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ABSTRACT 

Advances in computer technology over the past decade, particularly in the field of medical image 

analysis, have permitted the identification, characterization and quantitation of abnormalities that 

can be used to diagnose disease, or determine disease severity. On CT imaging performed in 

patients with interstitial lung disease (ILD), deep learning computer algorithms now demonstrate 

comparable performance with trained observers in the identification of a usual interstitial 

pneumonia pattern which is associated with a poor prognosis in several fibrosing ILDs.  

 

Computer tools that quantify individual voxel-level CT features have also now come of age and can 

predict mortality with greater power than visual CT analysis scores. As these tools become more 

established, they have the potential to improve the sensitivity with which minor degrees of 

disease progression are identified. Currently pulmonary function tests are the gold standard 

measured used to assess clinical deterioration. However, the variation associated with pulmonary 

function measurements may mask the presence of small but genuine functional decline, which in 

the  future could be confirmed by computer tools. The current review will describe the latest 

advances in quantitative CT analysis and deep learning as related to the ILDs and suggest potential 

future directions for this rapidly advancing field.  
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3.1 Introduction 

High resolution computed tomography (CT) of the chest is central to the evaluation of patients 

with interstitial lung disease (ILD). One of the strengths of CT is its ability to identify signs of 

fibrosis. This allows the wide list of differential diagnoses of ILD, which include over a hundred 

differential entities, to five fibrotic ILDs (1). In the setting of fibrosing lung disease (FLD), a key 

initial assessment is the identification of a usual interstitial pneumonia (UIP) pattern. A UIP pattern 

classically presents with basal, subpleural and bilateral reticular opacities, bronchiectasis, and 

honeycombing (Figure 3.1). The identification of a UIP pattern in the right clinical context allows a 

diagnosis of idiopathic pulmonary fibrosis (IPF) to be made without the need for a lung biopsy (2). 

Thanks to its diagnostic ability, CT has been formally integrated into the multidisciplinary team 

discussion which has become the reference standard for the diagnosis of ILD (2-4).  

 

CT also has a prognostic role in ILD evaluation. A typical UIP pattern on CT is associated with a 

worse prognosis in idiopathic disease, in chronic hypersensitivity pneumonitis and connective 

tissue disease-related ILD (5). In addition to the overall radiologic pattern, individual CT signs also 

demonstrate prognostic value. Extensive honeycombing, increased severity and extent of traction 

bronchiectasis and a high fibrosis score (the sum of honeycombing and reticulation extents) have 

been associated with an increased risk of death across several fibrotic lung diseases (6-10).  

 

Despite its diagnostic and prognostic potential, CT interpretation has limitations. Firstly, CT 

evaluation is liable to significant interobserver variability. For example, the agreement between 

radiologists for the identification of honeycombing is surprisingly poor (11). Furthermore, the 

radiological classification of fibrotic interstitial lung disease according to patterns defined by ILD 

guidelines is subject to high interobserver variability (12). Importantly, subtle changes can be 
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challenging to capture in coarse visual scores (Figure 3.2). Accurate assessment of disease extent 

and severity on a patients initial CT, would enable improved patient stratification and 

identification of individuals at higher risk of disease progression. This in turn could facilitate earlier 

intervention, for example selection for early lung transplant referral.  

 

Whilst pulmonary function tests (PFTs) remain the conventional method used to monitor ILD 

progression, there are intrinsic disadvantages to assessing regional, heterogeneous lung changes 

using global measures of lung damage. Normal PFT ranges are wide and may mask small 

measurement deteriorations. A decline in patient health as evidenced by reduction of annual 

forced vital capacity (FVC) by 5-10% may not be accurately detected in the presence of variation 

due to patient effort/posture etc.  

 

Some staging systems incorporating visual CT scores with physiologic parameters have been 

validated in ILD but due to limitations in observer agreement and low sensitivity are not routinely 

used in clinical practice or as drug trial end-points (13, 14). Moreover visual CT evaluation is not 

sensitive enough to capture short-term clinically useful changes (6, 11, 15, 16). As antifibrotic 

therapies improve, more sensitive biomarkers of disease progression will be required to capture 

their added therapeutic effect. There is also growing evidence that CTs may contain prognostic 

information that is not visually detectable but is amenable to computer-based quantification (17, 

18). These limitations provide the rationale for computer-based CT analysis.  

