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Abstract 

Multi-region input-output (MRIO) models have become increasingly important in economic and 

environmental analysis. However, the current resolution of most MRIO models fails to capture the 

heterogeneity between sub-regions, especially in cities. The lack of city-level MRIO tables has 

impeded the accomplishment of city-level studies and hampered the understanding of the relationship 

between urban growth and consumption, and teleconnections to other regions.  In this paper, we 

propose a partial survey-based multiple-layer framework for MRIO table compilation of a Chinese 

province that distinguishes city-based regions. This framework can effectively address a large number 

of data processes and retain consistency between layers. Using the framework, we first compile a 

nested Hebei-China city level MRIO table and then apply city-level energy footprint accounting of the 

North China urban agglomeration. Our results present the critical role of Hebei cities in energy supply 

in 2012 and quantify energy use embodied in goods for the domestic trade. Tangshan, Shijiazhuang, 

and Handan are distinctive cities in the energy supply-chain of other regions, for both less developed 

and developed regions. This multiple-layer framework represents a feasible approach for developing 

sub-regional level MRIO models and offers the possibility to analyse global trade at the sub-regional 

level with limited data.  

Keywords: MRIO table compilation, City level, China, Jing-Jin-Ji urban agglomeration, 

bottom-up approach 
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Introduction 

Many goods and services are now outsourced across borders and understanding cross-regional trade is 

crucial for local decision making (Dietzenbacher, Los, Stehrer, Timmer, & de Vries, 2013; Kuishuang 

Feng et al., 2013; Oosterhaven, Stelder, & Inomata, 2008). Multi-region input-output models 

(MRIOs) have been widely recognised as good assessment tools that can track the supply chain and 

capture regional homogeneity as well as heterogeneity, thus accurately reflecting environmental and 

socioeconomic implications (Bachmann, Roorda, & Kennedy, 2015; Dietzenbacher, Lenzen, et al., 

2013; Miller & Blair, 2009; Wang, 2017). Over the recent decade, many efforts have been made to 

develop MRIO databases at international level: EORA (Manfred Lenzen, Kanemoto, Moran, & 

Geschke, 2012; Manfred Lenzen, Moran, Kanemoto, & Geschke, 2013), WIOD (Dietzenbacher, Los, 

et al., 2013), GTAP-MRIOT (Peters, Andrew, & Lennox, 2011), and Asian International Input-Output 

Table produced by IDE-JETRO(B. Meng, Zhang, & Inomata, 2013). Or the national level such as 

China (Liu, Li, Liu, Tang, & Guan, 2015; Mi et al., 2017; Z. Zhang, Shi, & Zhao, 2015), the UK (Yu, 

Hubacek, Feng, & Guan, 2010), Japan (Nakano & Nishimura, 2013; Yamada, 2015), and Australia 

(Manfred Lenzen et al., 2014). Although these databases have helped gain a comprehensive 

understanding of regional disparities and spillover effects in interregional and international trade, 

none of current MRIOs (national or provincial) cannot offer insights in assessment at the local scale, 

particularly at the city level. This widens a massive gap between research resolution and government 

decision-making, especially in the context of increasing significance of cities with regard to economic 

growth, energy consumption, resources management, and public health (Nair, George, Malano, Arora, 

& Nawarathna, 2014; Shan et al., 2017; Xia et al., 2017).  

 

Detailed information at the city level could be much more meaningful to local governmental decision 

making than aggregated information from regional or international MRIOs (Wang, 2017). The lack of 

high-resolution city-level MRIOs: 1) undermines the understanding of the disparities between cities 

within a single region or across regions, especially for large geographical regions, and 2) fails to 

comprehensively capture the linkages between trade partners in cities (including at the provincial or 

national level) and identify the role of cities role in supply chains at multiple scales (Bachmann et al., 

2015). The disadvantages at city level MRIO particularly compromise global decarbonised initiatives, 

as cities are the largest source in global primary energy consumption and CO2 emissions (Dhakal, 

2010; Mi et al., 2016). It requires accurate and comprehensive carbon accounting, with respects to the 

regional or global supply chain, and thus identify mitigation priorities and responsibilities along the 

supply chain(T. O. Wiedmann, Chen, & Barrett, 2016). Unfortunately, city-level studies now employ 

the downscaling method from national IO tables by proxy data (e.g. demographic data) to capture the 

heterogeneity for socioeconomic and environmental implications through the supply chain (Caro, 

Rugani, Pulselli, & Benetto, 2015; Chavez & Ramaswami, 2013; Moran et al., 2018; Paloheimo & 
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Salmi, 2013). These approaches are likely to produce biased results because of the assumption of 

homogeneity in production technology, and customer preferences between nations and cities.  

 

Although the importance of high-resolution MRIOs has been well acknowledged, compiling MRIOs 

can be time consuming, involving an exhaustive and costly amount of data (T. Wiedmann, Wilting, 

Lenzen, Lutter, & Palm, 2011); thus, this process is generally limited by the availability of 

comprehensive and consistent survey data, especially at the city level (Manfred Lenzen et al., 2014; 

Lin, Hu, Cui, Kang, & Ramaswami, 2015; Minx et al., 2013). Therefore, non-survey and partial-

survey methods that have more reasonable data requirements have frequently been used for IO table 

construction (Kowalewksi, 2015; Yamada, 2015). Non-survey methods refer to modelling techniques 

using input-output table and trade flows estimation to develop targeted IO table, while partial-survey 

methods use some survey-based data as a baseline or constraint for the targeted IO table.  However, 

non-survey methods have been often criticised for poor accuracy and reliability (Lehtonen & 

Tykkyläinen, 2014; Riddington, Gibson, & Anderson, 2006). Therefore, partial-survey methods that 

incorporate non-model information in a non-survey model have been advocated (Lahr, 1993) and 

widely applied in many global and regional-level MRIO databases, such as WIOD, IDE-JETRO 

MRIO, and China MRIO.  

