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Series Hybrid Electric Vehicle Simultaneous Energy
Management and Driving Speed Optimization

Boli Chen, Simos A. Evangelou and Roberto Lot

Abstract—The energy management (EM) and driving speed
co-optimization of a series hybrid electric vehicle (S-HEV) for
minimizing fuel consumption is addressed in this article on the
basis of a suitably modeled series powertrain architecture. The
paper proposes a novel strategy that finds the optimal driving
speed simultaneously with the energy source power split for
the drive mission specified in terms of the road geometry and
travel time. Such a combined optimization task is formulated
as an optimal control problem that is solved by an indirect
optimal control method, based on Pontryagin’s minimum prin-
ciple. The optimization scheme is tested under a rural drive
mission by extensive comparisons with conventional methods that
deal with either speed optimization only or EM strategies with
given driving cycles. The comparative results show the superior
performance of the proposed method and provide further insight
into efficient driving.

NOTATION
i Current
l Total Length of Drive Mission
m Mass
P Power
Q Battery Capacity
R Resistance
SoC Battery State-of-Charge
SoH Battery State-of-Health
s Travelled Distance
T Temperature
v Vehicle Velocity
� Efficiency
� Energy Recovery Factor
� Torque
! Angular Speed
Subscripts
b Battery i Inverter
dc DC/DC Converter m Motor
e Engine r Rectifier
g Generator t Transmission
h Mechanical Brake v Vehicle

I. INTRODUCTION

ELECTRIFICATION of personal transport is identified
as an essential step towards addressing the climate

change threat. Ongoing efforts relate to enabling reductions
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of energy consumed by cars by shifting from conventional
fuel powertrains to more electrified ones. The end of the
road is expected to be fully electric vehicles, however the
penetration of such vehicles is hindered by the perceived
sacrifice of easy and quick refueling that average consumers
have enjoyed up to now with conventional vehicles. Hybrid
electric vehicles (HEVs) offer a suitable alternative design
that combines the range and refueling convenience of engines
with the cleaner electric energy of electric propulsion systems.
HEV powertrains usually contain two or more energy sources
for propulsion, such as an internal combustion engine (ICE)
and a battery, therefore they are more complex than their
counterparts in conventional vehicles. There is a variety of
architectures in which the sources and other components in
the powertrain can be arranged to provide propulsion to the
HEV, such as series, parallel and series-parallel architectures,
with further subcategories in each case. In this article, the
focus is on series architecture HEVs (S-HEVs) which include
extended-range electric vehicles, such as the BMW i3 range
extender, the Nissan Note e-power and VIA Motors products.

In terms of powertrain operation, energy management (EM)
control strategies are used to decide intelligently on how to
provide energy to the total vehicle load from the multiple
energy sources in HEV powertrains. Despite the commercial
success of HEVs, better fuel economy for these vehicles is
being sought. This can be suitably achieved by new EM
control, which remains one of the main challenges for a HEV.

A large number of EM strategies, from rule-based to
optimization-based, have been proposed in the literature [1]–
[5], among which the optimization-based approaches are usu-
ally heavy in computations, even though they have relied
on predefined speed profiles upon which the optimization
is performed. Instantaneous optimization-based techniques,
such as the equivalent consumption minimization strategy
(ECMS), represent valid alternatives that reduce the amount
of computational burden at the price of less accuracy [6],
while heuristic strategies that rely on reproducing the power
split features of optimization-based strategies [7], [8], usually
offer a good compromise between real-time implementability
and optimality. However, there is no optimality guarantee
for the rule based methods, which mostly originate from
intuition. Machine learning techniques have also been recently
adopted for HEV energy management [9], [10]. However,
the performance is highly dependent upon the DP solutions
because the optimal EM method is learned from DP solutions
via neural networks.

The present paper contributes a new EM strategy based on
the combined and simultaneous optimization of two important
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Fig. 1. Block diagram of the series HEV powertrain.

aspects of a hybrid vehicle: the longitudinal speed profile and
the hybrid powertrain energy flow. The individual optimization
of the latter of these two aspects is indeed well studied in the
literature, as has been described in the previous paragraph.
The individual optimization of the vehicle speed is also widely
addressed for the purpose of minimizing fuel consumption in
vehicles with conventional powertrains [11]. The combined
optimization of the two aspects is a non-trivial step that
produces a new EM methodology [12], which to the best of the
authors’ knowledge has not been addressed sufficiently. The
proposed methodology can lead to the most efficient driving
since both the vehicle speed and energy management are taken
into account simultaneously in the optimization, in comparison
to the methods that optimize these aspects separately and
combine them a posteriori (this investigation is provided in
this paper). The concerned problem is set up as an optimal
control problem (OCP) in which the global minimum fuel
consumption is sought by optimizing the speed profile and
energy management power split throughout a given vehicle
mission. An indirect optimal control tool is used in this paper
to find the global optimum solution.

Despite the practical implications of following a given speed
profile, which can be enabled by advanced cruise control
systems, the proposed methodology overall offers a number of
advantages in comparison to existing EM strategies that take
speed profiles as known inputs: a) it removes the necessity
of knowing a priori the driving cycle, which is otherwise
usually unknown in practice, b) it also removes the necessity
of predicting the future driving speed, which can otherwise
lead to inaccurate speed profile predictions and consequently
suboptimal powertrain energy management, c) it can lead to
the most efficient driving as already mentioned, d) the drive
mission is specified in terms of parameters than can be easily
defined by the user or measured by a navigation system, such
as the current location, the desired destination, and the path
and time to destination, and e) the proposed scheme can be
naturally extended to incorporate drive mission uncertainty,
such as road traffic, traffic lights and so on, by reformulating
it into a receding horizon problem, although this aspect is not
studied in the present work.

