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Abstract

Monitoring functionality is a key component of any network management system. It is essential for

profiling network resource usage, detecting attacks, and capturing the performance of a multitude of

services using the network. Traditional monitoring solutions operate on long timescales producing

periodic reports, which are mostly used for manual and infrequent network management tasks. How-

ever, these practices have been recently questioned by the advent of Software Defined Networking

(SDN). By empowering management applications with the right tools to perform automatic, fre-

quent, and fine-grained network reconfigurations, SDN has made these applications more dependent

than before on the accuracy and timeliness of monitoring reports. As a result, monitoring systems

are required to collect considerable amounts of heterogeneous measurement data, process them in

real-time, and expose the resulting knowledge in short timescales to network decision-making pro-

cesses. Satisfying these requirements is extremely challenging given today’s larger network scales,

massive and dynamic traffic volumes, and the stringent constraints on time availability and hardware

resources. This PhD thesis tackles this important challenge by investigating how an accurate and

resource-efficient monitoring function can be realised in the context of future, software-defined net-

works. Novel monitoring methodologies, designs, and frameworks are provided in this thesis, which

scale with increasing network sizes and automatically adjust to changes in the operating conditions.

These achieve the goal of efficient measurement collection and reporting, lightweight measurement-

data processing, and timely monitoring knowledge delivery.



Impact Statement

This PhD thesis contributes to the research advances in software-defined networks by investigating

key enablers to support the design of advanced, programmable and automated network management

approaches.

Specifically, this thesis proposes and develops efficient monitoring designs, mechanisms, and

frameworks that allow to generate accurate and frequent monitoring reports of fine granularity con-

cerning a variety of network events and emerging conditions such as attacks and network perfor-

mance bottlenecks. The monitoring advances presented in this thesis allow network management

processes to reconfigure the network frequently and at high levels of granularity. As a result, the

technical advancements achieved by this thesis are key enablers for (i) recovering from performance

issues in short times and with very precise and selective countermeasures, (ii) addressing attacks im-

mediately, before users and services are adversely impacted, and (iii) more efficient use of network

resources to reduce operational and infrastructure costs. Such innovations enable the introduction

of a variety of new services that are extremely time-sensitive, demanding in their security and pri-

vacy requirements, and heavy in resource consumption, with key examples being virtual reality,

holographic communications, and cloud gaming.

The contributions presented by this thesis have been published in high-quality journals and pre-

sented in competitive conferences. This has contributed to extend the technological developments

in the areas of network monitoring and software-defined networking, but also influence future ad-

vancements in these domains by transferring relevant knowledge to a wide research community.
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Chapter 1

Introduction

The demand of modern Internet applications for high availability and service quality, as well as the

tremendous growth in the number of Internet users and traffic volumes, have made the management

of networks a complex task. To manage today’s networks a combination of various processes needs

to be deployed, ranging from traffic engineering and network planning, to performance diagnosis

and attack prevention. These processes rely on accurate monitoring information, which provides

vital input to effectively decide on new network configurations and to warrant precision when trou-

bleshooting failures or detecting anomalies.

The generalised shift towards Software-Defined Networking (SDN) is deeply affecting the way

networks are managed [1]. Traditional management processes restrict network operators to manual

and infrequent reconfigurations using limited sets of low-level, device-specific commands. In con-

trast, future networks can rely on the principles of SDN and the associated technological novelty to

enable management applications that reconfigure the network automatically, frequently [2] [3] and

at a fine granularity [4] [5]. These novel capabilities pose strict requirements in terms of monitor-

ing information, which cannot be satisfied by traditional monitoring approaches. Standard practices

based on SNMP logs, packet sampling [6], and passive traffic trace analysis [7] are limited by their

coarse report granularity and frequency, and thus fail in supporting automated and highly-reactive

management applications [8].

To keep pace with the evolution of network management technologies, recent research has

proposed a number of new monitoring solutions. These leverage novel enablers at the data and

control planes to extract detailed views of the network state in real-time. However, it is still an open

issue how monitoring systems can efficiently cope with massive and dynamic amounts of traffic,

large network scales, and stringent limitations on time and hardware resources.

1.1 Motivation
The ultimate goal of network monitoring systems is to expose a variety of events and emerging

conditions concerning potential attacks, resource usage, and changing traffic patterns [9] [10]. De-

tecting attacks on time is essential for securing the network, while accurate reports of the network
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Figure 1.1: Illustration of main network monitoring functionalities

state and traffic characteristics allow the diagnosis of performance problems and are useful for re-

ducing network operational costs [11]. From a logical perspective, a monitoring system combines

a diverse set of functionalities, which operate on two main workflows as shown in Figure 1.1. The

first starts from the monitoring requirements of network management applications and follows a top-

down direction. The requirements are registered through a monitoring interface ( f1), based on a set

of APIs or a monitoring-specific language. Monitoring commands are then translated ( f2) into mea-

surement specifications that are deployed in the dataplane ( f3), where network traffic is processed.

Conversely, the second workflow operates on the measurement data collected at the dataplane, in

a bottom-up fashion. Specifically, the measurement data is acquired from the dataplane ( f4) and

processed, e.g., aggregated and correlated, to form relevant monitoring knowledge ( f5), which is

delivered to applications ( f6).

The recent development of software-defined networking has been questioning the design and

implementation of the aforementioned functionalities. On the one hand, the advent of SDN has

offered new enablers for the design of measurements. In particular, novel technologies, including

protocols, hardware architectures, and software libraries have allowed a programmable dataplane

to run on commodity switches (e.g., OpenFlow [12]), hosts (e.g., software switching [13] [14],

packet capture libraries [15] [16]), and new protocol-independent switch architectures [17] [18].

Monitoring can benefit from the improved programmability to execute more elaborate measurement

tasks in real-time within dataplanes, and to collect highly-configurable sets of measurement data.

On the other hand, by enabling automatic network reconfigurations [1] [19], SDN has allowed

management processes to apply new settings more frequently and at a finer granularity, which makes
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them extremely sensitive to the timeliness and precision of monitoring reports [8]. Inaccurate moni-

toring information can lead to chains of wrong reactions, e.g., in the case of automated management

applications [11], while long monitoring delays can leave short-lived network events unhandled and

configuration control-loops operating at tight intervals with outdated knowledge [20]. As a result of

this evolution, monitoring systems are nowadays required to (i) extract larger amounts of heteroge-

neous and fine-grained measurement data (e.g., at the granularity of flowlets [5] or even individual

packets [9]), (ii) process such data in real-time, and (iii) swiftly expose (e.g., in the order of millisec-

onds [8]) the resulting knowledge to decision-making processes.

Satisfying these requirements is a hard task as monitoring systems must face stringent resource

constraints (e.g., limited memory and/or computational power) and limited time availability (e.g.,

no more than few tens of nanoseconds to process a packet at a 10Gbps traffic rate). Specifically, in

order to achieve the goal of timely and accurate monitoring reports, the following efficiency issues

should be overcome.

A1) Use of dataplane resources for measurements Monitoring systems can face dynamic workloads

at the dataplane, due to changes in the network traffic (e.g., increase of the traffic rate or number of

concurrent traffic flows) or spikes in the demand for monitoring information. To avoid performance

bottlenecks, network operators can choose between (i) providing measurements with more hardware

resources than actually needed (overprovisioning), or (ii) allowing for only a limited set of measure-

ment operations in the dataplane to keep resource utilisation low. Intuitively, both solutions lead to

inefficient use of the available resources.

A2) Measurement result acquisition from the dataplane Retrieving measurement information from

the dataplane can be tedious due to the limited capacity of a dataplane to transfer information to

network controllers and managers [21] [8]. A holistic approach entailing continuous pull/push of all

measurement data will inevitably saturate dataplane resources [22] [21], while relaxed synchronisa-

tions can result into imprecise network views [20] [23].

A3) Processing of measurement results Not only should measurement data be carefully extracted

from the dataplane, but also processed in real-time to discover a variety of events such as network

attacks, congestions, or traffic load imbalance. Dealing with large volumes of data to be evalu-

ated, aggregated, and correlated, is prone to incurring prohibitive costs in terms of computational

resources as well as processing latencies.

A4) Monitoring information delivery With networks growing in scale and management processes

able to operate on network-wide views [2] [24], decisions on network reconfigurations might be

taken at any distance from where the measurement data is produced. State-of-the-art monitoring

systems [8] [9] [10] rely on a centralised core entity to handle all data and deliver knowledge. Such

an approach can be time-inefficient as it inflates reconfiguration control-loop delays when decisions-

making happens close to where measurements are collected.

This PhD thesis addresses these issues with the overarching goal of an efficient and accurate
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monitoring function, which can satisfy the demanding requirements posed by software-defined net-

working and cope with the evolution of networks towards higher utilisation, scale and traffic vol-

umes.

1.2 Methodology and contributions
Although the functionalities in Figure 1.1 can be considered as general attributes of any monitor-

ing system, their design and implementation can vary substantially, as a result of growing network

complexity and the increased flexibility introduced by SDN. Overall, the design and implementation

of monitoring systems reflect (i) the type of monitoring data collected, and (ii) the source of the

measurement data.

Regarding the type of monitoring data collected, the position of this thesis is not to focus on

individual metrics or statistics of interest. A vast amount of research has already addressed how

specific measurements can be deployed using the new dataplane enablers of software-defined net-

working [25] [26] [27], or how the new measurement primitives can outpace traditional tools such as

Netflow, SNMP, and Tcpdump [8] [9]. In contrast, this thesis investigates monitoring designs where

multiple, diverse measurement tasks participating in the monitoring process compete for resources

at any step of the workflows of Figure 1.1.

With respect to the source of the measurement data, two challenging scenarios are considered

in this thesis, which cover a wide range of use-cases in terms of monitoring design, implementation,

and information requirements.

1) Monitoring software-defined networks In this scenario, the measurement data is produced by

SDN switches, e.g., OpenFlow-enabled devices, distributed over the network. Monitoring systems

operating in such a scenario can fall short in meeting the scalability requirements of large networks

and in supporting management applications with short latency requirements [1][20]. One key prob-

lem is posed by traditional centralised monitoring architectures, which are prone to high processing

workloads and monitoring latencies when handling large numbers of information sources. A second

limiting factor is the reduced bandwidth SDN switches can use to report monitoring information

to controllers/managers, which can adversely affect the granularity and timeliness of monitoring

reports.

2) Monitoring in a software dataplane In this scenario, the measurement data is produced by

a programmable dataplane running on a commodity server, using the flexibility of software to per-

form traffic measurements. Such monitoring implementations are required to tolerate high traffic

rates (10 Gbps+) while executing elaborate measurement operations on a per-packet basis. Meeting

these requirements is challenging, given that significant disruptions can occur under adverse oper-

ating conditions [28] [8] if monitoring-related operations are not dynamically adapted to ensure an

efficient use of available dataplane resources.

Satisfying the requirements posed by these two demanding scenarios is a complex task, which
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requires to overcome a number of problems related to measurement execution (A1) and retrieval

(A2), monitoring data processing (A3) and knowledge delivery (A4). This PhD thesis addresses the

challenge of an efficient and accurate monitoring function by tackling the aforementioned prob-

lems. It investigates how to efficiently extract information from network devices and timely deliver

knowledge, in order to meet the requirements of large scale software-defined networks and support

highly-reactive network reconfigurations. It explores how efficient use of the available dataplane

resources can be achieved dynamically in a software dataplane, thus ensuring accurate monitoring

reports and resilience under adverse operating conditions. Lastly, it investigates how to efficiently

process measurement data extracted by a dataplane to produce elaborate monitoring reports in real-

time. Specifically, the contributions made by this thesis are the following.

B1) Scalable monitoring architecture for software-defined networks. A scalable monitoring ar-

chitecture for SDN has been designed and implemented to provide timely and consistent monitoring

updates to heterogeneous management applications. It satisfies the requirements of large-scale net-

works by reducing monitoring information delivery delays and avoiding processing bottlenecks.

B2) Efficient retrieval of monitoring information from the SDN dataplane. Focusing on the

problem of retrieving measurement data from SDN switches, this thesis proposes a novel approach

enabling accurate data collection with limited burden on the switch resources. The associated ratio-

nale is to adjust data retrieval operations frequently and automatically based on traffic dynamics.

B3) Adaptive monitoring functions for software dataplanes. This thesis introduces adaptive

solutions where measurement-related operations of software dataplanes are timely reconfigured in

response to changes in traffic and resource availability. The proposed solutions allow to achieve

resilience in the face of bottlenecks for a wide range of conditions, and can be deployed with minimal

overhead.

B4) Accuracy-preserving monitoring functions for software dataplanes This thesis investigates

how to achieve global accuracy goals of monitoring reports under dynamic operating conditions

(e.g., traffic characteristics, monitoring workloads). In particular, this thesis provides solutions to (i)

infer potential accuracy degradation for any measurement task at run time, and (ii) timely recover

from accuracy degradation while efficiently using available dataplane resources.

B5) Efficient processing of measurement data This thesis explores the problem of producing elab-

orate monitoring reports from raw measurement data captured by dataplanes. A generalised ap-

proach, inspired by machine learning practices, is proposed to reduce data processing costs, which

does not depend on specific monitoring designs and is applicable to a wide range of different moni-

toring information.

1.3 Thesis outline
The remainder of the thesis is organised as follows.

Chapter 2 provides an overview on the monitoring requirements of modern network management,
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it highlights monitoring-related issues associated with software-defined networking, and de-

scribes how recent research has addressed the challenge of developing efficient monitoring

functionalities.

Chapter 3 proposes a self-adaptive and decentralised monitoring framework for SDN. This relies

on a distributed monitoring architecture to cope with the requirements of large-scale networks

consisting of a large number of geographically dispersed devices, and is designed to support

a wide range of measurement tasks and requirements in terms of monitoring rates and infor-

mation granularity levels. The proposed framework introduces SAM (Self-tuning Adaptive

Monitoring), an adaptive solution that enables efficient extraction of monitoring information

from the network switches through accurate reconfigurations of the switch query rate. In con-

trast to other solutions proposed in the past, SAM requires almost zero tuning effort, as the

algorithm parameters are automatically updated based on the evolution of the traffic shape.

Chapter 4 presents MONA, an adaptive traffic monitoring framework for software dataplanes.

MONA solves two key problems under increasing workload conditions in the monitoring

pipeline. On the one hand, it guarantees resilience to bottlenecks by timely reconfiguring

the monitoring operations under dynamic operating conditions. On the other hand, it pre-

serves the accuracy of monitoring reports according to user-specified accuracy thresholds. To

maintain high accuracy levels, MONA estimates the potential loss of monitoring information

at run time, and reconfigures the monitoring process to recover possible accuracy degrada-

tions. Accuracy reductions are quantified using a novel, task-independent, accuracy estima-

tion technique, which guarantees high levels of confidence by computing estimates adjusted

to recently-observed traffic characteristics.

Chapter 5 investigates how the measurement data extracted at the dataplane can be efficiently pro-

cessed, focusing on the case of modern network telemetry systems, i.e., monitoring systems

responding in real-time to monitoring queries issued by management applications and oper-

ators. This chapter introduces a generalised approach for reduced-cost processing of mea-

surement data inspired by machine learning workflows. The proposed approach is based on

fast classifiers that are (i) trained over recent traffic, (ii) automatically tuned to match accu-

racy requirements of the monitoring queries, and (iii) applied at run time to infer elaborate

monitoring results from subsets of the measurement data.

Chapter 6 summarises the main proposals and findings of this thesis before identifying future

research directions.

Overall, this PhD thesis addresses the challenge of accurate and resource-efficient monitoring

from different viewpoints. Chapter 4 addresses the execution of multiple measurement tasks at

the dataplane through mechanisms that avoid performance bottlenecks and achieve global accuracy
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objectives by using dataplane resources efficiently (A1). Chapter 3 targets the efficient extraction

of monitoring information from the dataplane (A2), and investigates how monitoring systems can

handle a large number of (geographically dispersed) devices, while avoiding processing bottlenecks

(A3) and delivering knowledge in short timescales (A4). Chapter 5 tackles the problem of reducing

data-processing costs (A3) when building elaborate monitoring reports in response to a wide range

of monitoring queries using the raw information extracted at the dataplane.



Chapter 2

Background and Related Work

In the last years, monitoring systems have been challenged by novel, more stringent requirements

posed by network management applications. These reflect the deep changes of management pro-

cesses pushed by the advent of Software-Defined Networking (SDN). First, SDN has enabled the

development of applications that can automatically react to network events and perform fine-grained

resource reconfigurations. This has made management processes more dependent than before on

the accuracy and timeliness of monitoring information. Imprecise monitoring reports can lead to

chains of wrong reactions, while high monitoring delays can leave transient network behaviours and

short-lived problems undetected. Second, novel network programming abstractions have enabled a

variety of new management applications by simplifying the translation, as well as the composition,

of high-level operator policies. As a result, increased flexibility is required from monitoring systems

in terms of variety of knowledge offered and different information granularities.

Collectively satisfying these needs is not a trivial task. It requires the monitoring systems to

extract and process huge amounts of heterogeneous measurement data in real-time, while facing

massive traffic volumes, a large number of switches and hosts, and limited hardware resources. In

other words, it poses the need of efficient monitoring functionalities, which scale to large traffic

amounts and network sizes, consume limited resources at switches and hosts, and support diverse,

fine-grained, and real-time network information.

This chapter explores how the challenge of efficient monitoring has been addressed in the re-

cent literature. At first, Section 2.1 provides an overview of the key monitoring information re-

quirements of modern network management. Section 2.2 focuses on monitoring-related issues in-

troduced by SDN, highlighting the limitations of traditional measurement practices. In Section 2.3,

an overview of recent approaches is presented, focusing on the main functionalities of monitoring

systems. Lastly, Section 2.4 presents final remarks on the related work.

It should be noted that, while a general discussion on monitoring for SDN is provided here,

additional details on related work, specific to the main thesis contributions, will be included in the

remaining chapters.
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2.1 Monitoring requirements of network management
To effectively manage a network, a variety of monitoring knowledge is required, concerning a num-

ber of different events and emerging network conditions. A brief overview of the key monitoring

information requirements is presented here using a top-down approach, i.e., starting from the ul-

timate goals of network management [11]: (i) guaranteeing network security; (ii) ensuring high

network utilisation (thus reducing costs); (iii) improving performance of services using the network.

Securing the network To make networks secure, it is necessary to detect a number of potential ma-

licious behaviours. This requires the monitoring systems to report on a wide range of specific traffic

patterns and anomalies at short timescales and with high level of precision. Short timescales allow

to handle short-lived attacks and to enforce countermeasures before services could be adversely af-

fected. At the same time, high reporting accuracy is important to avoid false alarms and disgraceful

countermeasures. In general, three monitoring approaches can be adopted to detect attacks based on

network traffic:

• Signature-based attack detection This approach consists in searching for specific attack fin-

gerprints, for example specific protocol messages or end-hosts communication patterns [33].

• Threshold-based attack detection This approach consists in raising alarms when thresholds are

exceeded on specific traffic characteristics. For example, alerts for DDoS (distributed denial

of service) victims can be triggered when a host is contacted by more than x hosts [34]. In

[10], SYN flood attacks are notified when more than x incomplete TCP handshakes are found

between the same source and destination.

• Anomaly-based attack detection Anomaly detection solutions [35] [36] [37] are based on the

assumption that attacks will change the usual network behaviour in terms of traffic properties.

The idea is to use measurements to build baselines, i.e., models summarising the normal

network behaviours, and to trigger alerts when the behaviour of the network differs from the

baseline. For example, the solution in [35], which detects Port Scan attacks, uses hypothesis

testing to discriminate possible scanners from benign hosts (baseline).

High network utilisation and reduced costs A combination of management tasks participates to

this objective, including efficient network planning, provisioning, and traffic engineering. These

rely on accurate profiling of the resource usage. In particular, the main attributes of interest [38] are

(i) the available network link bandwidth and (ii) the size of network flows. The former, which is

used to determine how much traffic can be allocated to a specific network path, can be monitored by

measuring the total byte rate through a switch/router interface (if link capacity is known), e.g., [39],

or using probes [40], i.e., sending packet trains and studying the time gap between the arrivals of

two successive probes at the receiver. The latter can be used for traffic matrix estimation [41] [42],

i.e., to determine a vectorial representation of Origin-Destination pair traffic-rates, or to compute
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top-k elephant flows [43] and heavy hitters [44]. Such knowledge is key to drive traffic engineering

decisions [4], as well as for solving network resource planning and provisioning problems.

High application performance To preserve application performance, management systems must

ensure timely diagnosis of performance problems and be able to take effective reconfigurations on

traffic engineering, load balancing, or job scheduling. This requires quick identification of changes

in traffic patterns and events such as congestions, load imbalance, routing problems, software bugs

and failures at servers. Representative monitoring use cases on performance diagnosis are described

below, based on the examples found in [8].

• Diagnose server load balance problems One of the main objectives of network operators

is to maintain the service-level agreements (SLAs) for applications running on the network

hosts, such as cloud services [45] and networked caches. Load impairments, as well as short-

lived, imbalanced request bursts can lead to higher service latencies (long tail latency [46]).

To avoid performance degradations, the monitoring systems should timely report on latency

changes (e.g., inflated TCP round-trip times), and on the traffic volume anomalies that caused

the additional delay.

• Diagnose congestion It is generally hard to diagnose network congestions, especially if related

to transient, short-lived episodes such as TCP incast [32], where multiple applications send

traffic through the same switch for a short time, causing transient packet loss. To diagnose

such problems, monitoring should provide detailed information, on fine timescales, on flow

packet-loss, large traffic aggregates, and switch queueing delays.

• Diagnose packet loss Root cause analysis of packet loss can be daunting for network manage-

ment systems, due to large network scales and increasing complexity in network-application

interactions. To achieve such goal, monitoring should detect even small scale loss (e.g., by

measuring retransmissions), and correlate it to short-lived packet bursts.

2.2 Software-defined networking: monitoring opportunities

and open issues
Software-Defined Networking (SDN) relies on separating the data plane and the control plane, thus

making data plane nodes (i.e., network switches) simple packet forwarding devices, and leaving the

control and management of the entire network to a logically centralised software program. This

novel view has deeply changed the way networks are managed, by allowing for frequent changes on

resource configurations following dynamic network conditions, and by enabling the expression of

complex network configuration and operators’ policies using high-level languages.

Such a shift has largely impacted the design and evolution of monitoring systems, which have

been facing in the last years the technological novelty of SDN, new measurement information



2.2. Software-defined networking: monitoring opportunities and open issues 24

sources, and novel, more diverse and stringent monitoring requirements of management applica-

tions. In this section, a brief overview on the main opportunities offered by SDN is provided with a

focus on monitoring-related benefits (Section 2.2.1). Then, the key problems that such opportunities

have posed on monitoring systems are highlighted (Section 2.2.2).

2.2.1 Opportunities offered by software-defined networking

The shift towards SDN brings two key opportunities for improving the monitoring functionality.

First, it empowers monitoring with new, programmable data-plane primitives and protocols such as

OpenFlow [12] and P4 [17], which allow to extract highly-configurable sets of measurement data

on different granularities. Second, it provides novel programming interfaces and abstractions, which

can be leveraged to build automated monitoring tasks.

New data-plane primitives With the advent of SDN, several new data-plane primitives have been

introduced, specific to different types of hardware targets.

• Commodity switches By supporting new protocols such as OpenFlow (this is the case for

many vendors such as HP, NetGear, NEC), commodity switches have started offering flexible

flow-based counters based on the use of ternary content-addressable memory (TCAM). These

can be used to measure traffic aggregate size on different granularities (e.g., source-destination

IP pairs, or packet header 5-tuple).

• Programmable switches Novel protocol independent switch architectures (PISA), e.g., Tofino

switch [47], have enabled features such as programmable header parsing, customisable hash

functions, flexible match/action tables pipelines, and stateful computations through packet

header writing and state registers at the switch. In addition, the P4 language has provided

the syntax and the constructs to build complex processing pipelines in the switch dataplane.

These technologies allow to implement very diverse measurements using hash-based data

structures [48] [49] and match-action tables [9].

• Hosts The proliferation of efficient packet capture libraries (e.g., DPDK [15], Netmap [16],

eXpress Data Path [50]), high speed network cards, as well as the developement of software

switching (e.g., Click [13], OpenVSwtich [51]) and Network Function Virtualisation, have en-

abled fast packet-processing platforms in software supporting a wide range of network func-

tions. Monitoring can benefit from such deployments to perform fine-grained traffic analysis

using the processing power of servers.

Network programming interfaces and abstractions Apart from the new data-plane enablers, a

variety of new abstractions, programming languages and APIs has been recently introduced to sim-

plify and enhance network programming. Part of these efforts have focused on the interactions with

the data-plane. In particular, SDN control planes (e.g., NOX, Floodlight) allow operators to write

network software in C++ or Java, by offering a set of application programming interfaces (APIs)
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to interact with switches. Other proposals have instead provided ways to process (e.g., compose)

high-level management policies and convert them into control-plane software. For example, Pro-

cera [2] enables event-driven network policies using a high-level functional programming language,

while Pyretic [3] language introduces abstractions to build complex management applications from

the composition of independent modules.

Although these solutions are not measurement-specific, monitoring systems can largely benefit

from the improved network programmability. In particular, they can build upon SDN control-planes

to automate the interactions with network devices, and use similar abstractions to improve flexi-

bility with respect to different application requirements – as for the case of NetAssay [52] or Path

Query [53] monitoring-query languages, both based on Pyretic.

2.2.2 New requirements and issues raised by software-defined networking

By relying on highly-configurable data-planes, and using new programming interfaces and abstrac-

tions, software-defined networks enable a wide range of applications that reconfigure the network

automatically. The enhanced automation enables more frequent reconfigurations, as operators’ man-

ual effort is not involved anymore in reconfiguration control loops. At the same time, the use of

programmable data planes allows for more fine-grained network configurations, up to the granular-

ity of 5-tuple flows or even single packets [54] [9] [8].

As a result of these conditions, supporting automatic reactions requires monitoring systems to

report on a wide range of network events, including very fine-grained ones (e.g., transient traffic

bursts and flow volume changes) with high precision and over short time scales. High accuracy is

needed to avoid misconfigurations or chains of wrong reactions in a fully automated management

process. Fine time scales are required to react to failures, intrusions, or bottlenecks on resources in

a timely way, i.e., before these episodes can cause any damage to those services and tenants using

the network. Furthermore, monitoring reports are not only expected to be more accurate and timely,

but also more diverse in terms of results/metrics and more network-wide. This is because SDN

has enabled a variety of new management applications (e.g., from the composition of operators’

policies [3]) which operate based on a unified view of the network.

To satisfy such stringent requirements, and cope with the evolution of networks towards larger

scales and traffic volumes [55] [8], monitoring systems must extract and process massive amounts of

measurement data, deliver it very frequently and with short delays, and satisfy heterogenous needs

in terms of metrics and statistics offered. A number of problems is associated with these challenges,

which can be summarised as (i) hardware-resource limitations and (ii) time-related limitations.

Hardware-resource limitations To satisfy all aforementioned requirements, monitoring systems

may consume considerable amounts of resources at data-planes, as well as on the infrastructures

where monitoring information is processed and distributed. Bottlenecks, i.e., resource shortages,

can arise due to the following reasons:
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• Limited resources devoted to monitoring On switches, vendors allocate most of the limited

memory resources to network functions other than measurements, e.g., firewall, forwarding.

At the same time, on hosts most of the computational resources (e.g., CPU cores) are assigned

to revenue-generating applications.

• Increasing network scales Monitoring systems should face high traffic rates and large num-

ber of flows, and deal with large numbers of devices. Measuring more flows translates into

more monitoring state information to maintain, hence more competition on switch memory

resources, which is an issue on commodity switches (e.g., due to limited TCAM space [56]),

as well as on novel programmable switches (e.g., only small key-value store can be allocated

to fast on-chip SRAM [54]). In addition, higher traffic rates entail more competition on hosts’

processing capabilities. Finally, dealing with higher number of network devices can cause

unsustainable workloads when processing monitoring information from many sources (e.g., at

information stream processors [9]).

• Dynamic traffic and monitoring demands Changes in traffic and network characteristics can

force monitoring to consume more resources, with the risk of exceeding hardware constraints.

For example, packet rate spikes and variations in the traffic distribution (e.g., decreasing traffic

skew [28]) can overload the packet-processing pipelines especially on hosts [8], while the

increase of the number of concurrent flows can saturate the switch memory [21] [22]. In

addition to this, more resources are needed when increasing numbers of queries are raised by

monitoring applications in reaction to specific events and emerging network conditions (e.g.,

anomalous traffic volumes).

Time-related limitations Excessive time consumption and/or scarce time availability have become

key issues for monitoring systems. In SDN, automated management tasks can operate at reduced

time-scales and improved level of detail, and as such they require frequent monitoring reports car-

rying detailed results in terms of metrics and statistics. As a result, monitoring should include more

elaborate measurement operations, while reporting on shorter time intervals to align with the control

loops of management processes. Nonetheless, with the evolution of networks towards larger traffic

volumes (i.e., more flows, higher rates), less time is available for processing individual packets or

reporting granular traffic statistics. Overall, the following time-related issues have arisen.

• Limited per-packet times at dataplanes Programmable switches need to process up to a billion

packets per second (for a 64-port switch, and 10Gbps per port [57]). Under these conditions,

each packet should be processed in roughly 1ns at each pipeline stage of the switch, hence only

a limited set of measurement operations can be performed. Similarly, on a host supporting

10Gbps on a single CPU-core [8], per-packet time should be less than 70ns. Exceeding such

constraints would result in starving and possibly dropping packets in the input buffers.
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• Slow information extraction from dataplanes Switches can generally push very limited mon-

itoring information onto the switch-controller channel. In the case of OpenFlow-enabled

switches [22] [21], no more than a few hundreds of flow-rules can be reported per second.

This results into excessive monitoring latencies for applications that need to take granular,

flow-level, reconfigurations for thousands of flows on fine time scales [5].

• Limited time to process monitoring information Monitoring systems should rapidly process

(e.g., aggregate, evaluate, correlate) the measurement data extracted from the dataplane to

provide real-time knowledge on network conditions/events. This may not be possible under

large network and traffic volume sizes, as the increasing workloads can inflate processing

latencies.