 

The conventional steps of MRIO table construction with partial-survey methods can be summarised as 

follows: first, an initial estimate matrix and constraints are built using non-survey methods, after 

which mathematical optimisation operations (e.g., the RAS method) are used or disaggregation of 

multipliers to yield a final MRIO table or multipliers that meet the study requirements (Oosterhaven, 

2005; Temurshoev, Webb, & Yamano, 2011). These steps work for regional or national MRIO 

compilations with reasonable workloads. However, they are hardly feasible for city-level MRIO 

compilations, which are enormously data-intensive, and in which development would be greatly 

challenged by the use and processing of substantial amounts of input data (Manfred Lenzen et al., 

2012). For example, in total, 660 cities in China must be included during compilation of a city-level 

MRIO table; this table would be at least 12 times larger than the province-level MRIO tables 

compiled by larger regions or the 30 provinces (Ichimura & Wang, 2003; Liu et al., 2015; State 

Information Center, 2005; Wang, Geschke, & Lenzen, 2017; Y. Zhang & Qi, 2012). Overcoming 

these challenges thus represents a key challenge in compiling city-level MRIO tables. , only IMPLAN 

and the Industrial Ecology Virtual Laboratory (IELab) technology that was recently developed by 

Lenzen et al. (2014) attempt to construct sub-region level MRIO tables, especially city level. The 

former is based on the double-constraint gravity model, which assumes an identical proportion of 

supply to demand and data from the commodity flow survey by the US government. The latter 

overcomes these limitations and offers a flexible compilation structure for city-level MRIOs based on 

11 non-survey methods. This framework has been used to develop a city-level MRIO table for 
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Australia (Manfred Lenzen et al., 2014, 2017) and a Jing-Jin-Ji urban agglomeration for China using 

Flegg’s location quotient methods (Wang, 2017; T. Wiedmann, 2017). The framework enables the 

successful estimation of a city-level MRIO table from national-level data while maintaining 

consistency with the national table. Unfortunately, the construction methods largely follow a top-

down philosophy that scales an existing higher-level IO table. Moreover, the assumption of 

homogeneity in technology and consumption between nations and regions is not always realistic, 

especially for a large country with high regional heterogeneity such as China (Bonfiglio & Chelli, 

2008; Kowalewksi, 2015). And the assumption of minimizing of inter-regional cross-hauls always 

turns out to be biased results (Oosterhaven, 2005). 

 

In contrast to the top-down procedure in the IElab framework, in this paper, we propose a bottom-up 

methodology for high-resolution MRIO table compilation based on partial-survey methods. The 

primary objective of this study is to overcome the problems presented by processing large amounts of 

data while preserving information from the high-resolution data. In the following sections, we present 

the conceptual framework we use to develop city-level MRIO tables. Next, as a case study, we present 

the detailed procedure for city-level MRIO table compilation for the Jing-Jin-Ji urban agglomeration 

in China using the framework proposed in the paper with validation checks. It is notable that there are 

different understanding in term “city” based on different backgrounds, where the city in many 

countries refers to built-up areas but in China, city includes both urban and rural areas by statistical 

data, which means the city-level MRIO table constructed in our study is the MRIO table at the level of 

city-based region or metropolitan. To avoid misunderstanding, the city level in the paper refers to the 

city-based region or metropolitan if not specifically define, which includes both urban and rural areas, 

because our study is based on China’s statistics. We use the term “city-level” to refer to a level 

smaller than the provincial level (such as a metropolitan or sub-region), while we use the term 

“region” to indicate a province or country. Finally, we conclude our work by stating the limitations of 

the study and discussing challenges and future work. It is notable that MRIO table compilation 

methods vary across different compilers due to the data they could collect. The MRIO table compiled 

in developed countries, such as the USA, is organised through a rigorous manner that is based on data 

from statistics, transaction and tax records, and survey and census (e.g., IMPLAN database). The 

framework applied in our paper might be a feasible way for China and other emerging countries that 

have limited data at a regional and sub-regional level.    
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Multiple-layer framework and methodology 

To compile large-scale MRIO tables, a conventional approach using the partial-survey method 

requires that all regions must be included within certain boundaries, which results in two hurdles. 1.  

limited information at the city level. Intact information for all regions or a majority of regions to build 

MRIO table could be very harsh at the sub-regional level. For example, city-level single IO tables are 

always in shortage, unlike national level singe IO tables that are published by the most of major 

countries. This hurdle suggests that city-level MRIO table cannot be compiled if without intact 

information, which massively restricts the increasingly booming city-level research because collecting 

data could be extremely costly in time and money; 2. Large workloads in the compilation. Given the 

case of creating the MRIO table in the EORA database involved compiling 187 countries with 

international trade links; in total, this included 5 × 106 data points (Manfred Lenzen et al., 2013). Even 

if all the needed information at the city level can be collected, workloads could be even greater, 

making data input and processing impractical.  

To overcome these difficulties, we propose a simple but feasible way which to decompose the 

compilation processes into multiple layers based on reasonable workloads and data availability; the 

underlying idea is to break down the huge workloads into pieces, like jigsaw puzzles. Hence, the 

biggest advantages are opposite the difficulties: Using the available data to construct parts of city-

level MRIO table, which would be a compilation platform for further compilation when data is 

available, and reducing the workloads when only to compile part of city-level MRIO table.  

 

Figure 1 Here
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We demonstrate the compilation process through assuming to compile a city-level MRIO table for 3 

regions that consist of 4 city-level for each, as shown as Figure 1. Two steps are employed to compile 

the city-level MRIO table. In step 1, we start by constructing partial city-level MRIO table for the 

given region A by the partial survey methods. Here single IO tables for all city-level in region A are 

required, thus single IO tables for a1, a2, a3, a4. The term “partial” here is relative to the full MRIO 

table from the perspective of a country. For example, city-level MRIO for all Chinese cities is called 

as full city level MRIO table, but city-level MRIO for some cities is called partial city level MRIO 

table (details are seen Supplementary). In step 2, the partial city-level MRIO table developed in step 1 

would be treated as the elementary matrix to link with regional MRIO table, and further, reconcile 

into nested city-region MRIO table consisting of city-level (a1, a2, a3, a4) and regions (B, C).  The 

linkage between the partial city-level MRIO tables into the regional MRIO table based on the 

assumption of an identical trade coefficient of regional MRIO table. The assumption of an identical 

trade coefficient is adopted by linking the partial city-level MRIO tables and the regional MRIO 

tables. This is a well-accepted assumption that has been applied in many MRIO table construction 

efforts (K. Feng et al., 2013; Mi et al., 2017; Wang et al., 2017). The trade coefficient for city-level 

and other regions (e.g., provinces) is equal to the trade coefficient between the parent region of the 

city-level and other regions. The resulting nested MRIO table can be used as a platform for next layer, 

into which a new partial city-level MRIO table can be inserted, as shown in Figure 1 Layer 1. For 

example, to get the full China city-level MRIO table, the two procedures would be iterated for the 

other regions until all the regions were replaced by their city-level MRIO tables.  