The work in the paper extends in several aspects preliminary
work on the simultaneous optimization of a series HEV speed
profile and energy management in [13] and makes further
important contributions: a) while the previous work considers
solely the electrical behavior of the battery, in this work battery
health and thermal effects are additionally taken into account
and modeled, thus making it possible to reveal the impact
of fuel efficiency optimization on the battery durability and

safety, b) in contrast to a path with a constant legal speed limit
and flat surface used in the previous work, a more realistic
driving environment is created in this paper by developing
a framework that takes into consideration the variable legal
speed limit and road slopes of any given path, c) real driving
speed data is collected in this work by a recently developed
data acquisition device [14] and compared against optimized
speed profiles for the same path to understand the nature
and assess the importance of the speed optimization, d) the
benefit of the newly developed combined and simultaneous
optimization is demonstrated by comparisons with a two-
step methodology that involves first conventional speed pro-
file optimization followed by conventional powertrain power
sharing optimization, and e) the conventional speed profile
optimization is developed further to adopt it to HEV scenarios
in which there is powertrain energy recovery, which leads to
additional comparisons to those mentioned in part d).

The remainder of the paper is structured as follows. Section
II introduces the vehicle and powertrain model, including all
the powertrain component models, used in this work. The
OCP and associated operational constraints are formulated in
Section III. Section IV solves the OCP for a defined vehicle
mission and shows the advantages of the proposed optimiza-
tion scheme by comparative results. Finally, conclusions are
drawn in Section V.

II. SERIES HYBRID ELECTRIC VEHICLE MODEL

The proposed series HEV model represents a medium-size
passenger car, and its powertrain configuration is sketched in
Fig. 1. The S-HEV has three independent sources of power Pb,
Pg , and Ph (corresponding respectively to the battery, genera-
tor, and mechanical brakes), which can be mixed to obtain the
desired values of vehicle speed and acceleration. The hybrid
electric vehicle also allows regenerative braking that conveys
braking power (negative Pt) through the transmission up to
the battery. Optimal energy management fulfils minimization
of fuel consumption by means of an appropriate power split.

The modeling of each component, which aims to capture the
associated essential physical characteristics and in particular
power losses, is presented next.

A. Propulsion Load

The propulsion load includes all the components from the
inverter-driven permanent magnet synchronous (PMS) motor
to the wheels, that request the load that has to be satisfied by
the two sources (primary and secondary).
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Fig. 2. Efficiency of the PMS machine (generator = positive torque, motor =
negative torque) and operational bounds (blue dotted lines) for the reversible
motor in terms of current, power, speed and voltage. The dashed horizontal
lines correspond to constant currents (approximately equivalent to constant
torques) and the vertical dash-dot curves correspond to constant voltages.

1) Three-phase DC to AC converter (Inverter): This work
adopts a bidirectional pulse width modulated (PWM) inverter
[15] in which the high frequency switching dynamics are
neglected by averaging them out [16]. The efficiency of
the energy transformation is therefore of interest, which is
simply modeled as a constant efficiency factor �i. Thus, the
power balance of the DC link and inverter is described by
Pi=�

sign(Pr+Pdc)
i (Pr + Pdc), where �i is adjusted according

to the direction of the power flow.
2) PMS Motor/Generator: The behaviour of the PMS ma-

chine can be precisely described by a nonlinear dynamic model
in d � q reference frame [17]. This can be further simplified
based on the assumptions that the dynamics of electromagnetic
phenomena are much faster than mechanical ones and that the
rotor inertia torque is reasonably smaller than the load torque,
leading to a set of steady-state algebraic equations in terms of
power flow [13]:

Pm = !m�lm; (1a)

Pi = !m(�lm + �dm)� 2

3
Rm

(�lm + �dm)2

(pm�m)2
; (1b)

where Pm is the motor mechanical power and Pi is the
inverter electric power, �lm is the load torque and !m is
the rotor angular speed. �dm is the total dissipation torque
that collects a variety of electromagnetic and mechanical
dissipation, including Eddy current, hysteresis, bearing and
windage losses. In this work, �dm is assumed speed dependant,
and approximated by a simple fitting technique to provide a
realistic representation of the machine efficiency as compared
to experimental data [16]. The stator resistance Rm, the rotor
magnetic flux �m and the number of pole pairs pm are
constants specified in Table I given at the end of Section II-D.
For the reversible PMS machine, it is convenient to adopt the
convention that when it works as a generator, power (as well
as the load torque) are positive, and the power is assumed
negative when it works as a motor. In view of (1), the PMS
motor/generator efficiency �m = (Pm=Pi)

sign(Pi) may be
explicitly evaluated as a function of the load torque �lm and
velocity !m, as shown in Fig. 2.

3) Transmission: A transmission with constant ratio gt =
10 is used and hence the relation between the motor angular

Fig. 3. Single-track, non holonomic, vehicle model.

speed !m and the vehicle forward speed v is !m = gt v:
It is assumed that the transmission has a constant efficiency
�t. The bi-directional power flow is hence modeled with
Pt = �

sign(Pm)
t Pm, which adjusts the transmission efficiency

according to the direction of power flow.
4) Brakes: Mechanical brakes are simply modeled as power

withdrawal, that is as a source of negative power Ph (Ph � 0
always). This power is dissipated as heat.

