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Abstract

Synaptic plasticity is believed to represent therakcorrelate of mammalian learning and memory
function. It has been demonstrated that changesymaptic conductance can be induced by
approximately synchronous pairings of pre- and psghaptic action potentials delivered at low
frequencies. It has also been established that NMipendent Calcium influx into dendritic spines
represents the critical signal for plasticity indon, and can account for this spike-timing depernde
plasticity (STDP) as well as experimental data ioleté using other stimulation protocols. However,
subsequent empirical studies have delineated a cwonplex relationship between spike-timing, firing
rate, stimulus duration and post-synaptic burstingdictating changes in the conductance of
hippocampal excitatory synapses. It has yet todt@béished whether the Calcium control hypothesis
can account for this more recent data. Here, weepttea detailed biophysical model of single derdrit
spines on a CAl pyramidal neuron, describe the NMBépendent Calcium influx generated by
different stimulation protocols, and present a jpaosious model of Calcium driven kinase and
phosphotase dynamics that dictate transitions keatvinary synaptic weight states. We demonstrate
the manner in which this model can account for ougsi experimental observations of synaptic
plasticity and be used to make predictions regardire dynamics of depolarisation and NMDAr
activation generated by STDP protocols as wellh@sdynaptic weight change induced under other
experimental conditions. We then discuss how tlassimonious, unified computational model of
synaptic plasticity might be utilised to appraite fctivity-dependent refinement of neural cirguitr
induced by more realistic firing patterns.



1 Introduction

Synaptic plasticity — the process of activity degemt change in synaptic conductance - is widely
believed to represent the neural correlate of mamméearning and memory function [1-3]. Since the
first experimental demonstrations of long-term ptisgion (LTP) and depression (LTD), a wealth of
empirical data regarding the induction, expressiod maintenance of synaptic plasticity in different
cortical regions has been obtainptt8]. In spite of the heterogeneity of plasticitgechanisms
observed throughout the brain, changes in the gtinenf excitatory synapses afferent on CAl
pyramidal neurons in the hippocampus represenéiestudied form in the mammalian cortex [9-12].
At these synapses, Calcium influx into dendritianep represents the critical signal for synaptic
plasticity induction [13-20]. Large, transient ed¢ions in intracellular [Cd] generate LTP via the
preferential activation of kinase pathways whiledmst, sustained elevations in intracellular{Ta
generate LTD via the preferential activation of ghiootase pathways [21-25]. Initially, empirical
observations of synaptic plasticity were mediatgddtanic stimulation protocols, with high frequgnc
stimulation (HFS; typically 1s of 100Hz afferentirig) used to induce LTP and low frequency
stimulation (LFS; typically 15mins of 1Hz afferefiting) used to induce LTD [4, 5]. In more recent
years, it has also been established that temparathglated pairs or triplets of pre- and post-aptit
action potentials delivered at low frequencies daduce bidirectional spike-timing dependent
plasticity (STDP) depending, among other parametarstheir exact temporal offset over a range of
~100ms [26-30]. STDP has been examined in a vamétgortical regions and species, and its
discovery has both accompanied and acceleratedva imocomputational neuroscience from rate to
temporally coded models of cognitive processing 1.

Early studies of STDP, primarily carried out in iigampal cell cultures, delineated a straightfodwar
relationship between the relative timing of singlee- and post- synaptic action potentials and
subsequent changes in synaptic strength [Figur@€@,a27]. However, more recent examinations using
acute hippocampal slices have been unable to indigiectional plasticity with pairs of single pre-
and post- synaptic action potentials under standecdrding conditions [Figure 1b; 28-30, 33, 34].
These results suggest a more complex picture, whgmaptic plasticity is dependent not just on
relative spike timing, but also on the frequenaysation and nature of spike pairings — with a taigio
STDP curve obtained at CA3-CA1 synapses only wharings are delivered at approximately theta
frequency (>5Hz) and involve multiple post-synapmkes [20, 29, 32; Figure 1c]. Similar results
have been obtained at excitatory connections betwemtical pyramidal neurons [35]. Other
experimental data indicates that potentiation agrekssion events are switch-like transitions betwee
binary conductance states, mediated by kinase aondphotase pathways that are co-activated and
competitive [36-40]. The kinetics of kinase and gblwotase activation also differ significantly, agPL
can be rapidly induced by appropriate patternsctividy while LTD requires prolonged stimulation
[15, 17, 29]. Computational modelling of synaptiagticity has demonstrated that the dynamics of
Calcium influx through the NMDA receptor (NMDAr) isufficient to account for empirical data
obtained using multiple stimulation protocols, gri@ting an array of experimental results within a
single theoretical framework [18, 41-48]. Howevirese models as yet fail to assimilate or replicate
various aspects of more recently obtained synapdisticity data such as those described above.

Here, we present a revised model in which NMDArategent Calcium influx at individual dendritic
spines controls the dynamics of putative kinase gimusophotase pathways according to a modified
Hill function inspired by recent advances in sysemiology [49, 50]. The local activation of kinase
and phosphotase, in turn, dictates the probalifitslynamic transitions between binary high and low
synaptic conductance states in a stochastic Mapkogess. We tune the parameters of this model to
specifically account for recent observations ofphesic hippocampal STDP, and subsequently
demonstrate that it can also replicate observatifrsy/naptic plasticity induced by other stimulatio
protocols and under regimes of selective pharmagmdbblockade. We then utilise this model to infer
the time course of residual depolarisation in thiees generated by a backpropagating action potentia
(bAP) and the magnitude of NMDAr-dependent Calciimflux when significant depolarisation
follows glutamate binding by >50ms; as well as diéstg the implications of bAP attenuation and
stimulation frequency for synaptic plasticity —éach case demonstrating that the model can support
recent empirical findings. As such, we provide anpoehensive but parsimonious description of
synaptic plasticity at the CA3-CAl synapse, allayvimrther simulations to make robust predictions
regarding the activity-dependent refinement of akaircuitry induced by more complex and realistic
firing patterns without significant computationalst.