• Slow delivery of monitoring knowledge Software-defined networks allow management pro-

cesses to operate on a network-wide view. As a result, the delay incurred by the dissemination

of huge amounts of monitoring information over long geographical distances is a key limita-

tion for network management reactivity [1].

2.3 Overview of recent proposals
Generally speaking, traditional network monitoring practices, i.e., the ones based on Netflow [6],

sFlow [58], SNMP, or packet traces (e.g., tcpdump [7]), can neither cope with the new monitoring

requirements of software-defined networking, nor overcome the aforementioned issues. First, com-

mon measurement tools at network devices, e.g., Netflow/sFlow flow-counters or SNMP logs, can

only provide infrequent and coarse-grained information due to well known scalability issues. In par-

ticular, Netflow or sFlow can be sustainable in data center networks only with sampling rates in the

range of 1 in 1000 [11], while SNMP can provide port counters only every few minutes [8]. Second,

traditional approaches generally lack of effective abstractions for representing elaborate operators’

queries, and express selective measurement operations. As such, they force applications to collect

huge amounts of raw monitoring data “just in case”, which makes it extremely costly to find needles

in haystacks [9]. Lastly, they do not provide appropriate abstractions for expressing network-wide

monitoring objectives, or efficient methods to automatically map objectives to individual measure-

ment operations at specific network locations [9] [53].

With the objective to fill these gaps, a number of monitoring solutions have been recently pro-

posed, which have tackled the challenge of efficient monitoring from three different angles: (i)

improving measurement design; (ii) improving monitoring abstractions; (iii) improving monitoring

runtime systems.

Measurement design A number of proposals have addressed how to perform different types of

measurements for large volumes of network traffic, in real-time and supporting diverse measure-

ments requirements. These solutions entail not only the adoption of the new data-plane primitives
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Figure 2.1: Overview of recent proposals on measurement design, monitoring abstractions and monitoring
runtime system

of programmable networks for performing measurements, but also the design of new, measure-

ment specialised, data structures (e.g., universal sketch [48]), new protocols (e.g., In-band Network

Telemetry [59]), as well as system (i.e., on-device) optimisations enhancing the measurement capa-

bilities of data-planes.

Monitoring abstractions Recent research efforts have provided languages and interfaces that al-

low operators (or management applications) to declare network-wide monitoring objectives in the

form of high-level queries, i.e., with abstractions hiding the specific devices involved or specific

packet characteristics. Highly-expressive monitoring abstractions (e.g., languages, programming

interfaces) are fundamental to guarantee support for more diverse sets of management tasks, but

also play a role towards the goal of efficient monitoring. Indeed, poor abstractions can result, as dis-

cussed before, into too much monitoring information collected and delivered to applications, leading

to increasing information processing latencies and additional stress on the hardware resources.

Monitoring runtime system Finally, several recent approaches have targeted those tasks sitting

between the monitoring queries and the measurement primitives that form the so-called monitoring

runtime system. The main operations involved in the monitoring runtime are (i) translating high-level

monitoring requirements into specific measurement primitives, (ii) adapting the measurement oper-

ations according to traffic dynamics and emerging network conditions, (iii) dynamically allocating

available hardware-resources and time to the different monitoring queries, and (iv) processing the

measurement data to form relevant monitoring knowledge. Improving these operations is essential

for monitoring efficiency, as it allows for high accuracy in monitoring reports while reducing the

resource consumption (i.e., the monitoring overhead).
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An overview of the main proposals in literature is presented in the following subsections for

each of the three research directions.

2.3.1 Measurement design

This subsection presents how recent research has addressed the design of efficient measurements

on commodity switches, programmable switches and hosts, focusing on the enablers (e.g., the data-

plane primitives) and system optimisations used. The presentation is followed by a description of

the main measurement data-structures designed/adopted and the associated algorithms.

Measurement design on commodity switches By enabling OpenFlow, commodity switches allow

to specify which flows to monitor based on different combinations of packet header fields (including

IP addresses, TCP/UDP ports, Type of Service, etc), and count the number of bytes and packets.

Measurements can be then performed passively by the controller, i.e., by waiting for notification

messages about flow expiration, which contains the latest flow counters, or actively, by polling a

switch for updated counters using ad-hoc Read State messages. These enablers have been exten-

sively used to implement a wide range of measurements. Flowsense [27] determines the utilisation

of links between OpenFlow-enabled switches by using the PacketIn and FlowRemoved messages

sent by switches to the controller upon the arrival of a new flow or upon the expiration of a flow

entry, respectively. In OpenTM [60], the controller periodically pulls the switch flow rules with

fresh flow-counters, which are used to generate traffic matrices. The work in [25] proposes pulls of

flow counters with random inter query times that are effective to measure the flow autocorrelation.

OpenNetMon [61] use a mix of passive and active approach to measure the throughput of flows.

Openflow counters have been also adopted to unveil heavy traffic aggregates [23], e.g., heavy

hitters (IP prefixes accounting for more than x% of the total traffic) and hierarchical heavy hitters

(IP prefixes that contribute to more than x% of traffic, after excluding any heavy descendants in the

prefix tree) [62] [63] [64]. The main leverage for these solutions is the use of wildcarded flow-rules

(based on switch TCAM), i.e., matching on subsets of bits of the packet header fields, that enable

counting at different granularity levels.

A few attempts to derive latency measurements in OpenFlow networks can also be found in

the literature. In [65], the authors use probe packets, sent by the network controller to switch x and

retrieved from a remote switch y, in order to compute the link latency between x and y. In SLAM [66]

and OpenNetMon [61] a similar mechanism is adopted to monitor the path latencies in data center

networks.

Measurement design on hosts Over the last years, increasing attention has been devoted to the

deployment of per-packet measurements on the network end hosts, using packet-processing pipelines

in software, especially in the context of modern data center networks [8] [67]. Such trend has

been favoured by the increased speed in packet-acquisition, the evolution of network cards (NICs),

and new packet capture libraries such as DPDK [15] and Netmap [16]. These allow to cope with
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increasing traffic rate from the network cards (10Gbps or more), while by-passing the OS kernel so

that packets can be conveniently processed in the userspace.

The work in [68] represents one of the first attempts to deploy high speed traffic measurements

on servers. The proposed design, supporting up to 4 Gbps rate, relies on the PF RING capture library

to schedule packets to multiple server cores. This library implements full zero-copy, i.e., it maps

userspace memory into the memory region of the network card driver allowing user applications to

direct access the card registers and data, without the intermediation of kernel packet buffers. In [69]

the authors presents nDPI, an open-source packet inspection tool for commodity hardware that can

handle up to 10 Gbps traffic. Similarly to [68], this solution exploits PF RING to process packets at

line rate, and can classify on average 3.5 millions packets per second using a single core. The work

in [70] addresses the challenge of processing multi 10Gbps traffic for per-flow measurements by

improving packets processing stages such as buffering and (flow-preserving) load balancing. To this

end, it also explores how to improve the use of Receive Side Scaling (RSS [71]), i.e., the hardware

queues offered by modern network adapters.

More recently, a few optimisations have been proposed to improve the measurements perfor-

mance on servers (i.e., more throughput, or less per-packet latency). The work in [8] leverages

processor cache prefetching to reduce per-packet delays and stores per-flow information in huge

memory pages to minimise TLB (Translation Look-aside Buffer) misses. Conversely, the approach

of Agg-Evict [72] is to improve cache locality by aggregating packets based on the flow id before

the measurements take place.

Measurement design on programmable switches Novel enablers such as the P4 language and

PISA (Protocol Independent Switch Architecture) have been recently embraced to implement a va-

riety of measurements at line rate on the switch hardware. A representative set of proposals is

presented here.

HashPipe [73] prototypes heavy hitter detection entirely in the switch data-plane, at line rate. It

relies on multiple match-action stages, each using a set of P4 registers for recording flow counters.

Furthermore, it uses packet metadata – P4 allows placing state information (e.g., register values) in

the packet header – to track intermediate per-flow results. Dapper [74] is another P4-based mea-

surement design, which enables TCP performance diagnosis in a P4-enabled data plane. It exploits

all main functionalities of P4 (and P4-enabled PISA switches): P4 flexible header parsing is used

to retain different packet header information, packet metadata are used to carry information to the

following processing stages in the diagnosis, P4 registers are used to store the state of TCP con-

nections, and match-action tables allow to check test conditions. Sonata [9] relies on the same

features/functionalities to add data-plane support for generic, streaming-based, traffic analytics, by

implementing operators such as map,reduce and filter. Lastly, the proposal Marple [54] introduces

a new programmable key-value store primitive for PISA switch hardware, which is able to perform

stateful measurement operations, such as moving average of per-flow latencies, at line rate and with
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support to millions of keys.

Orthogonal to previously described approaches, In-Band Network Telemetry [59] consists in a

protocol and a set of measurement primitives to detect latency changes and congestions at switches.

It uses the customisable header parsing/re-writing offered by P4 to record the queueing delays expe-

rienced by a packet at the switch, so that latency spikes can be unveiled.

Measurement data structures and algorithms To conclude, an overview is presented on the main

classes of algorithms that have been recently adopted at data-planes to efficiently produce measure-

ment data from packet streams.

Hash tables Algorithms based on simple hash tables consist in computing a hash function from

a flow key extracted from the packet header (e.g., using source/destination IP and source/destination

port) and using the result to locate a bucket in the table, where flow key and measurement values are

stored. A few recent approaches use hash tables to implement measurements on hardware switches,

for example in HashPipe [73] a pipeline of hash-tables is deployed on programmable switch hard-

ware, with one table per match-action stage. Meanwhile, hash tables have been more-widely adopted

on hosts to perform measurements in software [8] [28], due to the ease in applying them to a wide

range of measurements. However, in such cases their implementation can significantly affect the

packet-processing performance [75]. For example, chained hash tables, where colliding keys are

placed into the same bucket and chained, can inflate the per-packet time if collision rate is high

due to the additional memory accesses needed. Several optimisations are available, the most com-

mon being Cuckoo hashing [76] (with O(1) worst-case insert), which is widely adopted by software

switches [14] [77].

Sketches Sketches are compact data structures used to approximately summarise data streams,

where the output size (i.e. the summary size) is much smaller than the input size (e.g., the total

amount of flow-counters to be stored). The most simple sketch is the bitmap, that maintains a single

array of bits to count the number of unique elements, e.g., the different IP source addresses. Another

widely-used sketch, especially for size-based measurements such as heavy hitters, is the Count-Min

sketch [78], which keeps a two dimensional array of integer counters with d rows and w columns.

It computes d hash functions per packet, and updates the corresponding d positions in each row. To

find the counter for a given IP address, the minimum counter in the d locations is returned. If the

minimum counter is above the threshold, the corresponding IP address is added to the set of heavy

hitters. The use of sketches is particularly convenient at switches. First, they can fit into SRAM,

which is usually larger and cheaper than switch TCAM. Second, they can produce fairly elaborate

summaries at the data-planes, e.g., not only raw flow counters, but also flow size distribution and

counts of unique elements. This means that measurements are already aggregated at the switch,

and as such their retrieval is more lightweight. The main drawback of these techniques is that they

require ad-hoc support from commodity switch components.

Heaps and trees Lastly, heap and tree-based approaches should be mentioned, both geared
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towards low memory consumption. Heap-based algorithms only keep in memory the most important

values for a measurement task. The most known is the Space Saving algorithm [79], which relies

on a small hash table and is mainly use for elephant flow and heavy hitter detection. Tree-based

solutions keep in memory hierarchical sets of counters, and as such they are naturally fit to zoom

in and out portions of the traffic while using limited memory, e.g., to implement flow counting [23]

and detect hierarchical heavy hitters [20] with the switch TCAM.

2.3.2 Measurement abstractions

This subsection reviews the recent work on monitoring abstractions (e.g., query-languages, pro-

gramming interfaces) that allow operators and management processes to provide their monitoring

objectives without dealing with network and packets’ details. Guaranteeing rich, highly expressive

abstractions plays a non marginal role towards the goal of monitoring efficiency. In particular, by

using precise representations of selective operator’s intents, monitoring systems are relieved from

the need of indiscriminately collecting, storing and processing huge volumes of data [11] [52].

Two classes of monitoring abstractions are discussed below: data-plane and network-wide.

The former enable dealing with packet stream processing while hiding the data-plane details of

switches and hosts, and the latter allow to express network-wide monitoring objectives while hiding

the measurement operations needed at different network locations.

Data-plane abstractions SDN allows operators to specify network control tasks based on high-level

resource representations [80] [24]. A similar approach has been recently explored for monitoring,

using abstractions that enable expressing traffic in terms of applications and hosts rather than data-

plane details. A few representative proposals are summarised here.

NetAssay [52] is a monitoring programming interface based on Pyretic [3]. It relies on the

notion of virtual packet header to allow a programmer to express policies in terms of queries on

network traffic. A virtual packet header includes standard packet header fields, as well as meta-

data associated with that packet (e.g., the switch where the packet is located). Furthermore, virtual

headers support additional metadata expressing higher-level features such as a user, device, or appli-

cation.

Other proposals have instead focused on the definition of monitoring-query languages.

NetQRE [10] is a declarative language for quantitative network monitoring, i.e., to combine network

and application-layer performance metrics with traffic patterns such as known attacks. It allows to

write monitoring functions that take as input a stream of packets and return result values, or subsets

of the packet stream. This approach enables highly-selective monitoring tasks by using particular

filters on traffic, namely Quantitative Regular Expressions, which integrate regular expressions with

numerical computations. Sonata [9] is a declarative language for streaming analytics on network

traffic, which relies on the packet-as-a-tuple abstraction. In other words, operators can express their

monitoring queries directly over packet tuples, with each tuple capturing the properties of a packet.
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A similar, packet-tuple, approach is adopted by Marple query-language [54], which additionally

enables to express “stateful” aggregation over multiple packets in a stream. This allows monitor-

ing queries to support more elaborate functions such as EWMA (exponentially weighted moving

average).

Network-wide abstractions To provide an accurate picture of how the network behaves, monitoring

systems should not only disclose how traffic looks like at a specific switch or host, but also expose

measurements on the traffic routes in the network. As such, efficient network-wide monitoring

abstractions should be offered to enable queries such as what path does the traffic follow? or is path

delay acceptable?. Two representative approaches are overviewed below.

The first one is based on the notion of packet history, i.e., the full journey of a packet throughout

the network. This approach is followed by NetSight [81], which offers an API to nofity (or act upon)

packet histories. To enable the monotoring system to sustain large traffic volumes and network

scales, the NetSight API provides a packet-history filter, based on regular expressions, which allows

to express “selective” interest in histories with specific trajectories or encountered switch state.

The second approach, adopted by Path Query [53], relies on the notion of path. Path Query

provides a monitoring-query language, based on regular expressions similarly to NetSight, with

supports for boolean conditions on packet location and header contents. The main difference with

Netsight is that Path Query also supports in-band measurements, i.e., it can discover network paths

by tagging packets with metadata.

2.3.3 Monitoring runtime system

Having the right measurement enablers at data-planes and the right monitoring abstractions is not

enough to ensure an efficient monitoring functionality satisfying the requirements of software-

defined networks and the larger demand in terms of traffic amounts and network sizes. The overall

monitoring efficiency largely depends on those “middle-layer” tasks between monitoring queries and

measurement primitives, which (i) compile high-level queries into measurement-specific operations

(e.g., algorithms running at data-planes), (ii) adapt the measurement operations when the operating

conditions change, (iii) dynamically allocate resources to different measurements to satisfy concur-

rent monitoring objectives, and (iv) process raw measurement data extracted at data-planes to deliver

relevant monitoring knowledge to network management. In the following, the recent approaches and

research directions for these tasks are overviewed.

Query compilation Representative examples of query compilation are briefly presented here starting

from the aforementioned monitoring abstractions.

In the case of the NetAssay [52] monitoring programming interface, higher-level metadata on

traffic specified on the API are translated into flow rules for SDN switches. To produce selective

flow-rule sets, and thus reduce monitoring overhead on switches, the compilation integrates the

high-level metadata with external sources of information such as BGP routing updates and DNS
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messages. More elaborate is the approach of Sonata [9] to query compilation, which consists in

splitting query execution between stream processors (on hosts) and programmable switches, trying

to run as much as possible of the query on the match-action tables of PISA switches (guarantee

line-rate packet processing), and minimise the number of packet-tuples sent to the stream processors

(reduce processing workloads on hosts). Query compilation in NetQRE is instead geared towards a

low memory footprint of monitoring query implementation. In particular, to avoid storing too many

packets for answering queries on a packet stream, the compiler automatically infers what state needs

to be maintained at a time, and optimises the query execution accordingly. To this end, it translates

the regular expressions used in NetQRE queries into specific types of finite state machines, which

are updated at run time when query-related events are detected on packets (e.g., a given source IP

address x is observerd).

Considering network-wide monitoring queries, a key example is the Path Query [53] compiler,

which maps queries to data-plane programs whose implementation is distributed across the switches

of a path. In a similar fashion to NetQRE, data-plane programs are represented by finite state ma-

chines. However, one big difference compared to NetQRE is that in Path Query the state is stored

on each packet and updated while it traverses the network.

Monitoring adaptation As discussed in Section 2.2.2, satisfying the information needs of network

management processes can translate into heavy usage of hardware resources and available time,

especially when frequent and detailed monitoring updates are required. This is naturally the case of

SDN, where management tasks are automated and operate on fine granularities, thus being extremely

dependent on the precision and timeliness of monitoring information [8]. The overhead associated

with the monitoring functionality can be a problem on hardware-switches, e.g., due to well-known

TCAM memory scarcity [20] [62] or limited control channel bandwith [22] [21], as well as on

servers, due to limited available time per packet, e.g., less than 70ns for 10Gbps traffic.

To improve monitoring efficiency, a number of adaptive monitoring approaches have been pro-

posed. These solutions reconfigure measurement operations at run time to deal with temporary

resource shortages [8] [82] or to find good tradeoffs between the monitoring overhead and the accu-

racy of monitoring reports [20]. Overall, these approaches can be classified based on the conditions

that trigger adaptations.

Adaptations triggered by monitoring outcome A first class of solutions is represented by algo-

rithms that modify the monitoring behaviour according to recent measurement results. One example

of such approach is the SDN monitoring framework Payless [83], which includes an algorithm for

tuning at run time the frequency at which switches are polled for fresh flow counters. The algorithm

used is threshold-based, i.e., the polling rate is increased when counters are growing more than x,

and decreased under smaller variations. Alternative proposals have focused on how to adapt switch

memory consumption to the measurement outcome. A representative example is the algorithm pro-

posed by Zhang in [23] for flow-size measurements in SDN. This operates continuous expansions
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and reductions of the set of switch flow-rules devoted to a specific traffic aggregate based on the

behaviour of the aggregate itself: on significant volume changes, the algorithm zooms in (i.e., more

flow-rules) to unveil more fine-grained traffic components, while granularity is reduced if the aggre-

gate volume is stable. A similar case is the work in [62], where the same zoom in/out approach is

adopted for hierarchical heavy hitter detection, with the main difference being the algorithm used,

which just relies on thresholds, while the solution in [23] adopts linear prediction.

Adaptations triggered by limited time/hardware-resource availability A second class of ap-

proaches perform measurement adaptations under bottleneck conditions, i.e., at times when avail-

able resource are not enough to cope with the monitoring demand. One simple solution is provided

by the SDN monitoring framework Dream [56] in the case of switch TCAM-based measurements.

Dream includes an admission control algorithm, which checks the available TCAM space left in the

switch at the reception of a new monitoring query. If not enough space is available, the algorithm

simply drops the incoming query. More elaborate solutions have been developed in the context of

traffic monitoring on hosts. In [28], Alipourfard et al. propose to resize the hash tables used for

storing per-flow measurement information in order to obtain smaller per packet times, thus solving

the bottleneck on available measurement time. However, the resizing involves a substantial cost. For

a single hash table, the average “amortised” cost of resizing – both for increasing and decreasing the

table size – is O(1) per insert, which means that doubling the table size from m to 2m has a cost

in the order of O(2m) additional insertions. Lastly, SketchVisor [82], a framework for sketch-based

measurements, adds a fast measurement path to the data-plane and redirects portions of traffic to it

so that time can be saved under bottlenecks.

Dynamic resource allocation In software-defined networks, large numbers of concurrent measure-

ment tasks can be dynamically (and automatically) instantiated by network controllers/managers.

When many measurement operations compete for scarce resources, as in the case of hardware

switch TCAM, it is important to apply configurations that guarantee efficient use of the resource.

To improve the overall monitoring efficiency, such configurations should allow for more concur-

rent measurement operations supported at data-planes, without penalising too much the accuracy

of monitoring reports. Different approaches rely on solving optimisation problems to derive opti-

mal resource allocation setups. A seminal work in this area is CSamp [84], which solves a linear

programming problem with a MaxFlow formulation for allocating flow-sampling tasks to different

switches. A similar, optimisation-based approach has been adopted for allocating TCAM memory of

SDN switches, one representative example being the work by Nguyen et al [85]. All these solutions

generally suffer from scalability problems, as convex optimisation can hardly provide real-time re-

configurations if the number of measurement tasks is large, or when allocation should be distributed

over many switches.

On a different line of research, the proposals DREAM [56] and SCREAM [86] dynamically

adjust the resource allocation configuration based on traffic conditions and resource availability. The
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former addresses the case of switch TCAM resources at SDN switches. The approach consists of

estimating, for each monitoring task using ad-hoc algorithms, the accuracy degradation deriving

from a reduced allocation of TCAM space to the task. For example, for a Heavy Hitter detection

task, DREAM estimates how many heavy IP prefixes would be “missed” when less flows are tracked

(i.e., less TCAM space used). Based on such estimation, part of the TCAM resources is moved at run

time from high-accuracy tasks to low-accuracy ones. The framework SCREAM, proposed by the

same authors, addresses instead the case of sketch-based measurements. In this case, the allocation

is performed dynamically by assigning to each sketch the right size, i.e., the minimum one that

provides sufficient measurement task accuracy. Sketches are then resized when traffic conditions

change. To quantify the accuracy level of a sketch, the framework estimates the hash collisions

associated with the current sketch size and traffic characteristics. As in the case of DREAM, accuracy

estimation algorithms are task-dependent.

Monitoring information processing To support the needs of automated management processes

producing frequent and fine-grained network reconfigurations, monitoring systems should not only

efficiently extract measurement data from the data-plane, but also process such data in real-time to

swiftly respond to a variety of monitoring queries. Data processing efficiency has been addressed in

SDNs with methods to aggregate network state [24] or split the total data processing workload,

but these solutions have mostly targeted network control (e.g., distributed SDN control planes)

instead of traffic monitoring. More recently, however, a few monitoring-related approaches have

been proposed, pushed by the deployment of more complex and stateful measurement operations

at data-planes, especially on hosts and programmable switches, which entail larger data processing

costs. The approach taken by Sonata [9], for example, is to exploit the capabilities of programmable

switches to reduce the data volumes sent to analytics stream processors. In particular, it offloads the

execution of part of the data processing operations (e.g., filter, reduce) to match-action stages at the

data plane. A different approach is followed by the monitoring framework Trumpet [8], in which the

processing of measurement data is carried out using server computational resources only. Its solu-

tion is to split processing (e.g., aggregation, evaluation of flow-related characteristics) into multiple,

time-limited batches, interleaved by the processing of new traffic packets so that measurement data

processing can run on the same processor core as packet-processing.

2.4 Summary
This chapter has provided an overview of the key issues related to monitoring future, software-

defined networks and has presented the main research directions in this domain. As discussed in

Section 2.3, recent work in the literature has been tackling the challenge of an efficient monitoring

function at different levels.

A first research direction has focused on improving the design of measurements (Section 2.3.1).

Proposals in this research area have investigated how to exploit software-defined networking tech-
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nologies to improve measurements at hardware switches (e.g., using OpenFlow, P4, protocol inde-

pendent switch architectures) and network hosts (e.g., using software switching, fast packet-capture

libraries). Moreover, the proposed approaches have designed algorithms/data-structures to inspect

packet streams at the data-plane with reduced memory footprint or time consumption. A second

direction of research (Section 2.3.2) has been on the design of monitoring abstractions, such as

monitoring-specific languages and programming interfaces, that can represent elaborate, diverse and

network-wide monitoring objectives. By allowing operators to express their exact monitoring needs,

these solutions have enabled more selective, and thus more resource-efficient, measurement opera-

tions. The last research direction has been towards improving the monitoring runtime system (Sec-

tion 2.3.3). This consists of all monitoring-related processes meant to (i) map high-level monitoring

queries to specific “on-device” measurement primitives, (ii) coordinate the execution of different

measurements at the data-plane and (iii) handle (i.e., extract, process, deliver) the measurement data

in order to provide elaborate monitoring reports to network operators and management applications.

The contributions of this thesis are along the last line of research. The following three chapters

cover all the main aspects related to the design of efficient monitoring runtime systems. The next

chapter presents a monitoring framework designed to achieve reactive delivery of monitoring knowl-

edge, to avoid monitoring information processing bottlenecks, and to ensure lightweight extraction

of measurement data from the network switches. Moreover, it proposes a modular architecture that

allows for efficient translation of high-level monitoring requirements into implementation-specific

measurement commands. Chapter 4 focuses on the problem of running different measurements at

the data-plane. It provides the necessary adaptive mechanisms to make an efficient use of data-plane

resources, and under dynamic operating conditions. Lastly, Chapter 5 presents a methodology, based

on intelligent filtering, for reducing processing costs when elaborate monitoring results are generated

from the raw measurement data collected at data-planes.



Chapter 3

Decentralised and Self-Adaptive Monitoring

for Software-Defined Networks

3.1 Overview
At first, this thesis considers the monitoring of software-defined networks, a scenario where mea-

surements are performed based on SDN-enabled switches (e.g., OpenFlow [12] compatible devices)

distributed over the network, and the resulting information is used to support management appli-

cations that reconfigure the network automatically and frequently [30] [19] [31]. Over the recent

years, a number of research proposals on SDN monitoring have explored the implementation of

task-specific measurements [61][26] and investigated how to efficiently allocate finite memory re-

sources of SDN switches to different measurement operations [56][23][87] under heterogeneous

traffic workloads and for different operator’s objectives. These solutions can however fall short

in supporting management applications with short latency requirements [1][20] and in meeting the

requirements of large-scale networks (i.e., with large number of geographically dispersed devices),

due to two main conditions that result to inefficient extraction, processing and delivery of monitoring

information.

Firstly, these approaches mainly rely on the assumption of a centrally-managed network, which

is an important limiting factor for the case of large-scale networks. As the network diameter grows,

the associated latencies can become considerable, thus penalising the responsiveness of the network

management system. Also, monitoring a large number of nodes can generate unsustainable loads on

the central controller/manager due to the increasing amount of measurement traffic converging to it,

with the effect of inflating the network configuration times [88]. Decentralised solutions for SDN

have been proposed in the literature, e.g., [88][89][24], but their main focus is on the control plane

(i.e., routing functionality), devoting less attention to monitoring, which is reduced to periodically

synchronising topology databases.

Secondly, monitoring solutions for SDN generally extract information from the network devices

based on regular measurement intervals, e.g., based on a fixed switch query period. As such, they can
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fail in detecting short-lived network episodes, especially if the switch query rate is too low, or can

saturate the switch control bandwidth when measurements are too frequent. Although adaptive SDN

monitoring approaches exist in the literature [23][83][25], they all require some complex parameter

tuning and need continuous adjustments under dynamic traffic patterns.

This chapter addresses the above limitations by proposing a novel monitoring framework for

SDN that achieves the goal of lightweight information extraction from network devices and realises

highly-reactive information delivery while avoiding processing bottlenecks.

To satisfy the needs of large-scale networks, the framework relies on a decentralised architec-

tures involving multiple monitoring entities, each able to perform monitoring tasks autonomously

without relying on a central manager and without maintaining a global view of the network run-time

state. Although decentralised monitoring is not a new topic in network management, previous solu-

tions like [90][91] are not directly applicable to the new domain of software-defined networks due

to: i) the technological novelty of SDN, ii) the shift towards new measurement enablers and iii) the

heterogenous requirements of management applications that can reconfigure the network at a wide

range of timescales and granularity levels (e.g. up to a single TCP flow). The architecture proposed

is designed to operate within a distributed management environment such as the one in [1], where

local managers hosting the application logic can adaptively reconfigure the network resources under

their scope of responsibility at short timescales. To deal with the diversity of controller implemen-

tations and improve configuration flexibility, it abstracts most of the monitoring functionality from

the control plane, and interacts with SDN controllers through a minimal interface(s) which could be

extended to support new control software without requiring significant changes. Such a design can

support the monitoring requirements of a wide range of management applications, and effectively

aggregate monitoring-related operations to reduce the overall hardware resource consumption.

To enable the efficient extraction of monitoring information from the network switches, the pro-

posed framework incorporates SAM (Self-tuning Adaptive Monitoring), a novel adaptive monitoring

method that guarantees timely and accurate reconfigurations of the switch query rate. As opposed

to previous solutions, such as [83] and [23], SAM requires minimal tuning effort as the algorithm

parameters are automatically updated based on the evolution of the traffic shape. A comparative per-

formance analysis shows that SAM always provides more predictable and reliable results in terms of

both monitoring precision and resource consumption with respect to existing approaches. Moreover,

it demonstrates that SAM can always match – and in some cases even outperform – the best-case

accuracy of previous methods [83] [23], i.e., the one obtained with the optimal parameter settings,

while using less amount of resources.

The benefits of the proposed framework are evaluated based on two realistic and demanding use

cases. In the first one, a distributed management application coordinates a content distribution ser-

vice in an ISP network, while in the second, the network operator runs an on-demand gaming service

by offering processing resources (e.g., specialised hardware) as part of the network infrastructure.
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To evaluate the performance of the decentralised monitoring approach in terms of monitoring

latency, as well as traffic overhead, this is compared against a centralised solution based on two

realistic network topologies. In addition, the effect of monitoring operations on the two use case

services is extensively evaluated by focusing on the impact of monitoring data extraction (through the

use of SAM), as well as monitoring information synchronisation. The results show that the proposed

decentralised monitoring approach can reduce the monitoring delays by up to 60% compared to a

centralised one, which translates to more reactive control loops. They also highlight that SAM

can produce significant benefits on the use case services at a reduced cost in terms of utilisation

of the switch resources. Finally, the evaluation shows that although relaxing the synchronisation

of monitoring information can impact the service performance, it is possible to achieve substantial

reductions in monitoring overhead while minimising potential service disruption.