 

Our review will initially outline the CT acquisition techniques that can enable optimal performance 

of computer analysis tools. We then mimic a clinical workflow to our review by first describing 

computer analysis use in ILD diagnosis (where deep learning methods have been the mainstay) 
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before describing in turn the various quantitative tools that have been employed for measuring 

disease severity/extent in individual FLDs. We conclude by summarising the future of computer 

analysis in FLDs and outline the challenges that await on the journey towards regulatory agency 

approval. 
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3.2 CT Acquisition Technique 

A standardized CT acquisition protocol is essential to improve the reproducibility of computer-

based image analysis. Volumetric acquisitions with contiguous or overlapped thin-section 

reconstruction is mandatory, with a suggested slice thickness around 1 mm (19). The radiation 

dose ranges used to acquire ILD CTs varies widely and should be standardized (20). At present 

most CTs acquired clinically, and therefore analysed by computer tools, have utilized a dose of 

>1mSv as recommended by consensus guidelines. The study of the effect of Iterative 

reconstruction techniques on computer-based textural analysis is still in its infancy, and is 

increasing in importance as CTs are increasingly acquired with dose reduction techniques (19). 

Indeed studies comparing the effects of computer analysis on CTs acquired using normal, low and 

CXR equivalent radiation doses are keenly awaited to understand the dose range at which 

computer analysis will be constrained. 

 

For image reconstruction, selection of a neutral kernel is optimal to avoid edge enhancement or 

image smoothing and most CT manufacturers provide bespoke neutral kernels (21). A sharper 

kernel can be analysed quantitively if pre-processing image normalization methods are used (22). 

The depth of inspiration achieved during a scan is a major source of patient-related variation in 

lung attenuation measurements. Two possible approaches can be used to mitigate against 

inspiratory volume variability: respiratory gating to determine when the patient is at total lung 

capacity, or coaching of the patient to comply with standardized breathing instructions (21). In 

order to minimize differences between different scanners, as in case of trials where multiple 

centers using different scanners are involved, calibration of the scanner with test objects 

(phantoms) is suggested before and during data collection (20).  
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3.3 Artificial Intelligence 

Artificial intelligence (AI) is a general definition which encompasses several computer techniques 

meant to perform tasks usually performed by humans. The subfield of AI most commonly used in 

medicine is machine learning (ML) in which algorithms produce outputs based on patterns and 

features learned from input data (23, 24). Deep learning is a type of ML whose characteristic is its 

capability to automatically identify the most predictive features in a dataset and generate models 

for tasks from the raw data without the need for human programming (25). Deep learning can rely 

on several algorithms but those most commonly employed in medical imaging are Convolutional 

Neural Networks (CNN). The computer architecture at the base of a CNN is inspired by the human 

nervous system with clusters of artificial interconnected nodes replicating the interconnections of 

human brain neurons (23). The clusters of nodes in a CNN are usually organized in multiple layers: 

a layer that takes the input, numerous hidden layers that process the data and a layer which 

generates the output. Increasing the number of hidden layers allow the algorithm to deal with 

ever more complex tasks. When input data (i.e. images) are converted into digital data, a CNN can 

identify and extract imaging features that can be used to classify the data. A major advantage is 

the ability of a CNN to extract features that cannot be detected by human eyes (23). 

 

In the setting of ILD, machine learning has already been used in several areas. These include: 

detecting the presence of ILD in patients with systemic sclerosis following analysis of PFTs(26), 

diagnosing IPF or a UIP pattern through genomic analysis (27, 28), quantifying lung fibrosis on CT 

images (29) and in providing automated classification of fibrotic ILD patterns on CT images (30). 

 

3.3.1 AI and ILD Diagnosis 



 9 

There are several reasons for implementing AI in the study of ILD. Visual radiological evaluation 

can be subject to low interobserver agreement when classifying HRCT signs of disease extent or 

severity. AI systems may also mitigate the potentially harmful consequences of human error in 

radiologic reporting (31).  

 

One of the first attempts to use neural networks in assessing radiologic images of ILD dates back 

to 1990 when an artificial neural network was used to generate a differential diagnosis for ILD 

subtypes on chest radiographs (32). In that study the neural network was designed to distinguish 

between 9 ILDs on the basis of radiographic and clinical data. The results showed a diagnostic 

performance comparable to that of accredited radiologists and superior to that of radiology 

residents. In more recent years ML techniques have been applied to CTs of ILD patients to 

recognize and classify CT patterns, to classify fibrotic lung disease according to diagnostic 

guidelines and to quantify lung fibrosis.  