2 Results

We examine a detailed biophysical model of multigendritic spines that receive pre- and post-
synaptic stimulation corresponding to canonical ezkpental protocols used to induce synaptic
plasticity (see Methods). The parameters of theoremodel are matched to recent experimental data
obtained at the CA3-CA1l synapse wherever availétienulation generates membrane depolarisation
via conductance based synapses and backpropagatiran potentials, as well as Calcium influx
through NMDA receptors (NMDAr-[CH]) at each spine. This Calcium influx dictates tlymamics of
putative kinase and phosphotase activity accordingnodified Hill functions that are inspired by
recent advances in systems biology. The activitykiolase and phosphotase pathways, in turn,
determine the probability of transitions betweemalby high and low conductance states in a stochasti
Markov process. The resultant change in total affesynaptic conductance acrdés 10000 synaptic

inputs can then be compared to changes in fielitaggcy post-synaptic potentials (fFEPSPs) recorded
in empirical studies.

2.1 Induction of Synaptic Plasticity by Spike-timirg Stimulation

Recent experiments conducted in acute hippocantipasswhich closely approximate the conditions
present in vivo, have demonstrated that the piastié CA3-CA1 synapses is jointly dependent upon
the temporal offset of pre- and post- synaptia§rinumber of post-synaptic spikes fired, frequenicy
spike pairings, and duration of stimulation [28-3Birstly, we aim to ascertain whether the Calcium
control hypothesis — which has been demonstratedutxessfully reproduce earlier STDP data
obtained in culture (Figure la), as well as thatoed by other activity patterns — can be reviged t
account for this joint dependency [18, 41-48]. Tewperimental data we aim to replicate can be
characterised by considering the effects of twedht stimulation protocols — pairing 100 singte-p
and post- synaptic spikes (hereafter referred tspke pairing’) at low frequencies (0.1-5Hz), whi
generates a depression-only learning rule (Figbje dr pairing a single pre-synaptic spike with two
post-synaptic spikes (hereafter referred to aglétipairing’), which generates a triphasic bidiiecal
learning rule after 100 pairings at a frequencla® (Figure 1c), an unsaturated potentiation-oualg r
after 30 pairings at 5Hz (Figure 1d), or mild degsien after 100 pairings at a frequency of 0.5H#gd
not shown). Each of these data sets can be fitteadlbarning rule composed of Gaussian (or a sum of
Gaussian) curves centred at short, positive tenhpéisets [29].
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Fig. 1 Summary of the STDP data obtained in hippocampatdt cultures [26] and (b-d) acute slice preparet [29].(a) The
change in EPSP generated by 100 pairs of singleapepost- synaptic spikes at 1Hz and various teatffsets (t = tposrtpre)

in hippocampal cell cultures and two exponentiales fit to this data (with A= 1, .=20ms, A =-0.4 and .=40ms) from Bi
and Poo [26](b) The change in EPSP generated by 100 pairs degimg- and post- synaptic spikes at frequenci€slof 5Hz

in acute slice preparations and a Gaussian fhitodata (with = 6ms, =48ms and a peak of 0.8) from Wittenberg and Wang
[29]. (c) The change in EPSP generated by 100 pairingsgfespre-synaptic spikes with two post-synaptikapiat 5Hz in
acute slice preparations and the sum of two Gauséiito this data (with, = 15ms, ; = 32ms and ; = 13ms, , = 11ms) from
Wittenberg and Wang [29]d) The change in EPSP generated by 30 pairings ofesiprg-synaptic spikes with two post-
synaptic spikes at 5Hz in acute slice preparatamba Gaussian fit to this data (with- 4ms, = 15ms and a peak value of
1.29) from Wittenberg and Wang [29]



An examination of the simulated NMDAr-[€& dynamics produced by these stimulation protocols
illustrates the foundations for the Calcium contngpothesis — high peak values being generated at
short, predominantly positive temporal offsets aedaying exponentially with increasing (Figure

2a, b). Intuitively, setting thresholds for kinaserr) and phosphotase p) activation as the peak
NMDAr-[Ca?"] values achieved by spike pairings at short amg) lemporal offsets respectively will
generate Gaussian learning curves centred at gbsitive temporal offsets that reflect empiricatada
We utilise these peak NMDAr-[G§ values to guide parameterisation of the modifi&tl functions

that control kinase and phosphotase activity +gethresholds such that significant kinase agtiist
only generated by 5Hz triplet pairing at short, ifpes temporal offsets and significant phosphotase
activity is only generated by peak NMDAr-[Ehvalues that are greater than the minimum gengrate
by 5Hz spike pairings (Figure 2a, b). Hill co-effints and dissociation constants are set in lirth wi
previous experimental and theoretical studies,taecempirically observed competition between these
two pathways is accounted for by dictating thatakim activity partially inhibits phosphotase activit
[40, 41, 44, 49, 50]. Finally, the activation oh&se and phosphotase must also obey differenti¢snet
such that LTP can be induced rapidly, by a smathlmer of triplet pairings, while significant LTD
requires more sustained stimulation [15, 17, 28]sTs achieved by assigning a much more rapid time
constant of decay to the kinase pathway comparetie¢gphosphotase pathway (50ms and 2000ms
respectively).