The advantage of breaking down the MRIO table construction into partial city-level is that the 

stepwise construction avoids numerous trade flow estimates at the city level. Considering that the 

city-level IO tables within a region are usually fragmented, decomposed city-level MRIO table 

construction allows the construction of tables for the city-level that already have data and promotes 

city-level research in available city or regions without the full city-level MRIO table. Moreover, the 

framework can maintain consistency between the city-level MRIO tables and the partial city-level 

MRIO tables, given that all partial MRIO tables are integrated into the regional MRIO table. Thus, the 

multiple-layer framework offers flexibility and is suitable for large-scale MRIO development; it is 

particularly helpful for global city-level MRIO table development, as city-level information in the 

world is limited and impossible to be prepared at once.  
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Construction of the Jing-Jin-Ji urban agglomeration MRIO table 

 

Figure 2 Here 

 

 

Data requirement 

Jing-Jin-Ji urban agglomeration consists of Beijing, Tianjin and Hebei province. Beijing and Tianjin 

are megacities that are granted as provincial status, while Hebei province consists of 11 cities. In total, 

13 cities are included in this urban agglomeration (Figure 2). Single city IO tables are an important 

component in the bottom-up approach to compiling partial city-level MRIO tables. In this case study, 

the data used were the set of 2012 IO tables for the 11 cities in Hebei, which were compiled by the 

Hebei Statistics Bureau (Hebei Statistics Bureau, 2015). The 11 cities are Shijiazhuang, Tangshan, 

Qinhuangdao, Hengshui, Langfang, Zhangjiakou, Xingtai, Handan, Cangzhou, Baoding, and 

Chengde. In total, 42 sectors, including 27 secondary sectors, 14 tertiary sectors and 1 primary sector, 

were covered by the IO tables. The IO tables were compiled using the purchaser’s value with the 

competitive type. In this type, it is assumed that imported goods can substitute perfectly for domestic 

goods; thus, the intermediate inputs are presented as an aggregate value that includes domestic 

intermediate inputs and imported intermediate inputs (Lau, 2010).  It should be noted that the term-

“city”-in China’s statistics system includes both urban and rural areas under its administration, which 

is different from the definition of a city in many countries that only refers to built-up areas. City-level 

IO table in this study therefore contains information for both urban and rural areas.   

In addition to the city-level IO table, the Hebei province IO table for 2012 was also required; these 

data were collected from the National Bureau of Statistics of China (NBS). The sector classification 

and IO table type in the provincial IO table are identical to those in the city IO tables. Following the 

harmonisation procedure outlined above, China’s 2012 MRIO table, compiled by Mi et al. (2017), 

was collected from the China Emission Accounts and Datasets (CEADS) database 

(http://www.ceads.net/). It includes 26 provinces and 4 megacities (except Taiwan, Hong Kong, 

Macao, and Tibet, due to data availability) and has classifications for 30 sectors.   

Energy consumption data for each sector and each region or cities in 2012 are also derived from 

CEADS database that is originally from China Energy Statistics Yearbooks 2013 for province level 

and Statistics Yearbook for each city 2013. The energy consumption data in Statistics Yearbook are 

divided by 17 energy types for 47 sectors (see details in Zheng et al., 2018). To aggregate 17 energy 

types with different units, we convert the 17 energy types into standard equivalent coal, based on the 
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calorific value of various energy types, by coefficient factors found in China Energy Statistics 

Yearbooks 2013 and aggregate them together to have total energy consumption for each sector. 

However, energy inventory with 47 sectors are not same as the sector classification used in MRIOT, 

we adjust the sectors in energy inventory to concordance with the MRIOT sector classification, as 

same as Mi et al. (2017).  Due to the discrepancy between Hebei province energy inventory and 

aggregation of 11 city-level energy inventories, we coordinate each city’s energy inventory with 

provincial energy inventory. Using the proportion of each city’s energy consumption in the 

aggregation of 11 cities, provincial energy inventory is scaled for each city. 

 

Method 

Step 1: Partial city-level MRIO table compilation.  

This step is to make partial city-level MRIO tables from several single city IO tables. For clarity of 

presentation, we divided this step into four sub-steps: 

1.1. Dealing with re-export (imported goods were then exported).  

As re-exported goods are included in the IO table, we first identify if there have re-exports in the 

sectors by comparing the export in each sector with the total output, suggested by Dietzenbacher et 

al., 2013b. If export was larger than the output (𝑅𝐸𝑖 > 0), we assume that re-exports exist, otherwise, 

there is no re-exports. Therefore, for a specific city c, its re-export can be checked with the following 

equation:  

{
 
 

 
 𝑅�̂�𝑖

𝑐 = (IM𝑖
𝑐 + IF𝑖

𝑐) − (∑M𝑖
𝑐 +∑F𝑖

𝑐)
 

𝑅𝐸𝑖
𝑐 = 𝑅�̂�𝑖

𝑐                                   𝐼𝑓 𝑅�̂�𝑖
𝑐 > 0

𝑅𝐸𝑖
𝑐 = 0                                       𝐼𝑓 𝑅�̂�𝑖

𝑐 < 0 

(1) 

   

Where 𝑅�̂�𝑖
𝑐 is the parameter to examine if re-export exists for sector i in cIty c. 𝑅𝐸𝑖

𝑐 is the re-exports 

in sector i in the city c. IM𝑖
𝑐 and IF𝑖

𝑐 denote the imports from foreign countries to city c and the 

domestic inflow from other cities to city c in China for sector i, respectively. ∑M𝑖
𝑐 denotes the total 

intermediate uses of output from sector i in city c and ∑F𝑖
𝑐 indicates the total final demands for sector 

i in city c, including household consumption, government consumption, fixed capital formation and 

changes in inventories.  