The remainder of this chapter is organised as follows. Section 3.2 provides background infor-

mation on the distributed network management framework considered in the chapter, and presents

open issues of SDN monitoring. In Section 3.3, the design of the proposed architecture is described

in detail. Section 3.4 presents the SAM approach and compare its performance with state-of-the-art

monitoring solutions. Section 3.5 describes the use case services considered for the evaluation of the

proposed solution. Experiment setup and evaluation results are presented in Section 3.6. Section 3.8

describes related work close in spirit to the proposed framework, and Section 3.9 summarises the

chapter.

3.2 Background
This section provides background information on the SDN-based resource management framework

considered for the design of the proposed monitoring solution, as well as an overview of the tech-

niques used for performing measurements in SDN infrastructures.

3.2.1 Distributed resource management framework

The work in [1] presented a novel SDN-based network management and control framework that

supports dynamic resource management applications in fixed backbone infrastructures. This chapter

adopts the design principles of the relevant architecture, which separates management and control

functionality, allowing the two to evolve independently. A set of local managers (LMs), distributed

over the network, host various management applications (MAs) that implement the necessary logic

to decide on network (re)configurations. MAs are instantiated on the local managers as modules

embedding information data structures and running on a common execution environment offered

by the LMs. Each MA can execute in all LMs or in a subset of them (e.g. the ones operating at

edge network nodes). Configuration decisions taken by LMs are translated into sets of commands,

transmitted to the forwarding hardware through a southbound interface (e.g., OpenFlow), which

defines the sequence of actions to be enforced for updating the network parameters.
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Figure 3.1: Distributed resource management framework for software-defined networks

Monitoring is an essential component of LMs. First, it is concerned with extracting raw statis-

tics from the physical resources and generating useful information for applications. In this context,

each LM needs to implement the necessary capabilities to collect the status of variables (e.g., links,

traffic flows) within its local scope and make this information available to local MA instances. Sec-

ond, since MA instances operating at different locations may need monitoring data gathered from

outside their local scope, the monitoring functionality is therefore also concerned with disseminat-

ing network state updates to remote LMs. In a SDN environment, such synchronisation phase is

essential for reconfiguring the network parameters based on a global, unified network view. This

information can be exchanged between instances of a distributed MA through the signaling frame-

work proposed in [92], which provides a communication protocol and the necessary primitives to

share the monitoring information and to coordinate decisions between two or more MA instances.

Figure 3.1 depicts a simplified representation of the resource management framework consid-

ered in this chapter. The forwarding nodes are partitioned in clusters, each under the control of a

LM. The monitoring functionality initially retrieves raw data from the forwarding nodes, which is

subsequently processed (e.g., filtered, aggregated) to form knowledge, and is made available to lo-

cal MA instances, i.e., the ones operating on the same LM. In addition, a subset of the generated

knowledge can be shared with a remote manager (e.g., between LM z and LM x in Figure 3.1) on

a communication channel established using the signaling protocol in [92]. Using the synchronised

information, a remote manager (LM x in Figure 3.1) can reconfigure its own partition of the network

infrastructure by interacting with the forwarding nodes in the cluster.
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3.2.2 Monitoring software-defined networks

Compared to traditional computer networks, where monitoring solutions require ad-hoc software

installation / configuration and low-level tools, SDN has introduced a set of simple and configurable

primitives for the collection of measurement information at switches, which make them suitable

to a wide range of management tasks. SDN flow-based switches (e.g., OpenFlow enabled devices)

allow network operators to flexibly specify the flows to monitor based on different packet fields (e.g.,

source and/or destination IP addresses), and to count the number of bytes or packets for these flows.

Counters can be fetched by polling a switch, e.g., using OpenFlow read-state messages.

This measurement approach is affected by several hardware technology issues. First, flow-

based counters are maintained in expensive and power-hungry TCAMs and, as such, only a limited

number of entries can be used for measurements. Another issue is the limited bandwidth between

the switch and the SDN controller, which limits flow fetching to no more than a few thousand per

second [22]. Finally, SDN-enabled switches may also exhibit inaccuracies when updating the flow

counters. For example, as discussed in [21], some devices do not update the counters every time

a new packet matches a rule, but perform the updates periodically instead. Furthermore, devices

from different vendors introduce different biases in measurements and may even present some lim-

itations in terms of protocol support. Despite these open issues, the framework presented in this

chapter relies on the counting approach – i.e., polling the network devices for raw counters – due

to its implementation simplicity, the wide support by different vendors, and configuration flexibil-

ity in terms of information granularity and measurement frequency. Alternative methods, which

implement hashing techniques (e.g., sketches) on the network hardware [34], or require enhanced

programmability (i.e., beyond OpenFlow) of the forwarding plane [59] [17] [18], still have very

limited support on hardware switches, which makes their applicability uncertain. At the same time,

alternative solutions based on packet sampling and stream processing [93] [94] can pose a much

higher processing burden on local managers, e.g., in the case of large-scale networks with a limited

number of LMs, and are unsuitable for many management applications due to the adoption of packet

sampling [95].

3.3 System architecture
This section presents the proposed monitoring system and motivates the design principles of the

associated architecture.

3.3.1 Requirements and design choices

Effective monitoring system design has to consider a number of key issues. If very intrusive, moni-

toring operations can adversely affect the network performance. At the same time, these operations

need to be frequent and fast to enable management applications to operate in short timescales. In

addition, they should provide accurate and high-granularity information to support configuration de-
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cisions. The impact of these issues is amplified in the case of large-scale SDNs, since configuration

decisions might be taken far away from the locations where monitoring is performed. Three main

requirements are identified below, which have been taken into account for the design of the proposed

monitoring architecture.

• Scalability The monitoring system should be able to cope with a large number of information

sources. As the number of physical resources under the scope of a single MM increases, the

monitoring traffic converging to it and the associated computational load could drastically

impact the system reactivity, as was shown in [24][22]. While in dense networks with small

diameter (e.g., data centers) this drawback can be mitigated through replication or by investing

more CPU cycles and memory, in wide area networks (WANs) the monitoring responsiveness

is significantly affected by network latencies.

• Programmability The frequency and granularity of measurements have to be highly config-

urable based on the requirements of heterogeneous management applications. While some

applications such as elephant-flow detection need fine-grained flow-based measurements, oth-

ers only require aggregate statistics. In such a case, low-granularity measurements which

can be retrieved at a lower cost are preferable (e.g., switch port measurements as opposed to

individual flow measurements).

• Responsiveness MAs can change their monitoring requirements based, for example, on the

analysis of measured metrics. The MM should be responsive in adapting measurement pa-

rameters, such as the polling frequency or the flow-level granularity, according to new re-

quirements. Fast adaptations, as argued in [83][23], are essential for warranting acceptable

information accuracy and can additionally reduce the monitoring overhead.

Overall, the monitoring system should (i) scale well with increasing network size in terms of both

number of information sources and network diameter, (ii) be highly configurable to meet the needs

of a variety of management applications and possibly reduce costs, and (iii) responsively adapt its

operations to strike the right tradeoff between the accuracy of monitoring reports and the monitoring

overhead. With the goal to address these requirements, the following design choices have been made

for the monitoring architecture.

Decentralised monitoring approach The proposed monitoring system leverages a decentralised

approach where each of the local managers described in Section 3.2 hosts a monitoring entity, called

the monitoring module (MM), which is responsible for gathering information within the scope of

the LM. Scalability for coping with a large number of network devices and their geographical span

is the main driver for selecting a distributed approach. Specifically, such approach can reduce the

total amount of monitoring traffic handled by individual LMs, and can achieve low delays when

reconfigurations are computed close to where the monitoring information is collected.
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Modular structure of monitoring entities Each MM relies on a modular composition to maximise

the system extensibility and improve the overall flexibility of the solution. The modular structure

allows to decouple the logic involved in the processing of the application requirements from the one

operating on the raw measurement primitives. This reduces the deployment effort when new types

of requirements need to be supported, or new measurement mechanisms become available.

High-level declarative monitoring interface In the proposed architecture, management applica-

tions use a common interface, e.g., a RESTful interface, offered by the MM for both injecting new

monitoring requirements and receiving the corresponding measurement results. Such interface al-

lows applications to declare their monitoring information requirements in a high-level form, so that

MAs do not need to deal with dataplane details, and allows MAs to specify their preferences on the

update frequency of monitoring reports. This is essential for the monitoring system to satisfy the

monitoring needs of a wide range of MAs and to enable a more efficient use of the resources.

Dynamic measurement scheduling The monitoring system has been designed to dynamically con-

figure measurement operations based on current operating conditions. In particular, the scheduling of

measurements takes into account both the resource availability at the switches and recently-observed

traffic patterns. In the proposed architecture, scheduling relies on an admission control to avoid in-

discriminately admitting monitoring tasks that could not receive enough switch resources, and lever-

ages an adaptive algorithm (SAM) to dynamically adjust the measurement times based on traffic

dynamics.

3.3.2 Monitoring module

Figure 3.2 presents the structure of the MM, which sits between MA instances and the southbound

interface. The MM components operate on two main workflows. The first one starts with the MAs

registering their monitoring needs on the MM interface in the form of requirement tuples. These are

parsed into low-level monitoring specifications by the Requirement Processor, mapped to individual

measurement operations by the Scheduler, and lastly translated into calls to measurement primitives

by the Measurement Engine. On the second workflow, measurement data received from the switches

are processed (e.g., aggregated, compared to previous information) by the Result Processor and fi-

nally they are delivered to MAs on the MM interface. In addition, the MM includes a Persistent Data

Repository for storing network topology and setup information, and a Synchronisation Interface for

handling the exchange of monitoring data between LMs.

As an example, a Traffic Engineering MA can be considered, which requires monitoring re-

sults on the (i) utilisation of network links and on the (ii) flow throughput of source-destination

pairs in the network. Initially, the Requirement Processor maps the link-utilisation requirements to

“switch, port” specifications and the flow-throughput ones to “switch, flow-rule” pairs. The Sched-

uler then generates for each link-utilisation requirement a set of OpenFlow port-rate measurements

to be executed at different times, and for each flow-throughput requirement a sequence of OpenFlow
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flow-rate measurement operations. The Measurement Engine translates each port-rate (flow-rate)

measurement into a call to the controller that generates an OpenFlow Port (Flow) Statistic Request.

Responses received from the switches are finally parsed by the Result Processor and the retrieved

port (flow) counters are compared to the previous samples to estimate the link load (flow through-

put). The obtained results are exposed to the local Traffic Engineering instance or, if the information

has been required by a remote instance of the MA, delivered through the Synchronisation Interface.

The proposed MM architecture is designed to operate with OpenFlow-based measurements. It

is compatible with all OpenFlow versions (1.0 to 1.5) since it makes use of a minimal set of mes-

sages, common to all versions of the protocol, for the collection of individual flow statistics, aggre-

gate flow statistics and switch port statistics. Moreover, given the modular structure of the MM, the

set of supported measurement primitives can be extended to different technologies/protocols beyond

OpenFlow by only acting on a subset of the MM components. Specifically, extensions of the mon-

itoring system require (i) adding new “translation rules” to the Requirement (and Result) Processor

to map MAs requirements to new, different monitoring specifications, and (ii) providing appropriate

calls to the new measurement primitive(s) in the Measurement Engine. Following this approach, the

proposed architecture can be extended to support SNMP (e.g., SNMP link-load measurements) or

P4 [17] (i.e., extracting measurement-related information from P4 switches).

The various components of the MM are described below.

3.3.2.1 Persistent Data Repository

This component maintains network information which is not updated frequently, such as the topol-

ogy graph representation (e.g., switches and links) and the current setup of paths between pairs of

edge nodes. Such information can be represented through transactional databases and can be flexibly

accessed/modified by a SQL-like querying mechanism.

3.3.2.2 Requirements Processor

The first task of this component is to parse new monitoring requirements received from applications.

These are registered in a local data store (Requirements Table, c.f. Figure 3.2), with each requirement

represented as a tuple:

〈 Req id, MA id, Task, HL targets, Mon times 〉

Req id and MA id are the unique identifiers of the monitoring requirement and the requesting man-

agement application. Task represents the overall goal of the measurements, for example the utilisa-

tion of one or a set of links. HL targets is the list of targets (high-level identifiers in the application’s

abstract view of the network) of the monitoring task, for instance, in case of a path utilisation re-

quest, the corresponding list of paths. Mon times can be a single parameter, i.e., the polling period,

or an explicit sequence of measurement intervals. Section 3.4 presents an adaptive polling mecha-

nism (SAM) where the measurement rate is continuously adjusted based on the network traffic be-

haviour. When this mechanism is enabled, the MA instance should only provide, under the attribute
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Figure 3.2: Monitoring module architecture

Mon times, the boundaries for the measurement rate, i.e., the interval of acceptable monitoring fre-

quencies [ fmin, fmax].

The next procedure performed by this component is a translation routine, based on the Task

specification, that maps each new table entry into one or more Low-level targets. Each low-level

target (LL target) can identify a specific physical resource, e.g., a switch port, or map a set of flow

rules, i.e., a specific subset of the switch flow table. These entities are stored in the Low-level targets

table with the following format: Op type indicates what type of measurement operation should be

performed, for example collecting the average traffic rate of a specific switch interface. [Req id] is

the list of pointers to the corresponding application requirements, used for the reverse translation.

Sched state is a flag indicating whether the low-level target refers to a new monitoring requirement

(i.e., measurement operations have to be scheduled from scratch), or to a previous task for which

some adaptation is required (i.e., operations have to be re-scheduled).

The acquisition of statistics from a switch poses a substantial burden on the device in terms

of both processing and control bandwidth [22] [21]. As a result, for each time unit only a limited

amount of statistics can be reported by the switch to the MM. Any data exceeding the limit can be

lost or considerably delayed, which penalises the accuracy of MAs operations. To mitigate this issue,

the proposed solution aggregates different monitoring tasks, when possible. In other words, before

the insertion of a new low-level target, the table is looked up for similar entries. An existing entry

is similar if the target is equivalent or included, e.g., two targets with the same Task and Mon times

attributes are similar if one refers to the flows matching source IP address 128.40.200.1 and the other
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Figure 3.3: Reduction of switch control bandwidth based on aggregation.

corresponds to the flows for any source IP in the subnet 128.40.200.0/24. In such a case, the MM

merges the two low-level targets and the corresponding measurement times is updated accordingly

to satisfy both requests. Such a feature reduces the consumption of switch resources, especially

for different MAs requiring flow measurements at similar times, and/or for similar portions of the

switch flow space. The result is a more sustainable monitoring (reduced monitoring load) when

measurements compete with other control plane operations, such as new flows setup, for accessing

the switch resources.

Resource saving through aggregation. To show the gain that can be achieved through aggregation,

a representative scenario is considered, where 3 monitoring requirements m1,m2,m3 are registered

at the same time and on the same MM by three different MAs. The execution of the measurements

associated with each mi results in fetching a fixed number of flow table entries k at a period pi ∈

[1,2, ..7,8] from the same switch. Two parameters α and β are associated with each set. Parameter

α represents the level of temporal concurrency of the required measurements, which ranges from 0

(lowest level of concurrency, e.g., [p1, p2, p3] = [6,7,8]) to 4 (maximum level of concurrency, i.e.,

p1 = p2 = p3). Parameter β represents the level of overlap in terms of similar flow entries required

from the switch, and also ranges from 0 to 4. β = 0 represents the case of no overlap. For β = 1,

there exists an overlap of 50% between the requirements of two MAs. For β = 2, the three MAs

share 50% of requests. For β = 3, two MAs have completely overlapping requirements and share

50% with the third one. β = 4 represents an overlap of 100% between the three MAs. Figure 3.3

shows the resulting gain in terms of switch control bandwidth. The case β = 0 is not depicted as it

does not result to any savings.

Significant reductions can be achieved when β ≥ 2. For example, for β = 2, an average reduc-

tion close to 20% is obtained. Such savings can allow the overall measurement rate to increase, thus

enhancing the resource reconfiguration reactivity. For instance, assuming a fully saturated band-

width between the switch CPU and the local manager, aggregation can allow an increase of the

monitoring rate by up to a factor of 3 (i.e., α = β = 4).
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3.3.2.3 Scheduler

This component is in charge of generating and managing the individual measurement procedures

(e.g., the ones requiring a single message exchange with a switch), which are executed as threads.

It is called on every insertion in the Low-level targets table, and on any modification of existing

tuples involving the measurement times. Scheduling new measurements indiscriminately can lead

to none of them getting enough switch resources. As such, once invoked, the scheduler executes an

admission control routine, in which it verifies, depending on the current measurement load, whether

the measurement procedures for the new low-level target can be performed. In case there are not

enough resources available to accommodate the new measurement procedures, these are rejected

and the corresponding MAs are notified so that monitoring requirements can be re-negotiated. The

measurement load for a specific switch is defined by the expected monitoring bandwidth, which is

estimated on a time-window basis given the list of the low-level targets already scheduled. This

metric depends on the current measurement rates (i.e., the average polling frequency) and on the

number of flow (or switch port) records returned for each measurement procedure in the correspond-

ing OpenFlow Statistics Reply messages. In this respect, the approach in this chapter differs from

recent proposals, which focus on the limited flow table TCAM space [56] rather than the control

bandwidth.

Once accepted, the new low-level target is mapped onto a set of events, each one associated

with a timer to trigger the new measurement thread. The way this mapping is executed depends

on the switch polling algorithm used by the MM. In case of fixed frequency measurements, the

mapping is executed all at once, and all timers are recorded in the scheduling table. When the

adaptive polling mechanism presented in Section 3.4(SAM) is enabled, the measurement events and

timers are generated one by one, based on the feedback (e.g., the new value of a low-level target)

provided by the Results Processor upon receiving fresh monitoring data.

3.3.2.4 Measurements Engine

This component, called every time a new measurement thread is triggered, operates as an interface

between the measurement thread under execution and the measurement mechanisms implemented on

the southbound interface. It assigns individual measurement procedures to one of the available prim-

itives offered on the interface and supported by the underlying device. Such an interface is essential

to allow most of the monitoring operations to remain independent of specific implementations.

3.3.2.5 Results Processor

This component receives the raw measurement results, for example messages of type OpenFlow

statistic reply. These are parsed (e.g., into JSON format) and the Low-level targets table is looked

up for the corresponding target(s). Based on the operation type specified in matching table entries,

the measurements are filtered to select the required counters. These are stored in corresponding data

structures (hash-tables) and used for computing the metrics of interest. Finally, the processed results
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are associated to the relevant high-level targets and delivered to MAs through update messages. In

case the MM adopts an adaptive monitoring scheme like the one presented in Section 3.4, the Results

Processor also generates a call to the Scheduler, so that new measurement events can be adaptively

scheduled based on variations of the relevant metrics over time.

3.3.2.6 Synchronization Interface

In addition to the aforementioned components, the MM offers an extensible interface for the syn-

chronisation of monitoring information in a distributed management plane. Using the methods of

this interface, instances of MAs can forward monitoring reports through signaling channels as de-

scribed in [92]. The interface provides different solutions for the exchange of monitoring data. In the

simplest case, this can take place periodically or every time new statistics are available locally. More

advanced solutions consist in exchanging new values only when they differ substantially from the

previously reported ones. These techniques can improve the synchronisation efficiency as they allow

management applications to strike the right tradeoff between accuracy and overhead in monitoring

data dissemination.

3.3.3 Workflow examples

As concrete examples of the MM workflow, two simple monitoring procedures are considered:

1. Average link utilization The requirements processor registers a requirement of type link uti-

lization, with a fixed measurement period, for a set of links l1, l2, ..ln. Each of these is translated

into a low-level target sx:py, where sx identifies the switch and py the port on which the bitrate

should be measured. According to the specified measurement period, for each target the scheduler

periodically generates measurement threads, each calling the controller to create an OpenFlow Port

Statistics Request and send it to sx. The results processor receives the corresponding Port Statistics

Reply messages from the controller, together with the measurement timestamps, and extracts the

current byte counters (tx bytes, rx bytes). It then uses the new sample and the previous one, which

is stored in a hash-table, to compute the average link utilisation, and finally returns the value to the

application.

2. Average flow throughput Consider an application requiring the throughput of the flow identified

by source IP y and destination IP z. The requirements processor translates this into a low-level

target sx:srcy:dstz, where sx identifies the switch from which the flow counters should be fetched. By

default, the ingress switch for that flow is selected as the measurement target. Then, the scheduler

generates periodic calls to the SDN controller to build a Flow Statistics Request and sends it to the

target switch. As the corresponding Flow Statistics Reply is received by the controller, the result

processor extracts the current flow byte count and duration. By comparing two consecutive samples,

it computes the average flow throughput, and reports this to the application.
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3.4 Self-tuning Adaptive Monitoring

Querying a network switch for updated statistics involves a tradeoff between accuracy and over-

head. On one hand, continuous pulls of fresh statistics impose a considerable burden on the switch

hardware, e.g., on its scarce control channel bandwidth [22], and can overflow the network capacity

with monitoring overhead. On the other hand infrequent measurements fail in capturing transient

events, such as short-lived congestion, due to sampling and averaging bias. To reduce the monitor-

ing load while ensuring timely and precise reports, adaptive monitoring mechanisms by which the

query frequency is dynamically reconfigured are needed.

To enable efficient extraction of monitoring information, SAM (Self-tuning Adaptive Monitor-

ing) is introduced, a novel adaptive monitoring method that guarantees timely and accurate recon-

figurations of the switch query rate. As opposed to previous solutions in the literature (e.g., [83],

[23]), SAM requires almost zero tuning effort, as the algorithm parameters are automatically updated

based on the evolution of the traffic shape.

Comparative performance analysis shows that SAM always provides more predictable/reliable

results in terms of both monitoring precision and resource consumption with respect to the existing

approaches. Moreover, it shows that SAM can always match – and in some cases even outperform

– the best-case accuracy of previous methods [83] [23], i.e., the one obtained with the optimal

parameter settings, while using less amount of resources.

3.4.1 Limitations of current adaptive approaches

Two main techniques have been proposed in the literature to adapt the switch query rate: i) threshold-

based approaches [83] and ii) prediction-based approaches [23]. The objective of these approaches is

to adapt the period at which switch variables are queried based on network traffic behaviour. While

in the case of threshold-based approaches, the adjustment is based on threshold conditions, a linear

prediction of the evolution of the variable value is used in the case of prediction-based approaches

to update the period. The advantage of these techniques is that they can easily apply to different

monitoring operations – for instance, flow size and link utilisation estimation. Other methods exist

but they are bound to specific measurement tasks, e.g., flow autocorrelation [25].

3.4.1.1 Threshold-based adaptive monitoring

The principle of Threshold-based Adaptive Monitoring (TAM) is to adapt the monitoring period

(i.e., rate at which the switch is queried) based on the variation of the variable values between

two consecutive measurements. If the difference is above a threshold th1, the monitoring period is

divided by a constant d, while if it is below a threshold th2, the period is multiplied by a second

constant m. In essence, the sharper the variation, the shorter the period and hence the more intense

the polling.
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3.4.1.2 Prediction-based adaptive monitoring

In contrast to the threshold-based approach, Prediction-based Adaptive Monitoring (PAM) uses the

history of the last set of collected measurements (not only the last one) to decide how to adjust the

monitoring period. More specifically, based on the previous N collected values of monitored variable

x denoted as x1, ...,xn, a predictor xp of the next value of x is computed. When the actual new value

xn+1 of x is fetched, x mean and standard deviation are updated and the real variation (xn+1− xn) is

compared to the predicted one (xp− xn). If the predicted variation is substantially higher than the

real one, i.e., for xp > mean(x)+α · std(x), the monitoring period is increased by a factor equal to

d. In this case, the prediction is overestimating the change. Otherwise, if the value of x is changing

much faster than predicted, i.e., for xp < mean(x)−α · std(x), the period is divided by d. In both

cases, α is a small integer constant. In all other cases, the period is unchanged.

The main issue with TAM and PAM is that, to efficiently adapt the period, they both require

some complex parameter tuning, i.e., thresholds th1, th2 and multipliers m,d for TAM, and selection

of sample queue size N and factor α for PAM. This is specifically evident under periods of bursty

traffic, where accurate reconfiguration of the query rate is essential. In particular, changes in the

traffic burst patterns (e.g., burst amplitude, duration, inter-arrivals) are likely to require new settings

given that for a specific pattern, only a small subset of setups guarantees efficient statistics collection.

To illustrate this issue, the two approaches have been implemented to measure the size of a

bursty flow over a period of 5 minutes and compared the obtained results with the actual flow size de-

noted as ground-truth, measured every millisecond. To emulate a bursty profile, the size of the flow is

modulated between 0 and 10 Mbps by injecting traffic bursts with arrivals modelled as Poisson(0.1),

height (in Mbps) and duration (in seconds) as Uni f orm[0,5]. Figure 3.4 shows the performance

of the two approaches for different parameter setups with th1, th2 in [10%,20%, ..100%]; m,d in

[2,4, ..10]; N in [2,3, ...30]; α in [1,2,3]. For each configuration, the accuracy is quantified using the

Root Mean Square Error (RMSE) between the value collected by monitoring and the ground-truth,

while the resource consumption is given by the average switch query rate. The results are shown in

Figure 3.4.

The main observation is that, for both approaches, different setups can produce widely different

outcomes in terms of precision, as depicted in Figure 3.4.a. More surprisingly, Figure 3.4.b shows

that different parameter configurations can lead to significantly different accuracy levels even when

consuming exactly the same amount of resources. For instance, with a mean polling rate 0.5 Hz, the

TAM approach can either produce RMSE=1.9 or RMSE=1.5. At the same time, different resource

usage can result in the same monitoring precision, e.g., RMSE=1.4 can be obtained with both 1

and 2 Hz average query rate with the PAM approach. In all cases, the performance with respect to

the accuracy vs. query rate tradeoff strictly depends on how well parameters are tuned. In practice,

however, determining the optimal setups is hard. This not only requires long (preliminary) periods of

traffic observation but also necessitates adjusting the setups to match emerging traffic characteristics
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Figure 3.4: Performance of previous adaptive switch-polling techniques: monitoring precision (left) and accu-
racy/resources results (right)

(e.g., new traffic burst patterns).

Below, a novel self-tuning adaptive monitoring approach is presented, which addresses the

limitations of existing solutions. The proposed approach can produce precise reconfigurations of the

measurement rate, between boundaries fmin and fmax, with minimal parameter tuning effort.

3.4.2 SAM algorithm

The proposed Self-tuning Adaptive Monitoring (SAM) approach allows to achieve the right trade-

off between accuracy and consumed resources, without the need of manually performing complex

parameter tuning according to the traffic characteristics. It works by automatically refining the algo-

rithm parameters based on the evolution of the traffic shape.

More specifically, the objective of the proposed solution is to continuously adapt the timeout

T , i.e., the time to the next measurement. In a similar fashion to prediction-based approaches [23],

SAM uses linear prediction to predict the next value xp of a variable x based on the value of its

previous measurements. When the new value xn+1 of x is collected, the normalised deviation D of

the predicted variation (xp− xn) from the real one (xn+1− xn) is computed. When the value of D

is negative, the prediction of the variation of x is underestimated. For instance D = −0.5 indicates

that the predicted variation is 50% of the real one. In this case, the behaviour of x is more dynamic

than expected and T is reduced proportionally to D, so that the larger deviation, the faster the query

rate. In contrast, when D is positive, the prediction is overestimating the variation of x, e.g., D = 1.0

corresponds to 100% overestimation. In this case, x is changing less (or less quickly) than expected

(the behaviour of x tends to become more stable) and T is increased proportionally to D.

After each measurement, the linear prediction is automatically reconfigured by tuning the length

N of the sample queue used to compute xp based on an Additive Increase Multiplicative Decrease

(AIMD) scheme. In particular, N is increased by one when Tnew > T and halved otherwise. Intu-

itively, the length is shortened when traffic becomes more dynamic (e.g., when a traffic burst starts)

so that the next decision on T only involves the most recent history of x. It is progressively expanded
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Algorithm 1: COMPUTE NEXT QUERY TIMEOUT

Input: Current timeout T , Current sample queue length N
Output: Next timeout Tnew, New sample queue length Nnew

1 Compute prediction xp: xp = xn +
tn−tn−1

n−1

N−1
∑

i=1

xi+1−xi
ti+1−ti

2 Retrieve value xn+1

3 Compute deviation of (xp− xn) from (xn+1− xn): D =
(xp−xn)−(xn+1−xn)

xn+1−xn
=

xp−xn+1
xn+1−xn

4 if D < 0 then
5 Tnew = max( 1

fmax
,Told−D ·Told)

6 else
7 Tnew = min( 1

fmin
,Told +D ·Told)

8 Add xn+1 to sample queue
9 Update sample queue Nnew = AIMD(N)

10 return Tnew,Nnew

as the behaviour of x becomes more stable.

The pseudo-code of the proposed algorithm is shown in Alg. 1. It takes as input the latest time-

out T and the current sample queue length N, and returns as output the time to the next measurement

Tnew and the new sample queue length Nnew.

In terms of complexity, the proposed algorithm is similar to PAM, since both approaches require

updating the predictor xp and computing the deviation between the predicted variation of x and the

real one. The main advantage of SAM, however, is that it requires minimal tuning effort. The only

parameter needed for the algorithm setup is the initial value of N, whose impact is strictly limited to

the algorithm startup phase. Differently from SAM, TAM requires the tuning of thresholds th1, th2

and multipliers m,d, and PAM the one of sample queue size N and factor α .

An additional advantage of SAM is that, unlike previous approaches [83] [23] for which the

switch query period is only modified when large variations of x are observed, the proposed solution

continuously adjusts the timeout T . Although this may lead to rescheduling measurement tasks

more frequently (hence incurring thus increased burden on the monitoring module scheduler), it can

prevent situations where the variations of x are undetected, for instance when the fluctuations of x are

periodic and ”phase-locked” [96] to the switch polling rate (i.e., same frequency but out of phase).