By constraining the parameters of the plasticitydeian this way, we are able to qualitatively repte

the full array of experimental data described ab(figure 2c-f). Spike pairings delivered at low
frequencies (0.1 — 5Hz) generate a depression lealning rule centred at short positive temporal
offset ( p=22.5ms) and extending over a wide range of tenipaffaets ( p=35.1ms); while spike
triplets delivered at 5Hz generate a potentiatialy ¢earning rule centred at short positive tempora
offset ( p=19.5ms) with a narrower range-£8.9ms) when applied for short durations and ah&gic
learning rule (with p=16.2 + 67.1ms and=19.2 + 9.0ms) if applied for longer periods. An
examination of Calcium, kinase and phosphotase rdigsaduring typical potentiating and depressing
stimuli illustrates the mechanisms of the plastiaihodel (Figure 3a-d). Moderate elevations in
intracellular Calcium, generated here by acausat 3tiplet pairings at short temporal offsets,
selectively activate the phosphotase pathway ahdesently increase the probability of synapses
making the transition from high to low weight s&t€onversely, larger elevations in intracellular
Calcium, generated here by causal 5Hz triplet pg#riat short temporal offsets, activate both kinase
and phosphotase pathways, the former inhibitingatter and subsequently increasing the probability
of synapses making the transition from low to higdight states.

Following a potentiating or depressing stimulusg tleturn of kinase and phosphotase activity to
equilibrium dictates that the overall distributiofi strong and weak synaptic weights returns to its
initial state over a time course of ~1 hour, inrespondence with the decay of early-phase long-term
potentiation and depression (E- LTP / LTD) obseresdpirically [Figure 3e, f; 51-53]. It is also
interesting to note that, due to the higher gaid simorter time constant governing kinase activation
transitions between low and high weight states éeduby potentiating stimuli take consistently less
time than transitions between high and low weightes induced by depressing stimuli (69+£50s at

t=15ms and 108+55s att=-15ms for 5Hz Triplet pairing, for example), amdch is on a similar
timescale to that observed experimentally (80+#sUTP and 183+126s for LTD in O’Connor,
Wittenberg and Wang [37]; 38s for LTP in Bagal le{39]).
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Fig. 2 NMDAr-[Ca®'] and synaptic weight change generated by spiket@plét pairing stimulation protocolga) Maximum
peak NMDAr-[C&"] generated by 100 spike pairings delivered at 8.8tue line) and 5Hz (red line) with various terrgdo
offsets (t = tyosrtord, bap,=25Ms and yvpas=152ms.(b) Maximum peak NMDAr-[C&] generated by 30-100 triplet pairings
delivered at 0.5Hz (blue line) and 5Hz (red lingjhwthe same parameter values as (a). Horizontstheth lines represent
putative thresholds for the induction of LTP andCLT rp and .tp respectively) which are subsequently used to mfor
parameterisation of the thresholded Hill functitimst control kinase and phosphotase activity raspdy. Vertical dashed line
represents t = 0 ms.(c) Total change in synaptic weight generated by 10Kespairings delivered at 5Hz withp <25ms,
nmpas=152ms, p=0.35 and p=0.175.(d) Total change in synaptic weight generated by 1iplet pairings delivered at 5Hz
with the same parameter values as (€). Total change in synaptic weight generated by 1ipletrpairings delivered at 0.5Hz
with the same parameter values as (f)Total change in synaptic weight generated by 3etripairings delivered at 5Hz with

the same parameter values as (c). Horizontal ddsteetepresents zero change in total synaptic lmteind vertical dashed line
representst =0 ms
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Fig. 3 Local dynamics of intracellular Calcium, kinasel ghosphotase activity and synaptic weight in tedditic spine during
potentiating and depressing causal and acausal ppikings (a) NMDAr-[Ca?"] dynamics in the dendritic spine during a typical
depressing stimulus — 5Hz triplet pairing With = tosctore = -15MS, pap=25ms and ywpas=152ms. (b) NMDAr-[Ca®]
dynamics in the dendritic spine during a typicaigmiating stimulus — 5Hz triplet pairing with witht = tyesctere= 15ms and the
same parameter values as (&).Kinase (red) and phosphotase (blue) dynamics dwitypical depressing stimulus with the
same parameter values as (a50.35 and p=0.175. The black arrow indicates the time at whithfirst synaptic weight makes
the transition from a low to high weight stafd) Kinase (red) and phosphotase (blue) dynamics dwitygpical potentiating
stimulus with the same parameter values as (p¥0.35 and p=0.175.. The black arrow indicates the time at Wittee first
synaptic weight made the transition from a highote weight state(e) Decay of LTD and{f) LTP following the potentiating
and depressing stimulation protocols illustrate¢aial)

2.2 The Range of Temporal Interactions, Slow Time @nhstants and Skew

The temporal extent of spike pair interactionsoat frequencies is primarily determined by the slow
time constant of the bAP, which dictates the doratf residual depolarisation and therefore partial
relief of NMDA blockade in the spine following a §esynaptic action potential; and that of the
NMDA receptor, which dictates the duration of ghatte binding following pre-synaptic input [18]. In
the simulations described above, the slow time teonisof the NMDA receptor (mpas=152ms) is
much larger than that of the bAR{ &=25ms), and hence pre-post interactions extend avarger
temporal window than post-pre interactions. Thisoaats for the induction of depression over a
greater range of positive than negative temporfakets with spike pairing stimulation (Figure 2chida
for the induction of more significant depressiooward t = -100ms than t = -50ms in triplet pairing
simulations (Figure 2d). In the latter case, pgsiaptic bursts at large negative temporal offsets
interact more significantly with decaying NMDA rgxter activation from the previous pre-synaptic
input. This appears to be quantitatively at oddgh weimpirical data, which suggests that smaller net
weight change should be generated is +100ms at 5Hz (see Figure 1), and thus that cotisec
triplet pairings should not interact at this stiatidn frequency.