 

The first paper where a CNN was used for the classification of ILD patterns on CT was published in 

2016. In that study the CNN showed an accuracy of 85% for classifying 6 different pattern of 

disease (GGO, reticulation, consolidation, micronodules, honeycombing and a combination of GGO 

and reticulation) plus healthy tissue leading to 7 different imaging classes. These results were 

obtained using a dateset of 14696 image patches to train and test the software. The data was 

derived from 120 HRCTs where two radiologists had manually drawn regions of interest (ROIs) 

around every single pattern (33). The paper by Kim et al. (34) obtained an even higher accuracy for 

a CNN in classifying ROIs of HRCT images in ILD patients. In this paper an accuracy of up to 96% 

was achieved with a reduction in classification error between similar patterns (i.e. normal case vs 

emphysema and reticular opacity vs honeycombing) as the number of layers in the CNN increased. 
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Moreover, in this paper the CNN was compared to a more conventional classifier based on a 

support vector machine achieving an increase in accuracy of 6-9%. This is believed to result from 

the CNN being able to automatically extract features from data instead of using predefined 

engineered features. In both studies however, the need for manual identification of ROIs prior to 

classification limited the clinical applicability of the methods in real-world clinical practice.  

 

To overcome this limitation and to obtain a more comprehensive evaluation of CT images of ILD 

patients, Gao et al. (35) ǇǊƻǇƻǎŜŘ ŀƴ άƘƻƭƛǎǘƛŎέ ŀǇǇǊƻŀŎƘ ǳǎƛƴƎ ŀ /bb ŦƻǊ ǘƘŜ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ƻŦ /¢ 

slices instead of ROIs. For comparison with previous studies the same CNN was also used for a ROI-

based classification. The accuracy of the CNN for the identification of 6 tissue classes (normal, 

emphysema, ground glass opacity (GGO), fibrosis, micronodules and consolidation) was higher for 

the patch-based approach (87.9%) compared to holistic image classification (68.6%).  

 

Only one paper has been published to date employing a deep learning algorithm to provide an 

automatic classification of fibrotic lung disease on CT (30) according to international guidelines 

(36). In the study by Walsh et al, the algorithm was trained, validated and tested using a database 

of 1157 CTs acquired in two institutions. The algorithm showed an accuracy of 76.4% for the 

classification of CTs into three categories provided by the 2011 consensus IPF diagnostic guidelines 

(UIP pattern, possible UIP pattern, inconsistent with UIP) (36). One of the main limitations of this 

approach was the requirement of labeling every CT used for algorithm training by a single 

radiologist whose interpretation bias would have potentially affected algorithm performance. To 

overcome this limitation, the software was further tested with a different population of 150 CTs 

where the reference standard was a consensus opinion of 91 expert thoracic radiologists. Here the 

software showed an accuracy of 73.3% outperforming 60 of the 91 thoracic radiologists. 
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Moreover, ǘƘŜ ƛƴǘŜǊƻōǎŜǊǾŜǊ ŀƎǊŜŜƳŜƴǘ ōŜǘǿŜŜƴ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ŀƴŘ ǘƘŜ ǊŀŘƛƻƭƻƎƛǎǘǎΩ ƳŀƧƻǊƛǘȅ 

opinion (kw=0.69) was comparable to the median interobserver agreement between each thoracic 

radiologist and the ǊŀŘƛƻƭƻƎƛǎǘǎΩ ƳŀƧƻǊƛǘȅ ƻǇƛƴƛƻƴ όƪǿҐлΦстύΦ 

 

3.4 Quantitative CT  

Quantitative CT (QCT) describes the numerous computer-based CT image analysis methods 

developed to measure structural lung damage in ILD. QCT methods offer improved objectivity, 

speed, reproducibility and the ability to scale up analysis to hundreds or thousands of CTs. QCT-

derived metrics demonstrate potential as prognostic imaging biomarkers with reported utility in 

evaluating:  

1. Disease severity at a single timepoint on a CT 

2. Disease progression, quantifying longitudinal change on sequential CTs  

 

Novel QCT imaging biomarkers are emerging through machine learning or deep learning 

techniques that are not appreciated by the human eye. New biomarkers represent features that 

have no morphological correlate or radiological descriptor. Quantification of overall lung 

histogram features, regional CT density changes, parenchymal textural features and other ancillary 

assessments by advanced algorithms have the potential to standardise and enhance the role of CT 

in ILD evaluation. 

 

3.4.1 Quantitative CT for assessing ILD severity 
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Most QCT methods employ density and/or texture-based analysis of varying complexity. All 

methods require initial segmentation of the whole lungs from surrounding chest wall structures, 

which should ideally be an automated process requiring minimal manual correction.  