5) Vehicle longitudinal dynamics: The gross motion of the
vehicle is described in terms of longitudinal speed v and yaw
rate 
, by using the single-track, non-holonomic vehicle model
depicted in Figure 3. The longitudinal dynamics is described
by the following differential equation:

mv
d

dt
v = Fv � FT � FD � FG; (2)

where mv is the overall vehicle mass, FT = fTmvg cos �,
FD = fDv

2 and FG = mvg sin � are resistance forces
due to rolling drag, aerodynamics drag and road grade �
respectively. Fv is the longitudinal driving force determined
by the transmission and brakes power

Fv =
Pv
v

=
Pt + Ph

v
: (3)

The traveled distance s is calculated by integrating the longi-
tudinal speed:

d

dt
s = v: (4)

Assuming that the wheels are non-sliding, then the vehicle
turning can be modeled as: w
=v tan �, where � is the
steering angle and w the wheelbase. It is reasonable to assume
that when driving on a single lane rural road, the driver
remains approximately in the middle of its lane. The road
is thus defined in terms of curvature of the road center �
calculated from its Cartesian coordinates (x; y) as a function
of the travelled distance s:

�(s) =

s�
d2x

ds2

�2

+

�
d2y

ds2

�2

: (5)

Therefore, the vehicle yaw rate 
 is simply the product of
vehicle speed and road curvature as shown by 
=v�(s):
This assumption is not representative of the driver behavior at
intersections, hence sharp corners are conveniently converted
into smoother profiles by properly filtering the curvature.

B. Primary source

1) Internal Combustion Engine: A common 1.8L spark
ignition naturally aspirated engine is considered. The engine
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involves very complex dynamics but these are typically much
faster than the powertrain energy flow dynamics of interest
in the present work. Hence, a characterization of the aver-
age engine efficiency at steady-state operating conditions is
adequate for the present purposes. The engine efficiency is
derived from simulations with the industry standard engine
and gas dynamics simulation software, Ricardo WAVE, which
has been calibrated against experimental results. The efficiency
�e(!e; �e) is expressed as a function of the crankshaft speed
!e and brake torque �e at steady-state operating conditions, as
shown in Fig. 4. The ICE is assumed to be “idle” for !e �
1000 rpm and it has a maximum efficiency �e;max = 0:343
for a brake torque of 151 Nm at 2800 rpm.
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Fig. 4. Efficiency (blue solid) and fuel mass flow rate [g/s] (red dashed) of
the ICE with torque and speed operating points.

2) PMS Generator: The steady state equations (1) that
describe the reversible PMS machine are applied to describe
also the PMS generator, which works only in one direction. In
the present work, both machines are assumed to have the same
parameters. Therefore, the generator efficiency �g = Pg=Pe is
a function of generator speed and load torque, immediately
available from Fig. 2.

3) Rectifier: The rectifier converts the generator AC into
DC at constant voltage Vdc. A pulse width modulated (PWM)
rectifier is adopted. Similarly to the inverter, it is simply mod-
eled as a constant efficiency factor �r, such that Pr = �rPg :

C. Secondary source

1) Battery: The Li-ion battery is modeled by a standard
equivalent electrical circuit with purely ohmic impedance [4]
representation, which captures the main battery dynamics by
the differential equation of the battery state-of-charge (SoC):

d

dt
SoC = � ib

Qmax
: (6)

where Qmax is the battery capacity, and ib is the battery
current, which is assumed positive during the discharge phase.
Moreover, instead of having a nonlinear dependence on SoC,
the battery open circuit voltage Voc is adequately approximated
as a constant for the studied charge sustaining HEV. By
considering the identity Pb = Vocib � Rbi

2
b that is inferred

from the definitions of the battery closed circuit voltage
Vb = Voc � Rbib and the battery output power Pb = Vbib,
battery current ib can be solved as a function of Pb. Then, the

solution is applied to reformulate (6) as

d

dt
SoC = �

Voc �
p
V 2
oc � 4PbRb

2RbQmax
: (7)

a) State-of-Health (SoH): Battery SoH is a measure that
reflects the battery condition compared with a fresh battery.
High fidelity SoH models, as the one utilized in a battery sizing
problem in [18], are highly nonlinear due to the associated
temperature effects and battery capacity drops because of
SoH variations. However, in EM problems the optimization
is solved over a horizon (distance of driving mission) that is a
negligible fraction of the total distance to reach battery end-of-
life, hence the SoH variation is very small. Consequently, there
will be a negligible capacity drop and Qmax can be assumed
to be constant. Additionally, as it will be shown, the battery
temperature is maintained within a narrow band under active
cooling conditions, and therefore temperature inlfuence can
also be ignored. As such, a simple SoH model [19], capturing
the essential features [20], is adequate and is utilized in this
work:

d

dt
SoH =

�jibj
2NcycleQmax

; (8)

where Ncycle is the number of charge-discharge cycles a new
battery can take before it reaches 80% of the nominal energy
capacity. By definition of the model, after this many charge-
discharge cycles the SoH reaches zero.

b) Thermal model: For electric and hybrid vehicles, the
prediction of the battery temperature is a vital process of the
thermal management that is designed to optimize the driv-
ing performance. Accurate modeling of the thermal behavior
requires high fidelity heat transfer models that are, however,
inherently complex due to the increased dimension and the
dependence on battery chemistry and composition [21]. In
this paper, a simple model that captures the main thermal
effects without significantly increasing the computation burden
is adopted. The model is given by the following equation:

d

dt
Tb =

Rb i
2
b � hcAb(Tb � Tamb)

cbmb
(9)

where cb and mb are respectively the mass thermal specific
capacity and battery mass, Ab is the heat transfer area of the
battery, and hc is the heat transfer coefficient that is assumed
constant for invariant cooling air mass flow rate. Tamb = 25�C
is the ambient temperature that is invariant in this study.

