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Rate-coded Hebbian learning, as characterized by the BCM formulation,
is an established computational model of synaptic plasticity. Recently
it has been demonstrated that changes in the strength of synapses in
vivo can also depend explicitly on the relative timing of pre- and post-
synaptic firing. Computational modeling of this spike-timing-dependent
plasticity (STDP) has demonstrated that it can provide inherent stabil-
ity or competition based on local synaptic variables. However, it has
also been demonstrated that these properties rely on synaptic weights
being either depressed or unchanged by an increase in mean stochastic
firing rates, which directly contradicts empirical data. Several analytical
studies have addressed this apparent dichotomy and identified condi-
tions under which distinct and disparate STDP rules can be reconciled
with rate-coded Hebbian learning. The aim of this research is to verify,
unify, and expand on these previous findings by manipulating each el-
ement of a standard computational STDP model in turn. This allows us
to identify the conditions under which this plasticity rule can replicate
experimental data obtained using both rate and temporal stimulation
protocols in a spiking recurrent neural network. Our results describe
how the relative scale of mean synaptic weights and their dependence on
stochastic pre- or postsynaptic firing rates can be manipulated by adjust-
ing the exact profile of the asymmetric learning window and temporal
restrictions on spike pair interactions respectively. These findings imply
that previously disparate models of rate-coded autoassociative learning
and temporally coded heteroassociative learning, mediated by symmet-
ric and asymmetric connections respectively, can be implemented in a
single network using a single plasticity rule. However, we also demon-
strate that forms of STDP that can be reconciled with rate-coded Hebbian
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learning do not generate inherent synaptic competition, and thus some
additional mechanism is required to guarantee long-term input-output
selectivity.

1 Introduction

Hebbian changes in the strength of neural connections based on correla-
tions between pre- and postsynaptic activity are widely believed to mediate
learning, memory, and the activity-dependent development of neural cir-
cuits (Hebb, 1949; Martin, Grimwood, & Morris, 2000). Empirical observa-
tions of synaptic plasticity are well characterized by the BCM model, which
postulates the existence of a modification threshold that distinguishes be-
tween the long-term depression (LTD) of a synapse at lower firing rates and
the long-term potentiation (LTP) of a synapse at higher firing rates (Lomo
& Bliss, 1973; Bienenstock, Cooper, & Munro, 1982; Dudek & Bear, 1992;
O’Connor, Wittenberg, & Wang, 2005a). More recently, it has been demon-
strated that changes in the strength of synapses in vivo can also depend
explicitly on the relative timing of pre- and postsynaptic action potentials
(Markram, Lubke, Frotscher, & Sakmann, 1997; Bi & Poo, 1998; Bi, 2002;
Kampa, Letzkus, & Stuart, 2007). Computational models of spike-timing-
dependent plasticity (STDP) have shown that it can provide inherent sta-
bility or competition using only local synaptic variables (Abbott & Nelson,
2001; Gutig, Aharonov, Rotter, & Sompolinsky, 2003; Meffin, Besson, Burkitt,
& Grayden, 2006; Morrison, Diesmann, & Gerstner, 2008). However, these
properties rely on synaptic weights being either depressed or unchanged
following an increase in presynaptic stimulation, which directly contradicts
empirical data (Song, Miller, & Abbott, 2000; van Rossum, Bi, & Turrigiano,
2000; Senn, 2002). This apparent dichotomy has been the subject of several
analytical studies, which have described distinct and disparate conditions
under which STDP can be reconciled with the BCM formulation (Izhikevich
& Desai, 2003; Burkitt, Meffin, & Grayden, 2004; Pfister & Gerstner, 2006).
We aim to verify these results in a spiking recurrent neural network and,
by manipulating each element of a standard computational STDP model in
turn, provide a comprehensive description of the conditions under which
this phenomenological plasticity rule can replicate experimental data ob-
tained using both rate and temporal stimulation protocols.

The difficulty of empirically examining changes at the synaptic level
means that STDP is not well characterized, and many computational inter-
pretations of experimental data exist (Morrison et al., 2008). Phenomeno-
logical STDP rules have several distinct features that vary widely among
modeling studies, including the exact profile of the asymmetric learning
window, the nature of constraints placed on spike pair interactions, whether
the scale of plasticity is dependent on current synaptic weight (multiplica-
tive and additive STDP respectively), and whether the effects of multiple
spike pairings sum linearly or nonlinearly (pair- and triplet-based rules
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respectively). Previous analytical investigations regarding a reconciliation
of STDP with the BCM formulation have examined only a small, distinct,
and disparate number of this vast repertoire of possible implementations.
For additive STDP, Izhikevich and Desai (2003) demonstrated that a nearest-
neighbor spike pairing scheme, coupled with constraints on the ratios of
parameters that define the asymmetric learning window, allows reconcil-
iation with the BCM formulation. With multiplicative STDP, Burkitt et al.
(2004) have demonstrated that an input-restricted spike pairing scheme
generates the selective potentiation of inputs with elevated presynaptic fir-
ing rates. More recently, Pfister and Gerstner (2006) have demonstrated that
triplet-based additive STDP can also replicate rate-coded plasticity data.

In contrast to these analytical studies, we investigate the emergent dy-
namics of a wide range of STDP implementations in a spiking recurrent
neural network that corresponds to established autoassociative models of
hippocampal mnemonic function (Burgess, 2007; Rolls, 2008). This repre-
sents an appropriate framework for this research for two principal reasons.
First, the majority of neurobiological data regarding synaptic plasticity is ob-
tained from the hippocampus (Andersen, Morris, Amaral, Bliss, & O’Keefe,
2007; Morris, 2007), and second, this region has been modeled using both
rate-coded Hebbian learning and STDP to store and recall static and se-
quential activity patterns respectively (Marr, 1971; Hopfield, 1982; Amit &
Mongillo, 2003; Lengyel, Kwag, Paulsen, & Dayan, 2005; Mongillo, Curti,
Romani, & Amit, 2005; Samura & Hattori, 2005; Rolls & Kesner, 2006; Wagat-
suma & Yamaguchi, 2007). The results presented here can therefore inform
the development of a novel associative memory model that mediates the
learning of both rate- and temporally coded activity patterns using a sin-
gle plasticity rule. Within this context, manipulations of the plasticity rule
or network model can also be directly related to systems-level mnemonic
function.