 

Density mask techniques and evaluation of the lung-density histogram were amongst the first QCT 

methods developed to assess ILD severity (37). Quantification of emphysema using a low-density 

Hounsfield unit (HU) threshold is well-recognised. Similarly, high-density thresholds have been 

used to detect soft tissue density in the lung replacing air density as a result of pulmonary 

fibrosis(38). For normal lung, the CT density histogram peaks at approximately -800 HU and is left-

skewed. The presence of fibrosis results in an increased mean lung density and decrease in the 

lung histogram kurtosis (peakedness) and skewness (asymmetry)(39). Yet correlations between 

such density histogram metrics and survival in patients with ILD have been generally poor(40-43). 

This reflects the challenge of capturing detailed regional information using a summary global 

density measure, often confounded by low density structures, for example traction bronchiectasis 

and honeycombing, as well as air trapping in hypersensitivity pneumonitis.  

 

Newer QCT methods apply texture-based analysis to characterise, model and process imaging 

features at a voxel level (Table 3.1). These methods incorporate both morphological and density 

features. By simulating human visual perceptual and learning processes, texture-based algorithms 

attempt to determine the type of abnormality (for example emphysema vs honeycombing vs 

cysts), severity (fine vs course reticulation) and disease extent(29, 37, 40, 44-46). These complex 

QCT methods overlaying the QCT readout onto CT images, allowing regional ILD changes to be 

visualised by clinicians and patients(40). 
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3.4.2 Examples of QCT tools  

3.4.2.1 Density histogram analysis 

Various CT density thresholds have been proposed for the assessment of ILD extent, including >-

700 HU(47) and a range between -750 HU and -300 HU for the specific detection of GGO(48). 

Inherent advantages of the density mask technique include universal applicability and 

convenience, since the method is based on easily appreciated CT Hounsfield unit values. CT 

density histogram measures have been found to be inferior to visual fibrosis scores and PFTs for 

survival prediction (43). 

 

In a study comparing histogram features to textural analysis in a cohort of 95 patients with IPF, 

significant density histogram changes between baseline and 1-year follow-up CT including mean 

CT value of the whole lungs (P = 0.003), skewness (P < 0.001) and kurtosis (P < 0.001) were 

consistent with disease progression(43). However, CT texture-derived total quantitative lung 

fibrosis (QLF) scores were reported to be better than CT density histogram measures for assessing 

longitudinal change in IPF. Whilst both QLF and kurtosis scores correlated with FVC at baseline, 

only QLF scores significantly correlated with longitudinal FVC change όˊҐлΦртΤ ǇғлΦлллмύ(40). 

 

3.4.2.2 Computer Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) 

CALIPER was developed using thoracic radiologist consensus assessment of histopathologically 

confirmed training images(49). CALIPER characterises volumetric CT data using morphological and 

3D histogram features within voxel volume units labelled according to the conventional 

radiological lexicon: normal lung, GGO, reticulation, subtypes of low-attenuation and 

honeycombing (Figure 3.3). 
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When CALIPER and visual CT scores were examined as predictors of survival in patients with IPF, 

CALIPER variables were more accurate in survival prediction than equivalent visual CT scores. 

CALIPER honeycombing extent independently predicted mortality (hazard ratio 1.18; p=0.002) 

following adjustment for baseline disease severity using the composite physiologic index(17). 

Acknowledging that functional measures including DLco and CPI are stronger predictors of survival 

in patients with severe IPF, the greatest potential utility of QCT measures may be in patients with 

less extensive or early stage disease(50). 

 

A unique attribute of CALIPER is the ability to quantify vessel-related structures (VRS). VRS, 

previously termed pulmonary vessel volume (PVV), corresponds to pulmonary vessels and 

associated structures, for example perivascular fibrosis which has no visually scored equivalent 

(Figure 3.4). CALIPER VRS was shown to be an independent predictor of mortality in IPF (hazard 

ratio 1.53; p<0.0001) and an increase in VRS was found to be superior to various automated and 

visual CT scores in predicting mortality in IPF(17). Analysis of longitudinal changes in CALIPER CT 

parameters demonstrated that CALIPER VRS thresholds of change were the strongest CT predictor 

of mortality in independent discovery and validation cohorts (51). Thresholds of VRS change were 

also shown to be able to adjudicate marginal FVC declines of 5-9.9% in a composite staging system 

in patients with IPF(51). 

