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Abstract
Automatic speech emotion recognition (SER) remains a

difficult task within human-computer interaction, despite in-
creasing interest in the research community. One key chal-
lenge is how to effectively integrate short-term characterisation
of speech segments with long-term information such as tempo-
ral variations. Motivated by the numerical approximation the-
ory of stochastic differential equations (SDEs), we propose the
novel use of path signatures. The latter provide a pathwise defi-
nition to solve SDEs, for the integration of short speech frames.
Furthermore we propose a hierarchical tree structure of path sig-
natures, to capture both global and local information. A sim-
ple tree-based convolutional neural network (TBCNN) is used
for learning the structural information stemming from dyadic
path-tree signatures. Our experimental results on a widely
used benchmark dataset demonstrate comparable performance
to complex neural network based systems.
Index Terms: speech emotion recognition, path signature fea-
ture, convolutional neural network

1. Introduction
Recognising emotions from audio streams in real life has a wide
range of commercial applications, especially with the increas-
ing adoption of voice-based assistants such as Alexa and Google
Home. Moreover, speech emotion recognition (SER) can be
used to assist the detection of psychiatric disorders; e.g., natural
expressions of emotion have shown significant positive correla-
tion to heightened mood states in patients with bipolar disorder
[1]. Speech emotions can be extracted from both voice charac-
teristics and its linguistic content. In this study, we focus on the
acoustic characteristics of the speech signal in order to recog-
nise underlying emotions.

Although the task of recognising speech emotions has at-
tracted significant attention in recent years, it is still a chal-
lenging and open research problem. One key step of SER is
finding an effective and efficient representation for emotional
utterances or speech segments. This is challenging due to the
complexity of emotional expressions in speech and the lack of
large datasets [2]. Traditional SER systems extract a number
of frame-level acoustic features (e.g. fundamental frequency,
zero crossing rate, jitter, etc.), known as Low-level Descriptors
(LLDs) from utterances of variable lengths, then apply a set
of statistical pooling functions (e.g. mean, max, variance, lin-
ear regression coefficients, etc.) in order to obtain fixed-size
utterance-level features. The role of these high-level statistical
pooling functions (HSFs) is to describe the global character-

istics of the given utterances, although temporal variations of
speech signals are not effectively extracted during this process
and important regional information is diluted [3].

To effectively model such temporal information, many re-
cent studies have applied various types of deep learning mod-
els, including both convolutional and recurrent neural networks
[4, 5, 6, 7]. These models have complex network architectures
involving a large number of parameters. As a result they are
difficult to build and tune, time-consuming to train and often
require expensive computing resources.

Utterances are technically data streams or paths1. Path sig-
natures, which were initially introduced in rough path theory as
a branch of stochastic analysis, has been successfully applied to
various sequence learning tasks, especially for modelling tem-
poral dynamics [8, 9]. In this study, we explore the use of path
signatures for modelling temporal sequences of emotional ut-
terances and demonstrate that this method incorporates both the
short-term characterisation at the frame-level as well as long-
term aggregation at the utterance-level. In addition, path signa-
tures can be applied to input paths of variable length and have
the ability to filter redundant information. Dimensionality in-
creases exponentially when higher degree path signature fea-
tures are used to describe more detailed (local) information in
the entire utterance. In order to contain feature dimensional-
ity while capturing both global and local information, we use a
hierarchical path structure, namely dyadic path-trees, for repre-
senting input utterances and tree-based convolution kernel [10]
to capture the underlying structural information.

The contributions of this work are as follows: (1) We show
how path signatures can effectively integrate minimally hand-
engineered frame-level features (i.e. mel-filterbanks) for SER;
(2) We show how tree-based convolutions complement the hier-
archical path structure of input utterances; (3) We demonstrate
that such a simple CNN model can yield comparable results to
complex neural network systems as well as models that make
use of a wide range of heavily engineered emotion features.

2. Related Work
2.1. Speech Emotion Recognition

Many existing SER models utilise low-level descriptor features
from short frames of typically 20 to 60 msec [11], then either
apply a set of high-level statistical functions to get an utterance-

1Following Rough Path theory notation, a path refers to a continuous
function mapping from a compact time interval J := [S, T ] to E :=
Rd.
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level feature representation of emotions, fed to a classifier (sup-
port vector machine and extreme learning machine are popular
choices [12, 13]), or input them to convolutional or recurrent
neural networks for learning longer context and salient features
[3, 4, 6, 7]. Some recent SER works have proposed directly
feeding neural network models with spectrogram bins [14, 2] or
even raw waveforms [15, 16], following the trend in other deep
representation learning tasks. However, such end-to-end mod-
els have a large number of parameters and are prone to overfit-
ting due to the paucity of training data in SER, as demonstrated
by [5]. Our proposed path signature approach operates on min-
imally hand-engineered filter-bank energy features.