We identify a range of conditions under which STDP can be reconciled
with rate-coded Hebbian learning. For pair-based STDP, a dependence of
mean synaptic weight on either pre- or postsynaptic firing rate can gen-
erally be produced if certain restrictions are placed on spike pair inter-
actions and the profile of the asymmetric learning window. Furthermore,
the dependence of mean synaptic weight on pre- or postsynaptic activ-
ity can be manipulated by adjusting the nature of temporal restrictions
on spike pairing, and the position of the theoretical modification thresh-
old postulated by the BCM formulation can be manipulated by adjusting
the parameters that define the profile of the asymmetric learning window.
Conversely, triplet-based STDP dictates that mean synaptic weight is de-
pendent on postsynaptic firing rate regardless of the finer details of the
plasticity rule, and the theoretical modification threshold cannot be manip-
ulated in this case. These results support, unify, and extend the analytical
findings of Izhikevich and Desai (2003), Burkitt et al. (2004), and Pfister and
Gerstner (2006). We subsequently establish that this repertoire of STDP rules
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can produce the rapid and selective potentiation of connections among neu-
rons with concurrently elevated firing rates in a simple model of associative
learning. These findings provide broad insight into the emergent dynamics
generated by STDP in a spiking recurrent neural network and indicate that
previous autoassociative network models of mnemonic function can be rec-
onciled with spiking neural dynamics and spike-driven plasticity (Amit &
Mongillo, 2003; Mongillo et al., 2005; Samura & Hattori, 2005). However,
our results also indicate that synaptic competition is generally absent in
these simulations, and a slow increase in the weight of all pre- or postsy-
naptic connections can therefore compromise the long-term input or output
selectivity of single neurons in a manner analogous to previous rate-coded
Hebbian learning rules (Abbott & Nelson, 2001; Desai, 2003). We discuss the
implications of these findings for the modeling of both synaptic plasticity
and systems-level models of hippocampal function.

2 Methods

There are two common computational models of rate-coded Hebbian
learning. The most basic implementation, widely used in previous
autoassociative network models of hippocampal mnemonic function, dic-
tates that changes in synaptic strength are directly proportional to the prod-
uct of pre- and postsynaptic firing rates (rj,i) scaled by a learning rate k (see
equation 2.1; Hopfield, 1982; Burgess, 2007; Rolls, 2008):

�w = krir j (2.1)

However, this plasticity rule generates no competition between synaptic
inputs, as any increase in synaptic weight produces an increase in postsy-
naptic firing rate, thus creating a positive feedback loop (Desai, 2003). The
BCM model, which postulates the existence of a theoretical modification
threshold (θm) that distinguishes between depression (at lower firing rates)
and potentiation (at higher firing rates), was proposed to address this issue
(see equation 2.2; Bienenstock, Cooper, & Munro, 1982):

�w = krir j (ri − θm) (2.2)

The value of θm is itself a supralinear function of pre- or postsynaptic activity,
generating competition between synaptic inputs by making potentiation
more difficult to achieve if the long-term average firing rate increases.

In order to identify conditions under which a standard computational
STDP rule can be reconciled with rate-coded Hebbian learning, we use
a spiking recurrent neural network inspired by previous autoassociative
models of declarative memory function (Hopfield, 1982; Burgess, 2007;
Rolls, 2008). More complex network models have previously demonstrated
that rate-coded associative learning can be achieved using spike-driven
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synaptic plasticity, but with a focus on systems-level function rather than
the relationship between plasticity rule and emergent synaptic dynamics
(Amit & Mongillo, 2003; Mongillo et al., 2005; Samura & Hattori, 2005).
Conversely, this neural network model (and the rate-coded associative
learning paradigm employed) are kept deliberately simple, for both ele-
gant parsimony and to better identify the minimum necessary conditions
required for STDP to produce an increase in mean synaptic weight with
mean firing rate. Hence, many features of real neural networks that may
complicate the observed synaptic dynamics (such as inhibitory input and
short-term depression or facilitation) are omitted. However, the (minor)
effects caused by manipulating each of the parameters that define the
network model (i.e., the range of axonal delays, maximum synaptic weight,
number of neurons and connectivity) are examined, and any significant
findings discussed where appropriate.

2.1 The Network Model. Simulated neurons operate according to the
Izhikevich (2004) spiking model, which dynamically calculates the mem-
brane potential (v) and a membrane recovery variable (u) based on the
values of four dimensionless constants (a, b, c, and d) and a dimensionless
current input (I) according to equations 2.3 to 2.5:

v′ = 0.04v2 + 5v + 140 − u + I (2.3)

u′ = a (bv − u) (2.4)

if v ≥ 30 then

{
v → c

u → u + d
. (2.5)

This model can exhibit firing patterns of all known types of cortical neu-
rons by variation of the magnitude of applied current and the parameters
a–d. The values used to replicate spiking in a standard excitatory neuron
are [a = 0.02, b = 0.2, c = −65, d = 6], which directs simulated neurons
to fire single-action potentials at lower levels of stimulation and complex
bursts (i.e., several spikes with interspike interval of less than 6 ms) that
are realistic of pyramidal cells in the hippocampus at higher levels of stim-
ulation (Ranck, 1973; Izhikevich, 2004; Frerking, Schulte, Wiebe, & Staubli,
2005).

Each simulated neuron has a randomly chosen axonal delay in the range
[1 ms : D ms]. In the majority of simulations, the maximum axonal delay
is set to D = 5 ms—this being realistic of the CA3 region (Miles, 1990)—
although values of D = [1, 10, 15, 20 ms] are also examined to ascertain any
effect on synaptic dynamics.

Unless otherwise specified, the neural network consists of Ne = 100
simulated excitatory neurons. However, for comparison, simulations with
a value of Ne = [20, 500] were also performed. The network is gener-
ally fully recurrently connected except for self-connections, although in
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some simulations, the connectivity of the network is reduced such that
the number of randomly assigned presynaptic connections to each ex-
citatory neuron is proportional to 15% of the total number of excitatory
neurons—this value being approximately realistic of the CA3 region (Rolls,
2008).

2.2 The Plasticity Model. Mathematically, with s = tpost − tpre being
the time difference between pre- and postsynaptic spiking, the change in
the weight of a synapse (�w) according to a standard implementation of ad-
ditive STDP can be calculated using equations 2.6 to 2.9 (Song et al., 2000; Bi,
2002; Izhikevich & Desai, 2003; Burkitt et al., 2004; Pfister & Gerstner, 2006):

�w+ = F (s) = P+ for s > 0 (2.6)

�w− = F (s) = P− for s ≤ 0 (2.7)

P+ = A+

(
1 − 1

τ+

)S

(2.8)

P− = A−

(
1 − 1

τ−

)−S

(2.9)

The parameters A+ and A− effectively correspond to the maximum possible
change in the synaptic weight per spike pair, while τ+ and τ− denote
the time constants of exponential decay for potentiation and depression
increments, respectively (see Figure 1). In accordance with empirical
data, coincident pre- and postsynaptic firing elicits maximal depression
from all STDP implementations examined here (Debanne, Gahwiler, &
Thompson, 1998). We examine a wide range of STDP parameter sets that
include all combinations of the ratios A+ : A− and τ+ : τ−. In the majority of
simulations, the absolute values of A± are scaled such that approximately
50 spike pairings (at interspike intervals corresponding to ∼35Hz pre- and
postsynaptic firing) are sufficient to traverse the entire range of weight
values, in accordance with empirical data (Bi & Poo, 1998).