 

After identification, if there is re-export for a sector in a city, this part would then be proportionally 

subtracted from inflows and imports (as well as outflows and exports) based on the ratio r between 

inflows and imports (between outflows and exports), respectively. For the imports and inflows or 

exports and outflows, we use the “bar” symbol to denote the trade flows that exclude re-exports:  
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𝑟𝑖
𝐼 =

IM𝑖

IM𝑖 + IF𝑖
(2) 

 

{
IM𝑖 = IM𝑖 − 𝑟𝑖

𝐼 × 𝑅𝐸𝑖

IF𝑖  = IF𝑖 − (1 − 𝑟𝑖
𝐼) × 𝑅𝐸𝑖

(3) 

 

𝑟𝑖
𝑂 =

𝐸𝑋𝑖
EX𝑖 + 𝑂𝐹𝑖

(4) 

 

{
𝐸𝑋𝑖 = 𝐸𝑋𝑖 − 𝑟𝑖

𝑂 × 𝑅𝐸𝑖

OF𝑖  = 𝑂𝐹𝑖 − (1 − 𝑟𝑖
𝑂) × 𝑅𝐸𝑖

(5) 

 

 

1.2. Extraction of domestic intermediate products and final demands; 

Since single city IO table is the competitive type which means the imports are enclosed in both 

intermediate production and final consumption, we first to extract the domestic intermediate products 

Zd and the final products Fd from the city IO tables (Z and F), where Zd and Fd are not included. 

After removing the re-export, we followed previous studies (G. Q. Chen, Guo, Shao, Li, & Chen, 

2013; Guan et al., 2014; J. Meng, Liu, Guo, Huang, & Tao, 2016; Ou et al., 2017; Weber, Peters, 

Guan, & Hubacek, 2008) and assumed that each economic sector and final demand consume the same 

share of domestic and imported products. 

Mathematically, this can be expressed using the following equation: 

 

𝑍𝑑 = (1 −
IM𝑖 + IF𝑖

𝑋𝑖 + IM𝑖 + IF𝑖 − 𝐸𝑋𝑖 − OF𝑖
) × 𝑍 (6) 

 

𝐹𝑑 = (1 −
IM𝑖 + IF𝑖

𝑋𝑖 + IM𝑖 + IF𝑖 − 𝐸𝑋𝑖 − OF𝑖
) × 𝐹 (7) 

 

Where Z and F are the intermediate matrices and final demand, respectively, derived from the IO 

table, and 𝑋𝑖 is the total output for sector i in the city. By this procedure, the diagonal of the 

intermediate matrix and the demand matrix in the MRIOs of the 11 Hebei cities were developed. 

Correspondingly, the total trade matrix can be derived using 𝑍 − 𝑍𝑑 and 𝐹 − 𝐹𝑑, which includes 

domestic trade (𝑍𝑜𝑠 and 𝐹𝑜𝑠) and foreign trade (𝑍𝑓 and 𝐹𝑓):  
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𝑍𝑜𝑠 =
IF𝑖

𝑋𝑖 + IM𝑖 + IF𝑖 − 𝐸𝑋𝑖 − OF𝑖
× 𝑍 (8) 

𝐹𝑜𝑠 =
IF𝑖

𝑋𝑖 + IM𝑖 + IF𝑖 − 𝐸𝑋𝑖 − OF𝑖
× 𝐹 (9) 

𝑍𝑓 =
IM𝑖

𝑋𝑖 + IM𝑖 + IF𝑖 − 𝐸𝑋𝑖 − OF𝑖
× 𝑍 (10) 

𝐹𝑓 =
IM𝑖

𝑋𝑖 + IM𝑖 + IF𝑖 − 𝐸𝑋𝑖 − OF𝑖
× 𝐹 (11) 

1.3. Intercity trade flow estimate 

To estimate the intercity trade flow, the gravity model is applied in this study (Leontief & Strout, 

1963). The reason we choose is not only it widely used over 40 years, but also to maintain the 

methodology consistency with the regional MRIO table which it will be linked within step 2. The 

model assumes that the trade flow between two regions (𝑇𝑖
𝑟𝑠) is a function of the total supply of the 

exporter (𝐸𝑖
𝑟𝑜), the total demand of the importer (𝑀𝑖

𝑜𝑠), and the impedance in transportation costs, 

for which the distance between two regions is often used as a proxy (𝐷𝛾𝑠) (Marto Sargento, 2007; 

Riddington et al., 2006). The standard gravity model is as follows:  

  

𝑇𝑖
𝑟𝑠 = 𝐺𝛼

(𝐸𝑖
𝑟𝑜)𝛽1 × (𝑀𝑖

𝑜𝑠)𝛽2

(𝐷𝑟𝑠)𝛾
(12) 

Where G is the constant of proportionality with the weight α. The parameters 𝛽1and 𝛽2 are used to 

weigh the supply and demand for exporters and importers, respectively. γ is the distance decay 

parameter. Practically, the equation is often presented in its logarithmic form: 

ln 𝑇𝑖
𝑟𝑠 = 𝛼 + 𝛽1 ln(𝐸𝑖

𝑟𝑜) + 𝛽2 ln(𝑀𝑖
𝑜𝑠) − 𝛾 ln(𝐷𝑟𝑠) + 𝜀 (13) 

Where ln 𝑇𝑖
𝑟𝑠 is the endogenous variable, 𝐸𝑖

𝑟𝑜, 𝑀𝑖
𝑜𝑠, and 𝐷𝛾𝑠 are the explanatory variables and the 

parameters 𝛼, 𝛽1, 𝛽2 and 𝛾 can be estimated by multiple regression. However, because limited 

information of trade at the city level, several assumptions are made for parameter estimates: 

Assumption 1. Domestic trade destinations outside Hebei as a “12th city”. This is because city IO 

tables do not distinguish between trade flow to cities inside and outside Hebei. For the 11 cities in 

Hebei, the total supply 𝐸𝑖
𝑟𝑜 and total demand 𝑀𝑖

𝑜𝑠 respectively refer to the domestic outflow OF𝑖 and 

the domestic inflow IF𝑖, including the flow from cities within Hebei and from cities outside Hebei, 

which can be directly determined from the city IO tables. For the 12th city, we derive trade data from 

the 2012 Hebei province IO table; the inflow and outflow are the domestic trade flows from outside 
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Hebei. Therefore, the inflow derived from the Hebei IO table can be treated as the outflow for the 12th 

city, while the outflow in the Hebei IO table would be treated as the inflow for the 12th city.  