3.4.3 Performance of SAM algorithm

The performance of SAM is evaluated by implementing it to measure the bitrate of traffic generated

using both synthetic and real traffic traces and comparing the results to the ones obtained with TAM

and PAM. To test the performance under different traffic conditions, two synthetic traces are used,

with the same duration (5 minutes) and bitrate range (between 0 and 10 Mbps) but different levels

of burstiness.

The first trace, referred to as Highly Bursty Traffic, emulates bursty conditions with traffic

burst arrival modelled as Poisson(0.1) (on average one in 10 seconds), burst height in Mbps as
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(d) JP-2am

Figure 3.5: Monitoring precision (RMSE) vs resource consumption (average polling frequency)

Uni f orm[0,10] and burst duration in seconds as Uni f orm[0,1]. The second trace, referred to as

Lowly Bursty Traffic, corresponds to more stable traffic with burst arrival modelled as Poisson(0.02),

burst height as Uni f orm[0,5] and bust duration as Uni f orm[1,10]. Compared to the first profile,

bursts in the second trace are less frequent, have a longer duration and exhibit smaller variation of

the traffic rate. In addition to the synthetic traces, two real 15 minute traffic-packet traces from a 100

Mbps link of a Japanese operator [97] are used, representing peak time (JP-2pm) and off-peak time

(JP-2am) traffic, respectively.

For all traces the performance is evaluated based on a wide range of parameter setups. In

particular, for the TAM approach all combinations of thresholds th1, th2 in [10%,20%, ..100%] are

used, with th1 > th2, and query rate constant factors m,d in [2,4, ..10]. For the PAM approach,

sample queue length N in [2,3, ...30] and the constant α in [1,2,3] are selected. Finally, for the

proposed self-tuning approach the initial value of N is varied in the range [2,3, ...30]. The same

minimum ( fmin) and maximum ( fmax) query rate boundaries are applied for the three approaches,

with fmin = 0.1Hz and fmax = 10Hz. In a similar fashion to the example in Figure 3.4, the two main

performance indicators used are the monitoring precision, given by the RMSE with respect to the
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(d) JP-2am

Figure 3.6: Monitoring precision comparison (Best-case, Worst-case and Average RMSE)

ground-truth traffic rate, and the resource consumption, represented by the average switch query rate

over each experiment run.

The results are depicted in Fig. 3.5 and 3.6. Figure 3.5 shows that the performance of the

self-tuning approach is, in general, more predictable in terms of precision and resource consumption

compared to the two state-of-the-art solutions. For example, the RMSE obtained with the SAM

approach only oscillates between 1.35 and 1.5 for the first trace (Fig. 3.6a), and between 1.05 and

1.25 for the second one (Fig. 3.6b) while, for PAM, the distance between the best and worst case

accuracy is twice the one obtained with the SAM algorithm, and it can even be three times greater

for TAM. The same applies to the average switch query rate. For example, for the first trace (Fig.

3.5a) the proposed solution queries the switch with mean rate between 1Hz and 1.5Hz, while the

two state-of-the-art approaches operate with an average query frequency between 0.5Hz and 2.5Hz.

Similar observations can be made for the experiments with real traffic profiles (Fig. 3.6c and Fig.

3.6d), where SAM approach achieves more predictable results compared to previous solutions.

Another important observation is that the proposed algorithm can achieve a good tradeoff be-

tween accuracy and resource consumption under different traffic profiles. In particular, the average
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monitoring accuracy obtained by SAM generally lies close to the best-case precision of the PAM

approach, always using a lower or, in the worst case, similar amount of resources. For the Lowly

Bursty Traffic trace (Fig. 3.5b), lower values of RMSE with respect to TAM and PAM are obtained

with a reduced average query rate, while for the case of the Highly Bursty Traffic trace shown in Fig.

3.5a, PAM can still achieve a slightly lower error but by consuming substantially more resources (by

50% or more). In the case of the peak time real packet trace (JP-2pm – Fig. 3.5c), the proposed

algorithm obtains similar performance in terms of precision compared to the best results of PAM but

by consuming approximately 10% less resources. Finally, in the case of the off-peak time real packet

trace (JP-2am – Fig. 3.5d), results are in line with the most precise results obtained with PAM.

Summary of results and discussion To summarise, SAM introduces two key benefits with respect

to state-of-the-art approaches. The first one is the reduced variability of the results on both moni-

toring precision and resource utilisation. On average, for the resource consumption (quantified by

the mean switch polling rate), the range of SAM results is 6x (5x) smaller than for TAM (PAM).

At the same time, the results on SAM monitoring accuracy fall in a range that is 4x (3x) smaller

than for TAM (PAM). This is due to the large dependence of TAM/PAM performance on the algo-

rithm parameter selection, which does not apply to SAM due to its self-tuning design. The second

benefit of SAM, which results from the automatic algorithm re-tuning based on traffic dynamics, is

the improved accuracy/resource tradeoff compared to the existing approaches. On average, SAM

achieves a monitoring precision 14% higher than TAM best-case result (i.e., the maximum monitor-

ing precision, obtained from the best parameter selection) and only 2% lower than PAM best case,

while consuming lower amounts of resources compared to TAM and PAM best cases. It should be

noted that SAM average precision does not generally exceed PAM best-case one due to the similar,

prediction-based nature of the two approaches.

As shown in Fig.3.6, SAM monitoring error (the RMSE in Mbps with respect to the ground-

truth) increases with higher traffic speeds. When moving from 10 Mbps (Fig. 3.6a, 3.6b) to 100

Mbps (Fig. 3.6c, 3.6d) maximum rate, higher RMSE levels are obtained. Applying SAM on multi-

Gbps line rates would unavoidably produce higher Mbps deviations between SAM monitoring re-

sults and the ground-truth. As a result, this would penalise the effectiveness of management ap-

plications that require high (e.g., Mbps-level) precision while operating on large (e.g., multi-Gbps)

traffic aggregates. However, a different trend is obtained when considering the normalised error. In

particular, the Normalised Root Mean Square Error is on average the 12% for 10 Mbps synthetic

traffic (Highly/Lowly Bursty Traffic traces), and only the 3% for 100 Mbps real traces (JP-2am/pm

traces). In other words, the percent deviation between SAM monitoring results and the ground-truth

does not increase with the traffic rate, and it is higher for the synthetic traces since they stress-test

SAM with bursty traffic patterns.
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3.5 Use case scenario

To demonstrate the capabilities of the proposed monitoring framework, a distributed SDN environ-

ment is considered on which two different services are deployed by the network operator. The first

one is a content distribution service, for which a set of content items is cached within the network.

The network management system periodically updates (e.g., in the order of hours) the content place-

ment and the paths between user locations and content servers. Following an approach similar to

the one proposed in [107], it reconfigures the routing of user requests in real-time by selecting an

appropriate path between the user location and one of the available content servers based on the

current path utilisation.

The second service provided by the operator is an on-demand gaming (cloud gaming) service,

in a similar fashion to well-known platforms such as Gaikai [108]. The network provider offers

specialised hardware resources, such as GPUs and fast memory, to support the computation required

for the user game experience, which is offloaded from the end-user devices. From the network

perspective, this service implies a continuous interaction between the user device and the server,

where the client sends new input data, and in response it receives chunks of the video stream to be

reproduced on the user device. The network management system can tune this service at run time

by reconfiguring the routing of client and server traffic, which is performed by selecting a suitable

path from a set of available options. While doing so, the operator objective is to avoid congestion

in the network and, as such, to prevent potential Quality of Experience (QoE) degradation. Net-

work congestion will increase the content delivery times and can lead to user dissatisfaction due to

unresponsive client-server interactions in the on-demand gaming service.

When reconfigurations of the two services are generated in response to congestion episodes,

the latest decisions on server and path selection are enforced using a method similar to the one

proposed in [109]. The programmable (e.g., OpenFlow-enabled) forwarding hardware at the edge of

the network is instructed in real-time to rewrite fields of the IP packet header (e.g., the destination

address) in order to redirect traffic transparently to clients and servers. The enforcement of the path

selection decisions is part of the header rewriting operations. For example, the path selection can be

encoded in the packet ToS field.

Figure 3.7 exemplifies the use case. The forwarding nodes are partitioned in clusters, each under

the control of a local manager. Each manager hosts an instance of a distributed Load Balancing (LB)

application, which implements the necessary logic for reconfiguring, on a per user location, the

content server from which a requested content is retrieved (for content distribution) and the path

through which client/server traffic is delivered (for content distribution and cloud gaming). For

simplicity, it is assumed that clients and servers to communicate on symmetric paths. For each

network edge switch mapped to a user location, the application keeps a list of available setups

〈Server, Path〉 indicating how traffic should be routed. Each LB instance operates periodically on
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Figure 3.7: Use case scenario: distributed Load Balancing (LB) application

a short timescale, i.e., every few seconds, and at each execution it obtains two statistics from the

monitoring system.

The first statistic is the average link utilisation for the links included in the local paths, i.e.,

the paths emanating from a client location within the scope of the relevant LM. Statistics for these

links are directly collected and exposed by the underlying MM at each execution of the application.

The monitoring of remote links is delegated to the LB instance operating on the corresponding

network partition. This registers the relevant monitoring requirements on its MM, and periodically

synchronises the results with the other LB instances.

The second statistic is the average rate of traffic originated by users in the local network parti-

tion. More specifically, each LB instance obtains the average throughput of all the flows matching

the source IP address of one of the clients and the destination IP address of one of the servers, or

vice versa. This measurement is used to determine the volume of traffic by which congested paths

can be offloaded.

In case of link congestion (e.g., average utilisation exceeding a predefined threshold), the LB

application is responsible for offloading part of the traffic from the congested link in order to bring its

utilisation below the threshold. Some flows are removed from the congested paths (paths including

the congested link) and are (equally) assigned to alternative, non-congested, options represented by

the 2-tuple 〈Server, Path〉. The new configurations are enforced on the ingress OpenFlow switches.

If a congested path spans multiple network partitions, the corresponding LB instances operate

iteratively, as in the solution presented in [110]. The first decision is taken by the LB instance directly

associated with the congested link based on the bandwidth availability on the alternative paths. The
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result is then communicated to the next LB instance until the process terminates.

3.6 Evaluation
In this section, the benefits of the proposed decentralised monitoring framework are investigated.

The evaluation is based on the use case described in Section 3.5 and focuses on the performance

in terms of latency and traffic overhead, as well as on the impact on the two different services.

Furthermore, it investigates the gain that can be achieved by applying SAM, the self-tuning adaptive

monitoring solution presented in Section 3.4.

More specifically, the evaluation is conducted as follows. In Section 3.6.3 the performance

of the proposed decentralised architecture is compared, in terms of monitoring latencies as well as

traffic overhead, to the one obtained with a centralised solution. Sections 3.6.4 and 3.6.5 explore

how the monitoring information extraction and the monitoring information distribution functions

can affect the performance of the use case services. Considering monitoring information extraction,

the focus is on the improved monitoring efficiency derived from the SAM algorithm presented in

Section 3.4. Regarding monitoring information distribution, the possible tradeoff(s) between appli-

cation performance and monitoring scalability-overhead are explored, following an approach similar

to the one in [20].

3.6.1 Network testbed and Local Manager implementation

Experiments are performed on the testbed represented in Fig. 3.8. This relies on Mininet [111]

[112] [113] to emulate the network topology, including hosts, i.e., clients and content servers, and

OpenFlow switches. The advantage of using Mininet is that it allows to create a realistic virtual

network, running real kernel, switch and application code on a single machine or virtual machine.

In the emulated Mininet network, hosts (clients and servers) are lightweight Linux containers, while

network devices are instances of a virtual switch. Specifically, the widely-adopted Open vSwitch

virtual switch [51] is selected.

The Local Manager, including the Monitoring Module and the Load Balancing application

logic, is implemented as a set of Python modules. A small set of APIs from the SDN controller POX

[98] is also reused to implement the southbound interface functionality, which includes OpenFlow

message crafting and parsing, and switch-controller communication primitives. Furthermore, both

the switch-controller channels and the local manager synchronisation interfaces are based on TCP

sockets established at network initialisation.

3.6.2 Experiment setup

Experiments are performed on the two network topologies, Topo1 and Topo2, summarised in Table

3.1, where each node is an OpenFlow-enabled switch, and all links have 10Mbps bandwidth. In

Topo1 the average link latency is 5ms, while the end-to-end latencies (round-trip) fall in the range

[25ms,70ms]. In the case of Topo2, the link latencies are artificially tuned in a way that allows us to
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Figure 3.8: Implementation of the framework on a Mininet-based virtual network testbed

Table 3.1: Network characteristics

Network # Nodes # Bidirectional Links
Topo1 Geant [99] 23 37
Topo2 Germany50 [100] 50 88

experiment with increased end-to-end delays, with round trip latencies between 100ms and 150ms.

In both topologies, clients are distributed over five user locations. Each client can reach two

servers, each being accessed using three alternative paths. By default, all clients are initially assigned

to the shortest path in terms of hop count. Each experiment has a duration of 5 minutes and is

preceded by a short startup phase in which paths are installed and the MM and LB application

initialised. The placement of LMs is provided as an input and used to compute the relevant hop-

count and corresponding latencies between pairs of LMs.

For each experiment, only one of the two use case services is emulated. In the case of content

distribution, each client generates content requests following a pattern derived from the one used in

[101]. The content size is scaled down in accordance to the reduced link bandwidth. In the case of

cloud gaming, the corresponding network traffic is directly emulated by generating separate client

and server-originated packet streams. In particular, the results reported in [102] are used to configure

the average packet size and packet rate for both upstream (i.e., client-originated) and downstream

(i.e., server-originated) traffic.

The LB application reconfigures the flow routing in case of link congestion, as described in

Section 3.5, based on local knowledge, including the utilisation of local links and the throughput

of local traffic flows (if any), as well as information about remote links, which is accessed through

periodic synchronisation. For simplicity, all LB instances run simultaneously (same frequency and
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clock reference). For each experiment two parameters are configured: pl is the period of local

measurements performed by each MM, and ps the synchronisation period of link status between

the LB instances, with ps ≥ pl . For both services, link congestion is generated by creating spikes

of user demand, which is achieved by increasing the number of clients over the experiment time.

In addition, fixed-rate UDP flows are used, generated with Iperf between the client and the server

locations to emulate background traffic.

Another key parameter is the congestion threshold, which has a direct impact on the flow

(re)scheduling operated by LB. It is set to 85% of the link capacity in accordance to [103]. Such

settings allow to avoid excessive route flapping and to keep the average period of route reconfigura-

tions at least one order of magnitude higher than the content download times. These values are in

line with traditional end-user redirection practices [104].

3.6.3 Performance of decentralised monitoring

In this subsection, the proposed decentralised monitoring approach is compared with a centralised

solution where the full state of the network is collected by a single management entity. The initial

focus is on the monitoring latency, a measure of reactivity, defined as the delay between the time the

measurement starts (e.g., the corresponding procedure is selected by the scheduler) and the time the

requested information is made available to the LB instance performing the flow routing reconfigura-

tions. The monitoring latency is evaluated for the link utilisation measurements in 4 different setups:

Centralised (single manager), 2 LMs, 3 LMs and Fully distributed, in which one LM is assigned to

every single switch. For the centralised, 2 LMs and 3 LMs cases, 10 experiments are performed,

each with a different manager allocation, and average the results. The condition ps = pl is fixed, i.e.,

the link status is synchronised between LB instances with every new measurement, and each LM is

configured to synchronise with every other LM in the topology.

Figure 3.9 depicts the average monitoring latency for 3 cases: i) Minimum distance: reconfigu-

rations are computed close to where raw statistics are extracted, i.e., by the closest LM; ii) Maximum

distance: reconfigurations are computed by the farthest LM from where the statistics are collected

and iii) Variable distance: reconfigurations are computed with the same probability by any of the

available LMs. As can be observed, the performance obtained with the Centralised setup (baseline

scenario) is almost constant as the monitoring information is always processed at the central man-

ager independently from where the statistics are gathered. For the decentralised setups, a significant

delay reduction for minimum distance in comparison to the centralised scenario can be observed.

The reduction is up to 57% for Topo1, and it is even more evident (61%) for Topo2, where paths

generally span higher latencies and number of hops. Smaller latency reductions can be noticed for

maximum distance, up to 17% for Topo1 and 40% for Topo2. As expected, the higher the percent-

age of reconfigurations computed close to where the relevant knowledge is collected, the higher the

reduction in terms of control-loop delays achieved with the decentralised approach.
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(a) Monitoring latency, Topo1
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(b) Monitoring latency, Topo2
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(c) Monitoring traffic per LM

Figure 3.9: Performance of the decentralised monitoring approach

In addition, the total amount of monitoring traffic handled by an individual LM is evaluated

for the different decentralised setups. Results reported in Figure 3.9c are normalised to the ones

obtained in the Centralised case. As can be observed, the decentralised approach can drastically

reduce the burden on the single LM since the incoming monitoring traffic decreases, as expected,

proportionally to the number of LMs deployed in the network.
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3.6.4 Monitoring information extraction

This subsection investigates how the extraction of monitoring information by the monitoring mod-

ules can affect the performance of the use case services (content distribution and cloud gaming) and

the LB application presented in Section 3.5. In particular, it compares a baseline solution where the

switches are queried at a fixed rate with the self-tuning adaptive monitoring algorithm (SAM) More

specifically, it extends the analysis of the performance of the SAM approach by focusing on the trade

off between application/service performance and monitoring overhead.

To quantify the performance of the LB application, as well as the impact on content distri-

bution and cloud gaming, three different metrics are taken into account. The performance of the

LB management application is represented by the utilisation of the congested link l, obtained by

sampling it at rate 1/pl (i.e.,, every 1 second) throughout the duration of the experiment. For the

content distribution service, the download speed is collected as a measure of the user’s QoE. Finally,

the performance of cloud gaming is evaluated by measuring the service latency, i.e., the response

time of each individual user request, which determines how responsive the gaming service is. To

guarantee acceptable performance, the service latency should not exceed 80ms for highly interactive

games and 150ms for slow-paced games [105].

To represent the monitoring overhead, the mean monitoring traffic rate produced by individual

switches is considered. This metric is in line with [22] [21] that show that only a limited amount of

monitoring data can be reported by SDN-enabled switches for each time unit.

The evaluation is performed by running experiments with the Fully Distributed setup in which

congestion episodes on a specific network link are generated. For each experiment, monitoring is

configured to query the switch either at a fixed rate (with frequency 0.5Hz, 1Hz or 10Hz) or using

SAM with query rate varying in the range [0.1Hz,10Hz]. The condition ps = pl is also fixed, so that

measurement results are always synchronised between the LMs. For each test run, download speed

and cloud gaming latency values are recorded for all clients in the network. Also, for the results

of different clients not to be affected by the different path latencies, the selected users are served in

each topology through paths of equal length.

Figure 3.10, 3.11, and 3.12 show the empirical CDF of link utilisation of the congested link for

the different monitoring configurations, the cloud gaming service latency and the download speed

of content distribution, respectively. In addition, the mean monitoring traffic (i.e., the monitoring

overhead) is reported, normalised to the one obtained with SAM. As depicted in the figure, the values

of the three performance indicators improve when increasing the measurement rate as congestion

episodes can be detected more reactively. Interestingly, it can be observed that the performance

obtained with SAM can generally match the one obtained with fixed 10Hz monitoring. For example,

as shown in Figure 3.11, the service latency never exceeds the 150ms threshold in both the SAM

and fixed 10Hz monitoring cases. The SAM approach does however produce less than 50% of

monitoring traffic compared to fixed 10Hz monitoring, as shown in Figure 3.13. This is because
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Figure 3.10: Extraction of monitoring information: impact on link utilisation
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Figure 3.11: Extraction of monitoring information: impact on service latency in cloud gaming

the adaptive monitoring logic of SAM increases the query rate up to 10Hz only when needed, i.e.,

when congestion arises. The only case in which 10Hz monitoring can outperform SAM is for the

download speed but yet the difference in performance is never substantial. For instance, in Topo1,

where the difference is more noticeable, the download speed obtained with SAM is lower in only

20% of the cases, and the speed reduction never exceeds 40Kbps, which represents less than 12% of

the maximum speed. This small benefit of fixed 10Hz monitoring comes furthermore at a huge cost

as 150% more monitoring traffic is produced.

Finally, the evaluation also considers the case where the operator adopts a fixed 4Hz measure-

ment frequency, thus guessing the same average query rate of SAM (Fig. 3.13). In practice, this is

unlikely to happen, as no prior knowledge on a suitable measurement rate is usually available to the

operator. As shown in Fig. 3.11, 3.12 even in this case SAM is not outperformed.
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Figure 3.12: Extraction of monitoring information: impact on download speed in content distribution
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Figure 3.13: Extraction of monitoring information: monitoring traffic per switch with respect to SAM (=1)

3.6.5 Monitoring information distribution

In the considered decentralised management framework [1], instances of a distributed application

can take decisions based on information extracted at a remote location. This subsection investigates

the effects of the dissemination of monitoring information between LMs on the performance of the

LB application and its impact on the content distribution and cloud gaming services. Experiments

have been executed with the Fully Distributed setup in which congestion episodes occur on a specific

link l, located under the scope of a specific LB instance (local LB), while the offloading decisions

are made outside the local partition by another application instance (remote LB).

In these experiments, pl = 1 second is selected while ps varies in the range (1,10) seconds in

order to increase the inconsistency between the views of the two LB instances. The performance

results below are shown in the form of boxplots, with the whiskers extending from the box (first and

third quartile boundaries) to the 95 percentiles.
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Figure 3.14: Link utilisation time-series at Local LB and Remote LB for ps = 10.

Info. Distr. Period ps(sec.) Avg Util. Error RMSE
2 0.44501 0.78
4 0.65137 1.0096
6 0.73237 1.0298
8 0.90245 1.1952

10 1.30 1.5448

Table 3.2: Average link utilisation error and RMSE vs synchronisation period

Synchronisation error Figure 3.14 illustrates the link utilisation exposed to the local and remote

LB instances for the worst-case scenario, i.e. ps = 10 seconds.

It can be observed that, with such a high synchronisation period, the remote LB fails to catch

utilisation spikes of short duration. In this specific case, no action is performed for 53% of the con-

gestion events. Table 3.2 reports the error between the local and remote LB views of link utilisation.

To measure the effect of relaxed synchronisation, the RMSE (root-mean-square error) is used,

where a RMSE of 0 corresponds to perfect synchronization. As expected, the RMSE increases as

the information dissemination period increases, which indicates an increase in terms of inconsistency

between the views of the two LB instances.

Impact of synchronisation on Link Utilisation To quantify how the network is affected by the in-

consistent views of LB instances, the utilisation of link l is sampled at rate 1/pl (i.e., every 1 second)

throughout the duration of the experiment. It can be observed from Fig. 3.15 that the utilisation of

link l is significantly affected by the synchronisation period. For low values, such as ps = 1,2, the

utilisation is kept below the congestion threshold for more than 75% of the total experiment duration.

Starting from ps = 4, larger synchronisation errors (i.e., higher values of RMSE in Table 3.2) lead

to a noticeable increase of the utilisation for half of the collected samples. Finally, for high values

of the information distribution period, e.g., ps = 8,10, link l is above the congestion threshold (85%

of the link capacity) for more than 25% of the experiment time.

Impact of synchronisation on the application performance In the following, the effects of re-
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(b) Topo2

Figure 3.15: Impact of relaxed synchronisation between LMs on link utilisation
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(b) Topo2

Figure 3.16: Impact of relaxed synchronisation between LMs on cloud gaming application performance

laxed synchronisation on the performance of the use case applications content distribution and cloud

gaming is investigated. For the content distribution service, the performance metric is the download

speed, used as a proxy for the user’s perceived quality of experience. For cloud gaming, the per-

formance is evaluated by measuring the service latency, i.e., the response time of each individual

user request, which determines how responsive the service is. To guarantee acceptable performance,

the service latency should not exceed 80ms for highly interactive games and 150ms for slow-paced

games [105].

As generally shown by Fig. 3.16 and 3.17, monitoring information distribution clearly reflects

on the user perceived quality for both use case services. In the content distribution case (Fig. 3.17),

a reduction of the median download speed can be observed, which can be more or less progres-

sive, e.g., based on the duration of congestion episodes. The impact of relaxed synchronisation is

particularly evident in Topo2, where the download rates are lower than in Topo1 due to the higher

end-to-end latencies in this network. For instance, increasing ps from 1 second to 2 seconds leads

to a substantial reduction of the median throughput that drastically decreases from 300 to 50 Kbps.

In the cloud gaming case (Fig. 3.16), the effect of infrequent synchronisation can be even more

disruptive. In particular, while an acceptable gaming experience can be guaranteed with ps = 1,2

throughout all the experiment time (the service latency rarely exceeds 100ms), under ps = 8,10 the

latency is above 500ms in Topo1 and above 1sec in Topo2 for approximately half of the cases. This
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(b) Topo2

Figure 3.17: Impact of relaxed synchronisation between LMs on content distribution application performance
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(b) Topo2

Figure 3.18: Monitoring information distribution overhead (generated monitoring traffic)

would in practice make the gaming service inaccessible to clients.

Synchronisation overhead In addition, the monitoring overhead is evaluated, which is defined for

each experiment as the generated monitoring traffic, e.g., sum of the size of each packet multiplied by

the path length (number of hops). The overhead is the sum of two components: i) the measurements

overhead, i.e., the traffic incurred by the collection of the raw statistics from the physical devices,

and ii) the traffic incurred by the distribution of the link status between the LB instances that linearly

increases with the frequency of the information distribution. Only the latter is plotted in Fig. 3.18a

and 3.18b since the generated traffic is in general dominated by the dissemination of monitoring

information. As expected, increasing the synchronisation period can lead to substantial reductions

of the overhead that decreases proportionally to ps.

It can be finally observed that significant overhead reductions can be obtained by trading off

service performance a little bit. For instance, the overhead can be approximately halved by choosing

ps = 2 instead of ps = 1, while incurring negligible disruption on the cloud gaming performance, as

shown in Fig. 3.16a and 3.16b.
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3.7 Limitations

In this section, the main limitations of the proposed SDN monitoring framework are discussed.

These relate to the polling-based nature of the monitoring approach presented, the cost incurred by

SAM when applied to large numbers of variables (e.g., for measuring massive amounts of different

flows), and the dissemination of monitoring information.

Polling-based monitoring approach The design of the proposed architecture is geared towards

highly-configurable monitoring in terms of measurement frequency and granularity, which is impor-

tant for satisfying the requirements of different management applications. One limitation, however,

is that the key architectural components (Scheduler and Measurements Engine in particular) and

also the SAM algorithm require the monitoring system to operate in polling mode, i.e., with pulls of

monitoring information whose execution is driven by network managers/controllers. This is the case

of measurement approaches based on OpenFlow or SNMP (e.g., SNMP link-load measurements), or

extracting measurement data temporary stored in P4 switches [54]. Such approaches are currently

supported by the proposed architecture or can be supported with limited extension of the Monitoring

Module components. On the contrary, approaches based on streaming (e.g., using OpenConfig [94]

or sFlow [58]), where the monitoring data is continuously pushed by the switches, cannot be sup-

ported by the proposed framework. For example, one essential conditions for SAM is the full control

over the times at which monitoring information is extracted from the switches, which does not apply

to the case of streaming-based monitoring.

Cost of SAM To adapt the switch-polling period when measuring a network variable such as a

flow rate or a link utilisation, SAM needs to compute a linear prediction and to decide on incre-

ments/decrements of the polling period. The computational cost of SAM can become a problem

when large numbers of measurements (of different variables) need to be adaptively scheduled at the

same time. In such a case, additional resources would be needed at the Local Manager to effectively

cope with the monitoring demand in terms of CPU (to perform many SAM runs in short times) and

memory (to keep the state of adaptive monitoring, e.g., sample queue used by the prediction and cur-

rent polling period, for many different variables). However, it should be noted that the cost incurred

by SAM is in line with PAM state-of-the-art approach [23] due to the similar, prediction-based nature

of the algorithms.

Dissemination of monitoring information The impact of monitoring information synchronisa-

tion on the use-case service performance and on the monitoring-related overhead has been eval-

uated using different fixed synchronisation periods. Although the results showed that good per-

formance/overhead tradeoffs can be achieved by selecting an appropriate information distribution

period, any periodic synchronisation might still be outperformed by more advanced and adaptive

approaches, for instance exchanging the new monitoring results only when they are substantially

different from the ones previously synchronised. Despite the proposed architecture includes a Syn-
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chronisation Interface enabling the development of advanced synchronisation solutions, the adaptive

monitoring capability of the framework (i.e., SAM) is currently restricted to the extraction of mea-

surement data from the switches and does not involve the synchronisation of monitoring results.

3.8 State of the art overview
SDN monitoring frameworks The advent of SDN has empowered network monitoring with new

measurement enablers as OpenFlow switches can keep track of active flows in the network and

update per flow counters. A number of proposals have recently exploited this feature to provide direct

and precise flow measurements without resorting to packet sampling. In OpenTM [60], the SDN

controller pulls, at fixed intervals, the switch counters collected by explicitly polling the switches in

order to periodically generate traffic matrices. In [27], the authors propose FlowSense, an approach

where the network utilisation is measured using a different, push-based, approach. This uses the

messages generated during the setup and eviction of flows from the switch flow table. Compared

to the technique used in this chapter that leverages explicit switch polling, the solution in [27] can

reduce the measurement overhead but suffers from limited flexibility since it only works with short-

lived flows.

While most of the recent proposals have focused on specific measurements or on a very limited

set of measurement tasks, the approaches presented in [34] and [83] provide a measurement API for

supporting a wide range of tasks. OpenSketch [34] relies on a clean-slate approach where a novel

processing pipeline is used on the switch to support many different measurement tasks. In addition,

a library is developed for the control-plane to reconfigure the pipeline. Payless [83] resembles more

the approach adopted in this chapter as it provides an API to serve different monitoring requests, all

executed through pull-based measurements.

Distributed SDN solutions In contrast to the work presented in this chapter, all the aforementioned

proposals are mainly tailored to early SDN solutions that rely on a physically centralised control

infrastructure. This assumption has been questioned in [24] and [88] where distributed control planes

have been proposed to overcome scalability issues such as processing bottlenecks at the central

controller and large control latencies. However, the main focus of these papers is on how distributed

controllers can unify their local views of the network, paying little attention to measurement issues.