The characteristic parameters of the battery are chosen to
emulate a realistic battery for a non plug-in HEV. The battery
energy capacity is 1.5kWh (as in the Nissan note e-power).
It corresponds to a small-sized battery and as such it must
be capable of delivering continuous currents of 10C or more
in practice for sufficient propulsion power [22]. Therefore,
the maximum charging/discharging C-rates are set to 10 C
and 20 C respectively. However, repetitive charge-discharge
cycles under such C-rate levels would rapidly make the battery
wear out with deep discharges. Therefore, the battery SoC is
limited in this work within the narrow range of 50%-80%.
The thermal parameters used are mainly obtained from [23],
[24]. In particular, as mentioned in [23], the heat transfer
coefficient hc may practically vary between 5 W/m2/K (natural
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convection) and 65 W/m2/K (forced-air convective cooling)
depending on the cooling intensity. In this paper, hc is set
to 25 W/m2/K, by which an environment with intermediate air
cooling is assumed. The thermal specific capacity cb is set to
800J/kg/K, which is a validated value for a Li-ion battery cell
[23]. Furthermore, following the work in [24], it is assumed
that the battery pack used in this work consists of 72 prismatic
pouch cells (dimension: 16 � 65 � 151 mm), formed in two
arrays, with coolant passages (width of the coolant passages is
3 mm) between each two cells to allow fresh air for circulation
(see the configuration of the active air cooled battery system
proposed in [24]). As such, the heat transfer area Ab can be
numerically determined. The remaining battery parameters are
reported in Table I, provided in Section II-D.

2) DC/DC converter: The battery voltage is amplified by
a high-efficiency bidirectional DC/DC converter. Similarly to
the rectifier the converter is modeled as a static element
having constant efficiency �dc [25]. The bidirectional power
conversion is thus described by Pdc = �

sign(Pb)
dc Pb, in which Pb

is the battery power on the low voltage side, Pdc is the battery
power on the DC link side, and the efficiency is adjusted
according to the direction of the power flow.

D. Component integration

In this Section a fuel consumption model is developed
analytically by the efficiency analysis of the engine-generator
system. Thereafter, all the individual components are assem-
bled together to form the overall vehicle model, in which the
accuracy of transient behavior and complexity are balanced.

1) Fuel consumption model: The mechanical integration
of the ICE and the PMS generator enables the calculation
of the efficiency �f of the transformation of fuel chemical
power into electric power, which is simply the product of the
engine and generator efficiencies: �f = �e�g . The mechanical
separation from the wheels allows a requested engine power to
be supplied by freely choosing among different combinations
of torque and speed, which optimize the engine-generator
efficiency. As shown in Fig. 5, the relationship between the

Fig. 5. Fuel mass rate with generator power, when the most efficient engine
torque-speed operating point is followed at each power value.

engine fuel mass rate _mf and Pg is approximately linear,
provided the engine-generator unit is continuously operated
along the locus of the most efficient torque-speed operating
points. The fuel mass dynamic equation is therefore given by:

d

dt
mf = _mf0 +

Pg
qHV �f

(10)

where _mf0 = 0:12 g/s is the fuel mass rate when the engine is
idle, qHV = 44MJ/kg is the gasoline lower heating value and
�f = 0:34 is the equivalent factor of power transformation.

2) Overall powertrain model: In view of the power flow
described already for each component, the vehicle power flow
may be described as functions of the three independent power
sources Pb; Pg , Ph, with the particular power output of the
transmission given by:

Pt=(�i�m�t)
sign

�
�rPg+�

sign(Pb)

dc Pb

��
�rPg + �

sign(Pb)
dc Pb

�
:

From a practical perspective, the three powers are not con-
trolled directly in this work, but via the time-derivatives
jg; jb, jh of the associated forces Fg; Fb, Fh, respec-
tively, which have the dimensions of jerk, to ensure
smooth controls and to avoid unrealistic jerky manoeuvres.
Therefore, the three independent power sources are cal-
culated by Pg=Fgv, Pb=Fbv, Ph=Fhv. Considering state
variables x,[mf ; SoC; v; s; Fg; Fb; Fh]T and control inputs
u,[jg; jb; jh]T , the following system is obtained by collecting
(2), (4), (7), (10) and the dynamics of Fg; Fb and Fh:

d

dt

0BBBBBBBB@

mf

SoC
v
s
Fg
Fb
Fh

1CCCCCCCCA
=

0BBBBBBBB@

_mf0 + Pg=(qHV �f )

�(Voc �
p
V 2
oc � 4PbRb)=(2RbQmax)

(Pt + Ph)=(mv v)� (FT + FD + FG)=mv

v
mv jg
mv jb
mv jh

1CCCCCCCCA
:

(11)
Any other time-varying variables of the system, such as

electric currents and voltages, torques and the vehicle power
flow can be explicitly calculated by algebraic equations with
respect to x and u. In addition, battery state of health and
temperature are calculated respectively from equations (8)
and (9) for monitoring purposes. The main characteristic
parameters of the vehicle model are summarized in Table I.