 

Whilst the majority of research using QCT has been undertaken in IPF patients, several CALIPER 

studies have examined other fibrosing lung diseases. Studies in connective tissue disease-related 

ILD(52) and unclassifiable ILD(53) have emphasised that the prognostic signal from CALIPER 

variables, particularly VRS is not confined to patients with IPF. In hypersensitivity pneumonitis 
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patients(54), and patients with rheumatoid arthritis-related ILD(55), simple binary VRS thresholds 

have shown the ability to identify patients with an IPF-like outcome, regardless of a patients 

starting baseline disease severity (Figure 3.4).  

 

3.4.2.3 Automated Quantification System (AQS) 

AQS, developed in Seoul, Korea quantifies six regional patterns on CT: normal, GGO, reticular 

opacity (RO), honeycombing, emphysema and consolidation. An AQS fibrotic score is calculated 

from the sum of RO and honeycombing extent. The texture-based AQS model was trained using 

multiple sampled regions from CT images acquired using different CT scanners by a thoracic 

radiologist with 10 years of thoracic CT experience(45). 

 

AQS άROέ showed the ǎǘǊƻƴƎŜǎǘ ŎƻǊǊŜƭŀǘƛƻƴ ǿƛǘƘ C±/ όǊҐҍлΦпорΤ ǇғлΦллмύ ŀƴŘ !v{ ŦƛōǊƻǎƛǎ ǎŎƻǊŜ 

ǿŀǎ Ƴƻǎǘ ǎǘǊƻƴƎƭȅ ŎƻǊǊŜƭŀǘŜŘ ǿƛǘƘ 5[Ŏƻ όǊҐҍлΦрлсΤ ǇғлΦллмύΦ aǳƭǘƛǾŀǊƛŀǘŜ ŀƴŀƭȅǎƛǎ ƛŘŜƴǘƛŦƛŜŘ wh ŀǎ 

the only independent predictor for FVC decline (p=0.021; adjusted odds ratio 1.047). Receiver 

operating characteristic curve analysis found that an RO cut-off value of 22.05% (sensitivity 50.0%; 

specificity 81.4%; negative predictive value 89.1%) represents a level below which FVC is likely to 

be stable at 1-year follow up in IPF patients (45). 

 

3.4.2.4 Adaptive multiple feature method (AMFM) 

AMFM is a texture-based analysis tool designed to recognise the following CT patterns: normal 

lung, GGO, ground-glass reticulation (GGR), emphysema and honeycombing. The AMFM tool 

employs 26 mathematical features to describe regional density patterns combined with a Bayesian 

classifier to quantify volumes of the various radiological patterns. The method was trained on 

annotated volumes of interest from CTs by three expert radiologists(46). Sensitivity and specificity 
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for automatic identification by three-dimensional AMFM was reported as 100% for emphysema, 

95% for consolidation and 97% for honeycombing(56). 

 

Ground-glass reticulation (GGR) was the AMFM feature that showed the strongest correlation with 

equivalent visually-scored CT features (r=-0.60; p<0.0001)(46). Retrospective application of AMFM 

to a large cohort of patients with IPF demonstrated that GGR was independently associated with 

disease progression(46). In 105 patients with IPF with multiple follow-up CTs (median interval 

between baseline and final CT was 63.9 weeks), increasing GGR measured by AMFM software 

moderately correlated with decreasing FVC (r=-0.25; p=0.01)(46). Similarly, a three-expert average 

of visually-scored GGR also moderately correlated with FVC change (r=-0.30; p=0.002). Visual and 

AMFM change assessment for GGR was moderately correlated (r = 0.47, P < 0.0001). 

 

3.4.2.5 Quantitative Lung Fibrosis 

Quantitative Lung Fibrosis (QLF) and Quantitative Interstitial Lung Disease (QILD) are two scores 

provided by an automated CAD-based system developed for assessing ILD using texture features 

(Figure 3.5 and 3.6)(57). A Support Vector Machine (SVM) was used to select features to classify 

fibrotic reticulations, ground glass opacities, honeycombing and normal lung parenchyma. The 

texture-based scores were obtained using a 5 step process: 1) denoising CT images, 2) sampling 

each pixel from a 4x4 grid within the segmented lung, 3) extracting texture features using 

characteristics of grid intensities, 4) using a SVM to classify pixels, 5) expressing the scores as a 

percentage of lung involvement or volume of affected lung tissue (40). Denoising the CT images 

allowed normalization of differences in acquisition parameters across longitudinal CTs (40).  
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The automated system was initially used to classify disease patterns in selected ROIs (58) but was 

extended to quantify lung fibrosis across the entire lung (57). The system produced objective and 

reproducible quantification of lung fibrosis in patients with IPF and assessed changes in fibrosis 

extent in scleroderma patients undergoing treatment. In IPF patients the QLF score demonstrated 

significant correlations between change in QLF values across longitudinal CTs and change in 

pulmonary function tests (40). Notably the improved detection of treatment effects within a given 

sample size was shown to allow an approximately 50% reduction in the study sample size whilst 

maintaining the same study power (59). 