Assumption 2. To use trade-weighted distance. The distance between the 11 Hebei cities used in 

the gravity model was determined using GIS techniques. For the distance between the 12th city and the 

Hebei cities, it is obviously inappropriate to use the average distance from the capital cities of other 

provinces to the targeted Hebei cities; this would assume that the distances between any other place 

and the Hebei cities are the same. Therefore, we used the trade-weighted distance to estimate the 

distance from the 12th city to the Hebei cities. First, we derived the distance between the 11 Hebei 

cities and the capital cities of the other 29 provinces or megacities from GIS. Next, we used the trade 

weight to adjust the distance. Because Hebei is one of the main exporters in China, we choose exports 

as an adjustment parameter. Specifically, we set the weight as the proportion of exports from Hebei to 

the other 29 provinces, which is derived from the 2012 China MRIO, and then applied the proportion 

to all 11 cities. Mathematically, this relationship can be expressed as follows: 

D𝑟 =∑
𝐸𝑗
𝐻𝑏

𝐸𝑇𝑜𝑡𝑎𝑙
𝐻𝑏 × 𝐷𝑟𝑗

𝑗

(14) 

𝐷𝑟 denotes the trade-weighted distance between a Hebei city r and the 12th city; 𝐸𝑗
𝐻𝑏 is the outflow 

from Hebei to another province j, and 𝐸𝑇𝑜𝑡𝑎𝑙
𝐻𝑏  is the total outflow from Hebei; and 𝐷𝑟𝑗 is the distance 

from a Hebei city r to the capital city of province j. 

Assumption 3. Using trade flows between Hebei and adjacent provinces as a sample. Normally, 

sample data would be required to estimate these parameters, but trade data between cities was not 

available. Therefore, we followed the approach of (Nakano & Nishimura, 2013; Yamada, 2015) and 

used transaction data from the 2012 China MRIO table as a proxy for sample data for each sector. 

Because our estimates are for the Hebei cities, we chose the transaction data between Hebei and the 

surrounding provinces or megacities (e.g., Beijing, Tianjin, Shanxi, and Shandong).  

 

Due to the different sector classifications for the city IO table (42 sectors) and the 2012 China MRIO 

table (30 sectors), the parameters for the sectors that were aggregated in the MRIO table were 

assumed to be the same as those for the aggregated sectors. For example, the sectors of electricity and 

heating supply, gas supply and water supply in the city IO table are aggregated into one sector of 

electricity, heating, gas and water supply in the China MRIO table. Therefore, we set the parameters 

for these three sectors to be the same as for the national-level electricity heating, gas and water supply 

sector. The details of sector classification can be found in Mi et al. (2017).  

1.4. Reconciliation 

These calculations above yielded origin-destination matrix for each sector that we used as the initial 

matrix for RAS (bi-proportional techniques; see (Lahr & de Mesnard, 2004), which used the set of the 
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outflow and inflow constraints in the city IO tables for the 11 Hebei cities and the Hebei IO table for 

the “12th city”. To ensure that the modelled trade flow matched the constraints, it should be subject to 

the following equations: 

∑T𝑖
𝑟𝑠

12

𝑠=1

= T𝑖
𝑟𝑜 (15) 

 and 

∑T𝑖
𝑟𝑠

12

𝑟=1

= T𝑖
𝑜𝑠 (16) 

Assuming that city s has the same proportions for allocating the intermediate consumption and final 

consumption imported from city r, the balanced origin-destination matrix was used to distribute the 

trade matrix to the origin using the proportion P, as follows:  

P𝑖
𝑟𝑠 =

T𝑖
𝑟𝑠

∑ T𝑖
𝑟𝑠12

𝑟=1

(17) 

The transaction matrix from city r to city s is displayed as follows: 

{
𝑍𝑟𝑠 = P𝑟𝑠 × 𝑍𝑜𝑠

𝐹𝑟𝑠 = P𝑟𝑠 × 𝐹𝑜𝑠
(18) 

Where 𝑍𝑜𝑠 and 𝐹𝑜𝑠 denote the imported matrices calculated before. Specifically, they can be 

expanded as follows: 

(

𝑍11
𝑟𝑠 ⋯ 𝑍1,42

𝑟𝑠

⋮ ⋱ ⋮
𝑍42,1
𝑟𝑠 ⋯ 𝑍42,42

𝑟𝑠
) = (

P1
𝑟𝑠

⋱
P42
𝑟𝑠
) × (

𝑍11
𝑜𝑠 ⋯ 𝑍1,42

𝑜𝑠

⋮ ⋱ ⋮
𝑍42,1
𝑜𝑠 ⋯ 𝑍42,42

𝑜𝑠
) (19) 

(

𝐹11
𝑟𝑠 ⋯ 𝐹1,5

𝑟𝑠

⋮ ⋱ ⋮
𝐹42,1
𝑟𝑠 ⋯ 𝐹42,5

𝑟𝑠
) = (

P1
𝑟𝑠

⋱
P42
𝑟𝑠
) × (

𝐹11
𝑜𝑠 ⋯ 𝐹1,5

𝑜𝑠

⋮ ⋱ ⋮
𝐹42,1
𝑜𝑠 ⋯ 𝐹42,5

𝑜𝑠
) (20) 

Thus, the off-diagonal trade flow for the 11 Hebei cities can be determined. For the other row, the 

inflow for the Hebei cities equals the inflow from the 12th city, and imports for foreign countries can 

be directly summed to 𝑍𝑓 and 𝐹𝑓 calculated above. Because the value added for the city-level MRIO 

table is identical to the city IO table, we can complete the vertical MRIO for each city. Because we 

proportionally allocate the trade matrix derived from the IO table to the other Hebei cities, the total 

inputs for each sector in the MRIO are identical to the IO table.  

Although the total inputs for each city met the MRIO requirements, we found that the city outflow 

(horizontal sum) in this unbalanced MRIO was not the same as the modelled city outflow in the 

origin-destination matrix. Hence, we applied RAS to the raw trade transaction table that derives the 
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city trade matrix using the raw MRIO, where the horizontal constraint of the total city outflow is the 

modelled origin-destination matrix and the vertical constraint is equal to the total inputs. Through 

these two RAS processes, we calculated the balanced MRIO table for the 11 Hebei cities, including 

the domestic intermediate matrix, inflows and outflows, imports and exports, and the value added, 

which were prepared previously.  

