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Abstract 
Synaptic plasticity is believed to represent the neural correlate of mammalian learning and memory 
function. It has been demonstrated that changes in synaptic conductance can be induced by 
approximately synchronous pairings of pre- and post- synaptic action potentials delivered at low 
frequencies. It has also been established that NMDAr-dependent Calcium influx into dendritic spines 
represents the critical signal for plasticity induction, and can account for this spike-timing dependent 
plasticity (STDP) as well as experimental data obtained using other stimulation protocols. However, 
subsequent empirical studies have delineated a more complex relationship between spike-timing, firing 
rate, stimulus duration and post-synaptic bursting in dictating changes in the conductance of 
hippocampal excitatory synapses. It has yet to be established whether the Calcium control hypothesis 
can account for this more recent data. Here, we present a detailed biophysical model of single dendritic 
spines on a CA1 pyramidal neuron, describe the NMDAr-dependent Calcium influx generated by 
different stimulation protocols, and present a parsimonious model of Calcium driven kinase and 
phosphotase dynamics that dictate transitions between binary synaptic weight states. We demonstrate 
the manner in which this model can account for various experimental observations of synaptic 
plasticity and be used to make predictions regarding the dynamics of depolarisation and NMDAr 
activation generated by STDP protocols as well as the synaptic weight change induced under other 
experimental conditions. We then discuss how this parsimonious, unified computational model of 
synaptic plasticity might be utilised to appraise the activity-dependent refinement of neural circuitry 
induced by more realistic firing patterns. 



1 Introduction 
Synaptic plasticity – the process of activity dependent change in synaptic conductance - is widely 
believed to represent the neural correlate of mammalian learning and memory function [1-3]. Since the 
first experimental demonstrations of long-term potentiation (LTP) and depression (LTD), a wealth of 
empirical data regarding the induction, expression and maintenance of synaptic plasticity in different 
cortical regions has been obtained [4-8]. In spite of the heterogeneity of plasticity mechanisms 
observed throughout the brain, changes in the strength of excitatory synapses afferent on CA1 
pyramidal neurons in the hippocampus represent the best studied form in the mammalian cortex [9-12]. 
At these synapses, Calcium influx into dendritic spines represents the critical signal for synaptic 
plasticity induction [13-20]. Large, transient elevations in intracellular [Ca2+] generate LTP via the 
preferential activation of kinase pathways while modest, sustained elevations in intracellular [Ca2+] 
generate LTD via the preferential activation of phosphotase pathways [21-25]. Initially, empirical 
observations of synaptic plasticity were mediated by tetanic stimulation protocols, with high frequency 
stimulation (HFS; typically 1s of 100Hz afferent firing) used to induce LTP and low frequency 
stimulation (LFS; typically 15mins of 1Hz afferent firing) used to induce LTD [4, 5]. In more recent 
years, it has also been established that temporally correlated pairs or triplets of pre- and post- synaptic 
action potentials delivered at low frequencies can induce bidirectional spike-timing dependent 
plasticity (STDP) depending, among other parameters, on their exact temporal offset over a range of 
~100ms [26-30]. STDP has been examined in a variety of cortical regions and species, and its 
discovery has both accompanied and accelerated a move in computational neuroscience from rate to 
temporally coded models of cognitive processing [31, 32].  
 
Early studies of STDP, primarily carried out in hippocampal cell cultures, delineated a straightforward 
relationship between the relative timing of single pre- and post- synaptic action potentials and 
subsequent changes in synaptic strength [Figure 1a; 26, 27]. However, more recent examinations using 
acute hippocampal slices have been unable to induce bidirectional plasticity with pairs of single pre- 
and post- synaptic action potentials under standard recording conditions [Figure 1b; 28-30, 33, 34]. 
These results suggest a more complex picture, where synaptic plasticity is dependent not just on 
relative spike timing, but also on the frequency, duration and nature of spike pairings – with a triphasic 
STDP curve obtained at CA3-CA1 synapses only when pairings are delivered at approximately theta 
frequency (>5Hz) and involve multiple post-synaptic spikes [20, 29, 32; Figure 1c]. Similar results 
have been obtained at excitatory connections between cortical pyramidal neurons [35]. Other 
experimental data indicates that potentiation and depression events are switch-like transitions between 
binary conductance states, mediated by kinase and phosphotase pathways that are co-activated and 
competitive [36-40]. The kinetics of kinase and phosphotase activation also differ significantly, as LTP 
can be rapidly induced by appropriate patterns of activity while LTD requires prolonged stimulation 
[15, 17, 29]. Computational modelling of synaptic plasticity has demonstrated that the dynamics of 
Calcium influx through the NMDA receptor (NMDAr) is sufficient to account for empirical data 
obtained using multiple stimulation protocols, integrating an array of experimental results within a 
single theoretical framework [18, 41-48]. However, these models as yet fail to assimilate or replicate 
various aspects of more recently obtained synaptic plasticity data such as those described above.  
 
Here, we present a revised model in which NMDAr-dependent Calcium influx at individual dendritic 
spines controls the dynamics of putative kinase and phosophotase pathways according to a modified 
Hill function inspired by recent advances in systems biology [49, 50]. The local activation of kinase 
and phosphotase, in turn, dictates the probability of dynamic transitions between binary high and low 
synaptic conductance states in a stochastic Markov process. We tune the parameters of this model to 
specifically account for recent observations of triphasic hippocampal STDP, and subsequently 
demonstrate that it can also replicate observations of synaptic plasticity induced by other stimulation 
protocols and under regimes of selective pharmacological blockade. We then utilise this model to infer 
the time course of residual depolarisation in the spine generated by a backpropagating action potential 
(bAP) and the magnitude of NMDAr-dependent Calcium influx when significant depolarisation 
follows glutamate binding by >50ms; as well as describing the implications of bAP attenuation and 
stimulation frequency for synaptic plasticity – in each case demonstrating that the model can support 
recent empirical findings. As such, we provide a comprehensive but parsimonious description of 
synaptic plasticity at the CA3-CA1 synapse, allowing further simulations to make robust predictions 
regarding the activity-dependent refinement of neural circuitry induced by more complex and realistic 
firing patterns without significant computational cost. 
 