Emotions conveyed by speech are inherently sequential,
and it is crucial to model such temporally sequential informa-
tion for SER. Recurrent neural networks (RNN), especially long
short-term memory (LSTM), have gained popularity in han-
dling such sequential data. As described in [7], many cate-
gorical SER-specific LSTMs essentially perform a sequence-to-
label task. In order to learn high-level representations, different
pooling strategies are adopted for these recurrent models: final-
pooling, mean-pooling or weighted-pooling LSTMs with atten-
tion mechanism added [5, 4, 2, 17]. As result of these pooling
operations, important information may be lost from successive
frames [18, 7]. In contrast, path signature provides a natural
and systematic way of modelling sequential data with variable
length and in obtaining fixed-size feature representation. Addi-
tionally, inspired by [19], we propose a hierarchical tree struc-
ture for path signature features and adopt tree-based convolu-
tions for the integration of global, regional and local informa-
tion as well as for filtering irrelevant and redundant information.

2.2. Path Signatures

The theory of rough paths, originally studied by Chen [20] and
developed by Lyons [21], can be thought of as a non-linear ex-
tension of classical theory of controlled differential equations
driven by very irregular paths. The essential object in rough
path theory is the path signature, which provides a pathwise
definition to the solution of differential equations driven by very
rough signals [21]. In recent years path signatures have been ap-
plied in various areas of machine learning. The main idea is to
utilise the signature of a path as the basis function for represent-
ing a trajectory in the un-parameterised path space. Levin et al.
[22] was the first one to propose a non-parametric time series
model by combining path signature features and a linear model.
Since then using path signatures as features in a suitable neu-
ral network model has shown strong discriminate performance
in various applications, such as online handwritten Chinese text
recognition [23], action recognition in videos [9], financial data
analysis [8] and distinguishing psychiatric disorders using self-
reported mood scores [24]. For audio processing, Lyons and
Sidorova [25] showed that a stereo audio signal can be recon-
structed from a truncated version of a path signature. Thus path
signatures have been shown to provide an effective and infor-
mative representation for a range of sequential data.

3. Proposed Approach
In this section we first describe a hierarchical approach of rep-
resenting path signatures, which transforms mel-filterbanks of
speech frames to utterance-level fixed-length feature represen-
tation. Then we describe how tree-based convolution neural net-
works are applied to the tree representation of the utterance path
signature. The overall design of our model is shown in Figure 1.

3.1. Path Signature

An utterance or audio sample is essentially a sequence of multi-
dimensional signals that can be embedded into a continuous
path. Path signatures operate in such path space2. Thus we pro-
pose tackling the challenge of extracting utterance-level feature
representations by using path signatures3. For each utterance,
we interpolate a d-dimensional stream of frames P over the
time interval [0, T ] ⊂ R, to a continuous map P : [0, T ]→ Rd.
Each frame is represented by its 40-dimensional filter-bank en-
ergy feature (i.e. d = 40). The signature S(P ) of this path P
over time interval [0, T ] is the collection of the k folded iterated
integrals of P :

S(P )0,T = (1, S(P )10,T , . . . , S(P )k0,T , . . . ) (1)

where S(P )k0,T =

∫
· · ·
∫

u1<···<uk
u1,...,uk∈[0,T ]

dPu1 ⊗ · · · ⊗ dPuk , ∀k ≥ 1,

Pt ∈ Rd, ∀t ∈ [0, T ]. In practise we use nth degree truncated
signature, where the degree of its iterated integrals is no greater
than n. This ensures the path signature has finite dimensional
representation. Let TS(P )n0,T denote the truncated signature of
P of degree n, i.e.

TSk(P )n0,T = (1, S(P )10,T , . . . , S(P )kn
0,T ) (2)

The 0th term (i.e. a constant value set to 1) is optional for fea-
ture set. Therefore the dimensionality of the truncated path sig-
nature is (dn+1 − d)(d− 1)−1.

3.2. Dyadic Path Signature Feature

In order to capture a finer description of a path, a higher degree
of signature has to be used, which leads to the dimension of sig-
natures growing exponentially. However according to Chen’s
identity [20], which is stated in eq.(3) below, the information
provided by the nth degree signature of the entire path can be
well approximated by the concatenation of the lower degree sig-
natures over all the partitions of this path:

S(P )n0,T =

n∑
j=0

S(P )j0,S ⊗ S(P )n−j
S,T (3)

where 0 ≤ S ≤ T and ⊗ denotes a tensor product and the
superscript denotes the length of indices. Thus Yang et al. [19]
proposes replacing the higher degree of path signatures with the
lower degree of the signatures over the dyadic partition of this
path. More specifically, a dyadic path signature with the dyadic
level ofm is the collection of the signatures ofM dyadic pieces
of the entire path:

DmS(P )0,T = (S(P )0, 1
M

T , . . . , S(P ) i−1
M

T, i
M

T
,

. . . , S(P )M−1
M

T,T
).