A number of common spike pairing schemes are examined in this re-
search, including the all-to-all scheme, which places no temporal restric-
tions on spike pair interactions; the input-restricted scheme, which dictates
that each postsynaptic spike interacts with only one preceding but all sub-
sequent presynaptic spikes; the output-restricted scheme, which dictates
that each presynaptic spike interacts with only one preceding but all sub-
sequent postsynaptic spikes; and the strict nearest-neighbor scheme, which
dictates that each pre- or postsynaptic spike interacts with only the single
closest opposing spike (Bi, 2002; Burkitt et al., 2004). The manner in which
each of these spike pairing schemes mediates the update of P± on afferent
or efferent firing is described in Table 1.
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Figure 1: The asymmetric profile of the STDP learning window. The differ-
ence between the timing of pre- and postsynaptic firing (s = tpost − tpre , ms)
determines the degree and direction of the change in synaptic weight (�w).
The profiles of the exponential potentiation (s > 0) and depression (s ≤ 0)
windows, respectively, are defined by the maximum possible weight change
per spike pair (A±) and the time constants of decay (τ±). The ratio of integrals
over these windows is defined as α = A−τ−/A+τ+, such that a value of α > 1
indicates an overall dominance of depression, while α < 1 indicates an overall
dominance of potentiation.

Table 1: Computational Details of Spike-Pairing Schemes.

Spike Pairing Scheme

Upon
Afferent

Firing, P+→

Upon
Efferent

Firing, P+→

Upon
Efferent

Firing, P−→

Upon
Afferent

Firing, P−→

Temporally unrestricted P++A+ - P−+A− -
(all-to-all)

Lax nearest neighbor A+ - A− -
Strict nearest neighbor A+ 0 A− 0
Input restricted A+ - P−+A− 0
Output restricted P++A+ 0 A− -

Several common forms of multiplicative STDP are also examined in this
research (van Rossum et al., 2000; Gutig et al., 2003; Burkitt et al., 2004;
Meffin et al., 2006). Equations 2.10 to 2.12 illustrate the manner in which
the relevant value of P+ or P− is adjusted at each spike pairing event, and
in each case the magnitude of weight dependency is scaled by a positive
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constant f:

�w+ = P+e− f wi j (2.10)

�w− = P− f wi j (2.11)

�w− = P− f w3
i j . (2.12)

For the triplet-based STDP rule, the absolute value of weight increase at
each potentiation event is supplemented by a value equivalent to a slowly
decaying trace of the most recent depression increment:

�w+ = P+ − �w−

(
1 − 1

τ++

)s

(2.13)

In all simulations, the time constant for the decay of this additional po-
tentiation term is τ++ = 20 ms, in accordance with empirical data (Wang,
Gerkin, Nauen, & Bi, 2005; Pfister & Gerstner, 2006).

When additive STDP is implemented, a hard limit is placed on the
achievable strength of synapses, and initial weights are maintained con-
tinuously in the range [0 : wmax]. While there is little clear biological basis
to inform the choice of wmax, it is known that recurrent synapses in the
CA3 region are generally incapable of solely provoking postsynaptic ac-
tivity (Kobayashi & Poo, 2004). In order to generate a postsynaptic spike
in the simulated neurons employed here, a single 1 ms current applica-
tion of I = 16.5 is required. The value assigned to the maximum weight
limit in the majority of simulations therefore is wmax = 2.5, although sim-
ulations are also run with values of wmax = [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] to
assess any impact on emergent dynamics. When multiplicative STDP is
implemented in the network, no upper limit is placed on the achievable
strength of a synapse, and initial synaptic weights are assigned randomly
in the range [0 : winit], with winit = 2.5 in all simulations unless stated
otherwise.

2.3 External Input. The first set of simulations described here aims
to characterize the synaptic dynamics produced when all neurons in the
network fire stochastically at an approximately equal rate, corresponding
hypothetically to uncorrelated rate-coded input. Dimensionless current,
sampled from a uniform random distribution in the range [0 : Imax], is
applied to each simulated excitatory neuron at each 1 ms time step for a total
of 1000 s. An examination of the neural dynamics confirms that this form
of input generates a gaussian distribution of inter spike intervals (ISIs) in a
single neuron (data not shown). Simulations are initialized with all synaptic
weights assigned randomly in the range [0 : wmax] and repeated three times
for each STDP implementation or level of external input to ensure that initial
conditions have no effect on the equilibrium data described. Synaptic and
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neural dynamics generally achieve an equilibrium state after approximately
100 s, with negligible subsequent fluctuations in mean weight and firing
rate (except where discussed). To eliminate any effects of jitter, the stable
excitatory mean weight and firing rate for each simulation are calculated as
an average over the final 10 seconds of simulated time. Figures 2, 4, and 5
represent the average of these values over the three simulations performed
for each network incarnation.

The second set of simulations described here aims to characterize the
synaptic dynamics produced when a subset of neurons in the network
fires at an elevated rate. This represents an abstract, parsimonious test of
rate-coded associative learning that concurs with a large number of previ-
ous computational models of hippocampal mnemonic function (Hopfield,
1982; Burgess, 2007; Rolls, 2008). In these simulations, dimensionless cur-
rent, sampled from a uniform random distribution in the range [0 : Iback],
generates a constant background firing rate of ∼0.5 Hz (this value being re-
alistic of the hippocampus) in 90% of the excitatory neurons in the network
(Frerking et al., 2005; Rolls, 2008). Dimensionless current to the remaining
10% of excitatory neurons is sampled from a uniform random distribution
in the range [0 : I f ore ], with the value of I f ore set to a different value for each
simulation in order to generate mean foreground firing rates spanning a
range of 0 Hz to ∼70 Hz. Simulations are initialized with all synaptic weights
assigned an equal value of 0.01 wmax , proceed for 1000s, and are repeated
three times for each STDP implementation and level of external input.

3 Results

Many computational implementations of STDP exist, but it has been demon-
strated that forms which provide inherent competition or stability also
generate emergent synaptic dynamics that directly contradict computa-
tional models and empirical observations of rate-based plasticity (Abbott &
Nelson, 2001; Senn, 2002; Morrison et al., 2008). Three previous analytical
studies have addressed this apparent dichotomy and described conditions
under which STDP might be reconciled with rate-coded Hebbian learning
rule (see equations 2.1 and 2.2). However, each of these studies employs
distinct and disparate implementations of a standard computational STDP
rule, and so it is unclear how the results might be related. Here we aim to
verify each previous analytical result and, by examining a wider range of
STDP implementations, unify these findings in order to describe a general
set of conditions under which this plasticity rule can replicate rate-coded
Hebbian learning in a spiking recurrent neural network. We then examine
the synaptic dynamics produced by each STDP implementation in a simple
model of rate-coded associative learning, where a subset of neurons fires at
elevated stochastic firing rates.