2 Results 
We examine a detailed biophysical model of multiple dendritic spines that receive pre- and post- 
synaptic stimulation corresponding to canonical experimental protocols used to induce synaptic 
plasticity (see Methods). The parameters of the neuron model are matched to recent experimental data 
obtained at the CA3-CA1 synapse wherever available. Stimulation generates membrane depolarisation 
via conductance based synapses and backpropagating action potentials, as well as Calcium influx 
through NMDA receptors (NMDAr-[Ca2+]) at each spine. This Calcium influx dictates the dynamics of 
putative kinase and phosphotase activity according to modified Hill functions that are inspired by 
recent advances in systems biology. The activity of kinase and phosphotase pathways, in turn, 
determine the probability of transitions between binary high and low conductance states in a stochastic 
Markov process. The resultant change in total afferent synaptic conductance across N = 10000 synaptic 
inputs can then be compared to changes in field excitatory post-synaptic potentials (fEPSPs) recorded 
in empirical studies.  
 
2.1 Induction of Synaptic Plasticity by Spike-timing Stimulation 
Recent experiments conducted in acute hippocampal slices, which closely approximate the conditions 
present in vivo, have demonstrated that the plasticity of CA3-CA1 synapses is jointly dependent upon 
the temporal offset of pre- and post- synaptic firing, number of post-synaptic spikes fired, frequency of 
spike pairings, and duration of stimulation [28-30]. Firstly, we aim to ascertain whether the Calcium 
control hypothesis – which has been demonstrated to successfully reproduce earlier STDP data 
obtained in culture (Figure 1a), as well as that induced by other activity patterns – can be revised to 
account for this joint dependency [18, 41-48]. The experimental data we aim to replicate can be 
characterised by considering the effects of two different stimulation protocols – pairing 100 single pre- 
and post- synaptic spikes (hereafter referred to as ‘spike pairing’) at low frequencies (0.1-5Hz), which 
generates a depression-only learning rule (Figure 1b); or pairing a single pre-synaptic spike with two 
post-synaptic spikes (hereafter referred to as ‘triplet pairing’), which generates a triphasic bidirectional 
learning rule after 100 pairings at a frequency of 5Hz (Figure 1c), an unsaturated potentiation-only rule 
after 30 pairings at 5Hz (Figure 1d), or mild depression after 100 pairings at a frequency of 0.5Hz (data 
not shown). Each of these data sets can be fitted by a learning rule composed of Gaussian (or a sum of 
Gaussian) curves centred at short, positive temporal offsets [29]. 
 

 
Fig. 1 Summary of the STDP data obtained in hippocampal (a) cell cultures [26] and (b-d) acute slice preparations [29]. (a) The 
change in EPSP generated by 100 pairs of single pre- and post- synaptic spikes at 1Hz and various temporal offsets (� t = tpost-tpre) 
in hippocampal cell cultures and two exponential curves fit to this data (with A+ = 1, � +=20ms, A- = -0.4 and � -=40ms) from Bi 
and Poo [26]. (b)  The change in EPSP generated by 100 pairs of single pre- and post- synaptic spikes at frequencies of 0.1 - 5Hz 
in acute slice preparations and a Gaussian fit to this data (with �  = 6ms, �  = 48ms and a peak of 0.8) from Wittenberg and Wang 
[29]. (c) The change in EPSP generated by 100 pairings of single pre-synaptic spikes with two post-synaptic spikes at 5Hz in 
acute slice preparations and the sum of two Gaussians fit to this data (with � 1 = 15ms, � 1 = 32ms and � 2 = 13ms, � 2 = 11ms) from 
Wittenberg and Wang [29]. (d) The change in EPSP generated by 30 pairings of single pre-synaptic spikes with two post-
synaptic spikes at 5Hz in acute slice preparations and a Gaussian fit to this data (with �  = 4ms, �  = 15ms and a peak value of 
1.29) from Wittenberg and Wang [29] 



 
An examination of the simulated NMDAr-[Ca2+] dynamics produced by these stimulation protocols 
illustrates the foundations for the Calcium control hypothesis – high peak values being generated at 
short, predominantly positive temporal offsets and decaying exponentially with increasing � t (Figure 
2a, b). Intuitively, setting thresholds for kinase (� LTP) and phosphotase (� LTD) activation as the peak 
NMDAr-[Ca2+] values achieved by spike pairings at short and long temporal offsets respectively will 
generate Gaussian learning curves centred at short positive temporal offsets that reflect empirical data. 
We utilise these peak NMDAr-[Ca2+] values to guide parameterisation of the modified Hill functions 
that control kinase and phosphotase activity – setting thresholds such that significant kinase activity is 
only generated by 5Hz triplet pairing at short, positive temporal offsets and significant phosphotase 
activity is only generated by peak NMDAr-[Ca2+] values that are greater than the minimum generated 
by 5Hz spike pairings (Figure 2a, b). Hill co-efficients and dissociation constants are set in line with 
previous experimental and theoretical studies, and the empirically observed competition between these 
two pathways is accounted for by dictating that kinase activity partially inhibits phosphotase activity 
[40, 41, 44, 49, 50]. Finally, the activation of kinase and phosphotase must also obey different kinetics, 
such that LTP can be induced rapidly, by a small number of triplet pairings, while significant LTD 
requires more sustained stimulation [15, 17, 29]. This is achieved by assigning a much more rapid time 
constant of decay to the kinase pathway compared to the phosphotase pathway (50ms and 2000ms 
respectively). 
 