In [88] Tootoonchian et al. present a controller-to-controller communication mechanism based on

a pub/sub paradigm. In [24], Koponen et al. propose a distributed database for the dissemination

of slowly changing network state and a distributed hash table for exchanging volatile information.

Another important work is [20], which investigates the main issues posed by state distribution in a

logically centralised, physically distributed SDN architecture. One of these issues, i.e., the tradeoff

between performance optimality and state distribution overhead, has been considered in Section

3.6.5, which has evaluated how the timeliness of synchronised monitoring information impacts the

MA performance and the overhead in terms of additional monitoring traffic. In less recent work
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[91], the authors introduce a model, called A-Gap, for adaptive reduction of the traffic overhead in

distributed monitoring based on filtering. However, this technique addresses a different, hierarchical,

monitoring architecture where the information is aggregated and transmitted on a spanning tree

toward a central management station.

Adaptive SDN monitoring Adaptive monitoring in SDN has recently attracted several research

efforts. In Payless [83], monitoring adaptations are performed based on fixed thresholds. In [25], a

model for dynamically updating the switch query timeout is presented, but it is exclusively tailored

to flow covariance measurements. In a similar fashion to SAM, the approach in [23] reconfigures

the query rate based on the outcome of a linear prediction. It does however require some complex

parameter tuning, an issue that the proposed scheme overcomes through automatic reconfigurations

of the algorithm parameters.

3.9 Summary
This chapter has presented a novel monitoring framework for software-defined networks that can

provide heterogeneous management applications with frequent and consistent network state updates,

thus enabling fast and effective resource reconfigurations. The proposed solution relies on a decen-

tralised architecture satisfying the requirements of networks with a large number of geographically

dispersed devices. To reduce the consumption of the switch control bandwidth, it performs frequent

adaptations of the switch query rate using SAM novel self-adaptive monitoring method. As opposed

to existing approaches for which complex parameter tuning is needed under highly dynamic network

traffic, the proposed algorithm can automatically reconfigure itself without any intervention from the

operator.

SAM has been shown to provide more predictable performance in terms of precision and re-

source consumption compared to state-of-the-art solutions and to achieve better accuracy/resource

tradeoffs. Such results have been obtained with both synthetic and real traffic traces. Despite the

limited number of traces used, it has been shown that SAM algorithm outperforms existing adaptive

techniques under a range of dynamic traffic conditions in terms of burst inter-arrivals, durations and

heights, including episodes of short-lived (e.g., sub-second) and multi-Mbps traffic spikes. Another

key benefit of SAM algorithm is its broad applicability. Indeed, SAM can be integrated with a range

of different monitoring designs (beyond the SDN monitoring framework presented in this chapter)

that use switch polling for extracting measurement data, including for example SNMP-based mon-

itoring solutions (e.g., SNMP link-load measurements [39]), since it does not depend on specific

protocols (e.g., OpenFlow) nor specific network control/management architectures.

The benefits of the proposed decentralised monitoring framework have been investigated based

on realistic topologies and demanding use case services. The evaluation has shown that the frame-

work can improve the reconfiguration reactivity by significantly reducing the control-loop delays,

in particular when a large portion of reconfiguration decisions are taken close to where the relevant
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statistics are collected. In addition, it has demonstrated that service performance can significantly

improve by enabling SAM, without incurring additional switch resource consumption. Finally, it has

shown that although decentralising the monitoring functionality involves additional communication

overhead, this can be mitigated by slightly relaxing the synchronisation of monitoring data, while

maintaining acceptable service performance.



Chapter 4

Adaptive and Accuracy-Aware Monitoring

for Software Dataplanes

4.1 Overview
The previous chapter has addressed key issues related to (i) the efficient extraction of measurement

data from the dataplane (for the case of SDN-enabled switches) and (ii) the timely delivery of moni-

toring knowledge to management applications, targeting the demanding requirements of large-scale

networks and management applications operating on short timescales. However, further challenges

concerning the efficient and accurate monitoring of network traffic should be considered that relate

to how concurrent measurement tasks can be collectively executed in the dataplane, especially under

adverse operating conditions. These challenges are explored and addressed in this chapter.

Specifically, the case of a software dataplane is considered here, where traffic measurements

are performed using commodity hardware and integrated with software packet-processing pipelines.

This approach has been gaining increasing attention over the last years [8] [67] due to its improved

flexibility and reduced cost. In particular, it enables the execution of sophisticated per-packet mon-

itoring in real-time, i.e., in line with high-speed traffic streams, thus enabling timely reports of fine

granularity [8]

Monitoring systems adopting this approach are required to perform elaborate measurement

operations in the dataplane on a per-packet basis, while processing all packets in time (lossless packet

processing), which is an extremely challenging task. On one hand, monitoring systems need to cope

with increasing data rates supported by network cards (10+ Gbps), which squeeze the admissible

packet processing times to a few tens of nanoseconds. On the other hand, they should satisfy the

operator’s requirement of assigning limited resources to the monitoring process (e.g., 1 processor

core per 10 Gbps [8]) while performing advanced measurement tasks on a per-packet basis. Recent

packet capture engines [15][16], hardware technologies such as Receive-Side Scaling (RSS)[71],

and multi-core packet scheduling architectures [68][114] allow to cope well with packet capture

at wire-speed. However, short-lived bottlenecks can still arise in the monitoring process, leading
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to potential loss of packets in the input buffer(s). This occurs when unbalanced packet rate spikes,

affecting one or a subset of CPU cores, compress the available per-packet time, or when variations of

traffic skew [28], or concurrent access to shared server resources [115] inflate the packet-processing

latencies.

A possible approach to limit the risk of packet loss is overprovisioning, i.e., to allocate ad-

ditional processor cores to traffic monitoring, so that each core would face a lower-speed packet

stream, hence a large number of CPU cycles is reserved to each packet. An alternative solution is to

restrict the available measurement-related operations to a minimal set such as byte and packet count

only. These solutions however result to inefficient use of the dataplane resources.

These limitations are addressed in this chapter by introducing MONA, an adaptive traffic mon-

itoring framework based on software packet-processing. MONA solves two key problems under

increasing workload conditions in the monitoring pipeline. On the one hand, it guarantees resilience

to bottlenecks by timely reconfiguring the monitoring operations under dynamic operating condi-

tions. To this end, MONA performs frequent estimations of the available processing time, coupled

with extensive offline analysis of the different per-packet latencies involved in the monitoring pro-

cess, it timely reduces the monitoring operation sets for portions of the active flows’ population.

At the same time, MONA preserves the accuracy of monitoring reports, based on user-specified

accuracy thresholds.

Jointly achieving zero packet loss (i.e., all packets processed in time) and accurate monitoring

reports is a hard problem. In particular, it is difficult to know the impact of monitoring reconfigura-

tions on the reports’ accuracy a-priori [86][56], as this depends on traffic characteristics and on the

monitoring operations logic. MONA overcomes these issues by decoupling the adaptation function-

ality (in face of bottlenecks) from the accuracy control one. The latter progressively redistributes

subsets of the active traffic flows between the measurement tasks running in the system, so that mon-

itoring reports can be generated at the desired accuracy. To quantify accuracy degradations, MONA

estimates at run time how many events (e.g., heavy hitters, traffic bursts) remain undetected after the

measurements sets have been reduced in part of the flows. This is obtained through a novel, task-

independent, estimation technique which ensures high levels of confidence by computing estimates

according to recently observed traffic characteristics.

MONA is not the first design where monitoring is dynamically configured to achieve accuracy

goals, but it is the first that is fully tailored to a software dataplane. Existing solutions rely on

approximate measurement techniques such as sketches [86][116][117] and top-k counting [118][79].

However, these techniques are mainly geared towards reducing memory usage, while for software

packet-processing the stringent constraint is on CPU-time. In contrast to these approaches, MONA

operates with simple hash-tables [8][28][119], with enough space to store (error-free) results for all

active flows. This not only shifts the focus of the design from memory to CPU-time consumption,

but also allows for more heterogeneous traffic analysis, e.g., beyond volume and connectivity-based
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results of sketches [82].

To investigate the benefits of MONA, the proposed framework has been implemented based on

a generic and widely-used [8][28] traffic monitoring pipeline relying on a hash table. In addition,

a set of widely-used measurement tasks has been enabled in the monitoring pipeline for evaluation

purposes, which adopt the same reporting period used in [8] (10ms).

The experimental results show that MONA can significantly reduce the risk of packet loss under

various events such as multi-Gbps traffic rate spikes, increasing processor concurrency and changes

in traffic skew. Furthermore, the evaluation shows a general improvement on the accuracy level of

monitoring reports for all measurement tasks. In particular, MONA enhances the monitoring task

accuracy – in terms of the task satisfaction metric proposed in [56] – by a factor of 2 compared to the

traditional static monitoring approach. Lastly, the evaluation demonstrates that MONA can operate

in short time-scales while incurring only a small CPU-time overhead (≈1-2%).

The remainder of this chapter is organised as follows. Section 4.2 provides background infor-

mation on software-based traffic monitoring, presents representative measurement tasks used in this

chapter, and analyses potential bottlenecks in the monitoring process. In Section 4.3 and overview

of MONA and the related design is presented. Section 4.4 describes the adaptive functionalities of

MONA in the face of bottlenecks, while Section 4.5 presents the accuracy-aware functionalities of

MONA. Section 4.6 evaluates the performance of MONA. Related work specific to traffic monitor-

ing adaptations and software dataplanes is discussed in Section 4.8, and final remarks are presented

in in Section 4.9.

4.2 Traffic monitoring in software dataplanes
A number of research approaches have recently embraced the use of commodity hardware to realise

a wide range of network functions, as this entails improved flexibility and reduced costs. Traffic

monitoring, in particular, is a good candidate for such an implementation, as it can benefit from

the processing capability of powerful servers in order to perform complex measurement tasks at the

granularity of a single packet, without the need to employ sampling techniques. As such, network op-

erators have started developing monitoring solutions that are part of the software packet-processing

pipeline, e.g., in a software switch.

Compared to monitoring operations in hardware switches where memory availability is the

main shortage, traffic measurements on commodity hardware are constrained by the CPU-time and

the working set, i.e., the data most frequently accessed for the measurements [28]. This clearly

reflects on the design choices for such monitoring tools. Instead of using approximate measurement

techniques like heap-based [79] solutions and sketches [120][48][34][82], which reduce the total

memory usage, traffic monitoring for software dataplanes can just rely on simple hash tables for

storing the traffic flow statistics, as they guarantee the best performance in terms of CPU-time and

working set [28][8]. Hence, the monitoring process consists of hashing the header of each packet,
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e.g., on the 5-tuple, and storing a set of statistics in the hash table.

4.2.1 Measurement tasks

Well-known measurement tasks are adopted in this chapter, which monitor the packet stream and

collect traffic statistics over short time intervals (e.g., 10ms), called time-windows. Each task anal-

yses the packets and collects per-flow results in the flow (hash) table. Flows are defined based on

the packet’s 5-tuple1. At the end of a window, each task generates a report containing all the events

found in the flows it processed. In the following, representative examples of measurement tasks

extensively studied in the literature [56] [86] [82] [9] [54] [8] are presented. They will be used

throughout this chapter.

Heavy Hitter detection (HH): discovers traffic aggregates exceeding a bytes threshold, where

each aggregate is the sum of all flows with same source IP.

Bursty flow detection (Bursty): checks if at least x% of the packets of a flow arrived in bursts,

i.e., with an interarrival time below y milliseconds. If so, the flow is tagged as bursty.

Latency Change detection (LatChange): checks if the current round-trip-time (RTT) of a flow

falls outside the interval [mean(rtt)−β ·stddev(rtt),mean(rtt)+β ·stddev(rtt)], where β is a small

integer value. If so, it increases the count of latency changes for that flow.

ReTransmission detection (RTx): counts for each flow the number of retransmissions (repeated

acknowledgment/sequence numbers).

A wide range of analyses can be performed with the statistics collected by these tasks. Heavy

hitters are used for anomaly detection and for supporting load balancing decisions. Bursty flows

serve the diagnosis of congestion, while retransmissions can reveal reachability problems between

two virtual machines (VM) or servers. The results can also be combined to detect network misbe-

haviours or to guide network management decisions, for traffic engineering or VM migration, for

instance. An operator can identify TCP flows with significant loss (high retransmissions) and corre-

late them with heavy hitters in order to detect short-lived congestions [32]. Alternatively, LatChange

can be used to track unresponsive servers and Bursty results are analysed to check if latency changes

are due to bursts (e.g., spikes of requests).

4.2.2 Analysis of potential bottlenecks

To satisfy the operator’s requirements, traffic monitoring on commodity hardware has to combine

three main features: handling high traffic rates at a limited cost (e.g., 1 core for 10 Gbps [8]),

achieving zero packet loss, and supporting diverse, sophisticated forms of analysis. Collectively

meeting these requirements is not a trivial task.

In order to sustain high throughputs (10+ Gbps), the monitoring process should ensure total

packet processing times in the order of few tens of nanoseconds, e.g., no more than 70 ns for 10

Gbps of 64-byte packets. Current state-of-the-art practices, such as RSS (Receive Side Scaling,

15-tuple fields include source and destination IP, source and destination port, and protocol
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Figure 4.1: Per-packet processing time (nanoseconds per packet)

a technology enabling the distribution of network receive processing across multiple CPU cores)

and capture engines (frameworks like DPDK and Netmap) provide essential support by ensuring

packet capture at wire-speed. While these techniques can get packets from the network card to the

monitoring process at a high rate, they only solve half the challenge since monitoring bottlenecks

can emerge after packets have been captured. These are described below.

Traffic rate variations High-speed packet processing servers use multiple cores and RSS to deal

with multi-Gbps traffic. However, these setups are still prone to performance degradation. If the

amount of resources devoted to monitoring is limited (e.g., in small-scale deployments), a single

core can still face unsustainable workloads at high traffic rates. In addition, events such as fast

variation of user demand [121], sub-second congestion [32], or DoS attacks [8] can result to traffic

rate spikes affecting one or more cores, even for deployments with multi-queue packet capture (such

as RSS). Variations of the input packet rate have a clear impact on the monitoring process. Intuitively,

if the rate increases by x%, the available time for processing each packet will drop by x% or more if

additional overheads are included for packet acquisition.

Shared resource contention A monitoring process usually coexists with other tasks on the same

machine, often on the same processor, including other monitoring processes running on different

cores. Resulting hardware resource contention [115] involves caches, the memory controller, and

buses. Among these, the L3 cache, shared by multiple cores in modern platforms, accounts for

most of the performance degradation in traffic monitoring, since measurement tasks are particularly

aggressive in terms of L3 references per second. Assuming that on a n core processor the monitoring

process executes on core 1, variation in data access patterns of other processes running on cores 2

to n can affect the monitoring time per packet due to cache entry replacements, resulting in a higher

miss ratio. As depicted in Fig.4.1a, the increase of cache reference rate on cores 2 to n2 (initially

2A 4-cores CPU with 8MB shared L3 cache is used
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Figure 4.2: Overview of MONA

≈ 0) can double the per-packet latency.

Change of traffic skew The skewness of the traffic distribution plays a key role at run time as it

defines the monitoring working set. For traffic with lower skew, a higher fraction of packets cannot

be served from the processor caches, resulting in higher packet processing latencies. As an example,

the packet completion time is measured for a simple monitoring process that updates packet and byte

counts using packet traces with different skewness.3 As shown in Fig.4.1b, reductions of the skew

factor α can double the per-packet latency and generally make it less predictable.

4.3 MONA
Bottlenecks in the monitoring process, resulting from the aforementioned conditions, translate into

longer queues in the packet capture stack which lead to higher chances of packet loss. This is an

important problem given also the reduced size of RSS queues (no more than 4K packets) and packet

I/O rings [70], enough to absorb only less than one millisecond of traffic at 10 Gbps. To ensure

resilience to potential bottlenecks, the operator can either count on resource overprovisioning, or

restrict the available monitoring tasks to a minimal set, e.g., packet and byte counting only. However,

the former approach violates the requirement of only devoting a limited amount of resources for

monitoring and the latter penalises the granularity and expressivity of monitoring reports.

To overcome these limitations, this chapter introduces MONA, a traffic monitoring frame-

work for software dataplanes, that dynamically configures the measurement operations sets based

on emerging conditions. From a logical view, MONA is the combination of two functions, namely

Adaptation and Accuracy Control. The first function, referred to as Adaptation, is aimed at lossless

traffic monitoring, i.e., it adjusts the monitoring process so that all packets are processed in time.

This is achieved through (i) online detection of changes in the operating conditions, and (ii) timely

reconfigurations (in 10ms) of the monitoring operations on part of the input packet stream to obtain

3A Zipf distribution and 105 flows are used
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more light-weight processing under strict time constraints. In contrast to existing approaches that

use multi-core packet scheduling [68][114], MONA tackles the challenge of lossless traffic monitor-

ing from a different angle, by realising adaptations in the monitoring process itself, at the level of a

single CPU core.

Reductions of the packet-processing time are achieved by preventing certain measurement tasks

to execute for subsets of the active flow population. For example, by moving the active flows from

a configuration where all tasks presented in Sec.4.2.1 are executed (approx. 200ns per packet con-

sumption), to one where only HH and RTx are active (approx. 100ns per packet consumption),

MONA can handle a packet rate increase from 5 to 10Mpps. Adaptations of the monitoring opera-

tions can however result in missed events, e.g. undetected bursty flows, which penalises the accuracy

of the monitoring reports. To deal with accuracy degradations, MONA executes the second function,

referred to as Accuracy Control, which re-adjusts the flow allocation after adaptations have been ex-

ecuted to ensure that a user-specified level of accuracy is satisfied for all tasks. This is achieved by

(i) tracking the monitoring report accuracy at run-time by estimating the number of events missing

for each task, and (ii) recovering the identified accuracy gaps by iteratively re-allocating flows so as

to meet the desired accuracy objective for all tasks.

4.3.1 MONA design

An overview of MONA is shown in Fig.4.2. The traffic monitoring process is modelled as a packet-

processing pipeline based on a single hash table, where incoming packets read by the monitoring

process from a buffer, e.g., a DPDK ring, are hashed on their 5-tuple to match a corresponding

flow-entry. Flow-entries contain an identifier, called the Monitoring State, that indicates which mea-

surement tasks to perform for each packet of the flow. The reason for aggregating tasks in monitoring

states is two-fold. It simplifies the design of applications where transitions between monitoring con-

figurations are decided within the dataplane, e.g, based on the outcome of recent measurements and

using a finite state machine [122][123]. It also enables settings in which multiple tasks share part of

their data to save CPU cycles.

The Adaptation and Accuracy Control functions operate together with the monitoring pipeline,

as part of the same process, to avoid additional resource usage (i.e., more cores) as well as synchro-

nisation overheads. As shown in Fig.4.2, the two are however decoupled. This design choice is a

consequence of a well-known problem in software-defined measurements [56][86]: determining a

priori the effects of the set of flows processed by a task on the accuracy of its report is hard. If such

relationship could have been easily characterised, an optimisation-based approach would have been

used to process all packets in time while minimising accuracy losses.

This difficulty is further amplified by the fact that the impact of adaptation decisions on the

report accuracy differ between tasks as this depends on the task-to-monitoring state mapping. Even

in the case where the same decision is applied to all tasks, they can each experience different degrees
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of accuracy degradations. Take the example of an adaptation that prevents both tasks Bursty and HH

to run on a flow subset containing small but very bursty flows. While this causes a large fraction of

bursty flows to be missed (low accuracy for Bursty), it results in only few missed heavy hitters (high

accuracy for HH). These differences are not only due to traffic characteristics but also depend on

the thresholds used by measurement tasks to trigger new events, e.g., the bytes threshold for a heavy

hitter.

In MONA, Adaptation and Accuracy Control are executed separately on the same time-window

basis. At the end of each time-window, the former estimates the available packet-processing time

and determines the new assignment of flows to Monitoring States, while the latter estimates accuracy

degradations and decides how to best recover them. Reconfigurations, if any, are enforced over the

following window(s) based on the joint outcome of the two functions.

The design of MONA addresses three main challenges.

1. It ensures limited run time overhead in terms of CPU consumption. All procedures involved

in MONA time-share the CPU with packet processing since they operate on the same core,

hence their time consumption can directly affect the monitoring pipeline by decreasing the

sustainable packet-rate and incurring additional loss. As such, all operations in MONA are

designed so that (i) they generate limited CPU-time overhead (≈ 1ms), and (ii) they all run to

completion in short times (no more than 10µs) to avoid starvation in the packet capture queue.

2. It enables the operational conditions to be accurately estimated by only employing light-

weight tools that provide high levels of confidence.

3. It supports reactive monitoring reconfigurations by making sure that each component of the

proposed solution works with time-windows as small as 10ms.

4.4 Monitoring adaptation
As shown in Fig.4.2, the Adaptation function relies on a three-phase procedure. The first phase,

Offline Profiling, runs at the initialization of the monitoring pipeline before the start of an incoming

packet stream. Its role is to profile the various processing times involved in the monitoring pipeline.

The other two, namely Online Estimation and Adaptation Routine, execute at run time.

In each time-window, the Online Estimation procedure extracts the current run time conditions

of the monitoring pipeline using limited additional measurements and a few key results from the

Offline Profiling phase. At the end of each time-window and based on the extracted knowledge,

an estimate of the available monitoring time per-packet is generated, which is set as the target for

the next window. The Adaptation Routine takes this value as input and, if the actual monitoring

configuration exceeds the target time, it adjusts the set of measurement tasks for subsets of the flow-

table entries to ensure that all packets can be processed on time.
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4.4.0.1 Expected time per packet

The total expected time associated with each packet in the monitoring pipeline depends on whether

the packet belongs to a new flow, for which no entries exist in the flow-table, or to an existing flow.

In the first case, this represents the total processing time for a new-flow packet (including the new

flow-entry insertion), denoted here as Ti. In the second case, the time can be decomposed down to

two main components: the retrieval time Tr, i.e., the time for retrieving the measurement data for

the packet, including hashing and accessing the matching flow-table entry, and the processing time

Tp, i.e., the time needed to perform the operations in the current Monitoring State of the matching

flow-entry (i.e., the associated measurement tasks). The total expected packet time Tpkt can then be

estimated based on the following equation:

Tpkt = (1−λ f )(Tr +Tp)+λ f Ti (4.1)

where λ f represents the ratio of packets belonging to new flows over the total number of packets

processed in the current time-window. Based on the findings reported in [115][28], which show that

the probability of retrieving data from L3 processor cache is by far the dominant factor affecting the

retrieval time, Tr can be further decomposed as:

Tr = T H
r ·P+T M

r · (1−P) (4.2)

where T H
r and T M

r represent the retrieval time in case the data is accessed from the processor

cache and from memory, respectively. P is the probability of cache hit (i.e., the matching flow-

table entry is retrieved from the cache), and (1−P) is the probability of cache miss (i.e., access to

memory). Combining equations (4.1) and (4.2), the time per packet Tpkt is given by:

Tpkt = (1−λ f )[T H
r ·P+T M

r · (1−P)+Tp]+λ f Ti (4.3)

As observed from equation (4.3), Tpkt can be obtained based on the estimation of six variables.

To keep the run time adaptation cost as low as possible, the best approach to determine these values

is to perform the estimation offline, for example based on benchmarking. While this works well for

Tp, T H
r , T M

r and Ti, it cannot apply to P and λ f given that both variables strongly depend on the run

time conditions. In this case, an online procedure is required.

4.4.1 Offline profiling

The objective of the Offline Profiling phase is to characterise the resource utilisation of traffic mon-

itoring by analysing the execution times Tp, T H
r , T M

r and Ti through a set of benchmarks. While

resource consumption can be easily derived online in the case of monitoring solutions dedicated

to hardware switches (each monitored flow strictly maps to a single flow-entry in TCAM), it is a

much harder task to achieve in software deployments where the focus is on CPU time rather than
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Operation
5th Quantile
Time (ns)

95th Quantile
Time (ns) Std dev.

Timing 13 15 0.9
Tp: RTx & HH 67 74 2.62
Tp: Bursty & LatChange 74 79 2.13
T H

r 80 128 8.87
T M

r 149 272 39.20

Table 4.1: Statistics for Tr and representative Tp datasets

memory usage. Not only do the processing times depend on the server hardware (e.g., clock rate),

they also vary based on what monitoring operation must be performed on a packet. Offline Profiling

overcomes this limitation by building the knowledge with which resource utilisation can be tracked

at run time with a limited cost.

4.4.1.1 Estimating the processing and retrieval times

To determine the value of the processing and retrieval times, the Offline Profiling leverages the

observation that in practice the processing time Tp is much more predictable than the retrieval times

T H
r and T M

r
4. Intuitively, the processing time for each Monitoring State is proportional to the

number of boolean/arithmetic operations executed in that state. In contrast, T H
r and T M

r , which

are dominated by the flow-entry retrieval time, can be affected by possible hash collisions, the use

of different processor caches in the available hierarchy, or unwanted episodes regarding memory

access, e.g., TLB (Translation Lookaside Buffer) misses, whose impact also depends on the server

hardware and kernel configuration (e.g., memory page size).

To illustrate these effects, Table 4.1 shows the statistics of the execution times distribution for

data retrieval (Tr) as well as various monitoring operations (Tp). These tests have been conducted

on a 2.7 GHz CPU with 3MB L3 cache. A timing operation is also included in the table, which

measures the duration of the different operations using a high definition timer. As observed, while

T H
r and T M

r exhibit high statistical dispersion, the values of Tp for the two considered Monitoring

States are characterised by low standard deviation that can partly be attributed to the bias introduced

by the timer. Based on these results, two different strategies have been developed to estimate the

values of Tp and T H
r /T M

r , respectively.

4.4.1.2 Processing time estimation.

Given the predictability of Tp, the processing time required for each Monitoring State si (T si
p ) can be

estimated by collecting samples of T si
p over a large packet trace and setting the value of T si

p to the

sample mean.

4.4.1.3 Retrieval time estimation.

Due to the sensitivity of the retrieval times, a different approach is proposed based on statistical

model fitting to estimate the value of T H
r and T M

r . The proposed approach works in two steps as

4Extensive analysis performed during this study confirmed this behaviour.
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Normal
(baseline)

Weibull
(BIC to baseline)

Gumbel
(BIC to baseline)

T H
r 0% +1.86% -3%

T M
r 0% +8.1% -7%

Table 4.2: Model selection for T H
r and T M

r

described below.

The objective of the first step is to collect two datasets of time samples, one for T H
r and one for

T M
r . When collecting the relevant datasets, it is essential to ensure that flow entries reside in either

the fast processor caches (for T H
r ) or in memory (for T M

r ). This can be achieved by modulating the

size of the monitoring working set used by the input packet stream (i.e., number of unique flows in

each trace). Given the L3 processor cache size S, with NH and NM denoting the number of different

flows in each trace (i.e., for T H
r and T M

r , respectively), and the size of the flow-table entry F , the size

of the monitoring working set should be so that the following conditions are satisfied: NH .S < L3

(for T H
r to force cache hit) and NM.S� L3 (for T M

r to ensure cache miss).

Using a standard fitting strategy, the second step selects the most appropriate statistical model

to represent the distribution of each variable. Although different distributions can be taken into

account, the process has been simplified by restricting the choice to three representative cases cap-

turing well various degrees of sample asymmetry. In particular, the Normal distribution is selected

as the baseline, as well as two distributions characterised by a heavy tail, namely the Weibull and

the Gumbel distributions. The Bayesian Information Criterion (BIC) is used for the model selection

as it shows more consistent results compared to the maximum likelihood estimation for very large

sample sizes. It is based on −2log(likelihood), hence the lower its value the better the fit.

Table 4.2 shows the results of the model fitting strategy based on the considered distributions

for the setup of Table I. As observed, the best fit is obtained with the Gumbel model for both T H
r and

T M
r .

4.4.1.4 Estimating the flow-insertion time

The objective of this procedure is to extract the total execution time for packets of new flows Ti.

The estimate of Ti is taken as the average of all Ti values collected from a large packet trace (e.g.,

approximately 210ns for the setup in Table I) under the assumption that new-flow packets form a

small subset of the total traffic (e.g., no more than 10%). In cases like SYN attacks, where Ti becomes

dominant, existing resilience mechanisms [8], that are out of the scope of this chapter, could be used

in conjunction with our solution.

4.4.2 Online estimation

The objective of the Online Estimation phase is to determine at each time-window the value of λ f

and P, as well as the packet arrival rate at the capture engine queue λpkt . The result is an estimate of

the available per-packet time for the next time-window, which is based on the run time conditions of
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Figure 4.3: Precision of P (probability of flow-entry retrieval from cache) estimation

traffic monitoring and the value of Tp, Tr and Ti computed during the Offline Profiling phase.

To estimate λ f , a simple strategy incurring negligible overhead is used, which counts the flow-

table insertions and divides this value by the total number of processed packets during each time

window. The packet capture rate λpkt is derived by periodically updating the count of packets that

have been written in the queue, i.e., each time a new packet burst is loaded by the packet acquisi-

tion library. In DPDK [15], for instance, this information can be retrieved using the counts in the

rte eth stats and rte ring API.

Several methods can be considered for estimating the value of the variable P. One possibility

is to use an analytical model to predict the cache miss rate as proposed in [124]. However, this does

not apply well to our solution as: (i) it requires that the temporal behaviour of the application in

terms of reuse of addresses has a single profile, which does not apply in our case; and (ii) it does

not consider the effect of co-runner processes on the cache hit ratio. Other approaches involving

online Miss Rate Curve generation generally incur substantial overheads (e.g., an additional 230 ms

is reported in [125]), while faster techniques, like the one presented in [126], rely on cache-related

hardware counters that are restricted in current hardware [127].