3.1 Pair-Based Additive STDP. The additive STDP model dictates
that potentiation and depression processes are independent of the current
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synaptic weight. This has been demonstrated to provoke strong competition
between inputs to a neuron at the cost of inherent stability and is charac-
terized by a bimodal distribution of synaptic weights (Song et al., 2000;
Gutig et al., 2003). Previous research has also shown that when the learning
window exhibits an overall dominance of depression (α > 1 in Figure 1)
and spike pairing is temporally unrestricted (all-to-all), then additive STDP
regulates postsynaptic firing rates by reducing mean synaptic weights in
response to an increase in presynaptic activity (Song et al., 2000; Kempter,
Gerstner, & van Hemmen, 2001). However, this homeostatic property di-
rectly contradicts computational models of rate-coded Hebbian learning
and empirical observations of synaptic plasticity mediated by tetanic stim-
ulation protocols (Senn, 2002; Morrison et al., 2008).

Conversely, it has been analytically demonstrated that STDP can be rec-
onciled with the BCM formulation (see equation 2.2) under certain condi-
tions, if potentiation dominates at shorter relative spike timings (A+ > A−)
while depression dominates overall (α > 1) and a temporally restricted
(nearest-neighbor) spike pairing scheme is employed (Izhikevich & Desai,
2003). To establish whether this form of pair-based additive STDP could
replicate rate-coded learning in a spiking recurrent neural network, we
examined the stable mean weight of excitatory synapses at various mean
rates of stochastic firing. Our results show that emergent synaptic dynam-
ics that closely resemble the theoretical BCM modification curve are indeed
generated (see Figure 2a). Furthermore, the position of the theoretical mod-
ification threshold (θm) can be adjusted by altering the specific value of
α. This confirms that the constraints described by Izhikevich and Desai
(2003)—α > 1 and A+ > A− with lax nearest-neighbor spike pairing—are
sufficient to replicate the properties of rate-coded Hebbian learning in a
spiking recurrent neural network.

However, further simulations using all combinations of the ratios A+ :
A− and τ+ : τ− and several different spike pairing schemes demonstrate
that these constraints are sufficient, but not necessary, to replicate rate-
coded Hebbian learning. First, a dominance of potentiation at higher firing
rates (A+ > A−) is not necessarily required, as an increase in mean synaptic
weight with mean firing rate is still manifested when A+ = A− and τ+ < τ−
(see Figure 2b). However, significant potentiation is incurred only when
mean firing rates vastly exceed those commonly observed in the CA3 re-
gion (Frerking et al., 2005; Rolls, 2008). Second, an overall dominance of
depression (α > 1) is not necessarily required, as mean weight and firing
rate are also positively correlated when the overall ratio between depres-
sion and potentiation processes is equal (α = 1) or potentiation dominates
overall (α < 1). In these cases, however, adjusting the specific value of α

does not modulate the position of the theoretical modification threshold
(see Figure 2c).

Finally, qualitatively similar results are achieved with all temporally
restricted (strict nearest-neighbor, input and output restricted) spike pairing
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Figure 2: Typical emergent synaptic dynamics generated by pair-based additive
STDP in a fully recurrently connected network of 100 excitatory spiking neurons
with wmax = 2.5 and uncorrelated stochastic activity. Relative mean weight of
excitatory synapses (w/wmax) is plotted against mean excitatory firing rate for
(a) α > 1 (A− = 0.12, τ+ = 20 ms, τ− = 50 ms) and lax nearest-neighbor spike
pairing, which concurs with the conditions described by Izhikevich and Desai
(2003). (b) α > 1 but no dominance of potentiation at shorter ISIs (A+ = A− =
0.15, τ+ = 20 ms) and lax nearest-neighbor spike pairing. (c) α <= 1 (A+ = 0.15,
A− = 0.1, τ+ = 20 ms) and lax nearest-neighbor spike pairing. (d) α > 1 (A+ =
0.15, A− = 0.12, τ+ = 20 ms, τ− = 50 ms), which concur with those described
by Izhikevich and Desai (2003) and various temporally restricted spike pairing
implementations. (e) α < 1 (A+ = 0.15, A− = 0.1, τ+ = 20 ms) and temporally
unrestricted (all-to-all) spike pairing. (f) A profile of the asymmetric learning
window which dictates that the dominance of depression increases as ISIs are
reduced (A+ < A−; A+ = 0.15, τ− = 20 ms) and lax nearest-neighbor spike
pairing.
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schemes (see Figure 2d), although the transition between heterosynaptic
depression at low firing rates and significant potentiation at higher firing
rates is much more abrupt, such that a small increase in the level of external
input provokes a significant increase in mean synaptic weights and firing
rates (due to recurrent excitation). Thus, the lax nearest-neighbor STDP
model used by Izhikevich and Desai (2003) is not necessary to generate
an increase in mean synaptic weight with mean firing rate. Conversely,
with temporally unrestricted (all-to-all) spike pair interactions, rate-coded
Hebbian learning can only be replicated of α < 1 (see Figure 2e). In this case,
the scale of mean weights is generally much lower, and the position of the
theoretical modification threshold (θm) cannot be manipulated (as observed
for temporally restricted spike pairing schemes with α < 1; see Figure 2c).
All the results described here are qualitatively replicated with all absolute
values of wmax and the parameters A± and τ± examined, although the
quantitative scale of relative mean weights generated in these simulations
can differ significantly (data not shown).

The results of these simulations suggest that the emergent synaptic dy-
namics generated by pair-based additive STDP with temporally restricted
spike pairing are determined by the relative scale of potentiation and de-
pression processes evaluated around the mean interspike interval (ISI). As
an increase in external excitatory input causes mean firing rates in the
network to increase, the temporal restrictions on spike pairing effectively
reduce the relative spike timing values that dictate plasticity, and thus the
effective learning window moves closer to the y-axis (see Figure 3). Under
these conditions, the properties of rate-coded Hebbian learning can gen-
erally be replicated if a dominance of depression at longer ISIs decreases
as the mean ISI is reduced by external input (see Figures 2a, 2b, and 2d).
Conversely, if the profile of the asymmetric learning window is set such
that the dominance of depression increases as the mean ISI is reduced, with
an overall value of either α > 1 or α ≤ 1, then a homeostatic decrease in
mean weights at higher firing rates analogous to that described in previ-
ous research can be produced (see Figure 2f; Song et al., 2000; Bi, 2002). The
concept of an effective learning window supports the findings of Izhikevich
and Desai (2003) and provides a broader conceptual framework for pre-
dicting the emergent synaptic dynamics generated by pair-based additive
STDP.