By constraining the parameters of the plasticity model in this way, we are able to qualitatively replicate 
the full array of experimental data described above (Figure 2c-f). Spike pairings delivered at low 
frequencies (0.1 – 5Hz) generate a depression only learning rule centred at short positive temporal 
offset (� D=22.5ms) and extending over a wide range of temporal offsets (� D=35.1ms); while spike 
triplets delivered at 5Hz generate a potentiation only learning rule centred at short positive temporal 
offset (� P=19.5ms) with a narrower range (� P=8.9ms) when applied for short durations and a triphasic 
learning rule (with � D=16.2 ± 67.1ms and � P=19.2 ± 9.0ms) if applied for longer periods. An 
examination of Calcium, kinase and phosphotase dynamics during typical potentiating and depressing 
stimuli illustrates the mechanisms of the plasticity model (Figure 3a-d). Moderate elevations in 
intracellular Calcium, generated here by acausal 5Hz triplet pairings at short temporal offsets, 
selectively activate the phosphotase pathway and subsequently increase the probability of synapses 
making the transition from high to low weight states. Conversely, larger elevations in intracellular 
Calcium, generated here by causal 5Hz triplet pairings at short temporal offsets, activate both kinase 
and phosphotase pathways, the former inhibiting the latter and subsequently increasing the probability 
of synapses making the transition from low to high weight states.  
 
Following a potentiating or depressing stimulus, the return of kinase and phosphotase activity to 
equilibrium dictates that the overall distribution of strong and weak synaptic weights returns to its 
initial state over a time course of ~1 hour, in correspondence with the decay of early-phase long-term 
potentiation and depression (E- LTP / LTD) observed empirically [Figure 3e, f; 51-53]. It is also 
interesting to note that, due to the higher gain and shorter time constant governing kinase activation, 
transitions between low and high weight states induced by potentiating stimuli take consistently less 
time than transitions between high and low weight states induced by depressing stimuli (69±50s at 
� t=15ms and 108±55s at � t=-15ms for 5Hz Triplet pairing, for example), and each is on a similar 
timescale to that observed experimentally (80±70s for LTP and 183±126s for LTD in O’Connor, 
Wittenberg and Wang [37]; 38s for LTP in Bagal et al. [39]). 

  



 
 
Fig. 2 NMDAr-[Ca2+] and synaptic weight change generated by spike and triplet pairing stimulation protocols. (a) Maximum 
peak NMDAr-[Ca2+] generated by 100 spike pairings delivered at 0.5Hz (blue line) and 5Hz (red line) with various temporal 
offsets (� t = tpost-tpre), � bAP,s=25ms and � NMDA,s=152ms. (b) Maximum peak NMDAr-[Ca2+] generated by 30-100 triplet pairings 
delivered at 0.5Hz (blue line) and 5Hz (red line) with the same parameter values as (a). Horizontal dashed lines represent 
putative thresholds for the induction of LTP and LTD (� LTP and � LTD respectively) which are subsequently used to inform 
parameterisation of the thresholded Hill functions that control kinase and phosphotase activity respectively. Vertical dashed line 
represents � t = 0 ms. (c) Total change in synaptic weight generated by 100 spike pairings delivered at 5Hz with � bAP,s=25ms, 
� NMDA,s=152ms, � P=0.35 and � D=0.175. (d) Total change in synaptic weight generated by 100 triplet pairings delivered at 5Hz 
with the same parameter values as (c). (e)  Total change in synaptic weight generated by 100 triplet pairings delivered at 0.5Hz 
with the same parameter values as (c). (f) Total change in synaptic weight generated by 30 triplet pairings delivered at 5Hz with 
the same parameter values as (c). Horizontal dashed line represents zero change in total synaptic weight, and vertical dashed line 
represents � t = 0 ms 
 



 
Fig. 3 Local dynamics of intracellular Calcium, kinase and phosphotase activity and synaptic weight in the dendritic spine during 
potentiating and depressing causal and acausal spike pairings. (a) NMDAr-[Ca2+] dynamics in the dendritic spine during a typical 
depressing stimulus – 5Hz triplet pairing with � t = tpost-tpre = -15ms, � bAP,s=25ms and � NMDA,s=152ms. (b) NMDAr-[Ca2+] 
dynamics in the dendritic spine during a typical potentiating stimulus – 5Hz triplet pairing with with � t = tpost-tpre = 15ms and the 
same parameter values as (a). (c) Kinase (red) and phosphotase (blue) dynamics during a typical depressing stimulus with the 
same parameter values as (a), � P=0.35 and � D=0.175. The black arrow indicates the time at which the first synaptic weight makes 
the transition from a low to high weight state. (d) Kinase (red) and phosphotase (blue) dynamics during a typical potentiating 
stimulus with the same parameter values as (b) , � P=0.35 and � D=0.175.. The black arrow indicates the time at which the first 
synaptic weight made the transition from a high to low weight state. (e) Decay of LTD and (f) LTP following the potentiating 
and depressing stimulation protocols illustrated in (a-d) 
 
2.2 The Range of Temporal Interactions, Slow Time Constants and Skew 
The temporal extent of spike pair interactions at low frequencies is primarily determined by the slow 
time constant of the bAP, which dictates the duration of residual depolarisation and therefore partial 
relief of NMDA blockade in the spine following a post-synaptic action potential; and that of the 
NMDA receptor, which dictates the duration of glutamate binding following pre-synaptic input [18]. In 
the simulations described above, the slow time constant of the NMDA receptor (� NMDA,s=152ms) is 
much larger than that of the bAP (� bAP,s=25ms), and hence pre-post interactions extend over a larger 
temporal window than post-pre interactions. This accounts for the induction of depression over a 
greater range of positive than negative temporal offsets with spike pairing stimulation (Figure 2c); and 
for the induction of more significant depression around � t = -100ms than � t = -50ms in triplet pairing 
simulations (Figure 2d). In the latter case, post-synaptic bursts at large negative temporal offsets 
interact more significantly with decaying NMDA receptor activation from the previous pre-synaptic 
input. This appears to be quantitatively at odds with empirical data, which suggests that smaller net 
weight change should be generated as � t �  ±100ms at 5Hz (see Figure 1), and thus that consecutive 
triplet pairings should not interact at this stimulation frequency.  
 