 

Step 2: Linking and integrating city-level MRIO tables into a provincial-level MRIO table 

The next step is to nest the city-level MRIO tables constructed above into the 2012 provincial-level 

China MRIO (hereafter referred to as the China MRIO). In our framework, the city-level MRIO tables 

were compiled within the province and form part of the provincial MRIO table. Therefore, we can use 

the provincial-level MRIO as a platform to link the city-level MRIO tables. Before linking the city-

level MRIO tables with the provincial-level MRIO tables, the sectors must be reconciled, given that 

the sectors are expressed differently in the city-level MRIO tables (42 sectors) and the provincial-

level MRIO tables (30 sectors). We created a concordance matrix C to bridge the two sector 

classifications. Given two datasets (for example, A and B) with s and t classes respectively, the 

concordance matrix C will be an s × t matrix, with a value of 1 if the s-classed sectors belong to the t-

classed sectors and 0 if not. In this study, the C matrix is a 30 × 42 matrix because we reconciled the 

42 city-level MRIO sector classifications with the 30 provincial-level MRIO sector classifications.  

To link the two MRIO tables, we allocated the inflow and outflow in the Hebei city-level MRIO table 

to the other 25 provinces and 4 megacities, using the China MRIO. We assumed that the sectorial 

structure of the 11 Hebei cities’ inflows and outflows are the same as the structure of the Hebei 

province’s inflows and outflows. In other words, the inflows (outflows) for the sectors of the 11 Hebei 

cities are distributed to other provinces and megacities in the same proportion as Hebei province’s 

inflows (outflows) for those sectors. Mathematically, this follows equations (21) and (22): 

IF𝑖
𝑝𝑐
= �̃�𝑖

𝑝ℎ
× IF𝑖

𝑐 (21) 

OFi
cp
= OF𝑖

𝑐 × Ẽ𝑖
ℎ𝑝

(22) 

Where IF𝑖
𝑝𝑐

 is the inflow from another province or megacity p to the Hebei city c, and OFi
cp

 is the 

outflow from Hebei city c to another province or megacity p for sector i. �̃�𝑖
𝑝ℎ

 is the inflow coefficient 

from another province or megacity p to Hebei province h for sector i, and Ẽ𝑖
ℎ𝑝

 is the outflow 

coefficient from Hebei province h to another province or megacity p, which can be derived from the 

China MRIO table. IF𝑖
𝑐 and OF𝑖

𝑐 are the inflow and outflow of Hebei city c for sector i. For the final 

demand, the same process can be applied. Using the above calculations, we can replace the traction 

matrix for Hebei province with the traction matrix for the 11 Hebei cities’ MRIO in the China MRIO 
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table, including the intermediate matrix and final demand matrix. After removing the domestic matrix 

in the intermediate and final matrices, we can balance the new nested MRIO table using the modified 

RAS, preserving the transaction matrix of the non-Hebei matrix and setting the value equal to zero. In 

other words, RAS would only be used on the Hebei city transaction matrix using a set of constraints 

based on the Hebei inflows and outflows from the other 29 provinces or megacities in the China 2012 

MRIO and the total intercity trade (inflows and outflows) derived from the Hebei city-level MRIO. 

By inserting the domestic matrix and adding value added, imports and exports, the nested city-level 

MRIO table can be completed with a total error/total output of 4% (details seen in Supplementary). 

For the purpose of the Jing-Jin-Ji urban agglomeration MRIO table compilation, the final step is to 

aggregate the external regions to tailor the Jing-Jin-Ji region. 

Accounting Energy footprint at cities in Jing-Jin-Ji urban agglomeration 

We then apply the nested city-province MRIO table into the input-output analysis. Environmentally 

extended input-output model is employed in this study to calculate the energy footprint (Leontief, 

1970). This approach has been widely applied to environmental footprint accounting (J. Meng et al., 

2018; Serrano, Guan, Duarte, & Paavola, 2016). The basic equation of input-output model can be 

expressed as: 

𝐗 = 𝐀𝐱 + 𝑭 (23) 

Where A is the technical coefficient, and F is the total final demand by sector. Total output X can be 

expressed by Leontief inverse L as the followed equation: 

𝐗 = (𝐈 − 𝐀)−𝟏𝑭 = 𝑳𝑭 (𝟐𝟒) 

In MRIO framework, regions are connected through the interregional trade. The equation can be 

expressed in matrix form.  

𝐗 =

[
 
 
 
𝑿𝟏

𝑿𝟐

⋮
𝑿𝒏]
 
 
 

, 𝐀 =

[
 
 
 
 
𝑨𝟏𝟏 𝑨𝟏𝟐 …
𝑨𝟐𝟏 𝑨𝟐𝟐 …
⋮ ⋮ ⋱

𝑨𝟏𝒏

𝑨𝟐𝒏

⋮
𝑨𝒏𝟏 𝑨𝒏𝟐 … 𝑨𝒏𝒏]

 
 
 
 

, 𝐅 =

[
 
 
 
 
𝑭𝟏𝟏 𝑭𝟏𝟐 …
𝑭𝟐𝟏 𝑭𝟐𝟐 …
⋮ ⋮ ⋱

𝑭𝟏𝒏

𝑭𝟐𝒏

⋮
𝑭𝒏𝟏 𝑭𝒏𝟐 … 𝑭𝒏𝒏]

 
 
 
 

(𝟐𝟓) 

Where 𝑿𝒏 represents the total output of region n. The technical coefficient submatrix 𝑨𝒓𝒔 = (𝒛𝒊𝒋
𝒓𝒔/𝒙𝒋

𝒔) 

where  𝒛𝒊𝒋
𝒓𝒔 represents intersectional monetary flows from sector i in region r to sector j in region s, 

and the 𝒙𝒋
𝒔 is the total output of sector j in region s. Similarly, 𝑭𝒓𝒔=𝒇𝒊

𝒓𝒔 which represents the final 

demands of the region s in products of sector i in region r.  

To calculate energy use embodied in goods and services, the input-output model is extended by 

adding the environmental multiplier of energy intensity for each sector of each region. Energy use can 

be expressed as 

𝐄 = 𝐰(𝐈 − 𝐀)−𝟏𝐅 (𝟐𝟔) 



16 

 

Where E is the total energy use embodied in the goods and service to meet final demands, and w is a 

vector of energy intensity for all sectors in all regions. It is notable that monetary unit IO may not be 

correlated with the mass unit, and lead to headquarter effects in the IO table compilation. 