This chapter proposes a simpler approach which is based on Tr sampling and uses the models of

T H
r and T M

r obtained from the Offline Profiling phase. In each time-window, the proposed approach

periodically samples the flow retrieval time with a high precision timer. Denoting K as the number

of samples to collect, the sampling period can be approximated by λpkt/K. For each sample t i
r, the

approach first computes Prob(Tr > t i
r|hit), i.e., the probability for the retrieval time to be greater

than t i
r assuming that the retrieval was from a hit, and Prob(Tr ≤ t i

r|miss), i.e., the probability for the

retrieval time to be lower than t i
r under a miss. Given the model of T H

r and T M
r computed through

profiling, the value of Prob(Tr > t i
r|hit) is obtained by 1−CDFT H

r
(t i

r) and Prob(Tr ≤ t i
r|miss) is

obtained by CDFT M
r
(t i

r). Let r denote the vector of results with each element r(i) equal to:

r(i) =
{

1 1−CDFT H
r
(t i

r)≥CDFT M
r
(t i

r)

0 otherwise

The value of P is approximated as the percentage of non-zero values in the vector r.
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To illustrate the performance of the proposed approach in terms of estimation accuracy, this has

been used to classify 103 different ground-truth traces (for which P is known - Ptruth) that has been

obtained by modulating the traffic skew as explained in Sec.4.2. The estimation error is measured as

the difference in percentage between the value of Ptruth and the value of P computed by the algorithm.

As depicted in Fig.4.3, our method achieves very high accuracy on average. Its performance is also

compared to the one obtained using a naive classification where each r(i) is set to 1 or 0 by simply

using the distance of each t i
r from the sample mean of T M

r and T H
r . For K = 103 the error is around

5%, whereas our method achieves < 1%.

Available processing time Given the values of λ f , λpkt and P, and the variables Tp, T H
r , T M

r

and Ti, the Online Estimation procedure finally extracts the average processing time for the next

time-window T target
p by setting:

(1−λ f )[T H
r P+T M

r (1−P)+T target
p ]+λ f Ti = 1/λpkt (4.4)

4.4.3 Adaptation routine

In case a monitoring configuration exceeds the target time T target
p , the role of the Adaptation Routine

is to decide which measurement task(s) should be avoided in the next time window, and for which

flows. To this end, available knowledge on the monitoring pipeline can be exploited, such as the

current average processing time and the time estimations described in Sec.4.4. Based on this infor-

mation, new monitoring configurations that satisfy the available time constraint can be derived and

enforced in the next time window.

Ideally, a new configuration should be generated by a convex optimisation that assigns each

flow entry to a specific monitoring state, so as to maximise some objective in terms of monitoring

accuracy. In practice, this is not viable for two reasons. The first is the overhead associated with

solving such a problem per flow entry, and the second is that the impact of reconfigurations on the

monitoring accuracy is not known a priori.

To overcome these limitations, the proposed Adaptation Routine takes a different path. Instead

of dealing with individual 5-tuples or packets, it operates at the granularity of Monitoring States, as

each one maps to a different subset of the flow-table. In addition, it follows a probabilistic approach,

where random portions of the flow-table are re-allocated to more light-weight states such that T target
p

is achieved. These two features allow our solution to generate a new monitoring configuration within

a few microseconds.

The pseudocode of the proposed approach is shown in Alg.2. When invoked at the end of a

time-window, it takes as input the count of packets processed at each Monitoring State si in the

last time-window, and a graph mapping each si to a less time-consuming state si−1 is generated. An

example of such a graph is shown in Fig.4.4. The way this can be derived depends on the logic of the

monitoring process. For example, in scenarios like [123][122], each Monitoring State incorporates
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Algorithm 2: Adaptation Routine

1: procedure COMPUTENEWCONFIGURATION (T target
p ,{ni},{si−1})

2: j = 0
3: Compute avg processing time: T j = ∑

k
i=1 niT

si
p /∑

k
i=1 ni

4: while (T j > T target
p ) do:

5: for each i ∈ (1, ..,k) do: Shift all flows in si to si−1
6: j++
7: Update avg processing time: T j = ∑

k
i=1 niT

si−1
p /∑

k
i=1 ni

8: Compute residual shift x: x = (T j−1−T target
p )/(T j−1−T j)

9: return adaptation decision ( j,x)

s1

s2

s3 ...

Decreasing processing
time T

p

Monitoring adaptation

(More lightweight state)

Figure 4.4: Representative monitoring state graph

the necessary logic in its code for transitions to other states once specific conditions on flow-entry

statistics are met. For these cases, si−1 is obtained for each si by backtracking in the state machine

until a more light-weight monitoring state is found.

Our algorithm initially calculates the current average processing time T 0 =(∑k
i=1 miT

si
p )/∑

k
i=1 mi,

where mi is the number of packets in state si during the last time-window. Then, it iteratively re-

allocates flow-entries to more light-weight Monitoring States. At each iteration j it computes the

average processing time if all flows were forced to their previous Monitoring State, i.e., from si to

si−1. If this value, T j, exceeds T target
p , a new iteration is executed. Otherwise, the procedure takes

the monitoring configuration for T j−1 and forces only a portion x of the flow-table to an additional

step-back in the Monitoring State set, where x = (T j−1−T target
p )/(T j−1−T j). In practice, x is the

ratio of flows to be further shifted so that the average processing time can match T target
p .

When the next time-window starts, the new configuration is applied using the hash of the first

new packet for each flow-entry, which ensures that x is a (pseudo)random portion of the flow-table.

By comparing the hash with x (using a modulo operation), it decides to update the flow Monitoring

State to j or j−1 steps back.

4.5 Monitoring accuracy control
While timely adaptations prevent packets from being dropped in the monitoring pipeline, they can

penalise the accuracy of the reports computed by each measurement task, as explained in Section

4.3. This section presents a Monitoring Accuracy Control function that aims at re-adjusting the

flow allocation after adaptations have been executed, so that a global accuracy objective (maintain

accuracy above a threshold) can be satisfied for all tasks. Its design consists of two key procedures.

The first one quantifies the effect of adaptations on the monitoring report accuracy. Given the lack
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of ground-truth information for the monitoring results, this is achieved using a task-generic solution

that generates accuracy estimates at run-time; prior work e.g. [56][86] is limited to employing ad-

hoc estimation techniques for each task. The second procedure performs accuracy gap recovery.

Based on the output of the online estimation, it re-adjusts the flow allocation in order to alleviate

accuracy degradation.

4.5.1 Online accuracy estimation

The objective of the Online Accuracy Estimation procedure is to generate accuracy estimates at run-

time based on partial monitoring results. The accuracy of the reports computed by a measurement

task is quantified according to the value of the Recall [120][118][56][86], i.e., the ratio between the

number of events identified by the task (e.g., number of heavy hitters, bursty-flows, etc.) and the

total number of events in the traffic. This metric is well-aligned with the logic of the adaptations:

the accuracy degradation is in terms of false negatives (e.g., missed heavy-hitters) rather than false

positives. The recall of monitoring task i at time-window w is defined as Recalliw:

Recalliw = NFound
iw /(NFound

iw +NMiss
iw )

where NFound
iw is the number of events identified by task i, while NMiss

iw is the number of events missing

with respect to the input traffic (i.e., ground-truth), which is unknown. NMiss
iw can be further expanded

as:

NMiss
iw = FMiss

iw ·E[XMiss
iw ]

where FM
iw is the number of missing flows for task i at time-window w (i.e., flows for which task i

has been dropped), which is measured from the output of the Adaptation Routine, E indicates the

expected value, and XMiss
iw is the number of events for a missing flow at w, which is unknown, e.g.,

the number of retransmissions of a flow not processed by RTx at time-window w. The objective is

to determine a reliable estimation of XMiss
iw .

Formally, the estimation problem can be modelled using a decision-theoretic approach. In this

chapter, the decisions are expressed as risk-taking decisions, where the risk is in generating poor

estimations of XMiss
iw . Let x̂Miss represent a generic estimator for XMiss

iw . A Risk function R(x̂Miss) is

defined, associated with the choice of the estimator x̂Miss, as:

R(x̂Miss) =
∞

∑
l=0

L(xMiss
l , x̂Miss)Prob(XMiss

iw = xMiss
l ) (4.5)

where the Loss function L(XMiss
iw , x̂Miss) represents the loss incurred by replacing XMiss

iw with x̂Miss.

The best estimator of XMiss
iw is the one with which R(x̂Miss) is minimised, i.e.,:
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x̂Miss
Best = argmin

x̂Miss
R(x̂Miss,L) (4.6)

As can be observed, x̂Miss
Best depends on the choice of the loss function L. In practice, differ-

ent estimators can be used for XMiss
iw . A possible approach is to replace XMiss

iw with its worst-case

value [56]. However, this solution is prone to significantly underestimating the accuracy if FMiss
iw

is large. In addition, it is not suitable for some tasks, e.g., the worst-case number of missing flow

retransmissions cannot be known.

This chapter takes a different approach and proposes to estimate XMiss
iw based on the mon-

itoring results observed over the most recent q time-windows. More specifically, let Xiw =

(xiw1,xiw2, ...,xiwm) represent the vector of the results xiw j of task i, for each flow j, at time-window

w. xiw j is equal to the number of events detected by task i for flow j at time-window w, and unde-

termined if j is a missing flow for task i. The temporal dependence of Xiw over the most recent q

time-windows is modelled as a moving average MA(q) with order q 5:

Xiw = µi + zw +θ1zw−1 + ...+θqzw−q

where µi and θi are the mean and parameters of the model, respectively, and zw ... zw−q is Gaussian

noise so that E[Xiw] = µi.

The value of µi can easily be determined by noting that E[Xiw] = E[X iw] = µi, where X iw

represents the mean of vector Xiw. In other words, to characterise the model, it is sufficient to track

the values X i(w−q) ... X iw in the last q time-windows. Given that X iw are unknown by definition, their

value is estimate using the observed average monitoring results (i.e., extracted from flows processed

by task i), denoted as xObs
i(w−q) ... xObs

iw . µi is then obtained by taking the weighted average of values

xObs
i(w−q) ... xObs

iw as follows:

µi =

√
niw
σ2

iw
xObs

iw +
√

ni(w−1)

σ2
i(w−1)

xObs
i(w−1)+ ...+

√
ni(w−q)

σ2
i(w−q)

xObs
i(w−q)√

niw
σ2

iw
+
√

ni(w−1)

σ2
i(w−1)

+ ...+
√

ni(w−q)

σ2
i(w−q)

where niw is the number of available results for task i at time-window w (i.e., number of flows

processed by task i) and σ2
iw their sample variance. In practice, the more the results available at time

w and the less their variance, the higher the contribution of time-window w.

Using the average values xObs
iw to compute the model parameters offers several advantages. The

state that needs to be maintained for each monitoring task is drastically reduced and the computa-

tional overhead of the estimation is decreased.

We take into account the model of the evolution of X iw values over the last q time-windows to

set the loss function L, so as to make the accuracy estimation more or less conservative according

5By default results from the last 10 time windows are used, so q = 10
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to run-time conditions. In particular, these are assessed based on the probability of large accuracy

estimation errors. If the probability is small, L is replaced with the quadratic loss function, widely-

used in testing (e.g., least squares techniques), that penalises the large errors more. In contrast, if

the probability is large, L is defined so that only large deviations from XMiss
iw are penalised. More

specifically, the probability of large estimation errors depends on the variability of the distribution

of the results of task i. This is captured by the coefficient of variation σi/µi of the mean values X iw

over the last q time-windows, where σi is the standard deviation of X iw (measured based on xObs
iw

values)6. The ratio σi/µi = 1 is used as the threshold of high variability7 and the loss function L is

defined as follows:

L =

{
(XMiss

iw − x̂Miss)2 σi
µi
≤ 1

I[|XMiss
iw − x̂Miss|> c] σi

µi
> 1

(4.7)

where c is an arbitrary value to decide when to penalise estimation errors in case σi
µi
> 1.

Based on (4.7), the best estimator x̂Miss of XMiss
iw is determined depending on the value of σi/µi,

as follows:

x̂Miss =

{ µi
σi
µi
≤ 1

argmin
x̂Miss

Prob(|XMiss
iw − x̂Miss|> c) σi

µi
> 1

(4.8)

In the following the proof of equation (4.8) for case 1 (i.e., σi
µi
≤ 1) is reported, as well as the

justification of equation (4.8) for case 2 (i.e., σi
µi
> 1).

Proof of (4.8) - case 1 Replacing L with the Quadratic Loss Function (xMiss
l − x̂Miss)2 in the expres-

sion of R(x̂Miss) we obtain:

R(x̂Miss) =
∞

∑
l=0

(xMiss
l − x̂Miss)2Prob(XMiss

iw = xMiss
l |XObs

iw = xObs
iw )

=
∞

∑
l=0

(xMiss
l )2Prob(XMiss

iw = xMiss
l |XObs

iw = xObs
iw )

−2x̂Miss
∞

∑
l=0

xMiss
l Prob(XMiss

iw = xMiss
l |XObs

iw = xObs
iw )

+(x̂Miss)2
∞

∑
l=0

Prob(XMiss
iw = xMiss

l |XObs
iw = xObs

iw )

To minimise the Risk function we set dR(x̂Miss)
dXMiss = 0:

6σ2
i is the variance of the sample mean of Xiw

7This is a standard choice, based on the comparison with the exponential distribution
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dR(x̂Miss)

dXMiss = 2
∞

∑
l=0

xMiss
l Prob(XMiss

iw = xMiss
l |XObs

iw = xObs
iw )

−2x̂Miss
∞

∑
l=0

Prob(XMiss
iw = xMiss

l |XObs
iw = xObs

iw )+0 = 0

from which we obtain:

x̂Miss =
∞

∑
l=0

xMiss
l Prob(XMiss

iw = xMiss
l |XObs

iw = xObs
iw ) = E[XMiss] = µi

Hence, the risk is minimised choosing x̂Miss = µi.

Justification of (4.8) - case 2 In this case the loss function L is replaced by:

L = I[|XMiss
iw − x̂Miss|> c] =

{
1 |XMiss

iw − x̂Miss|> c

0 |XMiss
iw − x̂Miss| ≤ c

and the expression of the Risk function becomes:

R(x̂Miss) =
∞

∑
l=0

I[|xMiss
l − x̂Miss|> c]Prob(XMiss

iw = xMiss
l |XObs

iw = xObs
iw )

= Prob(|XMiss
iw − xMiss

l |> c|XObs
iw = xObs

iw )

(4.9)

As such, minimising the Risk function corresponds to minimising the probability of estimation errors

larger than c. �

As shown in (4.9), in case σi
µi
> 1, the equation 4.8 cannot be solved if no assumption is made

on XMiss
iw . As such, for this case, instead of defining a solution for (4.8), we provide an approximate

bound for the Risk function. To this end, we apply the Chebyshev’s inequality to the probability of

large estimation errors Prob(|XMiss
iw − x̂Miss|> c), i.e.,

Prob(|X iw−µi| ≥ λσi)≤
1

λ 2

from which we can further derive:

Prob(X iw ≥ µi +λσi)≤
1

λ 2

This gives an estimator of XMiss
iw equal to µi +λσi in the case of large probability of large estimation

errors, with guarantees that the Risk is no larger than 1/λ 2. For instance, with λ = 3, the Risk of
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poor estimation is bounded to 10%.

Summary: The estimation procedure for a generic task i operates as follows. At the end of time-

window w, the number of available results niw and their sample variance σ2
iw are updated. These

values, together with those obtained in the q− 1 previous time windows, are then used to compute

µi. The sample mean of the available results xObs
iw are also extracted and used to update the coefficient

of variation of X iw, i.e., σi
µi

. Based on the value of σi
µi

, the loss function L is selected according to

(4.7). The estimator is finally chosen as µi if σi
µi
≤ 1, and as µi +λσi otherwise.

4.5.1.1 Performance evaluation and discussion

Fig.4.5 illustrates the performance of the proposed online accuracy estimation procedure in terms

of Accuracy Estimation Error calculated as the absolute distance between the Estimated Recall

and Real Recall (extracted from the ground-truth) normalised by the Real Recall. Experiments

are conducted using 100 ground-truth packet traces derived from [55], with dynamic rate in

[0Gbps,10Gbps], and the four different monitoring tasks presented in Sec.4.2.1. To show the gain

achieved by adapting x̂Miss to the run-time conditions, the performance is also compared against two

baseline approaches, one with an estimator always given by the mean (mean), and one only using

the upper bound µi +λσi (u-bound).

As can be observed, the estimation error is generally low, overall 8% on average, and never

exceeds 20%. The highest error (around 17%) is obtained for LatChange, which is the task producing

the least predictable monitoring results in the experiments. Compared to the two baseline cases, the

proposed approach generally achieves lower error, with substantial gain in particular for RTx (2x

reduction compared to u-bound) and LatChange (>5x reduction compared to mean).

In addition to performance gains, a key advantage of the proposed method is its task-generic

nature as opposed to recent solutions for TCAM-based [56] and sketch-based [86] measurements,

which define ad-hoc accuracy estimation procedures for each monitoring task. In practice, the pro-

posed approach can be applied to all monitoring tasks whose output is a count (e.g., how many

retransmissions for flow x?) or a classification (e.g., is aggregate y a heavy-hitter?). As shown in

[8][56][86], tasks detecting network episodes or anomalies, or serving network management deci-

sions, fall well in these categories. In addition, the proposed solution can run on a limited time

budget as it involves operations that can be executed at a low cost: all distributions are obtained by

sampling and fast techniques can be used to compute mean and variance values, e.g., [128].

4.5.2 Accuracy gaps recovery

An estimate, based on the value of the Recall, is generated by the Online Accuracy Estimation

procedure for each monitoring task at the end of each time-window w. The estimates are further

used by an Accuracy Gaps Recovery procedure to re-adjust the flow allocation so that accuracy

degradation resulting from the Adaption Routine can be alleviated.

Let Aiw denote the accuracy estimate for task i at time-window w. A task is tagged as poor
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Figure 4.5: Performance of Accuracy Control: accuracy estimation error
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Figure 4.6: Performance of Accuracy Control: recovery convergence time (multiples of 10ms time window)

at time w if Aiw is below a threshold and as rich otherwise.8 The objective of the Accuracy Gaps

Recovery procedure is to recover the accuracy gap of a poor task by applying it to a larger set of flows

and compensating the additional CPU time needed with controlled degradation of rich tasks. This

is achieved using a rebalancing approach that reallocates subsets of flows to different monitoring

states in an iterative fashion, with one iteration per time-window. Ideally, all accuracy gaps should

be recovered within one time-window, but this is difficult to achieve in practice. Not only is the

number of flows needed to meet an accuracy target not known a priori, it is also not possible to

determine the maximum number of flows a task can donate while keeping the accuracy of its report

above the desired threshold.

More specifically, at each iteration the algorithm presented in Alg.3 is executed. Let Aw =

(A1w,A2w, ...,Akw) denote the vector of estimates for each monitoring task 1, ...,k and M a binary

n ·k matrix, where n is the number of monitoring states and k the number of tasks, with the task/state

mapping so that Mi j = 1 if state i includes task j, and 0 otherwise. In addition, let B be a n ·n matrix

8For simplicity, the same accuracy threshold was used for all tasks.
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indicating the transitions of flows between monitoring states due to previous adaptation decisions, as

recorded in the current time-window. Each value Bi j is the ratio of flows that were previously moved

by the Adaptation Routine from state i to j (with j being more light-weight than i) to save time.

Alg.3 initially selects, from the global set of monitoring states, a subset of poor states, contain-

ing one or more poor task(s), and a subset of rich states, in which all tasks have an accuracy higher

than the desired threshold with a small headroom ε . The headroom is used to prevent rich states

becoming poor after a single iteration. For each pair of states (srich,spoor) a re-balancing action is

taken based on a step-size parameter S. This involves shifting ∆− flows from srich to the default state

(e.g., s1 in Fig.4.4) and using the resulting gain in time to revert the monitoring adaptation for ∆+

flows moved from spoor. The value ∆− is set to S normalised by the number of poor states, while ∆+

is obtained from ∆− by imposing the equilibrium condition “constant CPU time consumption”:

∆
−(trich

s − tde f ault
s ) = ∆

+(t poor
s −E[t̃ poor

s ]) (4.10)

where the values ts are the state execution times, and E[t̃ poor
s ] is the expected execution time for flows

moved away from spoor by the Adaptation Routine, as indicated by B:

E[t̃ poor
s ] =

∑ j Bpoor, jt
j
s

∑ j Bpoor, j

The choice of the step-size S involves a trade-off between stability and convergence time, which

is a well-known challenge of any resource allocation algorithm. While using small steps may lead

to high convergence times, big step sizes can make measurement tasks oscillate between rich and

poor over consecutive time-windows. The best practice for setting the value of S is to use an in-

crease/decrease policy [56]. In this work, we relate the change of S to the accuracy evolution of

each rich state srich, with the objective to converge rapidly while preventing srich from dropping be-

low the desired accuracy threshold. After each iteration, i.e., at time-window w+1, the algorithm

computes the decrease of srich accuracy D = Arich,w+1 − Arich,w, as well as its residual accuracy

H = threshold−Arich,w+1. S is increased if H > D and decreased otherwise.

The impact of different standard increase-decrease policies is evaluated on the convergence

times of Alg.3. More specifically, we experiment with different combinations of the additive (A)

and multiplicative (M) policies. The results are depicted in Fig.4.6 for the same input traffic used in

Fig.4.5 and initial S values in [0.25%−10%] of the initial active flow set. The best performance in

this scenario is achieved by the multiplicative increase-decrease policy (MM).

4.6 Evaluation
This section extensively evaluates MONA framework. To this end, MONA is implement based on

a generic and widely-used [8][28] traffic monitoring pipeline relying on a single hash table. In

addition, to quantify the gain introduced by MONA Accuracy Control functionality, the monitoring
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Algorithm 3: Recover Accuracy Gaps
1: function UPDATESTEPSIZE(x,Sx)
2: Compute accuracy decrease D = Ax,w−1−Ax,w
3: Update residual accuracy H = Ax,w− threshold
4: if D > H then return INCREASE(Sx)
5: else return DECREASE(Sx)
6: function REBALANCEBYSTEP(sRich,sPoor,S)
7: Compute ∆− = S/np, where np number of poor states
8: Retrieve E[t̃Poor

s ] from TPoor, j, j ∈ 1, ..,n
9: Compute ∆+ from equilibrium condition (4.10)

10: return ∆−,∆+

11: procedure RECOVERYGAPS(Aw,M,Tw)
12: Find set of rich, poor states {sRich}, {sPoor} using Aw
13: if {sPoor}== /0 or {sRich}== /0 then return
14: for each x in {sRich} do:
15: Sx = UPDATESTEPSIZE(x,Sx)
16: for each (x,y) with x ∈ {sRich},y ∈ {sPoor} do:
17: REBALANCEBYSTEP(x,y,S)
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Figure 4.7: MONA monitoring pipeline implementation

pipeline is enabled to perform a set of representative, widely-used, measurement tasks, for which

the associated monitoring reports’ accuracy is analysed.

The evaluation is conducted in three main steps. First, Section 4.6.3 tests the performance

of adaptive traffic monitoring in terms of packet loss risk and adaptation responsiveness. Then,

Section 4.6.4 investigates the impact of monitoring adaptations and accuracy control on the mea-

surement tasks. Finally, in Section 4.6.5 the overhead of the proposed framework is evaluated. This

includes the completion times of the main procedures and the additional run time overhead incurred.

All experiments have been performed on an Intel i7-4790 CPU with 4 physical cores at 3.6 GHz

and shared L3 cache of 8 MB.

4.6.1 Implementation of MONA

MONA is implemented in the C language as part of a generic monitoring pipeline based on a single

flow-table. An overview of MONA monitoring pipeline is depicted in Fig. 4.7. A hash table is used

to realise the flow-table where collisions are handled by chaining – a table size of 220 entries was
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Figure 4.8: Monitoring states Config1 (left) and Config2 (right)

chosen to limit the risk of hash collisions. The flow-entry size is set to 64 bytes such that it can fit

in a single cache line. The input packet streams to the monitoring pipeline is generated based on the

following approach. Since the focus is on the bottlenecks arising in the monitoring process, for each

experiment a packet trace is built and pre-loaded in memory. Packets are then fetched with small

bursts at run time so as to isolate the monitoring pipeline from the packet capture stack. One second

of traffic is pre-loaded, which corresponds to approximately 1GB allocated memory for 10Gbps of

traffic.

4.6.2 Experiment setup

Packet trace The packet trace used includes only TCP flows and is derived from recently published

results on flow statistics in data centers [55]. The main characteristics of the trace in terms of

packet size, 5-tuple flow size, and 5-tuple flow duration are listed in Table 4.3. In addition, packet

retransmissions are injected in the trace using the Gilbert-Elliot model [130][74].

Table 4.3: Packet trace characteristics

5th %ile 25th %ile Median 75th %ile 95th %ile
Packet size [B] 60 60 150 200 1000
Flow size [KB] 0.1 0.5 1 5 250

Flow duration [ms] 1 10 750 5 ·104 105

Measurement tasks setup The monitoring pipeline adopts the four measurement tasks introduced

in Chapter 4.2.1. All tasks are configured to report measurement results based on the same period

used in [8] (10ms). Table 4.4 summarises the measurement tasks used and reports their setup in

terms of the thresholds used.

Monitoring states setup To experiment with the monitoring pipeline, we define two different mon-

itoring state configurations, namely Config.1 and Config.2. These are presented in Fig.4.8, along

with their (estimated) processing times Tp. Both configurations include a default state s1 where

only simple packet counting (Count) is performed. In Config.1, additional tasks are progressively

incorporated in each step of the monitoring states chain. The process initially detects large traffic

aggregates (s2) and then starts monitoring the packet loss of these aggregates (s3). For flows with a

high loss, it incorporates burst detection in s4 and finally looks for RTT changes in s5. In the case of
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Table 4.4: Representative measurement tasks

Task Description Setup

Heavy Hitter detection(HH) Find traffic aggregates exceeding a bytes
threshold B, where each aggregate is the
sum of all flows with same source IP

B = 5MB

Bursty flow detection (Bursty) Find if at least x% of the packets of a flow
arrived in bursts, i.e., with an interarrival
time below y milliseconds. If so, the flow
is tagged as bursty

x = 10, y = 1

Latency Change detection (LatChange) Find if the current round-trip-time (RTT)
of a flow falls outside the interval
[mean(rtt)−β · stddev(rtt),mean(rtt)+
β · stddev(rtt)]

β = 1

ReTransmission detection (RTx) Count for each flow the number of re-
transmissions (repeated acknowledgment
/ sequence numbers)

Config.2, which follows a hierarchy, flows can be processed according to three possible monitoring

states, inspired by the use-cases considered in [8]. The goal of s2 is to identify the root cause of

congestion by correlating lossy TCP flows with heavy hitters. State s3 identifies loss as a result of

bursty traffic, and s4 detects server imbalance by collectively tracking latency changes and bursty

flows.

4.6.3 Lossless traffic monitoring

We compare the proposed approach (Adapt) with a more traditional setup where monitoring oper-

ations are not dynamically reconfigured (No-Adapt). We focus on two metrics that represent the

risk of packet loss as a result of bottlenecks in the monitoring process. The first is packet balance,

which indicates whether the system can process the number of packets in the trace during each time-

window – a negative value signifies that the system cannot cope with the packet rate. The second

metric is the expected packet loss, which quantifies the loss given the size of the input buffer. We

compute this using a queue model for two buffer sizes: 4096 packets (saturation of a RSS queue)

and 1 MB (maximum size range for circular buffers in packet acquisition libraries like DPDK and

Netmap) [70].

For these experiments we use Config.1 and we initially assign 1/5 of the flows to each state.

The monitoring adaptation time-window is set to 10ms. To study the performance of our solution

under the emergence of bottlenecks, we perform three types of experiment which reproduce the three

main conditions described in Section 4.2.

Traffic rate variations In these experiments the proposed solution is tested against multi-Mpps

variations of the input rate, which are realised by tuning the rate of exponential packet inter-arrivals

in the trace. We increase the rate linearly from 0 to 14.8 Mpps (10 Gbps of small packets) during

a 1 second interval. As shown in Fig.4.9a, the proposed solution achieves a significantly higher
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Figure 4.9: Packet balance and expected packet loss: traffic rate variations
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Figure 4.10: Packet balance and expected packet loss: shared resource contention

packet-rate compared to the non-adaptive approach (by 2 Gbps). In the No-Adapt case losses are

observed after t ≈ 0.8s, as soon as the rate becomes unsustainable, and a larger buffer (1MB) can

only postpone losses by a few tens of milliseconds. To avoid the loss a second core would need to be

allocated for monitoring the same input packet stream. In contrast, the two adaptations performed

by the proposed approach at t ≈ 0.8s and t ≈ 0.95s allow to sustain a maximum rate of 14.8 Mpps

on a single core without any packet loss.

In addition, the responsiveness of monitoring adaptations in the case of short rate spikes is

evaluated. To emulate the spikes, we generate packet-rate oscillation between 0 and 14.8 Mpps

based on the function sin(t/T ), where T is the oscillation period. Two representative cases, T =

250ms and T = 100ms are depicted in Fig.4.9b and 4.9c, respectively. For T = 250ms, monitoring

adaptations always provide a response to arising bottlenecks in time, before packet loss occurs.

In the case of T = 100ms, huge packet rate variations, up to the equivalent of 3Gbps for 64-byte

packets, are generated in the time-span of a single monitoring adaptation time-window (10ms). As
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Figure 4.11: Packet balance and expected packet loss: traffic skew variation

such, some losses can occur before the new monitoring configuration is applied, i.e., in the 10ms

time-window preceding the adaptation. However, even for such intense and short-lived spikes the

proposed approach significantly outperforms No-Adapt in terms of loss, with a reduction of more

than 50% for both buffer sizes.

Shared resource contention The objective of the next experiments is to assess how monitoring

adaptations handle variations of the operating conditions in terms of concurrent access to shared

resources. To emulate concurrency we use the approach in [115], i.e., we run our solution on core

1, and co-run other processes on cores 2, 3 and 4. Each co-runner is defined as a special monitoring

process that only retrieves flow-entries, so as to maximise the L3 cache references per second. As

depicted in Fig.4.10, we split the 1-second experiment into three intervals of length 1/3s each. In

the first interval we execute 1 co-runner (on core 2), in the second interval we execute 2 co-runners

(on cores 2 and 3), and in the last interval we execute 3 co-runners (on cores 2, 3 and 4).

As shown in Fig.4.10, increasing levels of concurrency lead to performance degradation in

terms of packets processed per time-window, and considerable loss for the No-Adapt setup with 3

active co-runners, regardless of the input buffer size. This is due to the inflation of retrieval times Tr

as a result of increasing L3 cache misses. On the contrary, the proposed solution achieves minimal

loss since concurrency variations are detected at run time through P estimation (Section 4.4.2) and a

new monitoring configuration is provided within 10ms.