Adjusting the relative magnitude of these slow time constants independently modulates the positive and 
negative temporal extent of NDMAr-[Ca2+] influx generated by spike or triplet pairings in this model, 
and thus the skew of peak NMDAr-[Ca2+] values and the resultant learning curve (Figure 4a-d). In 



order to produce Gaussian plasticity profiles, these parameters must be manipulated to provide an 
approximately Gaussian distribution of peak NMDA-[Ca2+] values from spike-timing stimulation 
protocols. However, it may be an oversimplification to use a Gaussian fit to experimental data, as 
statistical tests demonstrate that the learning curves described in the acute slice by Wittenberg and 
Wang [29] exhibit negative skew (�  = -0.39 for the depression only learning rule illustrated in Figure 
1c, for example).  
 

 
 
Fig. 4 Effects of adjusting NMDAr and bAP time constants on peak NMDAr-[Ca2+] and synaptic weight change. (a) Peak 
NMDAr-[Ca2+] values generated by 100 triplet pairings delivered at 5Hz and various temporal offsets (� t = tpost-tpre) with � -

bAP,s=25ms and � NMDA,s=50ms (blue line); � NMDA,s=100ms (grey line); or � NMDA,s=152ms (red line). (b) Peak NMDAr-[Ca2+] values 
generated by 100 triplet pairings delivered at 5Hz with � NMDA,s=152ms and � bAP,s=25ms, (red line); � bAP,s=55ms (grey line); or � -

bAP,s=85ms (blue line). (c) Synaptic weight change generated by 100 triplet pairings delivered at 5Hz with � bAP,s=25ms and 
� NMDA,s=50ms, � P=0.175 and � D=0.04 (blue line); � NMDA,s=100ms, � P=0.25 and � D=0.09 (grey line); or � NMDA,s=152ms, � P=0.35 
and � D=0.175 (red line). (d) Synaptic weight change generated by 100 triplet pairings delivered at 5Hz with � NMDA,s=152ms, � -

bAP,s=25ms, � P=0.35 and � D=0.175 (red line); � bAP,s=55ms, � P=0.425 and � D=0.25 (grey line); or � bAP,s=85ms, � P=0.5 and � D=0.33 
(blue line). (e) Synaptic weight change generated by 100 spike pairings delivered at 5Hz with � bAP,s=55ms,  � NMDA,s=100ms, 
� P=0.3 and � D=0.125. (f) Synaptic weight change generated by 100 triplet pairings delivered at 5Hz with the same parameter 
values as (e) 
 
Hence, in order to account for the induction of depression at � t < -50ms; to avoid spurious pre-post 
pairings at � t > ~80ms; and to increase the negative skew of the NMDAr-[Ca2+] profile and resultant 
learning curves, we repeat the simulations described above with � bAP,s = 55ms and � NMDA,s = 100ms 
(Figure 4e, f). This represents a significantly longer time constant for the bAP than that employed in 
previous modelling studies; although there is little empirical data available to guide the choice of this 
parameter value [18, 48, 54-56]. The slow time constant of Calcium influx through the NMDA receptor 
is also shorter than that measured experimentally, which has been shown to correspond well with the 
time course of deactivation following glutamate release [~150ms; 57]. However, that study measured 
the time course of Calcium influx following unitary NMDAr activation, whereas we are concerned 



with NMDAr kinetics when significant post-synaptic depolarisation follows glutamate binding by ~50-
100ms, which may be significantly more complex [46]. 
 
2.3 Induction of Synaptic Plasticity by Other Stimulation Protocols 
Having constrained the parameters of the plasticity model to account for recent observations of 
triphasic hippocampal STDP, we now examine whether it is also possible to replicate synaptic 
plasticity data obtained using other stimulation protocols in order to provide a unified account of 
weight change dictated by NMDAr-[Ca2+]. Firstly, we examine tetanic stimulation – whereby a set 
number of pre-synaptic inputs are applied periodically at a constant firing rate. This form of stimulation 
typically generates a BCM-type learning curve that is well replicated by this model (Figure 5a, b); 
composed of competitive and co-activated potentiation and depression only learning curves that are 
revealed under selective pharmacological blockade of phosphotase or kinase activity respectively 
(Figure 5c, d). In both cases, however, the firing rate at which LTD and LTP are first expressed in the 
model is significantly higher than that observed experimentally [38].  
 

 
Fig. 5 Synaptic plasticity induced by tetanic stimulation, post-synaptic depolarisation and under selective pharmacological 
blockade. (a) Experimentally observed synaptic weight change induced by 900 pulses of periodic pre-synaptic stimulation 
delivered at various firing rates from O’Connor, Wittenberg and Wang [36]. (b) Overall synaptic weight change generated in this 
model when the same form of stimulation is applied with � bAP,s=55ms, � NMDA,s=100ms, � P=0.3 and � D=0.125. (c) Experimentally 
observed weight change induced by 900 pulses of pre-synaptic stimulation delivered at various firing rates in the presence of 
selective pharmacological blockade of kinase (blue) or phosphotase (red) activity from O’Connor, Wittenberg and Wang  [36]. 
(d) Overall synaptic weight change generated in our model when the same form of stimulation is applied under conditions of 
putative kinase (blue) or phosphotase (red) blockade (i.e. kP=0 or kD=0, see Methods) with all other parameter values the same as 
in (b). (e) Overall synaptic weight change generated in our model by 900 pulses of periodic pre-synaptic stimulation delivered at 
various firing rates with stochastic post-synaptic activity that follows the statistics described by Wittenberg and Wang [29] and 
the same parameter values as (b). (f) Overall synaptic weight change generated in our model by 100 pre-synaptic inputs delivered 
at 2Hz while the post-synaptic membrane voltage is held fixed at various levels of depolarisation, with the same parameter values 
as (b) 
 