 

Results  

As one of the most important manufacturing bases in China, Hebei cities provide energy-intensive but 

low value-added products for other cities, especially for their neighbouring Beijing and Tianjin that 

are the largest cities in North China. Therefore, to quantify the role of Hebei cities in the energy 

supply chain could have important implications, such as identifying which cities are more important 

in the supply chain. However, previous researches can only account the energy consumption or 

carbon emission at the province level with the provincial MRIO table. City-level MRIO table created 

in this paper provides energy consumption details at city-level, and identifies the key cities in energy 

use and the role of Hebei cities in China’s energy supply chain. For ease of presentation, we aggregate 

40 regions into 19 regions based on the results of nested city-province MRIO, including Jing-Jin-Ji 

urban agglomeration (Beijing, Tianjin, and 11 Hebei cities), Northeast, Northwest, Central, Central 

Coast, Southeast, and Southwest for further analysis and discussion. Among them, Beijing, Tianjin 

and coastal regions (Central Coast, and Southeast) are generally the developed areas, while inland 

regions (Hebei cities, Northeast, Northwest, Central, and Southwest) are less developed.  

 

1. The role of Hebei cities in energy footprint 

China has consumed 1736 Mtce energy to meet different final demands in 2012, in which 34% of 

total energy use is embodied in interregional trade (586.4 Mtce). In China, a large amount of energy 

used embodied in goods and services for the developed regions are supported by the less developed 

regions. 34% of total energy use for developed regions are generated by less developed regions 

(191.42 Mtce), in which the Central and Hebei cities are the largest exporter in trade-related energy. 

Energy use embodied in products and services exported from Hebei accounts for approximately 14% 

of total trade-related energy use in China (71.23 Mtce). The pattern of energy embodied in the 

interprovincial trade has been investigated in previous studies (W. Chen, Wu, Lei, & Li, 2017; Mi et 

al., 2017). In this study, we will use the city-level MRIO to investigate the city-level energy 

consumption embodied in trade between cities. 

 

Figure 3 Here 
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Among 11 Hebei cities, Tangshan, Handan and Shijiazhuang are the largest energy exporters, 

accounting for 72% of total embodied energy exports from Hebei cities (Figure 3). Tangshan is the 

largest exporter in embodied energy (27.26 Mtce), accounting for 33.2% of embodied energy exports 

from all Hebei cities, followed by Handan (18.91Mtce, 23.0%) and Shijiazhuang (13.26Mtce, 16.1%). 

In contrast, Hengshui and Langfang have the least contribution in the energy embodied in trade, 

accounting for only 0.5% and 0.7% of the total embodied energy flow from Hebei cities, respectively.  

However, less developed regions (Northeast, Northwest, Central, and Southwest) are the largest 

consumers of the imported energy from Hebei cities, accounting for 49 % of total energy use 

embodied in exports from Hebei cities (40.53 Mtce). Tangshan, Shijiazhuang, and Handan contribute 

the most, which aggregately amount to 74% of the total energy embodied in exports from Hebei 

cities.  

In contrast, 27.6% of embodied energy use exported from Hebei cities (22.71 Mtce) is consumed by 

coastal regions (central coast, and southeast), which are the most affluent regions in China. Similarly, 

Tangshan, Shijiazhuang and Handan are the largest exporters, aggregately accounting for 66% of 

energy embodied in products for coastal regions. Tangshan is the leading city with the contribution of 

37.5% of total trade-related energy use for coastal regions (8.6 Mtce), followed by Handan (6.3 

Mtce). Among coastal regions, central coasts account for 80% of imported embodied energy from 

Hebei cities (18.24 Mtce).  

For Jing-Jin-Ji urban agglomeration, 18.99 Mtce of energy used in goods and services for their 

neighbouring cities are consumed by the cities of Jing-Jin-Ji urban agglomeration, with 23.1% of total 

energy embodied in export from Hebei cities. It is notable that 63% (12.1 Mtce) of energy embodied 

in exports to Jing-Jing-Ji urban agglomeration comes from Shijiazhuang, Tangshan, and Handan, . 

Shijiazhuang takes the leading role from Tangshan and becomes the largest contributor with 25.3%, 

followed by Tangshan (24.2%), and Handan (14.4%). As the largest cities in China, Beijing and 

Tianjin are the biggest consumers in Jing-Ji-Ji urban agglomeration. It is estimated that 19 % of 

Beijing’s imported embodied energy for consumption comes from 11 Hebei cities, in which 10.5% of 

the total embodied energy is from Tangshan (6.1%), Shijiazhuang (3.5%), Handan (3.7%). For 

Tianjin, embodied energy from Hebei cities accounts for 14.4% of total imported embodied energy, 

with 10.3% from Tangshan (4.6%), Shijiazhuang (2.7%) and Handan (3.1%). 

 

 

2. Energy use embodied in interregional trade 

 

Figure 4 Here 
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Figure 4 shows energy embodied in net import (EEI) and energy embodied in net export (EEE) for 19 

regions or cities. EEE and EEI are able to illustrate the linkages of city or regions in terms of energy 

use. Based on differences between EEI and EEE, all the 19 regions can be categorised into two 

groups:  net importer and net exporter. Net importer in energy use embodied in trade are generally the 

affluent coastal regions, with EEI much larger than their EEE.  At the city level, 6 cities in Hebei have 

net energy embodied in exports to Central coast at the level of 13.02 Mtce of energy embodied in net 

exports, in which 83% are from Tangshan (6.0 Mtce) and Handan (4.7 Mtce). In contrast, the other 5 

cities have net energy embodied in imports from Central coast instead, with 1.76 Mtce of energy use 

embodied in net imports. Baoding and Cangzhou are cities that import the largest embodied energy 

from net trade, accounting for 84% of the total.  For the Southeast coast, Central and Southwest make 

up the largest contribution to the total energy use embodied in net imports, which is 5.9 and 5.8 Mtce, 

respectively. Although 7 cities have energy use embodied in net exports to the Southeast coast, Hebei 

cities have the least energy use embodied in exports to Southeast coast, with only 3.5 Mtce of trade-

related energy use. Tangshan and Handan are still the largest contributors, with total 2.7 Mtce of net 

trade-related energy use (74% of total energy use embodied in exports to the Southeast coast).   

In contrast, Tangshan and Handan are leading suppliers with 4.34 Mtce and 3.57 Mtce of energy use 

embodied in net exports to the central region and aggregately make up 80% of central region’s net 

embodied energy imports. For the Northwest, 69% of energy use embodied in net imports is from 6 

Hebei cities, with Tangshan and Handan accounting for 54%. However, 6 Hebei cities are the only 

suppliers in energy use embodied in imports to the Northeast. Similarly, the majority of energy 

embodied in net imports is from Tangshan and Handan.  