Adjusting the relative magnitude of these slow ticnastants independently modulates the positive and
negative temporal extent of NDMAr-[€3 influx generated by spike or triplet pairingsthis model,
and thus the skew of peak NMDAr-[Ehvalues and the resultant learning curve (Figuaed®t In



order to produce Gaussian plasticity profiles, ¢hparameters must be manipulated to provide an
approximately Gaussian distribution of peak NMDAsfG values from spike-timing stimulation
protocols. However, it may be an oversimplificatiinuse a Gaussian fit to experimental data, as
statistical tests demonstrate that the learningesudescribed in the acute slice by Wittenberg and
Wang [29] exhibit negative skew € -0.39 for the depression only learning rulesttated in Figure
1c, for example).

Fig. 4 Effects of adjusting NMDAr and bAP time constants meak NMDAr-[C4"] and synaptic weight changéa) Peak
NMDAr-[Ca?1] values generated by 100 triplet pairings delidea¢ SHz and various temporal offsets € tosctore) With
pap.<=25ms and wvpas=50ms (blue line); nwpas=100ms (grey line); orwoas=152ms (red line)b) Peak NMDAr-[C&] values
generated by 100 triplet pairings delivered at SHth nwpas=152ms andpap<=25ms, (red line);pap <55ms (grey line); or.
bap.s=85ms (blue line)(c) Synaptic weight change generated by 100 tripletipgs delivered at 5Hz withpap <25ms and
nvpas=50ms, p=0.175 and p=0.04 (blue line); nmpas=100ms, p=0.25 and p=0.09 (grey line); or nmpas=152ms, =0.35
and p=0.175 (red line)(d) Synaptic weight change generated by 100 tripletings delivered at 5Hz withywpa s=152ms, -
bap.=25ms, p=0.35 and p=0.175 (red line); pap <55ms, £=0.425 and p=0.25 (grey line); orpap <85ms, =0.5 and p=0.33
(blue line). (e) Synaptic weight change generated by 100 spikerpgirdelivered at 5Hz withyap <55mMS,  nmpa,s=100ms,
7=0.3 and p=0.125.(f) Synaptic weight change generated by 100 tripletipgs delivered at 5Hz with the same parameter
values as (e)

Hence, in order to account for the induction of réspion at t < -50ms; to avoid spurious pre-post
pairings at t > ~80ms; and to increase the negative skew oNI®Ar-[Ca?"] profile and resultant
learning curves, we repeat the simulations desdrédgove with yaps = 55ms and ywpas = 100ms
(Figure 4e, f). This represents a significantlygentime constant for the bAP than that employed in
previous modelling studies; although there isdigimpirical data available to guide the choicehd t
parameter value [18, 48, 54-56]. The slow time tamsof Calcium influx through the NMDA receptor
is also shorter than that measured experimentaliych has been shown to correspond well with the
time course of deactivation following glutamateesse [~150ms; 57]. However, that study measured
the time course of Calcium influx following unitablyMDAr activation, whereas we are concerned



with NMDAr kinetics when significant post-synaptiepolarisation follows glutamate binding by ~50-
100ms, which may be significantly more complex [46]

2.3 Induction of Synaptic Plasticity by Other Stimuation Protocols

Having constrained the parameters of the plastioitydel to account for recent observations of
triphasic hippocampal STDP, we now examine whethds also possible to replicate synaptic
plasticity data obtained using other stimulatiomtpcols in order to provide a unified account of
weight change dictated by NMDAr-[€3 Firstly, we examine tetanic stimulation — wheyeb set
number of pre-synaptic inputs are applied peridijied a constant firing rate. This form of stimtitan
typically generates a BCM-type learning curve tisatvell replicated by this model (Figure 5a, b);
composed of competitive and co-activated poteotiatind depression only learning curves that are
revealed under selective pharmacological blockafl@hmsphotase or kinase activity respectively
(Figure 5c, d). In both cases, however, the fitiag at which LTD and LTP are first expressed m th
model is significantly higher than that observedearimentally [38].

Fig. 5 Synaptic plasticity induced by tetanic stimulatigrost-synaptic depolarisation and under selegbivarmacological
blockade.(a) Experimentally observed synaptic weight change deduby 900 pulses of periodic pre-synaptic stinitat
delivered at various firing rates from O’Connor,ti&fberg and Wang [36]b) Overall synaptic weight change generated in this
model when the same form of stimulation is appliéth pap<=55ms, nmpas=100ms, =0.3 and p=0.125.(c) Experimentally
observed weight change induced by 900 pulses e$yraptic stimulation delivered at various firirgtes in the presence of
selective pharmacological blockade of kinase (bbre)hosphotase (red) activity from O’Connor, Witterg and Wang [36].
(d) Overall synaptic weight change generated in ourehwedhen the same form of stimulation is applied amcbnditions of
putative kinase (blue) or phosphotase (red) bloeKad. k=0 or k=0, see Methods) with all other parameter valuesstime as
in (b). (e) Overall synaptic weight change generated in ourehbg 900 pulses of periodic pre-synaptic stimolatilelivered at
various firing rates with stochastic post-synapiitivity that follows the statistics described byttéhberg and Wang [29] and
the same parameter values as (®)Overall synaptic weight change generated in ourehby 100 pre-synaptic inputs delivered
at 2Hz while the post-synaptic membrane voltadeeld fixed at various levels of depolarisation hiite same parameter values
as (b)