One issue with the interpretation of empirical plasticity data obtained using tetanic stimulation 
protocols is the fact that post-synaptic activity is rarely recorded, but has a significant impact on the 



magnitude of NMDAr-[Ca2+] generated. In fact, experimental evidence suggests that post-synaptic 
activity is a necessary requirement for any form of synaptic plasticity, although contradictory reports 
do exist [32, 58, 59]. Wittenberg and Wang [29] provide unique data regarding the induction of LTD 
by a single LFS protocol (900 pulses at 3.3Hz), in that the response of the post-synaptic neuron was 
recorded throughout pre-synaptic stimulation - as 200 action potentials which each followed input 
volleys with a latency of 6.2 ± 4ms. Such causal spike pairings might be expected to generate LTP by a 
conventional STDP rule, highlighting a critical issue with previous phenomenological models [32]. 
When we repeat the simulations illustrated in Figure 5b in the presence of stochastic post-synaptic 
activity with the same statistics the BCM-type learning rule is retained, and the threshold firing rate for 
expression of both LTD and LTP is reduced to more realistic levels (Figure 5e). 
 
Next, we examine the changes in synaptic weight generated when pre-synaptic stimulation is paired 
with different levels of post-synaptic depolarisation (Figure 5f) or theta burst stimulation (TBS) is 
applied (see Methods). In each case, this model qualitatively replicates experimental data and the 
results of previous modelling studies – both solely pre-synaptic TBS and simultaneous pre- and post- 
synaptic TBS generating saturated LTP with a final synaptic weight of 1.89 ± 0.01 [48, 60-62].  
 
2.4 Effects of bAP Attenuation, Stimulation Frequency and Decay of Early-phase Plasticity 
Having established that this plasticity model can account for a wide range of experimental data, we can 
now make experimental predictions regarding the degree and direction of synaptic weight change 
induced by set activity patterns when various experimental parameters are manipulated. For example, 
in the simulations described above, the amplitude of the bAP is a critical parameter which determines 
the level of depolarisation – and therefore voltage-dependent relief of  NMDAr - following a post-
synaptic action potential. It is well known that bAP amplitude attenuates significantly with distance 
from the soma, primarily due to the activity of A-type K+ channels, and this may have a critical impact 
on the nature of synaptic weight change generated by identical stimulation protocols at proximal and 
distal dendrites [56, 63, 64]. Simulations indicate that a reduction in the value of Vbp,max

 generates a 
reduction in the magnitude of LTP and the temporal extent of both LTP and LTD generated by STDP 
protocols (Figure 6a). This matches recent experimental data which examined the synaptic weight 
change incurred by identical spike-timing stimulation protocols at proximal and distal inputs to cortical 
pyramidal neurons – although similar results from CA1 pyramidal neurons are so far lacking [65]. 
 
We can also examine the effect of adjusting the frequency of spike and triplet pairing stimulation on 
synaptic weight change. This form of activity approximates that observed in the hippocampus during 
stereotyped learning behaviour and spatial exploration – when active pyramidal neurons fire single 
spikes or complex bursts at approximately theta frequency. In these simulations, spike pairings 
generate a broad depression only curve at low frequencies (<7Hz), and an increasing magnitude and 
temporal extent of potentiation and depression centred around short, positive temporal offsets at higher 
frequencies (	 8Hz; Figure 6b). Similarly, triplet pairings generate a broad depression only curve 
reminiscent of that generated by spike pairings at low frequencies (<4Hz), and an increased temporal 
extent of potentiation and magnitude of depression at higher frequencies (	 5Hz; Figure 6c). The 
requirement for both moderate stimulation frequency and post-synaptic bursting for LTP, in contrast to 
low stimulation frequency and / or single post-synaptic spikes for LTD, dictates that bi-directional 
synaptic plasticity is induced over a much wider range of conditions than that observed in previous 
modelling studies [18].  
 
Finally, it is interesting to note that the modified Hill functions utilised here allow the NMDAr-[Ca2+] 
threshold at which potentiation and depression are expressed to be modulated in a straightforward 
manner by adjusting the corresponding value of �  (see Methods). Hence, a process of metaplasticity – 
that is, an activity dependent change in the level of stimulation required to induce LTP or LTD – can 
easily be incorporated into the model. Figure 6d illustrates the learning curves generated by 5Hz triplet 
pairing when the thresholds for kinase and phosphotase are increased, limiting their expression and 
effectively generating depression or potentiation only learning rules. 
 



 
Fig. 6 Effects of adjusting bAP amplitude (Vbp, max), stimulation frequency, kinase and phosphotase activation thresholds on 
synaptic weight change. (a) Synaptic weight change generated by 100 triplet pairings delivered at 5Hz with various temporal 
offsets (� t = tpost-tpre), � bAP,s=55ms, � NMDA,s=100ms, � P=0.3, � D=0.125 and Vbp, max=33mV (blue line), Vbp, max=50mV, Vbp, 

max=67mV (grey line), Vbp, max=83mV and Vbp, max=100mV (red line). (b) Synaptic weight change generated by 100 spike pairings 
delivered at 7Hz (blue line), 9Hz (grey line), and 11Hz (red line) with the same parameter values as (a). (c) Synaptic weight 
change generated by 100 triplet pairings delivered at 3Hz (blue line), 5Hz (grey line), and 7Hz (red line) with the same parameter 
values as (a) (d) Synaptic weight change generated by 100 triplet pairings delivered at 5Hz with � P=0.5, � D=0.125 (blue line) and 
� P=0.3, � D=0.175 (red line) 
 