Change of traffic skew Lastly, the performance of the proposed solution is evaluated under

variations of traffic skew. To reproduce these variations we split the input packet trace into smaller

intervals of 20ms and for each interval we assign packets to flows (5-tuples) based on a Zipf distribu-

tion with parameter α (flow population size of 2.5 ·105). We start with α = 1.5 (high skew) at t = 0s

and we gradually decrease the skew factor until α = 1 at t = 1s to obtain more uniform traffic. The

packet rate has been fixed at 10 Mpps. As expected, smaller values of α lead to a significant perfor-

mance drop since less packets are served with flow-entries from the L3 cache. As shown in Fig.4.11,



4.6. Evaluation 99

our solution can sustain 10 Mpps on a single core under considerable skew variations, and prevents

losses at much lower skew factors, α ≈ 1.1 (t = 0.9), compared to the No-Adapt case, which starts

starving packets in the input buffers for α ≈ 1.25.

4.6.4 Monitoring report accuracy

The impact of the proposed solution on the monitoring report accuracy is now evaluated to investi-

gate how the report quality is preserved under bottleneck conditions. To this end, we measure the

real accuracy, in terms of Recall, of each task running in the system. This is obtained by comparing

the monitoring results of the system against the respective ground-truth, which is extracted from

offline analysis of the traces.

To control the accuracy we use a threshold of 75% for all tasks, which is inline with the one used

in [56]. For simplicity, traffic flows are assigned randomly to any available monitoring state with

equal probabilities. Finally, to generate bottlenecks and thus trigger adaptations, we use a dynamic

input packet rate in the range [5,11] Mpps, which is obtained by tuning packet inter-arrivals in the

trace.

Fig.4.12 presents the monitoring accuracy results in terms of a Satisfaction metric similar to

the one used in [86] and [56]. This represents the fraction of time a task has its Recall is above the

threshold. Intuitively, 100% satisfaction for all tasks means that the global accuracy goal is fully

achieved. The minimum and median satisfaction is shown from a set of 100 experiments, for the

two monitoring state configurations (Config.1, Config.2). As depicted in Fig.4.12, we compare the

performance obtained with accuracy control (Acc.Ctrl) against two baselines: No-Adapt which is

the standard setup without dynamic adaptations and accuracy control; and Adapt which executes

adaptations without accuracy recovery in place.

As shown in Fig.4.12, both Adapt and No-Adapt incur serious accuracy degradations, with the

satisfaction dropping even below 20% for some tasks. For the Adapt case, this is due to accuracy-

unaware adaptations while, in the No-Adapt case, the reduced satisfaction depends on the amount

of packets never entering the monitoring pipeline as they are starved in the buffers under increasing

packet rates. In contrast, Acc.Ctrl drastically improves the report accuracy, raising the overall me-

dian satisfaction to 75%; 2x and 3x improvement compared to No-Adapt (38%) and Adapt (23%),

respectively.

The satisfaction generally demonstrates similar trends for the two configurations. When com-

paring different measurement tasks, although Acc.Ctrl always achieves a considerable gain, more

noticeable differences arise in terms of satisfaction ranges. For instance, in the case of Config.2 we

observe the median satisfaction at the maximum packet rate oscillating between 60% and 100%. The

reason for these differences is two-fold. Firstly, they depend on the precision of monitoring accu-

racy estimations, e.g., overestimations usually prevent the accuracy control from fully recovering the

real accuracy gaps. Considering RTx and LatChange, with accuracy estimation errors ≈ 10% and
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(b) Config.1, RTx

�

��

��

��

��

���

����� ����� ����� ������

�
�
���
��
�
���
�

�
��
�

�����������

��������
�����

�������

(c) Config.1, Bursty
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(d) Config.1, LatChange
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(e) Config.2, HH
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(f) Config.2, RTx
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(g) Config.2, Bursty
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(h) Config.2, LatChange

Figure 4.12: Monitoring accuracy in terms of task satisfaction (Min ◦, Median �)
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≈ 20%, respectively (see Fig.4.5), we obtain a satisfaction of 80/95% for the former and 70/60% for

the latter. It is also evident that the very low estimation error for Bursty (less than 1% in Fig.4.5)

relates to its very high median satisfaction. Secondly, the different satisfaction ranges reflect the

different resource/accuracy trade-offs of different tasks. This explains the different behaviour, with

lower satisfaction, of HH. In this case the concavity of the curve is such that few missing flows can

translate to high ratio of undetected heavy hitters (i.e., low Recall). Intuitively, this is because heavy

hitters are evaluated based on the total size of multiple flows, and using a high threshold (5Mb for

10ms).

General validity of accuracy results The satisfaction results in Fig.4.12 have been obtained for a

small set of monitoring tasks. However, these tasks are representative of a wide range of different

monitoring objectives, which includes not only simple flow size or cardinality measurements (e.g.,

HH), but also packet interarrival and traffic burstiness analysis (e.g., Bursty) as well as TCP diagnosis

(e.g., LatChange, RTx). For all these different cases, MONA has been shown to achieve significant

improvements of the satisfaction levels compared to both Adapt and No-Adapt approaches. Among

the findings from Fig.4.12, the following three observations have general validity and can be lever-

aged for any monitoring task that is compatible with MONA (i.e., whose output is a count or a

classification, as mentioned in Section 4.5.1):

1. MONA outperforms the No-Adapt approach in terms of satisfaction levels and the gain

achieved by MONA generally increases with the traffic speed, since increasing traffic rates

correspond to additional packet loss in the No-Adapt case, which results in additional loss of

monitoring information.

2. Higher accuracy estimation errors correspond to lower task satisfaction levels, since estimation

errors result in incorrect inputs to the Accuracy Gaps Recovery routine.

3. The satisfaction level of a task depends on its resource/accuracy relation (i.e., the task-specific

curve of diminishing returns [56]). This curve relates the amount of monitoring information

lost due to unobserved flows to the Recall reductions on which the satisfaction gaps depend.

Based on these observations, indications on the satisfaction level of a new task can be obtained by

looking at the accuracy estimation errors and its curve of diminishing returns. The main problem,

however, is that such information can hardly be known a priori. When this knowledge is not avail-

able, an experimental evaluation of the task satisfaction using ground-truth monitoring results is

required as done for Fig.4.12.

4.6.5 Monitoring adaptation overhead

The cost of the proposed solution in terms of run time overhead is evaluated. To this end, we

consider (i) the execution time of the main procedures running at the end of a time window, and

(ii) the additional CPU time consumed throughout a time-window for the estimations presented
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(a) Adaptation execution time (b) Accuracy control execution time

(c) Estimation overhead (d) Reconfiguration overhead

Figure 4.13: Evaluation of the main run-time overhead components in MONA

in Section 4.4.2 and 4.5.1, and for applying adaptation and accuracy control decisions. The latter

implies a reduction in the sustainable packet-rate, while the former also translates to spikes of packets

waiting at the input buffers.

Adaptation execution time This time corresponds to the adaptation routine completion. As depicted

in Fig.4.13a, the worst-case (i.e., adaptation minimises per-packet processing time) execution time

in O(k2), with k being the number of monitoring states. However, even for a large value of k, e.g.,

k = 64, the routine can still run to completion within a short period, in the range of 10µs, resulting to

only 100-150 packets being temporarily held at the input queue for 10 Gbps (much below the packet

capture buffer size).

Accuracy control execution time This time is dominated by the completion of the accuracy recov-

ery procedure. As shown in Fig.4.13b, this increases linearly with the number of measurement tasks

k (O(k)), with the slope depending on the number of monitoring states defined. For a large number

of tasks (e,g., 50) and using 10 different monitoring states, this time is kept within the range of 10µs.
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Table 4.5: MONA feasibility based on total run-time overhead in % of CPU time

#Tasks #States #A.Flows Traffic
(bps/pktSize)

Overhead < x
x = 1% x = 2%

5 5 1000 10G/64B 3 3
10 10 1000 10G/64B 3 3
20 10 1000 10G/64B 3 3
20 20 1000 10G/250B 3 3
40 20 1000 10G/250B 7 3
40 40 1000 10G/250B 7 7
40 40 500 10G/250B 7 3

Estimation overhead This metric groups different overhead components: (i) the time for counting

the number of packets processed according to each monitoring state; (ii) the online estimation of P

(probability of fast flow-entry retrieval) and (iii) the time consumed to compute µi and the loss func-

tion L. Results are shown in Fig.4.13c, where the consumed CPU time is expressed as a percentage

of the 10ms time-window. While an increasing trend can be observed, the overhead is generally

low and it exceeds 1% only for a large number of monitoring states (e.g., 64) with constant 10Gbps

traffic of 64B packets.

Reconfiguration overhead Fig.4.13d shows the additional time required to apply reconfigurations

of the monitoring pipeline due to the adaptation routine or the accuracy recovery procedure. This

overhead linearly depends on the number of monitoring states. Also, it relates to the number of active

flows in the 10ms time window since the reconfigurations are enforced only once per flow. We can

observe that this overhead exceeds 1% only for the maximum level of flow concurrency (1000), and

for a large number of monitoring states (> 40). It should be noted that the range considered here for

the number of active flows matches the statistics reported in [131] and [55].

Overall, the total overhead is a function of the number of measurement tasks and monitoring

states, the packet rate and size, and the flow concurrency. Table 4.5 summarises the feasibility range

of our solution given two maximum overhead constraints, 1% and 2% of the CPU time. As shown

in the table, the total overhead exceeds 1% only under very large numbers of tasks and monitoring

states, e.g., 40-40, and maximum traffic intensity. However, the requirement can be still met by

relaxing the overhead constraint from 1% to 2%, which is acceptable, or by slightly reducing the

hypothesis on traffic characteristics.

4.7 Limitations
The main limitations of MONA are discussed here. These relate to side effects of monitoring ac-

curacy estimation, problems under attacks to the monitoring system, and lack of support for some

categories of monitoring tasks.

Side effects of monitoring accuracy estimation In MONA, monitoring tasks whose results show

higher coefficients of variation are prone to incur higher accuracy estimation errors (i.e., LatChange
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and RTx in Fig. 4.5). This effect can be imputed to how MONA accuracy estimation operates. More

specifically, the estimation procedure is designed such that a conservative estimator, i.e., the one pro-

viding an upper bound for the Risk function, is selected when the monitoring task results manifest

a high degree of statistical dispersion (high coefficient of variation). This naturally favours under-

estimation over over-estimation, which is essential to satisfy the global accuracy objective. However,

in particular cases accuracy under-estimations can penalise the fairness of the Accuracy Gap Recov-

ery process. Specifically, this issue arises when the monitoring accuracy is under-estimated for rich

tasks. If this happens, rich tasks are less prone to redistribute their resources to the poor ones. This

could prevent accuracy gaps to be fully recovered, thus leading to lower satisfaction levels.

Resilience to DoS attacks As discussed in Section VI.A, MONA can cope with much lower traffic

skew compared to a non adaptive monitoring design. However, there are cases where traffic shows a

“uniform” distribution (i.e., with extremely low skewness), especially when denial-of-service attacks

want to exhaust the resources of the monitoring system [8]. Uniform traffic can produce bottlenecks

in MONA monitoring pipeline due to high sparsity in data accesses (P ≈ 0) and, more important,

to increasing flow insertion rates. This is because in MONA the formulation of the available per-

packet time assumes no more than 10% of packets trigging a new flow-insertion (Sec. 4.4.1). Despite

this, the effects of uniform traffic can be handled by applying the resilience mechanism proposed in

Trumpet [8] in conjunction with MONA. Such mechanism consists in matching packets against an

additional filtering table in ingress to the monitoring pipeline, and allowing the processing of a flow

only if its size is above a DoS threshold. However, this comes at the cost of sacrificing a fraction

of MONA packet-processing throughput due to the additional overhead introduced by the filtering

table.

Support for monitoring tasks Given the approach used for estimating the monitoring report accu-

racy, MONA can support measurement tasks whose output is a count (e.g., how many retransmis-

sions for flow x?) or a classification (e.g., is aggregate y a heavy-hitter?). A majority of the tasks

studied in the recent literature [8][56][86], which are aimed at detecting network anomalies and/or

used as input for network management decisions, satisfy this condition. However, there are still

tasks that fall outside these premises, representative examples being Flowlet size histogram (i.e., a

histogram over the lengths of flowlets) and EWMA over latencies (i.e., a moving average over packet

latencies per flow) in [54].

4.8 State of the art overview
Adaptive traffic monitoring frameworks Generating accurate and fine-grained monitoring infor-

mation at a reduced cost is a critical task in today’s networks, especially in resource constrained envi-

ronments. A number of recent proposals [23][56][86] have focused on the development of adaptive

monitoring frameworks with the objective of supporting measurements under dynamic traffic pat-

terns and resource availability. A novel adaptive flow counting approach was introduced in [23]
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to enable anomaly detection with low overhead. Dynamic resource allocation solutions for traf-

fic monitoring have been proposed in [56] and [86] based on OpenFlow counters and sketch-based

measurements, respectively. Our approach also reconfigures monitoring parameters at run time to

achieve efficient resource usage, but in contrast to the aforementioned solutions it focuses on soft-

ware deployments.

Scalable packet capture and scheduling in software With the advent of packet processing on

commodity hardware, previous efforts such as [68][114] investigated how to take advantage of multi-

core architectures to minimize the packet processing times for sophisticated measurement tasks.

While [68] relies on RSS and parallel threads to analyze multi-Gbps traffic, [114] uses multiple

cores with the support of GPUs to perform complex intrusion detection operations. In addition, the

recent packet-rate increase at the NIC raises new challenges, especially with respect to zero-loss

guarantees under jitter in packet processing and unbalanced or unexpected traffic bursts. In contrast

to our solution, existing approaches mainly address these challenges by enhancing either the packet

capture or the packet scheduling. In [70], the authors propose to temporary store traffic in large

buffers (1GB), which improves resilience at the cost of additional resource usage. The approach in

[115] uses adaptive scheduling to mitigate performance drops due to resource contention.

Adaptive traffic monitoring in software dataplanes Orthogonal to scheduling and packet cap-

ture enhancements, recent solutions [82][117][28][8] address the problem of sustainable packet-

processing in software by directly reconfiguring the monitoring process, as in the case of MONA.

However, [82] and [117] focus on sketch-based measurements instead of hash tables where the main

goal is to process all packets with fixed-size memory. The proposal in [82] augments the dataplane

with a separate fast path that provides fast but slightly less accurate measurements under high traffic

load, and recovers missing information via compressive sensing. The work in [117] learns the statis-

tical distribution of the sketch and uses it to separate large and small flows so as to reduce the impact

of hash collisions. Instead of focusing on sketches, MONA relies on simple hash tables for various

reasons. One is the increased flexibility, as it enables more heterogeneous measurement tasks [8] and

facilitates the design of stateful monitoring applications. Also, this approach has been shown to be

more efficient than sketches [28] in terms of consumed time per packet, which is the main resource

constraint in software packet-processing.

In a similar fashion to our solution, the methods presented in [28] and [8] also address the case

of monitoring systems using simple hash tables to store flow statistics. In [28] the authors propose

to adjust the size of the monitoring data-structure according to changes in the traffic properties. This

can, however, incur significant time overhead for large flow-tables (structure size). The adaptive

approach in [8] monitors only flows whose size exceeds a dynamic threshold, so as to handle denial

of service attacks. While in [8] adaptations affect only new flows, reconfigurations in our work are

applied to all operations in the monitoring process, responding thus to a wider range of emerging

conditions.
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4.9 Summary
This chapter has presented an adaptive and accuracy-aware traffic monitoring framework, MONA,

tailored to software packet-processing pipelines. Current traffic monitoring solutions in software

dataplanes can starve and lose packets at the packet capture buffers when changes in the operating

conditions create bottlenecks. On the contrary, MONA guarantees efficient per-packet monitoring

by jointly achieving zero packet loss and accurate monitoring reports.

To ensure lossless traffic monitoring, MONA timely reconfigures the operations of the moni-

toring process in the face of bottlenecks, based on accurate time estimations. To recover potential

degradations of the monitoring reports, MONA quantifies the monitoring accuracy reductions at run

time using a lightweight and widely-applicable estimation technique, and reconfigures the measure-

ment operation sets so that a user-specified accuracy level can be met. As shown for representative

measurement tasks, MONA produces reliable monitoring accuracy estimations, with errors below

8% on average, and can quickly recover potential accuracy gaps in less than 100ms.

The evaluation results have demonstrated that MONA functionalities can significantly enhance

the traffic monitoring efficiency in face of bottlenecks and under dynamic traffic conditions. In

particular, the MONA Adaptation function drastically reduces the risk of packet loss under various

bottleneck conditions. It empowers the monitoring pipeline with the ability to handle traffic volume

spikes up to 10Gbps in tens of milliseconds, without starving packets in the packet capture buffers.

Similar resilience is guaranteed under 3x increase in concurrent accesses to shared server resources

(shared processor cache), and for low levels of traffic skew. Furthermore, the evaluation has shown

that MONA significantly enhances the monitoring accuracy levels, and that it is able to compute

new monitoring configurations every 10 ms without the need of additional processor core(s). This is

achieved with only minimal CPU time overhead (1-2%), even for 10 Gbps traffic of small packets,

and 1000 active flows in 10 ms intervals.



Chapter 5

Classification-assisted Monitoring Query

Processing

5.1 Overview
The focus of the previous chapters has been on the efficient collection of measurement data from the

network traffic, their effective retrieval from the dataplane and their timely delivery to the manage-

ment entities deciding on network reconfigurations. In particular, Chapter 4 has investigated how

dataplane resources can be efficiently used to collect from traffic streams all the raw measurement

data required for detecting a variety of network events and emerging conditions. Chapter 3 has in-

stead addressed how to retrieve accurate measurement data from the dataplane at a low cost, as well

as how to reduce data delivery latencies so that reconfigurations can more responsively be triggered

by network controllers/managers. However, to meet the goal of an efficient monitoring functional-

ity, another key challenge should be considered which concerns the processing of measurement data,

i.e., those operations required to build elaborate monitoring reports on traffic patterns and network

episodes from granular (e.g., per-flow or per-packet) information sets.

Efficient measurement data processing is a key issue in today’s monitoring systems, which

are required to manipulate and analyse large amounts of heterogeneous data in short times. These

stringent requirements can be imputed to two main conditions. The first one is that responsive net-

work management and security applications require real-time monitoring updates, generated while

processing the traffic streams, as opposed to offline trace analysis. Real time analysis is important

to ensure minimal network reconfiguration latencies (e.g., for quickly addressing attacks), and it

also allows monitoring systems to automatically and reactively drill down based on current condi-

tions [8]. The second condition is the improved capability of monitoring systems to report on wide

ranges of different network events [9] [8] [54], some of which (e.g., short-lived congestions) require

to collectively analyse different types of measurement data [8].

Coping with massive amounts of data to be processed in real time can pose prohibitive costs

in terms of computational resources. To mitigate such costs, one standard solution is to trade off
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expressiveness for scalability [9], i.e., to restrict the sets of supported monitoring results to ensure

that measurement data can be processed using limited resources. As opposed to this, a different

approach is taken in this chapter by investigating how the operations involved in the monitoring

information processing can be performed in a more lightweight, cost-efficient manner. Improving

data processing efficiency is key to enable timely and rich monitoring reports while handling massive

traffic volumes.

More specifically, this chapter investigates the efficient processing of measurement data for the

demanding case of modern network telemetry systems [67] [9] [10] [8], i.e., monitoring systems

generating sophisticated, real time reports in response to high-level monitoring commands issued by

operators or network management applications. Network telemetry is generally designed to support

tasks requiring continuous real-time measurements and analysis, from anomaly detection [132] [133]

to traffic engineering [8]. Overall, these systems follow the principles of software-defined measure-

ments [134] [34] [56]. They provide a high-level, declarative interface that hides measurement

details to register monitoring requirements, and automatically configure measurement operations to

satisfy hardware constraints. Specifically, they operate as query processors that receive declarative

monitoring commands or queries, extract raw measurement data from the traffic streams, and process

the data in real-time to identify a variety of network events and report them in query responses.

The increasing programmability of the dataplane has empowered network telemetry with the

right tools to extract configurable sets of raw measurement data from packet streams at line rate.

Hashing techniques and sketch-based approaches [78] [120] [34] [82] can now be deployed at the

dataplane to collect measurement data with a limited computation and memory footprint. While

these advances have contributed to the development of efficient data collection at the dataplane, the

task of processing such amounts of data remains a costly operation. As networks move to higher

speed and scale, it becomes crucial to reduce this cost in order to support large numbers of queries

and massive traffic volumes.

The main methods proposed in the literature for improving data processing efficiency have

mostly been focusing on ad-hoc design optimisations, specific to systems/implementations [8] [9] [54].

In contrast to previous work, this chapter presents a novel generalised approach to reduce the cost

of query processing by intelligently filtering the raw measurement data collected through the mon-

itoring pipeline. A new methodology is introduced, based on fast classifications to infer query

results from small measurement subsets, and to take decisions on the portions of data that can be

“proactively” filtered prior to the execution of standard data processing operations. In particular,

the proposed approach uses lightweight classifiers that learn traffic properties based on recent mea-

surements. To protect query responses from classification errors, the classifiers are automatically

configured to discard decisions with low confidence levels, according to user requirements on query

results accuracy.

To demonstrate the capabilities of the proposed approach, it has been integrated to a state-of-
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the-art software packet-processing pipeline [8] [135] and tested with representative query examples

and real traffic traces. The evaluation results, obtained through processing 30-minute traffic and

using a short, 10-secs only, training set, have shown that large fractions of the extracted measurement

data – more than 50% and even up to 90% in some cases – can be filtered out while satisfying

accuracy requirements above 98%, leading to processing time reduction by up to a factor of 10.

The remainder of this chapter is organised as follows. Section 5.2 provides background infor-

mation on monitoring queries, introduces the representative query examples used in this chapter,

and presents the problem of reduced-cost query processing. Section 5.3 describes the proposed

classification-assisted approach in detail, focusing on the different phases involved in the methodol-

ogy. Section 5.4 evaluates the approach and Section 5.6 concludes the chapter.

5.2 Query-based network telemetry
Network telemetry systems must satisfy two fundamental requirements: (i) provide a generic,

declarative interface based on the definition of monitoring queries, and (ii) cope with the complex-

ity of query processing, from compilation to the final push of monitoring reports, while satisfying

stringent monitoring accuracy goals.

5.2.1 Monitoring queries

Monitoring queries are declarative commands issued to identify a variety of events related to network

performance and security. From a logical perspective, they entail combinations of three building

blocks. The first is the match & extract component, which selects the portion of the network traffic

being in the scope of the query, and extracts raw information based on packet size, header fields,

or timestamp. The second one, evaluate, corresponds to the set of logical and arithmetic operations

that check extracted information against a set of conditions (query predicates). The last component,

aggregate, is the state aggregation function (e.g., sum, mean, count, stddev) applied to monitoring

data for evaluation or reporting purposes.

These components can be used to build complex query-processing workflows, and aggregate-

evaluate functions can be iterated in order to check different predicates at different levels of data

aggregation. Assume, for example, an operator wants to detect hosts generating bursty TCP / UDP

flows [8]. At the lower level of aggregation, this usually requires collectively considering the packet

inter-arrivals of each 5-tuple flow (aggregate-1) and checking if more than x% of packets come in

bursts (evaluate-1). Once all 5-tuple flows have been analysed, these are grouped by IP address

(aggregate-2) and it is checked if at least y% of flows are bursty (evaluate-2).

Table 5.1 reports representative examples of monitoring queries well studied in the literature.

Raw measurement data is extracted and stored for each 5-tuple flow as in [8]. Such data is peri-

odically processed by aggregate-evaluate functions to produce query responses, based on a short

(milliseconds or tens of milliseconds) query reporting period. These monitoring queries are further
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Table 5.1: Representative monitoring queries

Query Description Processing workflow

Heavy hitters [8] A traffic aggregate (srcIP) ex-
ceeding volume Bhh

extract 5-tuple bytes, srcIP;
aggregate on srcIP (sum bytes);
evaluate sum > Bhh

DDoS attack [34] A host (dstIP) reached by more
than Kddos unique sources

extract 5-tuple srcIP, dstIP;
aggregate on dstIP (count distinct srcIPs);
evaluate count > Kddos

Slowloris attack [9] A host (srcIP) opening more than
Ksl connections, with average rate
below Bsl

extract 5-tuple bytes, srcIP;
aggregate on srcIP (mean bytes, count);
evaluate mean < Bsl & count > Ksl

Bursty flow source [8] A host (srcIP) generating more
than X% bursty connections, i.e.,
connections with more than Y %
packets coming in bursts

extract 5-tuple, #pkts, #pkts-in-burst, srcIP;
aggregate on srcIP (isBursty());
evaluate %(isBursty == 1)> x%

detailed below.

Heavy hitters (HH). This query returns all hosts (i.e., source IP addresses) whose generated traffic

exceeds a bytes threshold Khh during the last query reporting interval. The results on heavy hitters

are widely used by network management, e.g., for the detection of anomalies, to decide on traffic

engineering configurations, to unveil server load inbalance in data centers.

DDoS attack (DDoS). This query returns DDoS victims [34], i.e., those hosts (destination IP ad-

dresses) that have been contacted by more than Kddos other hosts (source IP addresses).

Slowloris attack (Slowloris). Slowloris belongs to the category of “slow” denials of service. This

attack consists in sending data over a large number of connections all with a very slow rate, without

hitting the idle connection timeout value on the server. The query returns Slowloris-attack sources,

i.e., those source IP addresses generating more than Ksl connections, all with byte rate below Bsl .

Bursty flow source (Bursty) A TCP / UDP flow is bursty if more than Y % of its packets come in a

burst [8], i.e., with short interarrival times. This query returns bursty flow sources, i.e., hosts (source

IP addresses) for which more than X% of generated flows are bursty. The information about bursty

flow sources can serve several network management tasks, for example the analysis of Incast [32]

congestion (by correlating such information with packet loss).

5.2.2 Query processing

With networks evolving to larger scale and speed, the challenge for telemetry systems is being able

to handle massive amounts of queries (e.g., 4K on a 10ms time window [8]), while facing both

higher numbers of concurrent flows (1000+ on 10ms intervals [55]) and increasing packet rates

(10Gbps+ on a single processor core in software-packet processing platforms [8] [82]). As a result,

a vast amount of information needs to be processed to build query responses, especially for stateful

monitoring [54] [8] (e.g., groupby-like state aggregation), with significant computational resources
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Figure 5.1: Effects of tweaking the reporting frequency on the per-packet time (top) and the supported traffic
rate (bottom)

consumed for aggregate and evaluate execution.

Recent research has investigated how to efficiently match-on-traffic and extract raw data at line

rate and with reduced memory footprints, using sketch-based techniques [78] [120] [34] [86] [82]

[117], heap-based solutions (e.g., top-k [79]), or simple hash tables [8] [28]. These have emerged

as standard solutions for the lightweight extraction of measurement data from packet streams. How-

ever, it is still unclear how to curb the cost of query processing when looking at the aggregation and

evaluation of such amounts of measurement data. Ad-hoc design optimisations have been proposed

to improve efficiency, e.g., [9] [54] [8], but these are mainly tailored to specific systems / imple-

mentations. Sonata [9] splits aggregate-evaluate workload between programmable switches and

telemetry streaming aggregators at servers. Marple [54] relies on a memory backend on commodity

hardware to facilitate stateful group-by operations. Trumpet [8], which is based on software packet-

processing, adopts double-buffering of measurement data to interleave the aggregate-evaluate steps

on previous data with match & extract on new traffic.

Generally speaking, different approaches can be explored to reduce the cost of query processing

[136]. These can involve some relaxation on the time, i.e., by tweaking the frequency at which raw

data is evaluated and aggregated for the reporting of query results, or on the information space,

i.e., by filtering the original (raw) information sets considered in the evaluate and aggregate steps.

While processing data at a reduced frequency is expected to cut the overall cost, in practice, the
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Figure 5.2: Quantification of the portion of raw data retained in query responses

potential benefit is undermined by the increasing accumulation of raw monitoring information over

longer periods of time. In Fig. 5.1, the impact of relaxed query-results reporting is tested on a

software packet-processing pipeline based on Trumpet [135], using a single CPU core1. As input,

a ten-minute CAIDA trace from 2018 [137] is used, and the queries of Table 5.1 are applied. The

cost of query processing is quantified by analysing how it affects the monitoring performance in

terms of per-packet time and supported traffic rate. As shown in Fig. 5.1, increasing the reporting

period from 1ms to 10ms (Trumpet default) and 20ms improves the maximum traffic rate by approx.

20% and 25%, respectively. Going beyond 20ms, the performance level descends as more raw data

accumulates prior to processing – more CPU cycles for iteration and memory access.

The second approach, i.e., reducing the volume of monitoring data processed, is promising

when only fractions of the raw measurement data are retained to craft query responses. In fact, this

applies to all queries issued to detect events concerning unusual behaviours or specific traffic pat-

terns. Fig. 5.2 shows the percentage of raw measurement data being used for query responses on the

same setup of Fig. 5.1. To make query results more or less selective with respect to the total extracted

measurement data, the thresholds of Table 5.1 are varied. More specifically, 4 threshold configura-

tions are selected between the ranges Khh ∈ [1KB,100KB], Kddos ∈ [10,100], Xbursty ∈ [10,100],

Ksl ∈ [5,50]. As observed, despite differences between queries, large fractions of raw measurement

data (65%+) could always be scrapped without influencing the query responses, with peaks above

90% for the most selective configurations.

As the example shows, there is potential for reducing the cost of query processing by filtering

the raw measurement data before the aggregate and evaluate steps are executed. However, to exploit

this, a few key challenges need to be addressed. First, a generalised, query-independent, approach

should be provided to anticipate part of the query results, thus enabling intelligent filtering of the raw

data. Second, such approach should be lightweight enough to guarantee processing cost reductions

with respect to standard aggregate and evaluate. Finally, this should not compromise the validity of

1A 3GHz CPU with 8MB shared L3 cache is used
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query responses in terms of query results accuracy. These challenges are addressed by introducing a

novel, classification-assisted, query processing approach.