 

3.4.2.6 Data-Driven Textural Analysis 

Data-Driven Textural Analysis is a computer algorithm which uses an unsupervised feature-

learning process, based on a CNN, to select features to train a SVM classifier (29). This 

unsupervised process uses a huge number of image patches to produce a set of basic elements 

(dictionary) which can be used to classify other image regions. The system was then trained as a 

classifier using ROIs labeled by a radiologist as normal or fibrotic lung. In this way the SVM is 

trained to classify new image regions based on the established dictionary and categorize them as 

either normal lung or fibrotic lung. This approach is different from other more traditional methods 

where features are manually defined. The main advantage of the system is its use of more 

discriminative features for classifier training which makes automatic classification of lung patterns 

on CT more effective (Figure 3.7).  

 

The DTA approach has been used on a population of 280 IPF patients, with 72 of these undergoing 

follow-up CT. DTA fibrosis score, calculated as the number of fibrotic ROIs divided by the total 

number of ROIs sampled, showed significant correlations with semiquantitative visual scores (r=-
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0.50; p<0.001) and PFTs (FVC (r=-0.60, p<0.001), DLco (r=-0.68, p<0.001)) at baseline. In patients 

with follow-up CT imaging (Figure 3.7), change in DTA fibrosis score showed moderate significant 

correlations with ŎƘŀƴƎŜ ƛƴ C±/ όˊҐ-лΦпмΤ ǇғлΦллмύ ŀƴŘ 5[Ŏƻ όˊҐ-0.40; p<0.001). These findings 

suggest that DTA can provide an objective measurement of baseline disease severity and disease 

progression (29). Further work comparing longitudinal DTA change to physiological and patient-

reported outcome measures have shown that the minimal clinically important difference in DTA 

fibrosis score is 3.4% of the lung (60). 

 

3.4.2.7 Functional Respiratory Imaging 

Functional respiratory imaging (FRI) is a post-processing application that uses volumetric CT 

images acquired at functional respiratory capacity (FRC) and total lung capacity (TLC). 

Computational fluid dynamics (CFD) are used to obtain structural and functional parameters from 

CT imaging. CTs are acquired using respiratory gating to guarantee correct and repeatable lung 

volumes. FRI calculates lobar volumes, airway and vessel volumes, airway resistance and airway 

radius (61, 62). FRI is the only QCT tool to consider airway volumes as potential prognostic 

variables. FRI has been validated in obstructive pulmonary disease (19) with low variability in 

airway and vessel volume measurements and measures of airways resistance (63, 64).  

 

In IPF patients, significant correlations were found between declining FVC and declining lung 

volumes, increasing fibrotic tissue (calculated as areas with HU between -600 and 600) and 

increases in specific airway radius as measured by FRI. The correlation between FVC decline and 

an increase in airway volumes is likely to relate to the development of traction bronchiectasis, 

with the correlation more pronounced in the lower lobes. The utility of measuring changes in 

airway radius to predict disease severity and progression may be accentuated in patients with 
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early disease where FVC measurements can still be normal. The ability to detect regional changes 

in airway or lobar volumes might allow a reduction in sample sizes needed for IPF drug trials to 

detect disease progression or treatment effects (61). 

 

3.5 Future Avenues and Challenges 

As our understanding of FLD and computer-based image analysis evolves together, new areas of 

research targeting unmet clinical needs are emerging. It is well established that in cases where a 

diagnosis may not be clear, observing the behavior of a disease can provide a provisional working 

diagnosis for a patient (65). More recently the concept of the progressive fibrotic phenotype (66) 

has emerged to define a patient cohort that cuts across diagnoses, where administration of anti-

fibrotic medication may be beneficial. Identifying this patient group using automated means could 

be achieved by analysing time-series data, modelled on disease progression/survival independent 

of their actual diagnosis. Algorithms could then identify CT features in patients with a non-

idiopathic fibrosing lung disease that suggest an IPF-like outcome. Using the same diagnosis-

agnostic approach, disease classification may be based on likely prognosis, which might better 

inform management strategies. Accurate determination of disease trajectory is undoubtedly aided 

by identifying sensitive, reproducible biomarkers of disease progression. In this regard, 

improvements in the measurements of airway metrics such as airway volume and tortuosity 

across the fibrosing lung diseases hold great promise. 