TABLE I
MAIN VEHICLE MODEL PARAMETERS

symbol value description
mv 1500 kg vehicle mass
fT 0:01 tyre rolling resistance coefficient
fD 0:47 aerodynamics drag coefficient
Qmax 5 Ah battery capacity
Rb 0:2056 
 battery internal resistance
Voc 300 V battery open circuit voltage
Ncycle 2000 battery life cycle
mb 36 kg battery mass
cb 800 J/kg/K battery mass specific heat capacity
Ab 1.56 m2 battery heat transfer area
hc 25 W/m2/K battery heat transfer coefficient
�r; �i; �dc 0:96 efficiency of converters & inverters
Rm 90 
 PMS machine stator resistance
�m 0:21 Wb PMS machine rotor magnetic flux
pm 6 PMS machine number of poles
�t 0:96 efficiency of the transmission
gt 10 transmission ratio
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III. OPTIMAL CONTROL PROBLEM FORMULATION

Conventional energy management strategies are designed to
find proper power component combinations that minimize fuel
consumption for given vehicle speed profiles. However, the
future driving speed is not known during real world driving.
The idea proposed in this paper is based on a different concept,
as shown in Fig. 1. The OCP is formulated by specifying
the vehicle mission subjected to performance and operating
constraints that must be satisfied. Instead of in terms of vehicle
speed and acceleration, the drive mission is defined in terms
of route and a specified traveling time. Therefore, according
to the new methodology (OCP-Joint), the powertrain energy
flow and speed profile along the route are jointly provided by
the solution of the optimization.

An alternative methodology proposed in this work to solve
the complete optimization problem is a two-step approach
(OCP-2-step) that successively combines two conventional
methods: 1) driving speed optimization (OCP-S), and 2)
energy management optimization (OCP-EM), as shown Fig. 6.
The OCP-2-step is related to conventional methods in which,
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Fig. 6. Optimal control problems formulated for the series HEV.

for example, the power split is optimized for a given speed
profile (that may or may not be an optimal speed profile), or
the speed profile alone is optimized for a conventional (non-
hybrid) vehicle. The present work compares the mentioned
optimization approaches and exposes the benefits in vehicle
fuel efficiency of conducting the combined optimization OCP-
Joint, which takes into account both the characteristics of the
drive mission as well as the powertrain, as demonstrated later
in Section IV. The general formulation of the OCPs studied
in this paper is as follows:

min
u

J(x;u) =

Z tf

0

L(x;u; t) dt+ �(x(tf )) (12a)

subject to:
d

dt
x = f (x;u; t) (12b)

 (x;u; t) � 0 (12c)
b (x(0);x(tf )) = 0; (12d)

where J(x;u) is the main objective. The vector x represents
the system state vector, which evolves according to the differ-
ential equation _x=f(x;u; t), and the vector u represents the
control input. The inequality constraints and the boundary con-
ditions are taken into account by (12c) and (12d). Finally, tf
denotes the total traveling time. In each OCP described below,
the respective J , x, u, constraints and boundary conditions are
different, and are specified.

a) Vehicle speed optimization (OCP-S): Driving speed
optimization in terms of fuel efficiency has been well studied
in the literature for conventional vehicles [11]. In this section,
this conventional approach is developed further and extended
to HEVs by considering energy recovery during braking. A
fixed energy recovery factor is defined as the ratio between
regenerative braking power and the total braking power:

� = Pt=Pv; 8Pv < 0 (13)

with � 2 [0; 1]. The boundary case �=0 corresponds to a
conventional powertrain, since in the present work the fuel
mass rate is linearly dependent upon the generator output
power (see Fig. 5), while � = 1 is associated with recovering
all braking energy as in a highly hybridized or fully electric
vehicle. The total driving/braking power is incorporated into
the dynamic model of the longitudinal dynamics of the vehicle
as the total driving/braking force Fv (see (3)), as follows:

d

dt

0@ v
s
Fv

1A =

0@Fv=mv � (FT + FD + FG)=mv

v
mv jv

1A (14)

with x , [v; s; Fv]
T . The OCP is formulated to find jerk input

u = jv , associated with the total driving/braking power and
consequently the speed v, which minimizes the net energy
from the powertrain:

J =

Z tf

0

Pt dt =

Z tf

0

max(�Fv; Fv)v dt: (15)

The inequality constraints of this OCP are as follows. In-
equality constraints are imposed on the speed and acceleration
for driving safety and comfort. Specifically,

0 � v � vmax; (16)

where vmax is the legal speed limit1. Instead of the commonly
used ellipse of adherence of tires, the longitudinal and lateral
acceleration are constrained within an acceleration diamond,
as everyday drivers use accelerations remarkably smaller than
adherence limits [26]. The constraint is described as follows:����Fv=mv

ax;max

����+

���� v


ay;max

���� � 1 : (17)

where Fv=mv and v
 are respectively the longitudinal and
the lateral acceleration applied by the driver, while ax;max
and ay;max are their maximum allowed values. The total input
power is limited according to

vFv � Pv;max ; (18)

where Pv;max is determined according to the sum of the
individual power limits of the engine and the battery branches.
Finally, jv is bounded within �1m=s3.

The following boundary conditions are used to define the
initial and terminal states:

s(0) = 0 ; s(tf ) = l;
v(0) = v(tf ) = vmin; Fv(0) = Fv(tf ) = 0;

(19)

1To avoid the issue of singularity when the power is divided by v, a non-
zero lower bound is imposed, such that v � vmin with vmin a small constant.
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where l is the length of the path and tf is expressed in terms
of l and an average speed for the mission.

b) Powertrain power-split optimization (OCP-EM): The
general problem of optimizing the EM of an HEV while it
follows a predefined speed, for example according to a given
drive cycle, is standard, while it has also been specifically
formulated in numerous prior studies as an OCP; see for
example [3], [27]. Here such an EM OCP formulation is
adapted and described for the proposed vehicle model.