One issue with the interpretation of empirical playy data obtained using tetanic stimulation
protocols is the fact that post-synaptic activéyrarely recorded, but has a significant impacthen



magnitude of NMDAr-[C&] generated. In fact, experimental evidence sugg#sit post-synaptic
activity is a necessary requirement for any fornsyfiaptic plasticity, although contradictory regort
do exist [32, 58, 59]. Wittenberg and Wang [29]wyde unique data regarding the induction of LTD
by a single LFS protocol (900 pulses at 3.3Hz)thiat the response of the post-synaptic neuron was
recorded throughout pre-synaptic stimulation - 88 Action potentials which each followed input
volleys with a latency of 6.2 + 4ms. Such caus#lespairings might be expected to generate LTP by a
conventional STDP rule, highlighting a critical ugswith previous phenomenological models [32].
When we repeat the simulations illustrated in FégGb in the presence of stochastic post-synaptic
activity with the same statistics the BCM-type tgng rule is retained, and the threshold firingerétr
expression of both LTD and LTP is reduced to mesdistic levels (Figure 5e).

Next, we examine the changes in synaptic weigheggad when pre-synaptic stimulation is paired

with different levels of post-synaptic depolarisati(Figure 5f) or theta burst stimulation (TBS) is

applied (see Methods). In each case, this modelitafinely replicates experimental data and the

results of previous modelling studies — both sofalg-synaptic TBS and simultaneous pre- and post-
synaptic TBS generating saturated LTP with a fayalaptic weight of 1.89 + 0.01 [48, 60-62].

2.4 Effects of bAP Attenuation, Stimulation Frequery and Decay of Early-phase Plasticity

Having established that this plasticity model cacoant for a wide range of experimental data, we ca
now make experimental predictions regarding therekegnd direction of synaptic weight change
induced by set activity patterns when various eixpental parameters are manipulated. For example,
in the simulations described above, the amplitudin® bAP is a critical parameter which determines
the level of depolarisation — and therefore voltdgpendent relief of NMDAr - following a post-
synaptic action potential. It is well known that BAamplitude attenuates significantly with distance
from the soma, primarily due to the activity of ype K" channels, and this may have a critical impact
on the nature of synaptic weight change generayeidémtical stimulation protocols at proximal and
distal dendrites [56, 63, 64]. Simulations indictitat a reduction in the value of,Mnaxgenerates a
reduction in the magnitude of LTP and the tempexaént of both LTP and LTD generated by STDP
protocols (Figure 6a). This matches recent experiatedata which examined the synaptic weight
change incurred by identical spike-timing stimuatprotocols at proximal and distal inputs to aati
pyramidal neurons — although similar results froAl@yramidal neurons are so far lacking [65].

We can also examine the effect of adjusting thquemcy of spike and triplet pairing stimulation on
synaptic weight change. This form of activity appnoates that observed in the hippocampus during
stereotyped learning behaviour and spatial exptorat when active pyramidal neurons fire single
spikes or complex bursts at approximately thetajudesmcy. In these simulations, spike pairings
generate a broad depression only curve at low &ecjes (<7Hz), and an increasing magnitude and
temporal extent of potentiation and depressionredrdround short, positive temporal offsets at éigh
frequencies (8Hz; Figure 6b). Similarly, triplet pairings generaa broad depression only curve
reminiscent of that generated by spike pairinglwatfrequencies (<4Hz), and an increased temporal
extent of potentiation and magnitude of depressibrhigher frequencies $Hz; Figure 6¢). The
requirement for both moderate stimulation frequeaiegt post-synaptic bursting for LTP, in contrast to
low stimulation frequency and / or single post-gyiaspikes for LTD, dictates that bi-directional
synaptic plasticity is induced over a much widenge of conditions than that observed in previous
modelling studies [18].

Finally, it is interesting to note that the modifielill functions utilised here allow the NMDAr-[¢§
threshold at which potentiation and depressionexfressed to be modulated in a straightforward
manner by adjusting the corresponding value (gee Methods). Hence, a process of metaplasticity
that is, an activity dependent change in the le¥edtimulation required to induce LTP or LTD — can
easily be incorporated into the model. Figure Ggifates the learning curves generated by SHietrip
pairing when the thresholds for kinase and phosseotre increased, limiting their expression and
effectively generating depression or potentiatialy dearning rules.



Fig. 6 Effects of adjusting bAP amplitude { ma), Sstimulation frequency, kinase and phosphotaseatdion thresholds on
synaptic weight changé¢a) Synaptic weight change generated by 100 tripletinms delivered at 5Hz with various temporal
offsets (t = toosctprds bap,s55MS, nmpas=100ms, =0.3, p=0.125 and ¥ max=33mV (blue line), My maz50mMV, Vi,
ma=67mV (grey line), ¥, mac83mV and W, mac100mV (red line)(b) Synaptic weight change generated by 100 spikenggairi
delivered at 7Hz (blue line), 9Hz (grey line), abtHz (red line) with the same parameter valuesapqd) Synaptic weight
change generated by 100 triplet pairings delivete8Hz (blue line), 5Hz (grey line), and 7Hz (rewe) with the same parameter
values as (ald) Synaptic weight change generated by 100 tripleinggs delivered at 5Hz withs=0.5, p=0.125 (blue line) and
p=0.3, p=0.175 (red line)

3 Discussion

Recent empirical examinations of spike-timing defem plasticity at the CA3-CAl synapse have
demonstrated that changes in synaptic conductaedeiatly dependent on the temporal offset of pre-
and post- synaptic firing, number of post-synagpikes fired, frequency of spike or triplet pairgng
and duration of stimulation [28-30]. Here, we pdwithe first demonstration that the Calcium control
hypothesis, which purports that the dynamics of NAHdependent Calcium influx into dendritic
spines is sufficient to account for the magnitudd direction of synaptic weight changes induced by
different stimulation protocols, can qualitativelgcount for this joint dependency. As with the v
formulation of the Calcium control hypothesis, auotivation was to reproduce a wide range of
plasticity data using a minimal number of assummsiand thereby provide a parsimonious model that
is suitable for network level simulations [18, 4Tj. addition to those made previously, we have
incorporated co-activated and competitive kinasel mosphotase pathways with distinct time
constants that dictate probabilistic transitionswleen binary synaptic states to provide a unified
computational model of hippocampal synaptic pléstie a process that is critically implicated in
mammalian declarative memory function. Importanttis formulation relies on an explicit
consideration of the dynamics of NMDAr-[€h and bistable synaptic weights, as opposed to a
summation of peak or integrated Calcium influx apdtinuous synaptic weights [45].