(4)

where M = 2m,m ∈ N. To combine information from differ-
ent granularity, the final dyadic path signature is as follows:

DTS(P )n0,T = (D0TS(P )n0,T , D
1TS(P )n0,T ,

. . . , DmTS(P )n0,T )
(5)

2The ability to embed discrete streams of sequential data into a path
space provides the flexibility to describe them in a unified way. This
can help with the problem of missing data, sequences of variable length
and unequal spaced sampling.

3The rigorous introduction of path signatures as a faithful descrip-
tion for un-parameterised paths can be found in [26].
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Figure 1: Overview of the proposed SER system. (a) A stream of frame-level energy features is extracted from an utterance; (b) The
entire stream of frames within the utterance is segmented to dyadic paths. A truncated signature is extracted from each dyadic path,
and in (c) is transformed to the dyadic path-tree signature representation; (d) Tree-based convolution and dynamic pooling are applied
to learn the underlying structure, and an output layer is added for the final classification.

Instead of simply concatenating all the dyadic path signatures
horizontally as is done in [19], in this work we propose to
present all the dyadic pieces in a tree form, from the entire ut-
terance to only a few short frames4, namely dyadic path-tree.
This way salient features at different granularity along with any
structural information can be extracted more naturally and ex-
plicitly. As illustrated in Figure 1c (blue), this dyadic path-tree
signature constitutes the root node representing the signature of
the entire path (i.e. D0TS(P )n0,T ) and all the subsequent chil-
dren nodes over each dyadic level.

3.3. Tree-Based Convolutional Neural Network

We use a set of tree-based convolution kernels, which function
as fixed-depth5 feature detectors sliding over the entire dyadic
path-tree. To extract positional information of each sub-path-
signature, we adopt the continuous tree approach in [10]. For
node xi in a window, its weight matrix is the linear combination
of three positional weight matrices W t

conv , W l
conv and W r

conv ,
and three coefficients ηti , ηli and ηri , (referring to the left, right
and top positions). These coefficients are computed according
to the relative position of the node in the sliding window and
the depth of the window in the tree. We thereafter apply three-
way dynamic pooling, where features are pooled according to
their position in the tree. Finally, we add a softmax layer for
classification into emotions.

The entire parameter set for this tree-based CNN model
is Θ =

{
W t

conv,W
l
conv,W

r
conv,Wout, bconv, bout, vec(·)

}
,

where W t
conv , W l

conv , W r
conv and bconv are the positional

weights and bias in the convolutional layer, Wout and bout are
the weight and bias in the output layer, and vec(·) is the pre-
computed path signature feature for the input utterances. All
the weights and biases are initialised randomly from a truncated
normal distribution.

4Previous work [27] has considered a hierarchical tree structure of
speech in the time-frequency scale-space using a composite prosodic
signal consisting of energies of utterances in English.

5In our experiment, we set this window depth to 2.

4. Experiments and Analysis
4.1. Data

To evaluate the effectiveness of our proposed system, the popu-
lar Interactive Emotional Dyadic Motion Capture (IEMOCAP)
database [28] is used for all experiments. It comprises approx-
imately 12 hours of audio-visual recordings performed by 10
skilled actors. All recordings are organised in 5 sessions, and
each session is composed of two actors, one male and one fe-
male. Overall it contains 10039 (manually segmented) utter-
ances with an average duration of 4.5 seconds. The database
can be further divided into an improvised speech data set and
a scripted data set. To be consistent with previous works
[2, 29, 30, 31, 32], we consider 4 emotional categories Angry,
Happy, Neutral and Sad, and choose the improvised data set
since the scripted speech exhibits strong correlation with the
manually labelled emotions leading to bias over linguistic con-
tent learning.

4.2. Feature Extraction

We use the openSMILE toolkit [33] for extracting 40-
dimensional mel-filterbank features from each utterance, and
add one more dimension for representing time. A sliding Ham-
ming window of length 25 ms is used for segmenting to frames.
Then these features are normalised by z-scores. For comput-
ing the path signatures over each stream of frames, we use
iisignature6 Python package and set the degree of signatures to
2.