In Jing-Jin-Ji cities, Beijing and Tianjin are dominant net importers with 19.39 Mtce and 7.77 Mtce of 

energy use embodied in net trade, respectively. Beijing has net energy use embodied in imports from 

all other regions or cities, while 14 of regions or cities supply Tianjin in energy use embodied in the 

net trade. Hebei cities are the largest importers for the in the embodied energy used in Beijing at a 

level of 4.62 Mtce, followed by Northwest (3.98 Mtce) and Central (3.65 Mtce). For Tianjin, 

Northeast is the largest embodied energy use importer, with 2.15 Mtce, while Hebei cities have 1.84 

Mtce of energy use embodied in net exports to Tianjin, ranking the third largest. In the Hebei cities, 

Tangshan, Handan, and Shijiazhuang are main suppliers for both Beijing and Tianjin, with 3.51 Mtce 

and 1.68 Mtce of energy embodied in net trade from these 3 cities respectively. Among 11 Hebei 

cities, 6 cities are net exporters in embodied energy in net trade, having 47.14 Mtce energy embodied 

in net trade, while other 5 net importer cities have energy use embodied in net imports from other 

regions. Tangshan and Handan are the most distinctive cities that contribute 77% of total exported 

energy use embodied in net trade, while Baoding and Cangzhou are the biggest net importers with 

5.94 Mtce and 3.52 Mtce respectively. It is notable that Shijiazhuang has net exports for all other 
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Jing-Jin-Ji cities, indicating Shijiazhuang is the basic supplier of energy use for the urban 

agglomeration. 

 

Discussion and Conclusion 

Our study presents a framework for compiling a city-level MRIO table using a bottom-up partial-

survey method and applies the MRIO table to city-level energy consumption accounting for the North 

China urban agglomeration or Jing-Jin-Ji urban agglomeration. By linking multiple layers, the 

framework breaks down the workload of large data set into small units and then integrates the results 

by harmonisation based on a regional-level MRIO table. We used this framework to construct an 

MRIO table for 11 cities in Hebei province as well as an MRIO table for the Jing-Jin-Ji urban 

agglomeration. We also produced a nested Hebei-China MRIO table, which is used as a construction 

platform for other cities. Although it is a representative demonstration of the city-level MRIO table 

construction, the Jing-Jin-Ji MRIO table compilation illustrates a simplified process of our proposed 

framework due to data availability. Because Beijing and Tianjin were already included in the China 

interprovincial MRIO table, the challenge is to replace Hebei Province with the Hebei city-level 

MRIO table in the China MRIO table. However, the case study still serves as a good demonstration of 

our method. The nested Hebei-China MRIO table we constructed in this study could be extended to 

other Chinese cities or even linked to global MRIO tables, based on the same assumption that the 

foreign trade coefficient for cities is the same as for China; this assumption has been made in previous 

studies (K. Feng et al., 2013; Mi et al., 2017). The tables constructed in this paper will be accessed for 

free through CEADS (http://www.ceads.net/). The case study in energy use embodied in trade for 

Jing-Jin-Ji urban agglomeration illustrates the distinctive patterns of energy use through the supply 

chain for every 11 cities, which suggesting that the regional mitigation policies about energy use 

should be different in each city, especially for 6 net importer cities. In the supply side, policies in 

three key cities (Tangshan, Shijiazhuang, and Handan) should be particularly drawn attention by 

policymakers. The application of city-level energy footprint accounting demonstrates a single case of 

environmental accounting at city-level. The methodology to create the city-level MRIO table could 

encourage, inspire a wider range of studies on city scale, and enable energy, greenhouse gas emissions 

and other environmental management in city level.   

Although the proposed multiple-layer framework is feasible for the compilation a city-level MRIO 

table, there are still limitations call for further improvement: 1). The city-level MRIO tables created in 

step 1 must be based on a province table since the city-level MRIO table will replace the province in 

the provincial-level MRIO table. The gravity model applied in the city-level MRIO compilation 

requires city IO tables for all the cities in the province; however, not every city has its single region 

IO table. For example, in some Chinese provinces, only 2 or 3 cities have IO tables. Given conflicting 

http://www.ceads.net/
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data between cities and provinces, simply subtracting the city IO data from the provincial IO data and 

categorising the remainder as “others” for cities without IO tables may not be appropriate. The residue 

is often negative. Creating new city IO tables and ensuring reasonable consistency between cities with 

IO tables could also be challenging. To tackle the challenge, an integrated way to combine the 

regionalisation technique with existing IO tables partly addresses the issue, but it still requires further 

exploration. 2). Stepwise city-level MRIO construction separates the task into pieces. However, as 

more city MRIO tables are added to a platform (the provincial MRIO table) and the modified RAS 

technique is applied, the requirements for computer memory will increase, resulting in very large 

workloads. Efficient working systems such as the cloud calculation platform used in IElab could be 

helpful. Future research should consider how to deal with these challenges and explore the feasibility 

of combining non-survey methods with the partial-survey method. Furthermore, based on the finding 

that larger IO transaction values have lower uncertainty (M Lenzen, Wood, & Wiedmann, 2010), the 

uncertainty associated with multiple scale models should also be reduced as more cities are included 

in the MRIO table. Finally, we share the concern that uncertainty may increase when a region is 

replaced by cities  (Bachmann et al., 2015). It is necessary to note that this study may be limited to be 

applicable in many countries, because not every city has its IO table, which could be the biggest 

challenge to construct global or national city-level MRIO database. 
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Figure Caption 

Figure 1: 

The diagram of compiling city-level multiple region input-output table. The case of 3 regions, with 

total 12 city-level is demonstrated. For simplicity, only the intermediate transaction matrix and the 

final demand matrix are shown in the producer figure. After 3 iterations, the whole city-level multiple 

region input-output table for 12 city-level can be compiled. 

 

Figure 2: 

The thirteen cities in the Jing-Jin-Ji urban agglomeration. 

 

Figure 3: 

a). Energy use embodied in exports for the 19 regions or cities. b). Energy use embodied in imports 

for 19 regions or cities. The number on the top of the bar is the total energy use embodied in their 

exports. 

 

Figure 4: 

a). Energy use embodied in net trade for 19 regions or cities; b). Energy use embodied in net Import 

for Hebei cities and Non-Hebei regions.  

 