The dynamics of kinase and phosphotase in this hade controlled by modified Hill functions
inspired by recent advances in systems biology [B@. These were developed to provide a
guantitative kinetic description of enzymes anahgraiption factors that are sequestered by inhibito
or antagonists into inactive complexes below solmneshold or equivalence point. This sequestration
mechanism, which is widespread in genetic and etgmy networks, has several properties that make it
particularly useful for modelling synaptic plasticiprocesses, providing a threshold for activation
below which the accumulation of active regulatorglecules is effectively buffered and above which
an ultrasensitive response that approaches bityalisl generated. It is also straightforward to
parameterise the modified Hill functions to suietdemands of any particular synaptic plasticity
simulation, by matching the threshold value the peak NMDAr-[C&] values generated by different
forms of stimulation at which the expression ofgmtiation or depression is required.



A number of predictions made by the synaptic ptitstmodel presented here might be experimentally
verified in order to provide further support forrcapproach and highlight areas where revisions are
required. For example, we suggest that the induafd-TD by post-pre spike pairings over a range of
-60ms < t < Oms implies that the slow after-depolarisatgemerated in dendritic spines by a bAP
should follow a similar time course. It is veryfiitilt to test this conjecture experimentally. #shalso
been suggested that one of several alternative anesths may serve as the second coincidence
detector required for the induction of LTD by spikrd triplet pairing stimulation protocols [42, 45,
66]. By elaborating the secondary messenger pathwathe plasticity model to more closely replicate
the activity of CaM, CaMKIl, PP1, PP2A, 11 and atlpgoteins implicated in plasticity expression, as
well as additional sources of internal and exter@alcium influx, it may be possible to more
accurately appraise the contributions made by b#®Psynaptic plasticity [7, 46, 67]. However, the
complexity of such models and associated computaltioost might also render them unsuitable for
network level simulation.

The results presented here also suggest thatder &o avoid spurious pre-post pairings &t ~60ms,
the NMDA receptor should not allow significant Galo influx when depolarisation follows glutamate
binding by a similar temporal offset. This predicti could be tested through experimental
measurements of the NMDAr-[€% current generated by spike and triplet pairingtpcols at
different stimulation frequencies. It is well knowimat the activity-dependent NR2A / NR2B subunit
composition of NMDAr has a significant influence thve properties and temporal profile of synaptic
currents, particularly at the high and low firirefes associated with LTP and LTD induction [68,. 69]
Measuring the changes in synaptic strength gertbriayespike and triplet pairing protocols under
regimes of selective pharmacological blockade woaldo allow the dynamics of kinase and
phosphotase activity to be more precisely delirbatgroviding further data to constrain the
corresponding kinetic models. Similarly, recordipgst-synaptic activity over a range of tetanic
stimulation frequencies would allow the specificofie of NMDAr-dependent Calcium influx
generated to be more accurately replicated in sitiaul.

The dependence of both LTP and LTD on stimulatijegdiency suggests that more significant
plasticity will be generated by a set pattern ohaptic activity in the hippocampus when theta
frequency increases. Although some empirical ssidieve reported a correlation between
hippocampal theta frequency during encoding andsemltent memory performance in humans and
other mammals, it has also been demonstrated tivatoamental novelty — which is associated with
enhanced learning and plasticity — causes a decr@a€Al theta frequency and might therefore
produce less significant changes in synaptic cotashee [70-73]. However, it seems likely that
multiple alterations in neural activity or neurormaitory tone are generated by novelty or enhanced
learning and may have a more significant effect the dynamics of synaptic plasticity. The
requirement for multiple post-synaptic spikes tduce LTP, for example, implies that bursting may be
the primary mode of encoding salient informationtlie hippocampus [74, 75]. Further empirical
studies are required to delineate the changes umaheactivity observed during periods of enhanced
learning, and the manner in which these changesilbote to the induction of bidirectional synaptic
plasticity.

The model presented here also exhibits severaaiions that might be addressed by future theaetic
studies. For example, the magnitude of weight ceanduced by different stimulation protocols insthi
model is generally smaller than that observed daoglly, despite the fact that the relative frequenc
and conductance of potentiated and depressed sg1aps matched to published data [36, 37, 44; see
Methods]. Furthermore, specific AMPAr and NMDAr dttances are not affected by changes in
putative synaptic weight which, although in linglhwmany theoretical studies of plasticity inducticn
clearly at odds with the situation in vivo [18, 48}. It has been demonstrated that changes in AMPAr
conductance associated with the expression of femg- synaptic plasticity are accompanied by
concomitant changes in NMDAr conductance [69, T8jis has interesting implications for further
synaptic plasticity — as both the level of depaiatibn in the spine and the level of NMDAr-deperiden
Calcium influx generated by that depolarisation Wwé concurrently modulated, possibly contributing
to the ‘lock-in’ of changes in synaptic conductanbserved experimentally [37].