For the given value of the vehicle speed and accelera-
tion, the necessary driving force Fv is uniquely determined
by (2) whereas the power split is freely assigned. Based
on the developed series HEV model, the dynamic model
used for EM is part of (11), comprising only dynamics of
x=[mf ; SoC; Fg; Fb; Fh]T (and SoH and Tb for monitoring),
subject to an algebraic constraint among Fb, Fg and Fh given
by (3). The OCP is formulated to find u=[jb; jg; jh]T that
minimizes J=mf (tf ), subject to multiple constraints that keep
the operating conditions of the powertrain components inside
their admissible range, as follows. The generator power is
limited according to:

0 � Pg � Pg;max; (20)

with Pg;max = 86kW. The battery is constrained in terms of
SoC and current:

SoCmin < SoC < SoCmax; ibc < ib < ibd; (21)

where SoCmin=0:5, SoCmax=0:8, and ibd=100A and ibc=�
50A are determined by the discharging and charging C-
rate limits respectively. The PMS motor (and indirectly the
inverter) is constrained by the operational limits as shown in
Fig 2. Braking power is constrained to be negative:

Ph � 0 ; (22)

and jg; jb; jh are bounded within �1m=s3.
The following boundary conditions are imposed to complete

the formulation:

SoC(0) = SoC(tf ) = 0:65; mf (0) = 0; (23)
Fb(0) = Fb(tf ) = Fg(0) = Fg(tf ) = Fh(0) = Fh(tf ) = 0:

Note that the charge sustainability is addressed in the present
work by employing SoC boundary conditions, rather than in-
troducing an additional term in the optimization cost function.
This condition enables to make a fair comparison of fuel
consumption between the solutions of different optimization
methods, without having to refer to “equivalent fuel” quan-
tification caused by unequal boundary SoC values between
the different solutions, which may be inaccurate. Finally,
Tb(0) = Tamb = 25� C and SoH(0) = 1 are introduced.

c) Combined optimization of both vehicle speed and
power split (OCP-Joint): In this framework, the OCP for-
mulation includes the optimization of the power split (as in
OCP-EM), however, the driving speed is unspecified, which
leads to a formulation by which both EM and forward speed
are simultaneously optimized. By this new formulation, the op-
timization problem becomes more complex and powerful than
any of the individual optimization problems and it represents

new knowledge. The state space model in this case is already
specified in (11) with x , [mf ; SoC; v; s; Fg; Fb; Fh]T , where
v is now included as a state according to (2), and (3) does not
represent an algebraic constraint as in OCP-EM. The objective
of the OCP-Joint is to minimize J = mf (tf ) analogously
to the OCP-EM by finding three inputs u = [jb; jg; jh]T ,
however the speed profile v now also results from the opti-
mization, as a consequence of the jerk inputs u. The inequality
constraints and the boundary conditions in this case collect all
the conditions (except (18)) imposed in OCP-S and OCP-EM.

d) Two-step optimization of vehicle speed and power split
(OCP-2-step): The (OCP-2-step) simply obtains the speed
profile by solving OCP-S and combining that a posteriori with
OCP-EM. OCP-2-step will be used in Section IV to bench-
mark OCP-Joint (for �=0, OCP-2-step is precisely related to
existing optimization schemes in the literature).

The foregoing OCPs may be solved by various methods
in different categories, such as dynamic programming, direct
methods and indirect methods. In this work, these OCPs
are solved by an indirect method embedded OCP solver
(named PINS) that is based on C++ [28]. This method solves
the optimization problem by converting it into a boundary
value problem resulting from Pontryagin’s minimum principle
(PMP). Path constraints (for example, battery current limits,
acceleration diamond and energy source power limits) are not
explicitly included, instead, the inequalities are approximated
and included in the Lagrange term

R tf
0
L(x;u; t) dt by us-

ing smooth barrier functions. Non-smooth functions, such as
sign(�) are smoothed by approximations. The smoothness of
the various approximation functions is freely tunable, subject
to a well-known trade-off between accuracy and robustness
(convergence to a solution) of the solver. It has been shown
in [29] that this indirect solver offers comparable performance
to solvers pertaining to other categories in terms of accuracy,
robustness and computational speed.

IV. SIMULATION RESULTS

In this Section the OCPs defined in Section III are solved for
the specific vehicle mission shown in Fig. 7 that corresponds
to a rural route with scarce traffic. This route has been
deliberately chosen to minimize the traffic influence, which is
not taken into account in this paper. Road geometry including

Fig. 7. 18.9km rural route selected for the vehicle mission
https://goo.gl/ytrVUM.
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the actual gradient is exported from Google MyMaps and
it is then converted into the curvature model. The variable
speed limit imposed throughout the journey captures the real
conditions of the chosen path. Since traffic is not considered,
the speed is not constrained to the behavior of other vehicles.

