal organ; NS, nasal septum; CP, cribriform plate; ME, median eminence, 3v, third ventricle.
Fig. S1. *Plxna* expression in the mouse embryo nose.

In situ hybridisation to examine the expression of the indicated *Plxna* genes, performed with coronal sections from E12.5 (A) and E14.5 (B) mouse heads at the level of the VNO. Higher magnifications of the boxed areas are shown below each image. The black dots delineate the VNO. Arrowheads in (A) indicate examples of *Plxna1* or *Plxna3*-positive cells that appear to be migrating from the VNO. Arrowheads in (B) indicate expression of *Plxna1*, *Plxna3* and *Plxna4* in the olfactory epithelium (OE, top row) or expression of *Plxna1* and *Plxna3* in the VNO (bottom row). ∆ indicates lack of *Plxna2* and *Plxna4* expression in the VNO in (B).

Scale bars: 150 μm (A, top row in B), 100 μm (bottom row in B).

Abbreviations: VNO, vomeronasal organ; OE, olfactory epithelium.
Fig. S3. GnRH deficiency is not due to loss of GnRH peptide synthesis or an absent ME.

(A) In situ hybridisation for the Gnrh transcript on coronal sections of E14.5 mouse heads at the level of the medial preoptic area (MPOA) in the indicated genotypes. Arrowheads indicate Gnrh-expressing neurons. Lack of Gnrh+ cells in the Plxna1−/−;Plxna3−/− MPOA is indicated with Δ.

(B) Median eminence (ME) innervation by corticotropin-releasing hormone (CRH)+ fibers in coronal sections of a P60 Plxna1−/−;Plxna3+/− mutant and littermate wildtype control.

Scale bars: 150 μm.
Fig. S4. Impaired OB development in mice lacking PLXNA1 and PLXNA3.

(A) Micrographs of P60 brains from mice of the indicated genotypes. The brain and olfactory bulbs (OBs) appear to be of similar size in all genotypes (see Supplemental Table 4 for quantification).

(B) Coronal sections of P60 OBs from mice of the indicated genotypes were immunolabelled for OMP to reveal OB innervation and counterstained with DAPI. Higher magnifications of the boxed areas are shown adjacent to each image. Δ indicates a near absent glomerular layer (GL) in the dorso-lateral region of double mutants.

Scale bars: 3 mm (A), 500 and 100 μm (lower and higher magnifications in B, respectively).

Abbreviations: OB, olfactory bulb; GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; IPL, inner plexiform layer.
(A) Micrographs show pairs of seminal vesicles (top) and testes (bottom) in P60 mice of the indicated genotypes. The double mutant shown had only one testis. Scale bar: 3 mm.

(B) Individual testis weights in the indicated genotypes at P60. Data are shown as mean ± s.d., and P-values compared to wild type were calculated by one-way ANOVA followed by a Dunnett’s test; wildtype 0.123 ± 0.015 g (n = 10 testes); Plxna1−/− 0.126 ± 0.010 g (n = 8 testes), P > 0.05 (not significant); Plxna3−/− 0.112 ± 0.016 g (n = 10 testes), P > 0.05 (not significant); Plxna1−/−;Plxna3−/− 0.0849 ± 0.016 g (n = 3 testes), **P < 0.01.

(C) Haematoxylin and eosin (H & E) staining of P60 testes illustrate seminiferous tubules in wild type and double mutant mice; black boxes indicate areas shown at higher magnification adjacent to each image. The arrowhead indicates spermatzoa within the lumen of seminiferous tubules; Δ indicates near absence of spermatozoa. Scale bars: 50 μm or 25 μm for lower and higher magnifications, respectively.

(D-F) Expression analysis for PLXNA1 and PLXNA3. Cryosections of wild type E14.5 and P60 testis (D), ovary (E) and pituitary (circled in F) were immunolabelled for PLXNA1 (upper panels) or PLXNA3 (lower panels). Arrowheads in (D) indicate PLXNA1 localisation to seminiferous tubule cells and PLXNA3 localisation to interstitial cells. Lack of PLXNA1 or PLXNA3 expression in (E,F) is indicated with Δ. Scale bars: 150 μm (E14.5) and 50 μm (P60).
Fig. S6. Combined PLXNA1 and PLXNA3 loss does not preclude axon projection out of the VNO, but compromises olfactory axon projection.

(A) Coronal sections of E14.5 mouse heads of the indicated genotypes at the level of VNO were immunolabelled for PRPH to reveal VN and cVN axons and counterstained with DAPI. White boxes indicate areas shown at higher magnification on the right of the corresponding panel as the single channel for PRPH in grey scale. Solid arrowheads indicate PPRH+ axons that emerge from the VNO and therefore represent intermingled VN and cVN axons. Scale bars: 125 and 40 μm for lower and higher magnifications, respectively.

(B) Coronal sections of E14.5 mouse heads of the indicated genotypes were immunolabelled for OMP to reveal OLF axons and were counterstained with DAPI. White boxes indicate areas shown at higher magnification adjacent to the corresponding image, including single channels for OMP in grey scale. Open arrowheads indicate examples of defasciculated axons, whereas the brackets indicate an area with abnormal OMP+ axons below the ventro-medial OB. Scale bars: 150 and 50 μm (higher and lower magnifications, respectively).