It is also important to note that the results pmésg here are only intended to model long-term
plasticity of CA3-CA1 synapses in the hippocampiperimental studies have demonstrated that the
Calcium control hypothesis does not hold true faitatory synapses between cortical pyramidal cells
— at which there is no evidence for the existenca triphasic STDP rule. A variety of alternative



mechanisms, including metabotropic glutamate rexeppre-synaptic NMDAr and retrograde
endocannabinoid signalling, have been implicatethéninduction of LTD by spike-timing stimulation
protocols in cortex [77-80]. It seems likely thaist dichotomy in synaptic plasticity mechanisms
between cortex and hippocampus might both refledttze reflected by functional differences in neural
processing mediated by these regions.

We have demonstrated that this plasticity model @aseount for the decay of early-phase plasticity
over a period of ~1 hour following changes in syiaponductance, facilitating the incorporation of
plasticity-related-protein (PRP) production, symapagging and capture (STC) processes in order to
examine hetero-synaptic interactions during mosediséic long-term activity patterns [53]. It is als
well known that CA1 pyramidal neurons receive pradwntly inhibitory input from multiple sources
during stereotyped learning and spatial explorataond that changes in the level of inhibition dgrin
development significantly modulate the degree aineiction of synaptic plasticity incurred by spike-
timing stimulation protocols [34]. Hence, it seeprescient to extend this model to include realistic
patterns of inhibitory input, in order to providerere comprehensive appraisal of synaptic plagtatit
the CA3-CA1 synapse. The distribution of inhibit@yd excitatory inputs with different properties at
different locations across the dendritic tree wg#nerate more complex patterns of post-synaptic
depolarisation and Calcium influx, possibly alloginseful nonlinear computations to be performed.
Recent studies have described several forms ofdsteaptic plasticity in pyramidal neurons that
might also be explained by the Calcium control higpsis, allowing the nature of active dendritic
processing to be more precisely elucidated [81-84].

Finally, it is well established that processes yfaptic plasticity are accompanied by concurremt an
interacting processes of homeostatic and intripksticity which regulate neural activity over lang
timescales [12, 85]. Recent computational modelinggests that the interaction of these procédsses
critical to establish and maintain appropriate d¢tos for transient dynamics during cognitive
processing, and the examination of a unified mafeheural and synaptic plasticity is therefore a
critical direction for future theoretical studieB6[89]. More generally, an examination of the syitap
and neural dynamics generated by the triphasic STEin network models of hippocampal function
with more realistic activity patterns, includingeth modulation and phase precession, would coméribu
significantly to the understanding of hippocampaddtion during putative learning behaviour [90].

4 Methods

4.1 Neuron Model

The vast majority of afferent excitatory synapsesortical pyramidal neurons are found on dendritic
spines — small, membranous protrusions that areemted to the dendritic tree by a narrow neck [91].
Due to the limited diffusion of biochemical signailuding Calcium through this neck, dendritic
spines effectively compartmentalise synaptic preessand thereby promote their independence [57].
In this model, we examin®l independent, passive dendritic spines with suri@@a A, Whose
membrane potential is dictated solely by leak conductance accordmdq. 1; where ¢ is the
membrane capacitance, is the total synaptic current to the Nth sping,iggthe (maximum) leak
conductance and, Es the reversal potential of the leak current.

= e ) (1)

Each spine has AMPA and NMDA mediated synaptic entsr with kinetics based on experimental
recordings and governed by Eqg. 2 [92, 93]. AMPAnductances are modelled as a single exponential
with instantaneous rise time and subsequent dedfiyartime constant ofaypa = 5.26ms. NMDAr
conductances are modelled as the sum of fast awvd ekponentials with time constantgupas =
1.485ms andywpas respectively. The term ggpa describes the additional voltage dependence due to
the blockade of NMDA receptors by Kfgf94], while Bywpa is @ normalisation factor which ensures
that the peak conductance is equal to the maxinamductance.
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Another significant source of depolarisation in tthendritic spine is provided by backpropagating
action potentials (bAPs) from the soma [54, 55, ®]accordance with previous modelling studies,
perturbations in membrane voltage generated bytipataAPs with peak depolarisation, A max are
modelled as the sum of a large, rapid rise (withme constant of,aps = 3ms) and a smaller, slower
decay (with a time constant afap 9 according to Eq. 3. The relative contributioneaich exponential
term is dictated byphp+ = 0.75 andyap s= 0.25 [18, 48].

bAP( t) = \{:AP,max( IbAP, f exp(to-mbAP‘f) + IbAP, seXFStO-mbAP‘S)) (3)

The local Calcium concentration [E€pin each dendritic spine is determined by inflixough
NMDAr — which is directly proportional to the EPS%j@nerated by this receptor - and passive decay
with a time constantc, according to Eq. 4 [57].

CaNMDA =- gNMDA CaPNMDAGNMDA( VN_ EC;
dica] _ ., _[Cd] @

dt - aNMDA [C

a

All relevant parameters in the neuron model areditto recent data from electrophysiological and
fluorescent imaging studies of dendritic spinesGAil pyramidal neurons during synaptic activation
and action potential generation [48]. Maximum eattity conductance values are chosen to match
experimental recordings which indicate that an AMP#ediated depolarisation of ~10mV is generated
in the spine by activation of a single synapseif@igavra = 23.5S); NMDAr mediated depolarisation
of ~5mV is generated in the spine by activatiom single synapse in the absence of extracellul&f Mg
(giving gnmpa = 3.350S); and bAPs generate a maximum depolarisatidh,gf max= 67mV in the spine
unless stated otherwise [64, 95, 96]. Maximum?{fCaonductance of the NMDA receptor is set at
Onmpa, ca= 0.159S to generate a peak fGaconcentration of 0.1M from a single synaptic input at
resting membrane potential, and adjusted when &mparal profile of NMDAr activation is
manipulated in other simulations to provide the sgraak [C&] concentration. The decay of [E€h
proceeds with a time constant gf = 15ms, in line with empirical recordings of Calciumrdymics in
individual dendritic spines on CA1 pyramidal news¢a7].