A. Driving speed optimization assessment against real driving

With the aim of showing the importance of driving speed
optimization in terms of fuel saving and investigating the
associated impact on the battery temperature and SoH, an
unoptimized human-driver speed profile of a petrol passenger
car for the route in Fig. 7 is utilized for comparison with the
optimal solutions. OCP-S is deployed with � = 0 to simulate
a conventional vehicle, while the main idea OCP-Joint is also
used for benchmarking. The comparative results are shown in
Figure 8, where the trip is requested to be accomplished in
1326s (identical to the real case), which corresponds to the
vehicle being driven at an average speed of 51:3 km/h with
identical initial and terminal speeds to the real case. Note
that the sudden dips (highlighted by dashed ellipses) in the
real profile are caused by isolated traffic, therefore for fair
comparisons they are not taken into account; the ‘modified
real’ speed profile, also shown in Fig. 8, is used instead, which
is obtained by passing the real profile though a median filter
to remove such very sharp changes in speed.

Compared to the real driving speed, the optimal profiles
lead to more efficient vehicle operation (as will be quantified
in Table II) by using the information of the upcoming road
slopes and speed limit. For example, at the beginning of
the journey, the human driver accelerates to the speed limit,
and upon reaching it, decelerates dramatically because of the
approaching junction at 1 km. Conversely, the optimal profiles
stop increasing at a much lower speed, and they are then
followed by a milder deceleration to pass through the first
corner. It is also noticed that at 7 km, the human driver exceeds
the legal speed limit by view of the sign ahead indicating the
higher limit, whereas the optimized results do not suffer from
such a human ‘error’ and strictly obey the legal speed limit at
all times.

To further understand the nature of optimal as compared
to real driving, two different cases of OCP-EM are solved by
injecting: a) the optimal speed from OCP-S (OCP-2-step), and
b) the modified real speed profile; and comparing these with
the solutions of OCP-Joint in terms of fuel economy as well

as battery temperature and SoH. In the latter OCP-EM case it
may be argued that the real driving speed is collected from a
conventional vehicle, which is not consistent with the hybrid
powertrain architecture deployed in OCP-EM. However, the
human driver may not significantly change his/her driving style
when the conventional car is replaced by a hybrid one with
similar engine power, as the driving style of a particular driver
is less influenced by the powertrain architecture but highly
depends on the maximum power that can be delivered.

The results in terms of battery lifetime, and average fuel
consumption are shown in Table II, while Fig. 9 shows the
battery current and temperature profiles for the three optimiza-
tion cases. The available distance the vehicle can travel before

TABLE II
COMPARISON AMONG DIFFERENT OPTIMIZATION APPROACHES

Battery life Fuel economy
[km] [L/100km]

OCP-Joint 157500 3:84
OCP-2-step 127700 4:08
Exp. speed+OCP-EM 89573 5:92
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Fig. 9. Battery current and temperature profiles with Tamb = 25�C.

the battery reaches end-of-life is calculated according to the
degradation suggested by the end of the present mission. It
is shown that the OCP-Joint beyond substantially improved
fuel economy, offers enhanced battery durability compared
to the other two cases, as OCP-Joint is the most bounded
throughout the simulation in terms of positive and negative
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current maximum values. The beneficial behavior of OCP-
Joint in terms of battery current and consequently in terms of
SoH, together with the relevance of temperature variations, is
explained as follows.

From the battery thermal model (9), Tb is affected by ib and
the convective cooling (subject to the temperature difference
from ambient temperature). As such, it may be the case
that up to a certain amount of battery current there is no
visible change in battery temperature because the resistive heat
Rb i

2
b is suppressed by the cooling effect, while only even

higher operating currents will increase Tb. As illustrated in
Fig. 9, a large current spike always results in a significant
step change in temperature. For example, the main temperature
increase of OCP-2-step occurs at the very beginning when a
large discharging current is requested. Comparing to the other
cases, the OCP-Joint solution has overall smaller ib, but the
duration of its larger charging currents appearing at 5:5 km
and 11:5 km is much longer. Hence, the terminal temperature
in all optimization cases ends up being very similar.

Battery current on the other hand represents the only vari-
able that influences SoH, which is particularly proportional
to the integration of jibj (see (8)). Therefore, it is clear that a
significant positive jump in the temperature value (for example
the one appears at 2.5 km) is certainly an indication of a large
ib that will also lead to a dramatic SoH drop. Since all the
three optimization cases are charge sustained, the integration
of their current profiles over [0; tf ] are all zero. This means
that any large positive variations in the current (even in the
form of spikes) will have to be compensated by negative
variations, thus overall increasing the average value of jibj and
hence the SoH drop. A real driver tends to drive the vehicle
with higher values of acceleration and deceleration than the
optimal ones. Hence more power will be requested from the
powewtrain, and most likely the battery itself, implying large
current spikes, in the case of the experimental + OCP-EM
case. Also, when the powertrain characteristics are not taken
into account in the optimization, as in the case of OCP-2-
step, the speed profile solution tends to have the PnG form, in
which the initial part of each PnG segment is large acceleration
and therefore large battery current. In contrast, in OCP-Joint
the optimization takes into account that large battery power
amounts are less efficient than low power values, therefore it
restricts the battery usage to lower current values.

B. Assessment of driving speed combined optimization

To gain more insight into the behavior of different opti-
mization schemes and to expose the benefits of combined
optimization, the next example is carried out to explicitly
compare the simultaneously optimized results of OCP-Joint
and the solutions of OCP-2-step. The same vehicle mission
as defined in the last example is used with the same average
speed and boundary speed values.