4.3. Experimental Setup

Following previous works [2, 29, 30, 34], we choose leave-one-
speaker-out as evaluation scheme. We use Tensorflow as the
deep learning framework for training. We use fixed choices of
hyperparameters for all of our experiments to ensure the results
are comparable and reproducible. These hyperparameters are
shown in Table 1. Cross-entropy loss is used for optimisation.
The final SER performance is evaluated using widely adopted
metrics: weighted accuracy (WA), which is the overall classi-
fication accuracy; and unweighted accuracy (UA), which aver-

6https://pypi.org/project/iisignature/
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Degree of signature 2
Dyadic level 4

Optimiser Adam [35]
Batch size 50

Max. epochs 60
Learning rate 0.0001

No. of convolution filters 1
Convolutional layer dim. 100

Activation function tanh

Table 1: Hyperparameter choices.

ages accuracy of each emotion category.
We select a range of neural network models as our base-

lines, including three bi-directional LSTM models [34], a deep
neural network (DNN) followed by an Extreme Learning Ma-
chine (ELM) [29], as well as a CNN model using an attention
mechanism [4]. Among the LSTM models, COVAREP extracts
commonly used speech features for emotion recognition, us-
ing the COVAREP toolkit [36], while both LSTM (Speech) and
LSTM (Glottal) extract spectrograms from the speech wave-
forms and glottal flow waveforms respectively. The attentive
CNN model [4] uses a range of features including log mel-
filterbanks and the hand-crafted eGeMAPS feature set [11]. It
cuts and pads to make sure each utterance is 7.5s long. By con-
trast our path signature approach allows us to deal with utter-
ances of variable length in a natural way.

4.4. Results and Discussion

Table 2 summarises the performance comparison between dif-
ferent methods. As we can see, the best UA score 56.83% and
WA score 61.95% are achieved by the attentive CNN model [4].
Despite its simplicity, the performance of our model, named
PTS-CNN (i.e. Path-Tree-Signature based CNN), is on par with
the best results (-3.80% in UA and -3.05% in WA comparing
to Attentive CNN). It also outperforms other LSTM and DNN
based models which have complex network design. In terms
of computation time, our model takes on average 57 seconds to
train and 0.7 seconds for inference, per fold. It has a small num-
ber of hyperparameters, which makes it very easy to tune7. The
dyadic path signature of an utterance with dyadic-level m = 4
(i.e. contains 15 paths) and signature-degree of n = 2, takes on
average 0.0061 seconds to compute8.

Model UA WA
COVAREP [34] 51.84 49.64
DNN-ELM [29] 52.13 57.91
LSTM (Speech) [34] 51.85 51.94
LSTM (Glottal) [34] 54.56 52.82
Attentive CNN [4] 56.83 61.95
PTS-CNN (our model) 53.03 58.90

Table 2: Accuracy comparison among different models

The shuffle product identity [21] of signature states that

7All experiments including signature computation are performed on
Microsoft Azure NC6 VM, which has 6 cores of Intel Xeon CPU E5-
2690 v3 @ 2.60GHz, 56GB of RAM and a NVIDIA Tesla K80.

8Both the signature computation and model inference time are neg-
ligible, which makes real-time deployment possible.

the product of two lower-level signature coefficients can be ex-

pressed as a linear combination of some higher-level coeffi-
cients. Therefore by transforming filter-bank energy of a stream
of frames to a signature of degree 2, we automatically include
more nonlinear prior knowledge in our final feature set (at utter-
ance level). The use of dyadic path-tree signature allows us to
capture long and short term information of the utterance without
having to use higher degree signatures. As a result, this allows
the minimal design of our model, as only one convolution layer
is used without any fully connected hidden layer.

Figure 2: Model performance with increasing dyadic level

In the second experiment, we evaluate model performance
by increasing the hierarchical level of our dyadic path-tree. As
seen in Figure 2, we observe a significant increase in both
weighted and unweighted accuracy between level 2 and 4,
showing the benefits of having more dyadic partitions and ex-
tracting regional and local information. However, little differ-
ence in performance is observed after level 4, which suggests
level 4 dyadic path signature contains sufficient local informa-
tion of the utterances. In fact, very small dyadic paths can be-
come sensitive to local noise of sampling points.

5. Conclusions
In this paper, different to all the existing speech emotion works,
we presented a path signature approach for speech emotion
recognition. Specifically, we propose a dyadic path-tree struc-
ture of signature, capturing both global and local information.
By using tree-based convolution, we show our path signature
approach can effectively integrate speech frames and efficiently
learn discriminative features for classification of emotion in
utterances. The experiments demonstrate that the proposed
PTS-CNN model achieves comparable performance to existing
works, while requiring minimal model tuning or manual engi-
neering.

For future work, we plan to evaluate the path signature ap-
proach with other LLDs (e.g. pitch, jitter, etc.), and also incor-
porate the signature transform as part of a neural network with
backpropagation, combining speech with other modalities such
as transcribed text and video.
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