3.2 Pair-Based Multiplicative STDP. Multiplicative STDP models
dictate that the degree of potentiation or depression generated by a spike
pairing event is dependent on the current synaptic weight, as indicated by
several empirical studies of plasticity in the hippocampus (Bi & Poo, 1998;
Bi, 2002; Debanne, Gahwiler, & Thompson, 1999; Wang et al., 2005). This
form of synaptic plasticity is inherently stable and generates a unimodal
weight distribution that approximates that observed in biological prepara-
tions (van Rossum et al., 2000; Gutig et al., 2003; Burkitt et al., 2004; Barbour,
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Figure 3: The effective learning window, which dictates the emergent dynam-
ics of STDP when a temporally restricted spike pairing scheme is employed.
As firing rates increase, spike pairings are restricted to shorter ISIs, and thus
the effective ratio of integrals over the depression and potentiation windows is
changed. Subsequently, the relative values of A± primarily dictate plasticity at
high rates (short ISIs), while the relative values of τ± primarily dictate plasticity
at low rates (long ISIs). The profile of the asymmetric learning window illus-
trated here corresponds to that described by Izhikevich and Desai (2003) and is
depicted in Figure 2a (A+ = 0.15, A− = 0.12, τ+ = 20 ms, τ− = 50 ms).

Brunel, Hakim, & Nadal, 2007; Standage, Jalil, & Trappenberg, 2007). How-
ever, previous research has shown that synaptic weights are generally
unaffected by mean firing rates under these conditions, which contradicts
empirical data and computational models of rate-coded Hebbian learning
(van Rossum et al., 2000; Gutig et al., 2003; Morrison et al., 2008).

Several different multiplicative STDP implementations have been exam-
ined in previous computational studies, each of which adjusts the abso-
lute scale of depression based on current synaptic weight (van Rossum
et al., 2000; Gutig et al., 2003; Meffin et al., 2006). Burkitt et al. (2004)
have analytically demonstrated that these multiplicative depression rules
can generally replicate rate-coded Hebbian learning if an input-restricted
spike pairing scheme is employed. However, to the best of our knowledge,
no studies have examined a multiplicative STDP rule that solely adjusts
the absolute scale of potentiation. We therefore repeated the simulations
described in the previous section using two common multiplicative de-
pression rules and one novel multiplicative potentiation rule, and again
examined the relationship between mean firing rate and mean synaptic
weight.

Our findings demonstrate that an increase in mean synaptic weight with
mean firing rate is generally produced by each multiplicative STDP rule
examined if the profile of the asymmetric learning window dictates that
the dominance of depression decreases with mean ISI and any temporally
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Figure 4: Typical emergent synaptic dynamics generated by pair-based multi-
plicative STDP rules in a fully recurrently connected network of 100 excitatory
spiking neurons with uncorrelated stochastic activity. Relative mean weight
(w/wmax, calculated for a value of wmax = 2.5 to enable comparison with ad-
ditive STDP data) is plotted against mean excitatory firing rate for (a) a linear
dependence of potentiation upon initial synaptic weight with f = 0.5, α > 1
(A− = 0.12, τ+ = 20 ms, τ− = 50 ms) and lax nearest-neighbor spike pairing;
(b) a cubic dependence of depression upon initial synaptic weight with f = 0.2, α
> 1 (A− = 0.12, τ+ = 20 ms, τ− = 50 ms) and output-restricted spike pairing; (c) a
linear dependence of depression upon initial synaptic weight with f = 0.58 and
input-restricted spike pairing. Qualitatively similar results are observed for all
temporally restricted spike pairing schemes with the multiplicative STDP rules
illustrated here.

restricted spike pairing scheme is employed (see Figure 4). Conversely,
there is no significant increase in mean weight at higher firing rates when
no dominance of potentiation exists at shorter ISIs (see Figure 4c). For tem-
porally unrestricted spike pairing, rate-coded Hebbian learning is repli-
cated only when α < 1 (data not shown), which also concurs with results
obtained using additive STDP (see Figure 2e). These findings support the
analytical results of Burkitt et al., (2004)—that multiplicative STDP can
replicate rate-coded Hebbian learning if an input-restricted spike pairing
scheme is employed—and demonstrate that this result can be extended to
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include any temporally restricted spike pairing scheme. Interestingly, the
profile of the asymmetric learning window implemented in that research
(A+ = A− and τ+ < τ−) dictates a decrease in the dominance of depression
with the mean ISI, which we have demonstrated to be necessary for STDP
to replicate rate-coded Hebbian learning (Burkitt et al., 2004). Thus, the
concept of an effective learning window illustrated in Figure 3 can be used
to predict the emergent synaptic dynamics produced by both pair-based
additive and multiplicative STDP.

Clear differences in emergent synaptic dynamics exist among the dif-
ferent forms of multiplicative STDP examined here. Unimodal synaptic
weight distributions are generated by all multiplicative rules, but only the
multiplicative potentiation rule allows the position of the theoretical mod-
ification threshold and overall scale of synaptic weights to be significantly
modulated by adjusting the parameters A± and τ± (see Figure 4a). This pro-
duces mean weight curves that are qualitatively similar to those generated
by additive STDP, albeit with a soft upper weight bound. Conversely, the
multiplicative depression rules generate a soft lower weight bound, which
is observed in simulations with all STDP parameter sets and spike pairing
schemes (see Figures 4b and 4c). Synaptic weights are not heterosynapti-
cally depressed (i.e., saturate at the lower bounds) under any conditions, a
narrower range of weight values is traversed, and the position of the theo-
retical modification threshold cannot be adjusted. All the results described
here are qualitatively replicated with all absolute values of f and the pa-
rameters A± and τ± examined, although the quantitative scale of relative
mean weights generated in these simulations can differ significantly (data
not shown).

3.3 Triplet-Based STDP. The majority of empirical studies of STDP
have used single pairs of pre- and postsynaptic spikes delivered at low
frequencies (Bi & Poo, 1998). However, recent investigations have demon-
strated that more complex triplets or quadruplets of pre- and postsynaptic
spikes result in a nonlinear integration of modular potentiation and depres-
sion processes (Froemke & Dan, 2002; Wang et al., 2005). In the hippocam-
pus, potentiation events effectively override any depression incurred at a
synapse within a short temporal window (< 70 ms). The pair-based STDP
rules examined thus far are unable to replicate the results of these experi-
ments, as sequential potentiation and depression events sum linearly. Fur-
thermore, it has been analytically demonstrated that a triplet-based STDP
rule, which incorporates a short-term dominance of potentiation, can be rec-
onciled with the BCM formulation of rate-coded Hebbian learning (Pfister
& Gerstner, 2006).