 

The characterization of interstitial lung abnormalities which may represent an early stage of 

fibrosing lung disease is another area where large volumes of data should provide opportunities 

for deep learning algorithms. The advent of lung cancer screening programs in several countries is 

generating imaging and outcome data in a population enriched in their propensity to develop 
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fibrosing lung disease. It is here that patterns identified by a computer, but which have no visual 

equivalent might have the most promise. Given the huge numbers of patients that are imaged in 

lung cancer screening programs, some form of automated triage of chest CT imaging could also 

rationalize referrals to interstitial lung disease units. Yet the sheer heterogeneity of the CT imaging 

in screening programs will need to be addressed to avoid false positive and false negative 

identification of disease. Heterogeneity may result from technical parameters such as differences 

in scanner manufacturer, model, reconstruction algorithm and radiation dose between studies. 

Additionally, patient factors such as variation in inspiratory effort, concurrent illness, patient 

weight and position (prone versus supine) differences can affect automated CT interpretation. 

Deep learning algorithms are now being employed to harmonize CTs acquired using different 

techniques in an attempt to limit interscan measurement variability. 

 

Identifying and quantifying the complex imaging features seen on FLD CTs could potentially be 

improved by capturing volumetric information with three-dimensional deep neural networks. 

Though image interpretation could be improved when compared to two-dimensional neural 

networks, three-dimensional deep networks typically require far more processing power and 

much larger datasets for model training. ILD databases today generally number hundreds of 

patients which might be too small for robust image classification by three-dimensional networks. 

Though existing limitations in computer hardware are likely to be overcome in the near future, the 

constraint of limited imaging data in the field of FLD will be a harder challenge to overcome. It is 

also becoming apparent that evaluating imaging alone will not fully harness the power of 

computational analysis. FLD datasets of the future are likely to be multimodal comprising 

electronic health records, imaging, genetic and biomarker information. Interpreting this 

information will improve our understanding of disease pathogenesis but will require a new kind of 
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clinical team where bioinformaticians, geneticists, statisticians and computer scientists might work 

together in truly multidisciplinary collaborations that cut across scientific fields.  

 

Finally, the question of trust is becoming increasingly pertinent to the study of computer analysis. 

As with self-driving cars, in the sphere of medical image analysis, we hold computers to a higher 

standard than we might expect of humans. And this is because the potential implications of an 

algorithm being blind to an imaging abnormality due to deficient training data is real and 

concerning. Standards are now being proposed by which we should evaluate computer analysis of 

medical imaging and these will be our guide in the years to come (67). A clear and fundamental 

imperative is that algorithms are rigorously validated across multiple diverse datasets prior to 

widespread use, to rule out overfitting of an algorithm to its training datasets. Furthermore, as 

algorithms are heavily influenced by the data used for training, it is important to ensure that 

patients subgroups are adequately represented e.g. by actively considering the distribution of 

demographics such as gender, ethnicity and socioeconomic status in training datasets. Similarly, in 

relation to FLD, algorithms trained on western European or North American populations may not 

transpose easily to developing world settings where biomass-fuel exposure and tuberculosis-

related lung damage may affect image interpretation. This is before considering the well-

documented regional variations in prevalence of various FLDs around the world(68).  

 

3.6 Conclusions 

Over a relatively short space of time, computer analysis of ILD imaging has found an important 

niche in the evaluation of patients with fibrosing lung disease. Though primarily research tools at 

present, as the field evolves and matures and acquires approval by regulatory agencies, their 

incorporation into clinical radiology workflows can be envisioned. The main opportunities lie in 
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quantifying disease severity at baseline, disease progression over time and characterizing 

interstitial lung abnormalities, particularly in lung cancer screening populations. This may herald a 

change in the vocabulary used to describe lung fibrosis, which has remained quite consistent over 

20 years. Challenges remain, particularly in relation to the availability of comprehensive datasets 

for analysis. Yet given the complexities and challenges inherent to visual ILD evaluation, the 

integration of objective measures of disease subtype, severity and progression should be 

embraced.  
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Quantitative computer tool 
 

CT pattern identification 

CALIPER  
(Computer-Aided Lung Informatics for 
Pathology Evaluation and Rating) 

Measures low attenuation areas, ground glass opacities, 
reticulation, honeycombing, normal lung and vessel-related 
structures. Features identified in 15x15x15 voxel volume units on 
volumetric non-contrast enhanced CT images. 