4.2 Plasticity Model

Transitions between binary high and low weightestaffor each synaptic input (and vice versa) are
governed by a stochastic Markov model in which pinebability of making a state change at each
timestep is directly proportional to the activityf putative kinase and phophotase pathways
respectively. The activity of kinase and phosph®fas, above equilibrium valuessgpo are primarily
dictated by modified Hill functionse p inspired by recent advances in systems biology $09 These
incorporate an effective threshold for activatiarp below which kinase and phosphotase activity is
effectively buffered and above which activationldels standard formalism (Eq. 5). Hill co-efficients
and dissociation constants are set in accordantte pwevious modelling studies [41?, 44] and the
results presented here are robust to significaahgés in these parameter values provided thatHN
HNp, negating the need for extensive parameter fititeda not shown).



In accordance with previous models, the modifietl fdinctions operate on local peaks in Calcium
concentration, such that step changes in kinasephadgphotase activation occur in any timestep that
the first derivative of NMDAr-[C&] dynamics is equal to zero and the second devieasi negative
[48, MORE?]. The magnitude of these step changedicted by the positive constant,kand
competitive interactions between kinase and phdsglegpathways are incorporated by subtracting the
product of kinase activity and a positive constignfrom phosphotase activity during step changes.
Between local peaks in NMDAr-[G], kinase and phosphotase activity decays towandéherium
levels with individual time constantgp.

The continuous probability of transition betweegthand low conductance states, and vice versa, in a
Markov model is then directly proportional to thestantaneous value of putative kinase and
phosphotase activity at each time step. Equilibriatues are subsequently set such that the relative
occupation of high and low weight states at restemponds to that observed experimentafy; 9%

of synapses occupying the low weight state age2f1% occupying the high weight state at the sthart o
each simulation [37]. In line with empirical measoents regarding the relative conductance of
potentiated and depressed CA3-CAl synapses, wthesatlative strength of high and low weight
states as w2 and w=0.66 respectively [REFS]. The overall change itapive fEPSP generated by
various stimulation protocols can then be assessedomparing the frequency of synaptic inputs
occupying high and low weight states &nd f, respectively) at the start and end of each sinuulat
according to Eq. 5.

dpP,D — . (pP,D' pPO,DO)

dt foo
dp. _dn. |
F:E"'kDSD'kISP (5)
I
Sro " HC,, +|Ca” - b, 0| ™"
DIEPSP= foNw, + T Nw,

fPO NWP + fDO NV\{D

4.3 Simulation Details

During spike pairing stimulation protocols, valuds t describe the temporal offset between the peak
of a single input EPSP and that of a single bARripiet pairing protocols, values oft describe the
temporal offset between the peak of a single iBfRBP and the second of two bAPs that are separated
by a constant offset of 10ms. Stimulation frequeincgach case is measured as the inverse of tempora
offset between the peak of successive input EPSPs.

In tetanic stimulation protocols with stochasticspeynaptic activity, periodic pre-synaptic EPSRs a
followed with a probability of 22.2% (correspondit@the ratio of 200 post-synaptic action potestial
to 900 volleys of pre-synaptic field stimulationsaloved by Wittenberg and Wang [29]) by a single
bAP with temporal offset drawn from a random disition with =6.2ms and =4ms.

The theta-burst stimulation (TBS) protocol consistslelivering ten bursts of four spikes with 10ms

inter-spike interval and 200ms inter-burst intersither solely pre-synaptically, or simultaneoysig-

and post- synaptically. The depolarisation protammisists of delivering 100 stimulation pulses at a
constant frequency of 2Hz while the membrane veltafjthe dendritic spine is clamped at a constant
value.

All dynamic values are calculated at each 0.1mesbep using Euler integration, and all simulations
are performed using MATLAB.
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Notation Parameter Value

Cn Membrane Capacitance 53

o Leak conductance 0.1pS

| Aspine Spine surface area 17.5 x4ent

Javpa Peak AMPA conductance 23.5pS

ONMDA Peak NMDA conductance 3.35pS
AMPA AMPA time constant 5.26ms
NMDA, f Fast NMDA time constant 1.485ms

E, Leak reversal potential -65mV

Eavpa AMPA reversal potential omv

Enmvba NMDA reversal potential omv

Mg~ Extracellular Magnesium concentration 1mM

Ibap.¢ Contribution of fast bAP time constant 0.75

Ibap.c Contribution of slow bAP time constant 0.25
bAP.f Fast bAP time constant 3ms

Onmpa,. ca | NMDAr Calcium conductance 0.159pS

Ec. Calcium reversal potential 120mV
Ce Time constant of Calcium decay 15ms

Pro Kinase activity / transition probability at rest 23 x 10°

Pbo Phosphotase activity / transition probabilityest] 7.89 x 18
p Kinase time constant 50ms
D Phosphotase time constant 2000ms

Kp Kinase activation constant 0.02

kp Phosphotase activation constant 4% 10

K, Competition constant 0.2

HCp Kinase dissociation constant 2

HCp Phosphotase dissociation constant 2

HNp Hill number of kinase activation 4

HNp Hill number of phosphotase activation 3

N Total number of synaptic inputs 10,000

foc Initial frequency of synapses in high weight stated.21

oo Initial frequency of synapses in low weight state 0.79

Wp Putative strength of high weight state 2

Wp Putative strength of low weight state 0.66

Table 1: Parameter definitions and values used througheusithulations presented
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