Our simulations demonstrate that the short-term dominance of potentia-
tion produced by triplet-based STDP generates an increase in mean synaptic
weight with mean firing rate regardless of the finer details of the plasticity
rule (see Figure 5). However, the position of the theoretical modification
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Figure 5: Typical emergent synaptic dynamics generated by triplet-based STDP
rules in a fully recurrently connected network of 100 excitatory spiking neurons
with uncorrelated stochastic activity. Relative mean weight (w/wmax, calculated
with wmax = 2.5 for multiplicative STDP data) is plotted against mean excitatory
firing rate for (a) additive STDP with wmax = 2.5 and lax nearest-neighbor spike
pairing; (b) a cubic dependence of depression on initial synaptic weight, f = 0.58
and lax nearest-neighbor spike pairing; (c) a linear dependence of depression on
initial synaptic weight, f = 5 and lax nearest-neighbor spike pairing; (d) additive
STDP with wmax = 2.5, a value of α > 1 (A+ = 0.15, A− = 0.12, τ+ = 20 ms, τ− =
50 ms) and various spike pairing schemes.

threshold (θm) cannot be manipulated by adjusting the profile of the asym-
metric learning window (A± and τ±) under these conditions (see Figures
5a–5c). The differences in emergent dynamics generated by pair-based ad-
ditive and multiplicative STDP are qualitatively similar for triplet-based
rules —the range of mean weight values traversed being much narrower for
multiplicative depression rules (see Figures 5a–5c). Interestingly, the posi-
tion of the theoretical modification threshold (θm) is consistently higher, and
the asymptotic mean weight consistently lower, for all-to-all spike pairing
with α >1 (see Figure 5d). These findings provide support for the analytical
results of Pfister and Gerstner (2006)—that an additive triplet-based STDP
rule based on empirical data from the hippocampus can be reconciled with
the BCM formulation—and extend those results to a broader repertoire of
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triplet-based STDP models. All the results described here are qualitatively
replicated with all absolute values of wmax, f and parameters A± and τ± ex-
amined, although the quantitative scale of relative mean weights generated
in these simulations can differ significantly (data not shown).

3.4 Rate-Coded Associative Learning Simulations. The simulations
described thus far deviate significantly from the neural activity that is gen-
erally observed in computational models of declarative memory function
and the CA3 region, as each synapse experiences pre- and postsynaptic
firing of an approximately constant and equal rate. In order to further eluci-
date the emergent synaptic dynamics generated by STDP in this context, we
next performed simulations in which the mean firing rate in the majority of
(background) neurons was held fixed at ∼0.5 Hz (this being realistic of the
hippocampus), while the mean firing rate in the remaining (foreground)
neurons was systematically varied (Frerking et al., 2005). The aim of these
simulations is to more specifically assess whether STDP is compatible with
rate-coded associative learning, which is generally mediated by elevating
firing rates in a subset of excitatory neurons such that connections among
these neurons are selectively potentiated while all other connections in the
network are heterosynaptically depressed or remain unchanged (Hopfield,
1982; Burgess, 2007; Rolls, 2008). In analyzing the synaptic dynamics ob-
served in these simulations, we divide connections in the network into dif-
ferent subgroups depending on whether the pre- and postsynaptic neuron
fires at foreground or background rates. We then examine the stable mean
weight of each subset of synapses following 1000 s of simulated activity
with different foreground firing rates.

For pair-based additive and multiplicative STDP implementations, the
strength of connections between background neurons is generally de-
pressed or remains unchanged—most likely because the low pre- and post-
synaptic firing rates generate very few effective spike pairings—while the
mean weight of connections between foreground neurons adheres to the
synaptic dynamics described above, with the same dependence on the pro-
file of the asymmetric learning window and additive or multiplicative STDP
rule employed (see Figure 6). More interestingly, the strength of connections
between background and foreground neurons is generally affected in one
of two ways, depending on the spike pairing scheme employed: either
following a mean synaptic weight curve similar to that of the foreground
synaptic weights, or (like background connections) being heterosynapti-
cally depressed at all mean firing rates. For the lax nearest-neighbor and
output-restricted spike pairing schemes, the strength of connections with
elevated postsynaptic firing rate is significantly potentiated (see Figures
6a–6c). Conversely, for the input-restricted spike pairing schemes, connec-
tions with elevated presynaptic firing rate are significantly potentiated (see
Figures 6d–6e). Finally, for the strict nearest-neighbor spike pairing scheme,
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Figure 6: Typical emergent synaptic dynamics generated by pair-based STDP
rules in a fully recurrently connected network of 100 excitatory spiking neurons
with a constant background firing rate of ∼0.5 Hz and various foreground
firing rates. Data are illustrated for α > 1 (A+ = 0.18, A− = 0.12, τ+ = 20 ms,
τ− = 50 ms) with (a) additive STDP and lax nearest-neighbor spike pairing;
(b) a linear dependence of potentiation on initial synaptic weight, f = 0.5 and
output-restricted spike pairing; (c) a cubic dependence of depression on initial
synaptic weight, f = 0.2 and lax nearest-neighbor spike pairing; (d) additive
STDP and input-restricted spike pairing; (e) a linear dependence of depression
on initial synaptic weight with f = 0.58 and input-restricted spike pairing; and
(f) a linear dependence of potentiation on initial synaptic weight and strict
nearest-neighbor spike pairing. The stable relative mean synaptic weight of
foreground, background, pre- and postsynaptic connections is plotted against
the mean firing rate in foreground excitatory neurons.
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synaptic connections with either elevated pre- or postsynaptic firing rate
are potentiated at higher mean firing rates (see Figure 6f).

Critically, these results demonstrate that the synaptic weight dynam-
ics produced by pair-based STDP differ in their dependency on pre- or
postsynaptic firing rate according to the exact nature of temporal restric-
tions on spike pairing. Input-restricted spike pairing creates a dependence
of mean synaptic weight on presynaptic firing rate, output-restricted and
lax nearest-neighbor spike pairing create a dependence of mean synaptic
weight on postsynaptic firing rate, and strict nearest-neighbor spike pairing
creates a dependence of mean synaptic weight on either pre- or postsy-
naptic firing rate. This concurs with the analytical expressions derived by
Burkitt et al. (2004), providing further support for the analytical reconcili-
ation of STDP and rate-coded Hebbian learning described in that research,
and demonstrates that those results also apply to pair-based additive STDP
rules and more complex neural dynamics. Conversely, for temporally unre-
stricted spike pairing, the significant potentiation of foreground connections
is achieved only for values of α < 1, and in this case, mean synaptic weight
is dependent on either pre- or postsynaptic firing rate (data not shown).