Abbreviations: VNO, vomeronasal organ; OB, olfactory bulb.
Table S1.

GnRH+ cell number in E14.5 mouse heads of the indicated genotypes. CP, cribiform plate. Data are shown as mean ± s.d. and P-values were calculated with a one-way ANOVA followed by a Dunnett’s test for mutants relative to wild type; ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant (P > 0.05).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Nose</th>
<th>CP</th>
<th>Forebrain</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (n = 4 mice)</td>
<td>261.5 ± 59.04</td>
<td>263.5 ± 16.18</td>
<td>591.8 ± 104.0</td>
<td>1228 ± 154.9</td>
</tr>
<tr>
<td>Plxna1−/− (n = 6 mice)</td>
<td>266.3 ± 71.16</td>
<td>377.0 ± 96.71</td>
<td>521.0 ± 131.3</td>
<td>1164 ± 136.6</td>
</tr>
<tr>
<td>Plxna3−/− (n = 3 mice)</td>
<td>372.0 ± 71.63</td>
<td>381.7 ± 81.38</td>
<td>520.3 ± 112.5</td>
<td>1274 ± 133.1</td>
</tr>
<tr>
<td>Plxna1−/−;Plxna3−/− (n = 4 mice)</td>
<td>429.5 ± 118.5</td>
<td>519.5 ± 101.6</td>
<td>183.5 ± 50.13</td>
<td>1133 ± 188.2</td>
</tr>
</tbody>
</table>

Table S2.

Mendelian ratio of postnatal mice in 5 different litters obtained from matings of Plxna1+/−;Plxna3+/− females with Plxna1+/−;Plxna3+/− males.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Numbe r of mice in litters</th>
<th>% expected</th>
<th>% observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>male</td>
</tr>
<tr>
<td>Plxna1+/−;Plxna3+/−, Plxna1+/−;Plxna3+/−</td>
<td>6</td>
<td>12.50</td>
<td>6.25</td>
</tr>
<tr>
<td>Plxna1+/−;Plxna3+/−</td>
<td>8</td>
<td>12.50</td>
<td>12.50</td>
</tr>
<tr>
<td>Plxna1+/−;Plxna3+/−, Plxna1+/−;Plxna3+/−</td>
<td>8</td>
<td>12.50</td>
<td>6.25</td>
</tr>
<tr>
<td>Plxna1+/−;Plxna3+/−, Plxna1+/−;Plxna3+/−</td>
<td>9</td>
<td>12.50</td>
<td>6.25</td>
</tr>
<tr>
<td>Plxna1+/−;Plxna3+/−</td>
<td>4</td>
<td>12.50</td>
<td>0</td>
</tr>
<tr>
<td>Plxna1+/−;Plxna3+/−, Plxna1+/−;Plxna3+/−</td>
<td>15</td>
<td>25.00</td>
<td>12.50</td>
</tr>
<tr>
<td>Plxna1+/−;Plxna3+/−, Plxna1+/−;Plxna3−/−</td>
<td>5</td>
<td>12.50</td>
<td>6.25</td>
</tr>
</tbody>
</table>
Table S3.
Total GnRH neuron number in postnatal MPOAs from mice of the indicated genotypes; data are shown as mean ± s.d.; P-values were calculated with a one-way ANOVA followed by a Dunnett’s test for mutants relative to wild type; *P < 0.05, ***P < 0.001, ****P < 0.0001; ns, not significant (P > 0.05).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>MPOA GnRH neuron number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (n = 5 males)</td>
<td>691.0 ± 153.4</td>
</tr>
<tr>
<td>Ptxna1−/− (n = 5 males)</td>
<td>466.4 ± 93.0 (*)</td>
</tr>
<tr>
<td>Ptxna3−/− (n = 4 males)</td>
<td>637.0 ± 88.04 (ns)</td>
</tr>
<tr>
<td>Ptxna1−/−;Ptxna3−/− (n = 4; 3 males, 1 female)</td>
<td>143.3 ± 41.91 (****)</td>
</tr>
<tr>
<td>Ptxna1−/−;Ptxna3+/− (n = 2 females)</td>
<td>231 ± 79.2 (***</td>
</tr>
</tbody>
</table>

Table S4.
Hemisphere and OB area in images of brains dissected from P60 mice of the indicated genotypes, indicated as mean ± s.d.; P-values were calculated with a one-way ANOVA followed by a Dunnett’s test for mutants relative to wild type; ns, not significant (P > 0.05).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Hemisphere area (mm²)</th>
<th>OB area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (n = 3 mice; 2 males, 1 female)</td>
<td>222.0 ± 6.21</td>
<td>26.53 ± 4.12</td>
</tr>
<tr>
<td>Ptxna1−/− (n = 2 males)</td>
<td>225.8 ± 14.89 (ns)</td>
<td>33.15 ± 1.29 (ns)</td>
</tr>
<tr>
<td>Ptxna3−/− (n = 3 males)</td>
<td>224.1 ± 10.26 (ns)</td>
<td>28.98 ± 1.75 (ns)</td>
</tr>
<tr>
<td>Ptxna1−/−;Ptxna3−/− (n = 3; 2 males, 1 female)</td>
<td>215.4 ± 8.09 (ns)</td>
<td>29.31 ± 2.06 (ns)</td>
</tr>
</tbody>
</table>