5.3 Classification-assisted query processing
To achieve intelligent filtering on the raw measurement data, the standard query processing work-

flow is enhanced with a fast classification functionality, whose goal is to reduce the volume of data

used as input to the aggregate and evaluate steps. The proposed approach is based on the ability

to derive classifiers for each query type in order to predict query results from subsets of the raw

measurement data. In particular, classifiers are constructed by learning traffic properties based on

recent measurements using a machine-learning approach.

The main reason for adopting a machine-learning approach is the high flexibility towards het-

erogeneous measurement data and monitoring queries. This is due to “generalisation”, i.e., the

ability of machine-learning classifiers to perform accurately on new, unseen examples after having

experienced a learning dataset. Moreover, this approach does not require any particular knowledge

about the learning datasets. Even when the data come from unknown probability distributions, gen-

eral models are automatically built to produce accurate predictions. Given these characteristics, a

machine learning approach can adapt to any type of monitoring query without prior knowledge on

it. While several techniques for predicting monitoring results can be found in the literature, these are

generally tailored to specific monitoring queries. For example, ProgME [134] provides a sequential

analysis method for fast Heavy Hitter identification based on the testing of probability ratios. In a

similar fashion, the work in [35] defines an approach called Threshold Random Walk specific to the

prediction of Port Scan attacks. In contrast with these solutions, the proposed ML-based approach

can support a wide range of queries, and it can be extended to include new ones with minimal effort

and without changes in the algorithm design.

5.3.1 Architecture

An overview of the approach is shown in Fig. 5.3. The core of the proposed solution is a set of

classifiers, one for each query, which take samples of the raw measurement data as input and gener-

ate “decisions” on query-related events. For example, for a heavy hitter query, the classifier takes a

sample containing the byte counts of few 5-tuple flows with the same srcIP x, and provides a proba-

bilistic answer to the predicate“is x a heavy hitter?”. This is achieved by performing training based

on recent monitoring results, i.e., using labelled samples (for which ground-truth is known) extracted

from recent measurement data. The output of classifiers is the key to exclude portions of the raw

measurement data from standard aggregate and evaluate processing. For instance, answering pred-

icate “is x a heavy hitter?” allows raw counters matching srcIP=x to be discarded (i.e., to filter data

out), and in case of positive output to “proactively” add x to the query response.

The design of the classifiers follows two main principles. First, classifiers are built using
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Figure 5.3: Overview of classification-assisted query processing

lightweight, computationally inexpensive, classification functions, and operate exclusively on small-

sized samples. This ensures that the benefits obtained by reducing the data volume are not under-

mined by additional complexity when performing classifications. Second, classifiers are automati-

cally configured to match user-specified requirements, specific to each query, based on the accuracy

of query results. This operation is referred to here as validation. Since classification functions using

samples are not error-free by definition, the validation ensures that query responses are protected

from erroneous results. Based on such configuration, some classifier outputs can be disregarded

when the estimated error probability is not negligible. More specifically, a classifier output falls

under three cases: (i) the sample belongs to the query-related event (e.g., x is a heavy hitter); (ii) the

sample is unrelated to the event, which corresponds to a negative result (e.g., x is not a heavy hitter);

(iii) a decision cannot be made with a high level of confidence (possible error). Only in case (iii)

portions of measurement data are directed to standard aggregate-evaluate.

Workflow As depicted in Fig 5.3, the proposed workflow includes three phases: training phase,

where the classification functions are built; validation phase, where classifiers are configured to

preserve query result accuracy; and run-time classification phase, where classifiers are run in the

wild to take decisions on incoming traffic. These are detailed below.

5.3.2 Training

The training phase is divided in two steps: (i) sampling, which extracts training information (training

sets) from recent measurement data, and (ii) construction of classification functions based on the

obtained training sets.

Sampling Training is performed using recent sets of raw measurements, i.e., from previous query

reporting intervals, where all query results are computed through standard aggregate-evaluate. In

particular, the training set is created by sampling recent sets of raw measurements and by asso-

ciating each sample with its ground-truth label represented as a binary indicator, e.g., the sample
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corresponds to a heavy hitter (1) or not (0)?

To make classifiers more efficient, sampling should ideally be a query-dependent operation.

This is because the size of the samples and the way they are extracted (e.g., transformation of the

raw measurement set) depend on specific query characteristics, such as its execution workflow or

how selective it is. In this chapter, two sampling methods are proposed which cover a wide range of

queries.

The first method is used when aggregate-evaluate contain a cardinality-based predicate, e.g.,

for DDoS in Table 5.1. In this case, a random subset of the raw measurements set is selected based

on sampling factor k. The extracted values are then grouped on the aggregate key, e.g., the DstIP in

DDoS detection, and each sample in the training set is a tuple containing the cardinality of a group

and the associated ground-truth label. The second method covers cases where query predicates

include aggregation functions such as mean, sum, stddev e.g., for HH in Table 5.1. In this case, the

initial set is first grouped on the aggregate key, e.g., the srcIP for HH. For each group, K values are

then randomly selected 2.

Classification functions Once formed, the training set is used to build the classification functions.

These are modelled following the sigmoid function used for logistic regression. For each input

sample they return: (i) the predicted label lpredicted (1 if the sample participates to a query-related

event, 0 otherwise), and (ii) the probability estimates p0, p1 associated with each label (with p0 +

p1 = 1). Values of p1 (p0 respectively) indicate how likely a sample is to be labelled as 1 (0,

respectively) in the ground-truth, and are used to quantify the confidence for individual classification

decisions.

5.3.3 Validation

The goal of the validation phase is to configure the constructed classifiers so that accuracy require-

ments can be met on the query results. Since classification functions are not error-free, accepting

all lpredicted labels in the output may result in query result errors. This happens especially when the

confidence on the classification is low, e.g., (p0, p1) = (0.55,0.45).

To configure the classifiers, we need to determine the right ranges of probability estimates p0, p1

under which the predicted labels lpredicted in output from the classification functions can be “safely”

accepted. More specifically, to express configurations, a probability threshold pthresh is used, such

that the classification result is accepted when max(p0, p1)≥ pthresh. pthresh = 0.5 corresponds to the

baseline (all lpredicted labels accepted). Intuitively, this setup maximises the filtering, i.e., the amount

of raw data excluded from aggregate-evaluate but, at the same time, it also maximises the risk of

introducing errors in the query results.

The objective of the validation phase consists in finding appropriate pthresh operating coordi-

nates. This is achieved by conducting a small-scale sensitivity analysis for each classification func-

2In the experiments K is small, never exceeding 5
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Figure 5.4: Precision and Recall analysis performed in validation

tion, using additional sets of labelled samples (validation sets) whose total volume is below 25% of

the training set 3. The accuracy of query results is quantified with the Precision, i.e., the ratio of

3The choice reflects standard machine learning practices, where training/validation sets are 80/20 splits of total labelled-
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the monitored query-related events that are true, and the Recall, i.e., the fraction of detected true

events. Fig 5.4 shows examples of the analysis for the queries in Table 5.1. As observed, the value

of pthresh can have a significant impact on the query result accuracy, especially on the Recall (many

events missed by the queries). In addition, different queries follow different trends, which indicates

that query-specific pthresh settings are required.

Several methods can be considered to select the value of pthresh. Main approaches in the liter-

ature [138] [139] rely on Receiver Operator Curve (ROC) analysis. The ROC depicts the accuracy

performance of a classifier in terms of False Positive Rate (i.e., the ratio of false positive results

over the total number of negative ones) and True Positive Rate (i.e., the Recall). Different values

of the decision threshold (pthresh) determine different operating points on the ROC, as such finding

the optimal pthresh corresponds to selecting the best ROC cut-off based on a optimality criterion.

Widely-used approaches are, for instance, to select the cut-off that maximises Youden Index [140],

or equivalently, the highest Sensitivity+Specificity point of the curve, where Sensitivity = Recall and

Specificity = 1 - (False Positive Rate). However, any of these solutions is prone to incur a significant

cost since for N monitoring queries, N optimal cut-offs should be computed (one for each monitor-

ing query). To reduce the validation complexity, the proposed method operates by simply testing

for each classifier a random set of pthresh values in [0.5,1.0]. After each test, the obtained Precision

and Recall values (Fig 5.4) are compared against the Precision and Recall requirements (thresholds)

of the query. The selected pthresh value is the lowest for which both Precision and Recall meet the

requirements. For example, in the case of HH and for 98% Precision and Recall requirements, a

value pthresh ≈ 0.9 is selected in the example of Fig 5.4.

5.3.4 Run-time classification

Trained and configured classifiers are applied in the wild to pre-process the raw measurement data

extracted for each active query. Specifically, at run time the classifiers generate decisions on query

results by processing samples of the raw measurement data. This is referred to here as the run-

time classification phase, which consists of two main operations. The first one is the sampling of

measurement data to produce the input samples for the classifier, with each sample corresponding

to a specific aggregate key of the query (e.g., a specific srcIP for HH detection). At run time, the

sampling follows the same approach adopted in the Training phase (described in Section 5.3.2) that

relies on two different methods, one for cardinality-based queries (where the evaluate predicate

operates on a “count”), one for queries where evaluate operates on aggregated values such as mean,

sum, standard deviation, etc. The second operation is to apply the classification function of the

query to each input sample in order to predict whether the corresponding aggregate key is a positive

query result or not. More specifically, for each sample the classification function returns a pair

[lpredicted ,(p0, p1)]. If max(p0, p1) is above the pthresh value selected for the query in the validation

samples set
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Figure 5.5: Implementation of classification-assisted query processing

phase, the result is accepted, i.e., the predicted query result lpredicted is kept and the portion of

raw data matching the sample aggregate key is discarded. Otherwise, since the confidence on the

classification is low, the same data are redirected to the aggregate-evaluate functions for standard

processing.

5.4 Evaluation

This section investigates the benefits of the proposed classification-assisted query processing ap-

proach. Experiments are performed on a proof-of-concept implementation relying on a software

packet-processing pipeline [8] [135], and they are based on the monitoring queries introduced in

Chapter 5, i.e., (i) Heavy hitters; (ii) DDoS attack; (iii) Slowloris attack; (iv) Bursty flow source.

The evaluation is conducted in three steps. At first, it quantifies the savings achieved by the

proposed approach in terms of measurement data filtering for different monitoring queries. Then,

it investigates the benefits of data filtering on the monitoring pipeline in terms of reduced query

processing cost, focusing on query processing latencies and on the supported traffic speed. Finally,

since the classifiers used by the proposed approach are not error-free by definition, the evaluation

explores how effective the approach is in meeting stringent accuracy requirements on monitoring

query results.

The experiment results demonstrate that the classification-assisted solution substantially im-

proves the query processing efficiency. In particular, classifications can cut the data volume pro-

cessed by evaluate-aggregate functions by more than 50%. This allows for significant reductions of

the overall processing cost when crafting monitoring query responses, which can be achieved while

maintaining 98% accuracy on all query results.
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Figure 5.6: Raw measurement data filtering vs query result accuracy (Precision, Recall)

5.4.1 Implementation and evaluation setup

Classification-assisted query processing has been integrated with a traffic monitoring implementa-

tion based on software packet-processing (software dataplane), and running on a single CPU core.

The tool is based on the framework in [8][135], and it relies on a hash table indexed on the flow

5-tuples to buffer raw measurements extracted from the traffic stream.

A representation of the implementation is shown in Figure 5.5. Query responses are generated

in short reporting intervals T (default value, T = 20ms). At run time, measurement data samples

(obtained from sampled flow-entries) are applied to the trained classifiers. If the classification deci-

sion is accepted, the flow-entries matching the aggregate key of the sample are excluded from further

processing, and the predicted label is kept for the query response. For the remaining flow-entries,

measurements are instead grouped by aggregate key and checked against the query predicates, which

corresponds to the baseline aggregate-evaluate workflow.

The classification functions are trained using samples from a 10s CAIDA traffic trace [137],

reserving 2s for validation. The classifiers are then used to process 30 minutes of CAIDA traffic

without additional training. The sampling setup is fixed for the duration of the experiments with

k = 10% and K = 5, where k is the sampling factor applied to the flow table, and K is the size of

each sample expressed as number of flow-entries – for more details on sampling, the reader can refer

to Section 5.3.2.

All experiments have been performed on an Intel i7-4790 CPU with 4 physical cores at 3.6 GHz

and shared L3 cache of 8 MB.
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5.4.2 Measurement data volume

At first, the performance of the approach is assessed in terms of the data volume involved in query

processing. To this end, experiments with different pthresh setups for each classifier are executed,

measuring the effect of filtered data on Precision and Recall. The results are depicted in Fig. 5.6 and

show that with an accuracy above 98% (Precision and Recall), 50,55,70 and 98% of measurement

data can be filtered for each of the four queries, respectively. The level of filtering achieved is

significant, despite using a small 10s training set, but different query behaviours can be observed.

These reflect a variety of query and traffic features (e.g., traffic distribution characteristics such

as skewness and entropy) that make it more or less difficult to discriminate between positive and

negative samples. Interestingly, the amount of data that can be safely filtered does not reflect the

query selectivity level discussed in Sect. 5.2.2. While Slowloris is generally the most selective

query in Fig. 5.2, no more than 50% of its measurement data can be filtered since confidence on the

classifications is limited.

5.4.3 Query processing cost

Since the implementation is based on software packet processing, the processing cost is measured in

terms of CPU time (tproc) consumed to craft query responses from the raw data per reporting interval.

To experiment with different query workloads, the flow-address space is split and each query is

assigned to a /12 prefix. In the mixed workload the query is randomly selected from Table 5.1, while

in the other workloads all queries are of the same type. For all experiments performed, the classifiers

are configured to achieve an accuracy of 98% for both Precision and Recall.

As shown in Fig. 5.7a, nearly 60% of CPU time is saved on average for a mixed workload, while

the gain obtained for specific query types is in accordance with the filtering ratios in Fig. 5.6, e.g., the

processing time for Bursty is reduced by more than 10x on average, as more than 90% of measure-

ment data is filtered by classifiers. Reduced processing time can translate to more query responses

handled over a reporting interval. In particular, assuming a constant time for raw data extraction4, the

guaranteed (minimum) number of simultaneous queries supported by our implementation is more

than 3x higher than the baseline in mixed workload conditions.

Reduced query processing times can also improve the traffic speed supported by monitoring. To

evaluate this, we split the experiment in 1 minute chunks, and for each one we measure the maximum

traffic rate handled by the monitoring implementation (without dropping packets). As Fig. 5.7b

shows, the classification-assisted approach can significantly speed up the monitoring pipeline, with

gains in traffic rate up to 30%. Such gains (e.g., +3 Gbps) are higher than the ones obtained (see

Sec.5.2.2) by fine-tuning the reporting interval (≤ +1.5 Gbps).

4In the implementation, this time is dominated by hashing and flow-entry retrieval executed for each packet, irrespectively
of the query workload
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Figure 5.7: Benefits of the proposed approach on the monitoring pipeline used

5.4.4 Monitoring accuracy

Finally, we evaluate how effective the proposed solution is in meeting the requirements of query

result accuracy. We select a target accuracy of 98% (Precision and Recall) to be used in the validation

phase, and for each 1-minute chunk we compute the deviation from this threshold. For example, a

+0.01 Recall deviation corresponds to 99% Recall. As shown in Fig. 5.8, the proposed approach

satisfies, on average, the desired accuracy levels for all queries. Negative deviations, if any, never

exceed −0.02. Interestingly, this result is based on a small 10s training set.

5.5 Limitations
Implementations of the proposed classification-assisted approach in real network telemetry systems

can face problems concerning (i) the range of supported monitoring queries and (ii) the classifier

(re)training. These are discussed below.

Query support limitations A key advantage of the classification-assisted approach is that it can be
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Figure 5.8: Accuracy deviations from 98% target obtained with 10s training

applied to a new query without requiring prior knowledge on it. However, for a new query to be

supported by the proposed solution, two requirements must be satisfied. Firstly, the final output of

the query predicates (i.e., those conditions in the evaluate block of the query) should be a binary

indicator (e.g., is src IP x a heavy hitter (1) or not (0)?), since the proposed machine learning-

based workflow only supports binary classification. Secondly, the query evaluate conditions should

be on a count (as in case of DDoS attack query) or on an aggregate value such as mean, sum,

median, etc. While most of the monitoring queries considered in recent work [9] [8] [10] [54] satisfy

these two conditions, others fall outside these premises. Representative examples are the Flowlet

size histogram query in [54], which returns the histogram over length of flows, and the Lifetime of

connections query in [10], which provides the durations of TCP connections. Both queries cannot

be supported by classification-assisted query processing.

Training limitations The results in Section 5.4 have shown significant processing cost reductions

and high monitoring accuracy for real traffic [137]. These results have been obtained with a single,

10-seconds only training and then using the same classifiers over the full experiment duration (30

minutes) with no retraining. However, in real network telemetry systems the classifiers should be

retrained to handle traffic dynamics so as to keep ensuring high confidence on the classification

output when traffic patterns change, which is important to guarantee high monitoring accuracy. A

limitation of the proposed design is the lack of an online mechanism deciding on the re-training

intervals based on traffic variations. Network telemetry operators can configure a re-training period

for each query, however using a constant training frequency can result in limited information filtering

ratios and/or low accuracy.

5.6 Summary
This chapter has tackled the problem of reducing the cost incurred by data processing when creating

monitoring reports (query responses) from the raw measurement data extracted at the dataplane.

To this end, a novel, classification-assisted, query processing approach has been presented which

achieves intelligent filtering of measurement information using lightweight classifiers. This solution,
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inspired by machine learning workflows, can support a wide range of monitoring queries, and is not

tailored to a specific monitoring system design(s).

The proposed approach has been evaluated using representative query examples and real traffic

traces, and it has been implemented on a realistic monitoring pipeline based on software packet-

processing. The experimental results have shown that the classification-assisted approach can sub-

stantially reduce the cost of monitoring query processing based on intelligent filtering of the mea-

surement data. In particular, it has demonstrated that at least 50% of the measurement data can be

filtered through fast classifications, with data filtering levels above 90% for specific query types,

while keeping the accuracy levels of query responses above 98% on average. The filtering translates

into faster query processing, with 60% less CPU time needed on average to craft query responses

from the raw measurement data. The improved query processing efficiency can allow for (i) larger

numbers of simultaneous monitoring queries (3x more queries under mixed workload conditions),

(ii) higher traffic rates supported (up to 30% increase in Gbps). Such benefits have been achieved

using no more than 10-seconds classifier training for processing 30-minutes traffic.



Chapter 6

Conclusion and Future Research Directions

6.1 Overview
Traditional monitoring solutions operate on long timescales producing periodic reports, which are

mostly used for manual and infrequent network management tasks. These practices have been re-

cently questioned by the advent of software-defined networking, which has enabled automatic, fre-

quent, and fine-grained network reconfigurations the effectiveness of which strictly depends on the

accuracy and timeliness of monitoring reports. However, ensuring timely and precise monitoring

updates is not a trivial task, especially when dealing with large network scales, massive and dynamic

amounts of traffic, and stringent constraints on time and hardware resources. It requires the monitor-

ing functionality to cope with increasing network sizes and traffic rates, and to achieve an efficient

use of the available time and hardware resources.

This PhD thesis has addressed these research problems by investigating (i) how to perform traf-

fic measurements using dataplane resources efficiently, (ii) how to efficiently extract the measure-

ment data from the dataplane, (iii) how to transform this data into relevant monitoring knowledge at

a reduced cost while avoiding processing bottlenecks, and (iv) how to deliver knowledge to network

decision-making processes in a time-efficient manner. Concerning the first goal, i.e., the efficient use

of dataplane resources, this thesis has shown that adaptive monitoring functions can be integrated

with the packet-processing pipeline to preserve monitoring report accuracy while facing the dynamic

resource availability in the dataplane. Such adaptive functions have been shown to significantly im-

prove the monitoring resilience under adverse operating conditions and in face of bottlenecks in the

packet-processing pipeline. In regard to the second goal, i.e., the efficient measurement data extrac-

tion from the dataplane, it has been demonstrated that valid tradeoffs between monitoring precision

and resource consumption, generally outperforming the results of existing techniques, can be auto-

matically achieved using a self-tuning approach that entails only minimal parameter configurations.

Considering the third objective, i.e., reduced cost processing of measurement data, this thesis has

proven that the cost for aggregating and evaluating huge amounts of monitoring data can be sub-

stantially reduced without significantly penalising the accuracy of monitoring results. This can be
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obtained by performing lightweight classification tasks on small subsets of the measurement data.

Concerning the last research goal, i.e., timely monitoring information delivery, it has been shown

that a distributed monitoring approach significantly helps reducing monitoring-induced delays espe-

cially when the decisions on network reconfigurations can be taken close to where the monitoring

data is collected.

6.2 Thesis summary
In this section, the core chapters of the thesis are summarised, focusing on the main monitoring

advances proposed and the key experimental findings.

Chapter 3 has presented a decentralised and self-adaptive monitoring framework for SDN. The

proposed framework relies on a modular architecture designed to satisfy the diverse monitoring re-

quirements of heterogenous management applications. Its decentralised nature, which differentiates

it from state-of-the-art SDN monitoring systems, allows to avoid processing bottlenecks and to main-

tain high levels of monitoring reactivity (i.e., knowledge delivery on short timescales) in the case of

large-scale networks. To efficiently extract measurement data from the network switches, the frame-

work implements SAM (Self-tuning Adaptive Monitoring), an adaptive solution that automatically

reconfigures its setup under dynamic traffic conditions. Experimental results have demonstrated that

the proposed framework can achieve considerable reductions of the monitoring latencies, as well as

significant gains in terms of monitoring overhead without affecting the management application per-

formance. Furthermore, these have shown, based on both synthetic and real traffic traces, that SAM

outperforms state-of-the-art adaptive algorithms in terms of both monitoring precision and resource

consumption on switches.

Chapter 4 has introduced MONA, an adaptive framework for software dataplanes which en-

sures resilience to bottlenecks while maintaining the accuracy of monitoring reports above a user-

specified threshold. MONA dynamically reduces the measurement task sets under adverse con-

ditions, and reconfigures them to recover from potential accuracy degradations. To quantify the

monitoring accuracy at run time, MONA adopts a novel task-independent technique that generates

accuracy estimates according to recently observed traffic characteristic. MONA is unique in its de-

sign, as it is the first approach, fully tailored to software dataplanes, where measurement operations

are dynamically configured to achieve accuracy goals. Furthermore, it represents, to the best of the

author’s knowledge, the first attempt to coordinate a number of different measurement tasks by look-

ing at their CPU-time consumption instead of (well-studied) memory issues. The results of MONA

evaluation have shown considerable gains in performance, in terms of both improved resilience to

bottlenecks and enhanced monitoring accuracy levels for a diverse set of representative measurement

tasks.

Chapter 5 has presented a generalised approach for reducing measurement data-processing

costs, i.e., those costs, in terms of data aggregation and evaluation, incurred by monitoring systems
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when responding to monitoring queries based on the raw information extracted at the dataplane. Dif-

ferent to state-of-the-art solutions, which are mainly tailored to specific systems/implementations,

the proposed approach does not depend on particular monitoring designs and is applicable to a wide

range of monitoring queries. It relies on classifiers that learn recent traffic properties and apply

this knowledge to generate monitoring responses from subsets of the measurement data. The ex-

periment results have demonstrated that the proposed solution significantly reduces data processing

costs while ensuring accurate monitoring reports.

6.3 Future directions
The monitoring advances presented in this thesis achieve the goal of improved timeliness and accu-

racy of monitoring reports while facing stringent constraints on time and hardware resources. These

benefits are key for handling (i.e., extracting, processing, delivering) huge amounts of heterogeneous

monitoring data, which is expected to be an essential requirement of future network infrastructures.

Indeed, the evolution of dataplanes towards higher programmability and flexibility allows for more,

different types of measurements to be collected from traffic streams. At the same time, monitoring

data is expected to grow in volume due to higher network scales and increasing traffic rates. The

solutions offered by this thesis are very helpful for facing these challenges. In particular, the archi-

tecture presented in Chapter 3 allows the monitoring functionality to cope with increasing network

sizes, the adaptive functions in Chapter 4 enable heterogeneous monitoring data to be collected in a

resource-efficient manner from high-speed traffic, and the approach introduced in Chapter 5 allows

for more efficient processing of large monitoring datasets.

In future networks, management processes can benefit from these solutions to obtain all the nec-

essary knowledge for reconfiguring the network on short timescales and at high levels of granularity.

This is essential for recovering from network performance issues quickly and with very precise and

selective countermeasures, which enables the introduction of new services that are extremely time-

sensitive and heavy in resource consumption, such as virtual reality applications and holographic

communications. At the same time, this allows to immediately detect and address attacks before

users and services are adversely impacted, which is important for meeting the increasing demand of

services for security guarantees.

Furthermore, this thesis has provided key tools for reducing the monitoring costs by improving

the monitoring resource-efficiency, which is fundamental for facing the increasing demand of oper-

ators for real-time network telemetry [9] [10]. In particular, the switch polling mechanism proposed

in Chapter 3 allows to extract measurement data with reduced consumption of the switch resources.

By performing dynamic and intelligent reconfigurations of the measurement operations, the adap-

tive solutions in Chapter 4 reduce the amount of resources (CPU cores, in particular) to be devoted

to traffic monitoring. Lastly, the methodology in Chapter 5 opens the door to the online execu-

tion of network telemetry tasks of increasing complexity, leveraging machine learning techniques to
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produce elaborate and accurate monitoring reports in a much more lightweight manner.

Despite the improvement of the state of the art achieved by this thesis, there is plenty of room

for further work to extend the proposed solutions and address their main limitations. The following

subsections present potential future research directions based on the work in this thesis.

6.3.1 SDN monitoring framework

The decentralised framework introduced In Chapter 3 allows for reduced monitoring delays

in software-defined networks and for the efficient extraction of monitoring information from

OpenFlow-enabled switches. Future work can investigate how to enhance the overall framework

functionality with solutions that further reduce the monitoring overhead on the network resources.

Specifically, two research directions can be followed.

One direction can be the design of adaptive algorithms for the efficient synchronisation of

monitoring data between the different MMs (Monitoring Modules) operating in the network. Three

main conditions motivate this research line. First, such solutions would naturally fit within the

proposed monitoring architecture, which already includes a programmable synchronisation interface

as part of each MM to enable advanced information exchange policies between MMs. Second,

the evaluation results have clearly made the point for the deployment of these algorithms, as they

demonstrated that substantial reductions of the synchronisation overhead can be achieved at run

time without causing significant performance degradations in the network. The last factor is the

recent shift of measurement systems towards stream-based solutions [93] [9], which can potentially

flood the network with heavy streams of measurement data and as such pose the need for intelligent

exchange of monitoring information.

A second research direction can be on extending the range of solutions to efficiently extract

monitoring information from the network devices, in particular with the aim to support novel pro-

grammable switch architectures (e.g., PISA) and protocols (e.g., P4). The SAM algorithm proposed

in Chapter 3 adopts a pull-based approach, where switches are explicitly polled for monitoring in-

formation, which fits well with the metrics extracted from OpenFlow-enabled switches – essentially,

per-port and per-flow counters. Novel programmable dataplane technologies [17] [141], however,

enable more complex and “stateful” measurement operations to be performed at the dataplane. Such

enhanced programmability can potentially be exploited to further reduce the volume of measurement

data collected from the switch, but this requires different, push-based, adaptive algorithms whose

logic should be on the network device rather than on the MM.

6.3.2 Adaptive and accuracy-aware monitoring

The MONA framework presented in Chapter 4 allows to efficiently coordinate the execution of

different measurement tasks running in a software dataplane. This is achieved at run time by recon-

figuring measurement operations to obtain high global monitoring accuracy and avoid bottlenecks.

A recent research trend has made the point for extending a similar rationale to the case of traffic
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measurements on novel programmable switches. In particular, monitoring systems have started us-

ing the P4 protocol and the PISA switch architecture to perform a variety of elaborate measurement

tasks in hardware, key examples being Sonata [9], Marple [54], and In-band Network Telemetry [59]

frameworks. Accuracy-aware mechanisms need to investigated, developed, and integrated to these

frameworks to dynamically allocate switch resources in response to increasing monitoring demand

(e.g., more concurrent measurement tasks) or increasing monitoring state (e.g., more memory or

computation required by specific measurement tasks). This problem is challenging, as the execution

of complex measurement tasks on these devices can incur serious bottlenecks on switch resources in

terms of both memory and processing stages, e.g., available match-action pipelines in a P4-enabled

device.

6.3.3 Classification-assisted query processing

The approach in Chapter 5 enables reduced-cost monitoring query processing by relying on intelli-

gent filtering of measurement data. The methodology proposed is meant to be generic with respect to

the design/implementation of monitoring systems, as it focuses on data processing operations, such

as aggregation and evaluation of monitoring query predicates, that are general attributes of query-

based monitoring systems. However, to enable such a methodology to run on different monitoring

implementations, a few practical challenges need to be addressed. The main one concerns how to

implement the required processes to build the classifiers, i.e., training and validation analysis, for

different monitoring system designs. Future work will explore how this can be achieved, especially

to support the case of traffic measurements running on commodity switches or novel programmable

switch architectures.

6.4 Concluding remarks
Providing timely, granular and precise information is becoming extremely challenging for monitor-

ing systems given the evolution of networks towards higher scales and traffic volumes, and due to

stringent constraints on time and hardware resource availability. This PhD thesis has addressed this

important challenge in the context of software-defined networks and dataplanes based on software

packet-processing. Novel methodologies, designs, and frameworks have been introduced, which al-

low for a more scalable monitoring functionality and improve the key tradeoffs between monitoring

information accuracy and resource consumption.

Overall, the solutions presented in this thesis take a new step towards the goals of efficient mea-

surement collection and reporting, lightweight measurement data processing, and timely monitoring

knowledge delivery. These solutions contribute to the effort for ensuring accurate and timely mon-

itoring reports, building the knowledge required for reconfiguring network resources quickly and in

a precise manner. With the adoption of Software-Defined Networking principles in future network

designs, such monitoring knowledge will be more important than ever for the effective management
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of networks. Indeed, this will be the enabler for automatic management processes operating on short

timescales and warranting precision when troubleshooting failures, detecting anomalies, or adapting

the behaviour of demanding services.
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