Further simulations demonstrate that mean synaptic weights are depen-
dent on postsynaptic firing rate for triplet-based STDP with all temporally
restricted spike pairing schemes, regardless of the finer details of the plas-
ticity rule (see Figure 7). Hence, in contrast to pair-based STDP, the strength
of connections with elevated postsynaptic firing rate is significantly poten-
tiated when either input-restricted or strict nearest-neighbor spike pairing
is employed (see Figures 7a and 7b). Furthermore, in contrast to pair-based
STDP, significant potentiation of synapses with elevated postsynaptic firing
rate also proceeds when the profile of the asymmetric learning window dic-
tates a dominance of depression at shorter ISIs (see Figure 7c). Uniquely for
triplet-based STDP, temporally unrestricted spike pairing creates a depen-
dence of mean synaptic weight on either pre- or postsynaptic firing rate (see
Figure 7d), as observed for pair-based STDP rules. The qualitative nature
of all results described here (for both pair- and triplet-based STDP) is repli-
cated with all values of maximum axonal delay (D), maximum weight limit
(wmax), damping factor ( f ), number of simulated neurons in the network
(Ne), and recurrent connectivity (100% or 15%) examined (see section 2),
although the quantitative scale of mean synaptic weights can differ signifi-
cantly (data not shown).

An examination of the synaptic weight dynamics that proceed during
these associative learning simulations demonstrates that the rate of synap-
tic weight change produced by all STDP implementations is generally a
product of the firing rate of both pre- and postsynaptic neurons (data not
shown). Hence, although the potentiation of foreground connections is lim-
ited by the fact that the temporal order of spike pairings must continually
alternate in order to generate strong bidirectional connections, the mean
weight of these synapses increases much more quickly than those with
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Figure 7: Typical emergent synaptic dynamics generated by triplet-based STDP
rules in a fully recurrently connected network of 100 excitatory spiking neurons
with a constant background firing rate of ∼0.5 Hz and various foreground firing
rates. Data are illustrated for (a) additive STDP with α > 1 (A+ = 0.18, A− =
0.12, τ+ = 20 ms, τ− = 50 ms) and input-restricted spike pairing; (b) additive
STDP with α > 1 (A+ = 0.18, A− = 0.12, τ+ = 20 ms, τ− = 50 ms) and strict
nearest-neighbor spike pairing; (c) a linear dependence of potentiation on initial
synaptic weight with f = 1, a dominance of depression at shorter ISIs (A+ = 0.1,
A− = 0.2, τ+ = 20 ms, τ− = 20 ms) and output-restricted spike pairing; (d) a
cubic dependence of depression on initial synaptic weight with f = 0.2, α > 1
(A+ = 0.15, A− = 0.15, τ+ = 20 ms, τ− = 25 ms and temporally unrestricted (all-
to-all) spike pairing. The stable relative mean synaptic weight of foreground,
background, and pre- and postsynaptic connections is plotted against the mean
firing rate in foreground excitatory neurons.

elevated pre- or postsynaptic firing rate alone. Subsequently, connections
with elevated input and output firing rate are selectively potentiated in
the short term, which concurs with empirical findings, although the mean
weight of synapses with elevated input or output firing rate only can
approach—and in some cases exceed (see Figures 6b to 6f, 7a, and 7b)—the
mean weight of these foreground connections over longer periods. This in-
dicates that some additional mechanism that can stimulate competition be-
tween synapses over a longer timescale will be required to allow the efficient
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operation of an autoassociative network model that uses these forms of
STDP.

4 Discussion

We have identified a broad set of conditions sufficient for a standard com-
putational STDP rule to replicate rate-coded Hebbian learning when pre-
and postsynaptic activity is stochastic in a prototypical model of associative
memory—the Hopfield network. Specifically, we have demonstrated that
pair-based STDP produces an increase in mean synaptic weight with mean
firing rate if a temporally restricted spike pairing scheme is combined with
an asymmetric learning window that dictates a decrease in the dominance
of depression as mean ISIs are reduced (see Figure 3). Adjusting the specific
nature of spike pairing restrictions subsequently determines whether mean
synaptic weights are primarily dependent on pre- or postsynaptic firing rate
and, for additive and multiplicative potentiation STDP rules, the position of
the theoretical modification threshold (θm) can be altered by manipulating
the profile of the asymmetric learning window (see Figures 2a, 4a, 6, and 7).
A dependence of mean weight on postsynaptic firing rate is generally pro-
duced by triplet-based STDP regardless of the finer details of the plasticity
rule, but the position of the theoretical modification threshold (θm) cannot
be adjusted in this case (see Figure 6). These results support, unify, and
extend previous analytical findings pertaining to a reconciliation of STDP
with the BCM formulation of rate-coded Hebbian learning (Izhikevich &
Desai, 2003; Burkitt et al., 2004; Pfister & Gerstner, 2006).

Our findings also demonstrate that this repertoire of phenomenological
plasticity rules can rapidly potentiate synaptic connections among neurons
with concurrently elevated stochastic firing rates in a manner analogous to
rate-coded Hebbian learning. Similarly, several more complex models have
previously examined autoassociative network function using spike-driven
synaptic plasticity (Amit & Mongillo, 2003; Mongillo et al., 2005; Samura &
Hattori, 2005). Although the neural network used here has been kept de-
liberately simple, it is interesting to appraise the implications of our results
for more general models of mnemonic function, where synaptic plasticity
models are generally assessed on the basis of three criteria: the capacity for
modulation, competition, and biological realism (Abbott & Nelson, 2001;
Morrison et al., 2008). In terms of modulation, we have demonstrated that
synaptic dynamics can be most significantly manipulated when pair-based
additive or multiplicative potentiation rules are implemented (see Figures 2
and 4). These forms of STDP also produce the greatest distinction between
the mean weight of foreground and background connections in rate-coded
learning simulations (see Figures 6 and 7), and a bimodal separation of
synaptic weights is generally considered preferable for efficient autoas-
sociative network function (Fusi, Annunziato, Badoni, Salamon, & Amit,
2000; Rolls, 2008). The synaptic dynamics produced under these conditions
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correspond closely to those described by the BCM formulation, allowing
the scale of mean synaptic weights and their dependence on pre- or post-
synaptic firing rate to be adjusted by manipulating the exact parameters of
the STDP model.