3 Discussion 
Recent empirical examinations of spike-timing dependent plasticity at the CA3-CA1 synapse have 
demonstrated that changes in synaptic conductance are jointly dependent on the temporal offset of pre- 
and post- synaptic firing, number of post-synaptic spikes fired, frequency of spike or triplet pairings 
and duration of stimulation [28-30]. Here, we provide the first demonstration that the Calcium control 
hypothesis, which purports that the dynamics of NMDAr-dependent Calcium influx into dendritic 
spines is sufficient to account for the magnitude and direction of synaptic weight changes induced by 
different stimulation protocols, can qualitatively account for this joint dependency. As with the original 
formulation of the Calcium control hypothesis, our motivation was to reproduce a wide range of 
plasticity data using a minimal number of assumptions and thereby provide a parsimonious model that 
is suitable for network level simulations [18, 47]. In addition to those made previously, we have 
incorporated co-activated and competitive kinase and phosphotase pathways with distinct time 
constants that dictate probabilistic transitions between binary synaptic states to provide a unified 
computational model of hippocampal synaptic plasticity – a process that is critically implicated in 
mammalian declarative memory function. Importantly, this formulation relies on an explicit 
consideration of the dynamics of NMDAr-[Ca2+] and bistable synaptic weights, as opposed to a 
summation of peak or integrated Calcium influx and continuous synaptic weights [45].  
 
The dynamics of kinase and phosphotase in this model are controlled by modified Hill functions 
inspired by recent advances in systems biology [49, 50]. These were developed to provide a 
quantitative kinetic description of enzymes and transcription factors that are sequestered by inhibitors 
or antagonists into inactive complexes below some threshold or equivalence point. This sequestration 
mechanism, which is widespread in genetic and regulatory networks, has several properties that make it 
particularly useful for modelling synaptic plasticity processes, providing a threshold for activation 
below which the accumulation of active regulatory molecules is effectively buffered and above which 
an ultrasensitive response that approaches bistability is generated. It is also straightforward to 
parameterise the modified Hill functions to suit the demands of any particular synaptic plasticity 
simulation, by matching the threshold value �  to the peak NMDAr-[Ca2+] values generated by different 
forms of stimulation at which the expression of potentiation or depression is required. 
 



A number of predictions made by the synaptic plasticity model presented here might be experimentally 
verified in order to provide further support for our approach and highlight areas where revisions are 
required. For example, we suggest that the induction of LTD by post-pre spike pairings over a range of 
-60ms < � t < 0ms implies that the slow after-depolarisation generated in dendritic spines by a bAP 
should follow a similar time course. It is very difficult to test this conjecture experimentally. It has also 
been suggested that one of several alternative mechanisms may serve as the second coincidence 
detector required for the induction of LTD by spike and triplet pairing stimulation protocols [42, 45, 
66]. By elaborating the secondary messenger pathways in the plasticity model to more closely replicate 
the activity of CaM, CaMKII, PP1, PP2A, I1 and other proteins implicated in plasticity expression, as 
well as additional sources of internal and external Calcium influx, it may be possible to more 
accurately appraise the contributions made by bAPs to synaptic plasticity [7, 46, 67]. However, the 
complexity of such models and associated computational cost might also render them unsuitable for 
network level simulation. 
 
The results presented here also suggest that, in order to avoid spurious pre-post pairings at � t > ~60ms, 
the NMDA receptor should not allow significant Calcium influx when depolarisation follows glutamate 
binding by a similar temporal offset. This prediction could be tested through experimental 
measurements of the NMDAr-[Ca2+] current generated by spike and triplet pairing protocols at 
different stimulation frequencies. It is well known that the activity-dependent NR2A / NR2B subunit 
composition of NMDAr has a significant influence on the properties and temporal profile of synaptic 
currents, particularly at the high and low firing rates associated with LTP and LTD induction [68, 69]. 
Measuring the changes in synaptic strength generated by spike and triplet pairing protocols under 
regimes of selective pharmacological blockade would also allow the dynamics of kinase and 
phosphotase activity to be more precisely delineated, providing further data to constrain the 
corresponding kinetic models. Similarly, recording post-synaptic activity over a range of tetanic 
stimulation frequencies would allow the specific profile of NMDAr-dependent Calcium influx 
generated to be more accurately replicated in simulation. 
 
The dependence of both LTP and LTD on stimulation frequency suggests that more significant 
plasticity will be generated by a set pattern of synaptic activity in the hippocampus when theta 
frequency increases. Although some empirical studies have reported a correlation between 
hippocampal theta frequency during encoding and subsequent memory performance in humans and 
other mammals, it has also been demonstrated that environmental novelty – which is associated with 
enhanced learning and plasticity – causes a decrease in CA1 theta frequency and might therefore 
produce less significant changes in synaptic conductance [70-73]. However, it seems likely that 
multiple alterations in neural activity or neuromodulatory tone are generated by novelty or enhanced 
learning and may have a more significant effect on the dynamics of synaptic plasticity. The 
requirement for multiple post-synaptic spikes to induce LTP, for example, implies that bursting may be 
the primary mode of encoding salient information in the hippocampus [74, 75]. Further empirical 
studies are required to delineate the changes in neural activity observed during periods of enhanced 
learning, and the manner in which these changes contribute to the induction of bidirectional synaptic 
plasticity. 
 
The model presented here also exhibits several limitations that might be addressed by future theoretical 
studies. For example, the magnitude of weight change induced by different stimulation protocols in this 
model is generally smaller than that observed empirically, despite the fact that the relative frequency 
and conductance of potentiated and depressed synapses are matched to published data [36, 37, 44; see 
Methods]. Furthermore, specific AMPAr and NMDAr conductances are not affected by changes in 
putative synaptic weight which, although in line with many theoretical studies of plasticity induction, is 
clearly at odds with the situation in vivo [18, 42-48]. It has been demonstrated that changes in AMPAr 
conductance associated with the expression of long-term synaptic plasticity are accompanied by 
concomitant changes in NMDAr conductance [69, 76]. This has interesting implications for further 
synaptic plasticity – as both the level of depolarisation in the spine and the level of NMDAr-dependent 
Calcium influx generated by that depolarisation will be concurrently modulated, possibly contributing 
to the ‘lock-in’ of changes in synaptic conductance observed experimentally [37]. 
 