As it can be noticed in Fig. 10, the consideration of road
elevation in the optimization mainly gives rise to an additive
perturbation to the optimal speed solution in comparison to
the flat road. In order to focus on and compare the main
mechanisms that produce the nature of the optimized speed

profiles, the elevation of the route is omitted for the subsequent
analysis in this section. In Fig. 10, the speed profile solved by
the joint optimization is compared with the solutions from the
speed optimization by OCP-S for different vehicle topologies.
The results show that the optimized speed profile is dependent
upon the selected optimization strategy and also varies as �
changes when OCP-S is deployed. It can be seen that the
optimal driving speed for the case � = 0 (conventional vehicle
with no braking energy recovery) follows a pattern named
pulse-and-glide (PnG), which consists of rapid acceleration
until a maximum velocity is reached, followed by a period
of coasting to pass through the next corner. Such a speed
pattern has been proven to be the most fuel efficient strat-
egy in conventional vehicles [11]. This phenomenon of PnG
fades away in the optimal solutions as the powertrain shifts
towards the electric architecture that allows more regenerative
brakes by increasing �. Eventually, it is hardly observed in
the optimal profile when �=1 (hybrid vehicle with braking
energy recovery), because the power amounts requested for
acceleration and deceleration are balanced to take advantage
of the fully recoverable braking energy. Moreover, the speed
solution produced by the conventional powertrain formulation
is closer to the simultaneously optimized speed (OCP-Joint)
than that of the electric powertrain case in terms of root mean
square (RMS) difference. The reason is that in the proposed
architecture the battery is only a minor energy source, giving
rise to a hybrid powertrain closer to the conventional type.

To complete the comparison, the speed profiles deter-
mined by the OCP-S speed optimization respectively for
� = 0; 0:2; 0:4; 0:6; 0:8; and 1 are fed to OCP-EM (leading to
five cases of OCP-2-step), the solutions of which including the
power split and the corresponding average fuel consumption
are compared with their counterpart found by the combined
optimization scheme OCP-Joint. The comparative results are
reported in Fig. 11. It can be seen that the proposed OCP-Joint
strategy benefits the fuel economy by at least 1.3% due to the
inclusion of the actual hybrid powertrain in the optimization.
Although the hybrid powertrain is neglected in OCP-S, the
optimality of the solution in that case can be enhanced by
manipulating � to allow a suitable amount of regenerative
braking. In the present case, � = 0:4 gives the closest solution
to OCP-Joint in terms of fuel consumption.

Apart from the fuel economy, the simultaneous optimization
also improves the battery thermal behavior and durability,
which can be inferred from the battery operating current,
analogously to the previous example in Section IV-A. In
Fig. 12, the current profile of the OCP-Joint is compared
with two cases pertaining to the OCP-2-step respectively with
� = 0 and � = 1. Due to the removal of the elevations,
the relationship between battery current, and consequently
temperature and SoH can be more clearly observed in this
case. It is clear that the OCP-Joint produces the most bounded
ib, with also the fewest fluctuations throughout the mission,
thereby the solution of OCP-Joint tends to deliver enhanced
battery thermal and SoH performance. It can be seen in Fig. 11
that the solution of OCP-Joint is able to restrain the increase
of battery temperature by about 12% as compared to the most
fuel efficient OCP-2-step case (� = 0:4), and the benefit is
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increased when � diverges from 0.4. The depleted SoH is
almost steady for different choices of �, which amounts to
the battery life being saved by approximately 40% by the
combined optimization.

Finally, the best behaved OCP-2-step case with � = 0:4 is
selected for further comparison with the simultaneously opti-
mized solution of OCP-Joint. In this case the RMS difference
between the two optimized speed profiles is further reduced
to 3.46, which is lower than the differences calculated for
other values of �. In Fig. 13, the battery SoC and power split
obtained in both scenarios are compared. The main difference
between the two optimal solutions is that the individually
optimized speed has a higher acceleration after passing a
corner, therefore in the acceleration phase it requests higher
propulsive power, which is mainly provided by the ICE, while
the battery provides an additional, small amount of power. By
observing the SoC, the battery is depleted more for the OCP-
2-step at the beginning of the mission to fulfill the power
demand requested by the associated speed profile. To remain
strictly charge sustaining, less battery is used for the OCP-2-
step case at the end of the mission while both scenarios have
similar behavior in between.
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of (Top) power flow of engine Pg , battery Pb, mechanical brakes Ph and
(Bottom) battery SoC when road elevation is ignored.

V. CONCLUSIONS

The energy management control and the driving speed
optimization of a series HEV in the context of fuel economy
are addressed in this paper by an optimal control methodology.
The novelty of the proposed method is that it solves the opti-
mal speed profile and the power split simultaneously, with the
drive mission including only the path, the specified traveling
time and constraints that address safety and comfort. The
less complex sole optimization scheme of the vehicle speed
and the energy management respectively are also presented
and combined, forming a two-step scheme with the same
overall objective as the proposed simultaneous optimization
scheme, to benchmark against the proposed strategy in terms
of fuel efficiency and battery durability. It is shown that the
simultaneous optimization is solvable and it performs better in
terms of fuel economy while also improving battery lifetime.
Nevertheless, the optimality of the two-step methodology can
be improved by suitably tuning the objective function for the
speed optimization via a parameter that is associated with the
regenerative braking capability of the powertrain.

From a technological perspective, the presented methodol-
ogy works in real time as implemented in the PINS suite and
requires as input only basic information on the vehicle state
and route characteristics that are easily available on a naviga-
tion system. It can also be used for benchmarking purposes for
a system where the computation power is rigorously limited.
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Future research efforts will be devoted to the extension of the
methodology to the case where traffic conditions and other
mission uncertainties are taken into consideration.
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