While we have not specifically assessed the level of synaptic competi-
tion generated by each form of STDP examined here, it is possible to infer
certain implications from the results of our simulations. For pair-based ad-
ditive STDP with temporally restricted spike pairing, for example, we have
demonstrated that synaptic weights saturate unimodally around the upper
bounds at higher firing rates when A+ > A− or α < = 1 (see Figures 2a, 2c,
and 2d). A similar result is observed, regardless of the profile of the asym-
metric learning window, for triplet-based additive STDP with temporally
restricted spike pairing (see Figures 5a and 5d); and unimodal synaptic
weight distributions are generated by multiplicative STDP rules at all fir-
ing rates (see Figures 4, 5b, and 5c). This implies that strong bidirectional
connections, which are considered essential for efficient rate-coded autoas-
sociative network function, can develop under these conditions (Burgess,
2007; Rolls, 2008). However, unimodal weight distributions are also be-
lieved to indicate a lack of synaptic competition and inability to maintain
learned associations once an encoding stimulus is removed (van Rossum
et al., 2000; Gutig et al., 2003; Meffin et al., 2006; Billings & van Rossum,
2009). The results of our rate-coded associative learning simulations sup-
port the notion that inherent synaptic competition is absent under these
conditions, as all input or output connections of a single neuron that is
firing at an elevated rate can saturate unimodally over longer periods (see
Figures 6 and 7).

That these forms of STDP should lack inherent synaptic competition is
not surprising, considering the wealth of literature regarding the stability
versus plasticity dilemma and positive feedback issues that face the rate-
coded Hebbian learning rules we aim to emulate (Grossberg, 1987; Abbott &
Nelson, 2001). Fortunately, several computational methods of introducing
competition into the Hebbian framework exist and can easily be integrated
into the STDP rules described here. For example, a process of synaptic
scaling should retain the idealized weight matrix that develops during
the first few seconds of associative learning simulations, while prevent-
ing a significant increase in pre- or postsynaptic weights, and is supported
by a wealth of biological data (Desai, 2003; Turrigiano & Nelson, 2004;
Stellwagen & Malenka, 2006). Elsewhere, the position of the theoretical
BCM modification threshold might be manipulated by adjusting the profile
of the asymmetric learning window, such that an increase in pre- or postsy-
naptic weights is not manifested at the firing rate that exists in active neu-
rons following the (short) initial learning period (Bienenstock et al., 1982;
Benuskova & Abraham, 2007; Abraham, 2008). Within this context, it would
be interesting to examine whether this plasticity rule could be used to de-
velop input selectivity when the position of the theoretical modification
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threshold (θm) is a time-averaged function of pre- or postsynaptic activity,
as described in the original BCM formulation (Bienenstock et al., 1982).
Conversely, for pair-based additive STDP with temporally restricted spike
pairing when an overall dominance of potentiation does not exist at low
ISIs (i.e. A+ = A−), mean synaptic weights do not exceed a value of wmax/2
in our simulations (see Figures 2b and 3b). Similar results are generally ob-
served for temporally unrestricted spike pair interactions (see Figures 3d,
5d, and 6d). This suggests that some form of inherent synaptic competition
does exist under these conditions, although this may prevent the devel-
opment of strong bidirectional connections and significant potentiation at
firing rates that are realistic of the hippocampus.

While the phenomenological plasticity models presented here are not
intended to reproduce the full complexity and heterogeneity of empirical
findings, it is useful to appraise these results with regard to biological data
(Debanne et al., 1999; O’Connor, Wittenberg, & Wang, 2005b). The prop-
erties of synaptic plasticity vary widely throughout the cortex, and hence
modeling studies such as this must be constrained to empirical data from a
single region and the requirements for efficiently modeling the postulated
mnemonic function of that region (Pfister & Gerstner, 2006). Interestingly,
the profile of the asymmetric learning window that has been demonstrated
to replicate rate-coded Hebbian learning most accurately in this research
(A+ > A− and α > 1) concurs with those observed in the hippocampus
(Bi & Poo, 1998; Wang et al., 2005). However, data pertaining to the nature
of spike pair interactions have been obtained only from the visual cortex
(Froemke, Tsay, Raad, Long, & Dan, 2006). There is also little consensus
among experimental or computational models of the BCM rule with regard
to its dependency on pre- or postsynaptic firing rate, although the plasticity
rule presented here can effectively produce either (Standage et al., 2007;
Toyoizumi, Pfister, Aihara, & Gerstner, 2007). Clearly, only triplet-based
STDP rules can replicate empirical data pertaining to the nonlinear inte-
gration of potentiation and depression processes with more complex spike
trains (Wang et al., 2005). However, recent empirical data indicate a role
for the nature of postsynaptic firing in dictating plasticity processes and a
broad dichotomy between LTD at low (< 5 Hz) and LTP at higher (> 5 Hz)
mean firing rates regardless of the temporal order of spike pairings—both
findings that our model cannot replicate (Wittenberg & Wang, 2006). Bio-
logical data also suggest that the scale of depression processes is dependent
on current synaptic weight (Bi & Poo, 1998; Debanne et al., 1999; Wang et al.,
2005). Each of the multiplicative STDP rules examined here generally pro-
duces a unimodal weight distribution that adheres to that observed in vivo,
while additive STDP generally produces a bimodal separation of synaptic
weights. However, it is important to note that empirical recordings most
likely neglect silent synapses and might therefore be accounted for by an
additive STDP rule with a gaussian distribution of maximum weight lim-
its. Furthermore, recent empirical data indicate that bidirectional changes
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in synaptic strength in the hippocampus are discrete, all-or-none transitions
between heterogeneous high and low states (O’Connor et al., 2005b).

In summary, this research has presented a variety of STDP rules that
can rapidly rearrange synaptic weights in order to reflect rate-coded input
correlations in a spiking recurrent neural network. If we can assume that
these STDP rules are also able to encode temporal input correlations, then
the findings described here provide the foundations for a novel associative
network model that can integrate classic models of declarative memory
function that store static, sparse, rate-coded activity patterns via autoasso-
ciation with more contemporary models of sequence learning that store dy-
namic theta-coded spike timing patterns via heteroassociation (Marr, 1971;
Hopfield, 1982; Amit & Mongillo, 2003; Lengyel et al., 2005; Mongillo et al.,
2005; Samura & Hattori, 2005; Burgess, 2007; de Almeida, Idiart, & Lisman,
2007; Wagatsuma & Yamaguchi, 2007; Rolls, 2008). The efficient operation
of such a model is likely to require the inclusion of one or more long-term
features that can maintain competition between synaptic inputs or outputs
of a neuron and retain stability. This work should therefore elucidate the
manner in which the emergent synaptic dynamics generated by different
profiles of the asymmetric learning window, neural dynamics, spike pair-
ing schemes, additive and multiplicative, pair- and triplet-based rules can
contribute to associative Hebbian learning, and thus establish a dialogue
between the properties of plasticity at the synaptic level and the systems-
level function of a simple, biologically inspired model of declarative
memory.
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