It is also important to note that the results presented here are only intended to model long-term 
plasticity of CA3-CA1 synapses in the hippocampus. Experimental studies have demonstrated that the 
Calcium control hypothesis does not hold true for excitatory synapses between cortical pyramidal cells 
– at which there is no evidence for the existence of a triphasic STDP rule. A variety of alternative 



mechanisms, including metabotropic glutamate receptor, pre-synaptic NMDAr and retrograde 
endocannabinoid signalling, have been implicated in the induction of LTD by spike-timing stimulation 
protocols in cortex [77-80]. It seems likely that this dichotomy in synaptic plasticity mechanisms 
between cortex and hippocampus might both reflect and be reflected by functional differences in neural 
processing mediated by these regions.  
 
We have demonstrated that this plasticity model can account for the decay of early-phase plasticity 
over a period of ~1 hour following changes in synaptic conductance, facilitating the incorporation of 
plasticity-related-protein (PRP) production, synaptic tagging and capture (STC) processes in order to 
examine hetero-synaptic interactions during more realistic long-term activity patterns [53]. It is also 
well known that CA1 pyramidal neurons receive predominantly inhibitory input from multiple sources 
during stereotyped learning and spatial exploration, and that changes in the level of inhibition during 
development significantly modulate the degree and direction of synaptic plasticity incurred by spike-
timing stimulation protocols [34]. Hence, it seems prescient to extend this model to include realistic 
patterns of inhibitory input, in order to provide a more comprehensive appraisal of synaptic plasticity at 
the CA3-CA1 synapse. The distribution of inhibitory and excitatory inputs with different properties at 
different locations across the dendritic tree will generate more complex patterns of post-synaptic 
depolarisation and Calcium influx, possibly allowing useful nonlinear computations to be performed. 
Recent studies have described several forms of heterosynaptic plasticity in pyramidal neurons that 
might also be explained by the Calcium control hypothesis, allowing the nature of active dendritic 
processing to be more precisely elucidated [81-84].  
 
Finally, it is well established that processes of synaptic plasticity are accompanied by concurrent and 
interacting processes of homeostatic and intrinsic plasticity which regulate neural activity over longer 
timescales [12, 85]. Recent computational modelling suggests that the interaction of these  processes is 
critical to establish and maintain appropriate conditions for transient dynamics during cognitive 
processing, and the examination of a unified model of neural and synaptic plasticity is therefore a 
critical direction for future theoretical studies [86-89]. More generally, an examination of the synaptic 
and neural dynamics generated by the triphasic STDP rule in network models of hippocampal function 
with more realistic activity patterns, including theta modulation and phase precession, would contribute 
significantly to the understanding of hippocampal function during putative learning behaviour [90]. 
 
4 Methods 
 
4.1 Neuron Model 
The vast majority of afferent excitatory synapses on cortical pyramidal neurons are found on dendritic 
spines – small, membranous protrusions that are connected to the dendritic tree by a narrow neck [91]. 
Due to the limited diffusion of biochemical signals including Calcium through this neck, dendritic 
spines effectively compartmentalise synaptic processes and thereby promote their independence [57]. 
In this model, we examine N independent, passive dendritic spines with surface area Aspine whose 
membrane potential VN is dictated solely by leak conductance according to Eq. 1; where Cm is the 
membrane capacitance, IN is the total synaptic current to the Nth spine, gL is the (maximum) leak 
conductance and EL is the reversal potential of the leak current. 
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Each spine has AMPA and NMDA mediated synaptic currents with kinetics based on experimental 
recordings and governed by Eq. 2 [92, 93]. AMPAr conductances are modelled as a single exponential 
with instantaneous rise time and subsequent decay with a time constant of � AMPA = 5.26ms. NMDAr 
conductances are modelled as the sum of fast and slow exponentials with time constants � NMDA,f  = 
1.485ms and � NMDA,s respectively. The term GNMDA describes the additional voltage dependence due to 
the blockade of NMDA receptors by Mg2+ [94], while BNMDA is a normalisation factor which ensures 
that the peak conductance is equal to the maximum conductance.  
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Another significant source of depolarisation in the dendritic spine is provided by backpropagating 
action potentials (bAPs) from the soma [54, 55, 95]. In accordance with previous modelling studies, 
perturbations in membrane voltage generated by putative bAPs with peak depolarisation VbAP,max are 
modelled as the sum of a large, rapid rise (with a time constant of � bAP,f = 3ms) and a smaller, slower 
decay (with a time constant of � bAP,s) according to Eq. 3. The relative contribution of each exponential 
term is dictated by IbAP,f = 0.75 and IbAP,s = 0.25 [18, 48]. 
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The local Calcium concentration [Ca2+] in each dendritic spine is determined by influx through 
NMDAr – which is directly proportional to the EPSP generated by this receptor - and passive decay 
with a time constant � Ca according to Eq. 4 [57].  
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All relevant parameters in the neuron model are fitted to recent data from electrophysiological and 
fluorescent imaging studies of dendritic spines on CA1 pyramidal neurons during synaptic activation 
and action potential generation [48]. Maximum excitatory conductance values are chosen to match 
experimental recordings which indicate that an AMPAr mediated depolarisation of ~10mV is generated 
in the spine by activation of a single synapse (giving gAMPA = 23.5pS); NMDAr mediated depolarisation 
of ~5mV is generated in the spine by activation of a single synapse in the absence of extracellular Mg2+ 
(giving gNMDA = 3.35pS); and bAPs generate a maximum depolarisation of VbAP,max = 67mV in the spine 
unless stated otherwise [64, 95, 96]. Maximum [Ca2+] conductance of the NMDA receptor is set at 
gNMDA, Ca = 0.159pS to generate a peak [Ca2+] concentration of 0.17� M from a single synaptic input at 
resting membrane potential, and adjusted when the temporal profile of NMDAr activation is 
manipulated in other simulations to provide the same peak [Ca2+] concentration. The decay of [Ca2+] 
proceeds with a time constant of �Ca = 15ms, in line with empirical recordings of Calcium dynamics in 
individual dendritic spines on CA1 pyramidal neurons [57]. 
 
4.2 Plasticity Model 
Transitions between binary high and low weight states for each synaptic input (and vice versa) are 
governed by a stochastic Markov model in which the probability of making a state change at each 
timestep is directly proportional to the activity of putative kinase and phophotase pathways 
respectively. The activity of kinase and phosphotase pP/D above equilibrium values pP0/D0 are primarily 
dictated by modified Hill functions � P,D inspired by recent advances in systems biology [49, 50]. These 
incorporate an effective threshold for activation � P,D below which kinase and phosphotase activity is 
effectively buffered and above which activation follows standard formalism (Eq. 5). Hill co-efficients 
and dissociation constants are set in accordance with previous modelling studies [41?, 44] and the 
results presented here are robust to significant changes in these parameter values provided that HNP > 
HND, negating the need for extensive parameter fitting (data not shown).  



 
In accordance with previous models, the modified Hill functions operate on local peaks in Calcium 
concentration, such that step changes in kinase and phosphotase activation occur in any timestep that 
the first derivative of NMDAr-[Ca2+] dynamics is equal to zero and the second derivative is negative 
[48, MORE?]. The magnitude of these step changes is dictated by the positive constant kP/D and 
competitive interactions between kinase and phosphotase pathways are incorporated by subtracting the 
product of kinase activity and a positive constant kI from phosphotase activity during step changes. 
Between local peaks in NMDAr-[Ca2+], kinase and phosphotase activity decays towards equilbirium 
levels with individual time constants � P/D. 
 
The continuous probability of transition between high and low conductance states, and vice versa, in a 
Markov model is then directly proportional to the instantaneous value of putative kinase and 
phosphotase activity at each time step. Equilibrium values are subsequently set such that the relative 
occupation of high and low weight states at rest corresponds to that observed experimentally, fP0=79% 
of synapses occupying the low weight state and fD0=21% occupying the high weight state at the start of 
each simulation [37]. In line with empirical measurements regarding the relative conductance of 
potentiated and depressed CA3-CA1 synapses, we set the relative strength of high and low weight 
states as wP=2 and wD=0.66 respectively [REFS]. The overall change in putative fEPSP generated by 
various stimulation protocols can then be assessed by comparing the frequency of synaptic inputs 
occupying high and low weight states (fP and fD respectively) at the start and end of each simulation 
according to Eq. 5. 
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4.3 Simulation Details 
During spike pairing stimulation protocols, values of � t describe the temporal offset between the peak 
of a single input EPSP and that of a single bAP. In triplet pairing protocols, values of � t describe the 
temporal offset between the peak of a single input EPSP and the second of two bAPs that are separated 
by a constant offset of 10ms. Stimulation frequency in each case is measured as the inverse of temporal 
offset between the peak of successive input EPSPs.  
 
In tetanic stimulation protocols with stochastic post-synaptic activity, periodic pre-synaptic EPSPs are 
followed with a probability of 22.2% (corresponding to the ratio of 200 post-synaptic action potentials 
to 900 volleys of pre-synaptic field stimulation observed by Wittenberg and Wang [29]) by a single 
bAP with temporal offset drawn from a random distribution with � =6.2ms and � =4ms.  
 
The theta-burst stimulation (TBS) protocol consists of delivering ten bursts of four spikes with 10ms 
inter-spike interval and 200ms inter-burst interval either solely pre-synaptically, or simultaneously pre- 
and post- synaptically. The depolarisation protocol consists of delivering 100 stimulation pulses at a 
constant frequency of 2Hz while the membrane voltage of the dendritic spine is clamped at a constant 
value. 
 
All dynamic values are calculated at each 0.1ms timestep using Euler integration, and all simulations 
are performed using MATLAB. 
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Notation Parameter Value 
Cm Membrane Capacitance 1� F 
gL Leak conductance 0.1pS 
Aspine Spine surface area  17.5 x 10-8 cm2 
gAMPA Peak AMPA conductance 23.5pS 
gNMDA Peak NMDA conductance 3.35pS 
� AMPA AMPA time constant 5.26ms 
� NMDA, f Fast NMDA time constant 1.485ms 
EL Leak reversal potential -65mV 
EAMPA AMPA reversal potential 0mV 
ENMDA NMDA reversal potential 0mV 
[Mg2+] Extracellular Magnesium concentration 1mM 
IbAP,f Contribution of fast bAP time constant 0.75 
IbAP,s Contribution of slow bAP time constant 0.25 
� bAP,f Fast bAP time constant 3ms 
gNMDA, Ca NMDAr Calcium conductance 0.159pS 
ECa Calcium reversal potential 120mV 
� Ca Time constant of Calcium decay 15ms 
PP0 Kinase activity / transition probability at rest 3.22 x 10-6 
PD0 Phosphotase activity / transition probability at rest 7.89 x 10-6 

�  P Kinase time constant 50ms 
�  D Phosphotase time constant 2000ms 
kP Kinase activation constant 0.02 
kD Phosphotase activation constant 4 x 10-4 
kI Competition constant 0.2 
HCP Kinase dissociation constant 2 
HCD Phosphotase dissociation constant 2 
HNP Hill number of kinase activation 4 
HND Hill number of phosphotase activation 3 
N Total number of synaptic inputs 10,000 
fP0 Initial frequency of synapses in high weight state 0.21 
fD0 Initial frequency of synapses in low weight state 0.79 
wP Putative strength of high weight state 2 
wD Putative strength of low weight state 0.66 

 
Table 1: Parameter definitions and values used throughout the simulations presented  
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