AQS  
(Automated Quantification System) 

Measures low attenuation areas, ground glass opacities, reticular 
opacity, honeycombing, normal lung, emphysema and 
consolidation on non-contiguous, non-contrast enhanced CT 
images.  

AMFM  
(Adaptive Multiple Features Method) 

Measures ground glass opacities, ground-glass reticulation, 
honeycombing, normal lung and emphysema on volumetric non-
contrast enhanced CT images. 

QLF  
(Quantitative Lung Fibrosis) 

Measures lung fibrosis (reticulation) or interstitial lung disease 
(sum of ground glass opacities, reticulation and honeycombing). 
Evaluates non-contiguous, non-contrast enhanced CT images. 

DTA  
(Data-driven Textural Analysis) 

Discriminates tissue as either fibrotic or normal. Fibrotic tissue 
includes reticulation, traction bronchiectasis and honeycombing. 
Evaluates non-contiguous, non-contrast enhanced CT images. 

FRI  
(Functional Residual Imaging) 

Measures lung, lobar, vessel and airway volumes and fibrotic and 
emphysematous volumes. Evaluates volumetric, non-contrast and 
contrast enhanced CT images. 

 

Table 3.1 Quantitative computer tools that evaluate lung damage on computed tomography imaging 
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Figure 3.1 Axial CT images taken at the upper, middle and lower zones of the lungs demonstrating 

a usual interstitial pneumonia pattern on CT in a 49-year-old male 3-pack-year ex-smoker. The 

usual interstitial pneumonia pattern is characterized by honeycomb cysts and traction 

bronchiectasis in a predominantly basal and peripheral distribution within the lungs. In the 

presence of idiopathic disease, the patient was diagnosed with idiopathic pulmonary fibrosis 

following multi-disciplinary team discussion.  
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Figure 3.2 Changes on longitudinal CT images performed 15 months apart in a 77-year-old male, 

never-smoker diagnosed with idiopathic pulmonary fibrosis. Images have been taken at 

corresponding points in the upper, middle and lower zones of the lungs. Using traditional visual CT 

scoring methods quantifying total interstitial disease (ILD) extent to the nearest 5% on each CT 

timepoint, an increase in total ILD extent of more than 5% was not demonstrated. Yet the patient 

demonstrated clinical deterioration. Whilst there is subtle alteration in the character of the fibrotic 

regions, it did not equate to a measurable difference in total ILD extent for the whole lung. 

  



 30 

 

   

     

Figure 3.3 Axial CT images in the upper, middle and lower zones of the lungs (top row) in a 54-

year-old female never-smoker diagnosed with rheumatoid arthritis-related interstitial lung 

disease.  Corresponding images on the bottom row demonstrate parenchymal quantitation by 

CALIPER. The images demonstrate fibrosis characterized by reticulation, traction bronchiectasis 

and architectural distortion with a lower zone predominance. (Dark green=normal lung, light 

green and blue=reduced attenuation lung, yellow=ground glass opacity, orange=reticulation).
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Figure 3.4 Axial CT image of a 77-year-old male ex-smoker with rheumatoid arthritis-related 

interstitial lung disease. Fibrosis with peripheral layered honeycombing cysts are visible in the 

midzones of the lung. Vessel-related structures (pulmonary arteries and veins and related fibrosis) 

quantified by CALIPER, a quantitative CT tool, are highlighted in red. In patients with rheumatoid 

arthritis-related interstitial lung disease, vessel- related structures comprising more than 4.4% of 

the lung have been shown to predict an idiopathic pulmonary fibrosis-like outcome, regardless of 

a patientsΩ baseline disease extent or severity. 
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Figure 3.5 A 57-year-old male diagnosed with idiopathic pulmonary fibrosis, who had a forced vital 

capacity of 69% percent predicted at baseline. Axial CT images of the middle (A) and lower (B) 

lungs are demonstrated with coronal reconstructions (C) show peripheral reticulation and traction 

bronchiectasis in keeping with a probable usual interstitial pneumonia pattern. Corresponding 

image overlays following classification of quantitative lung fibrosis (QLF) score are also shown (D-

F). The sum of blue and red dots indicate the voxels that have been classified as fibrotic 

reticulation. (Courtesy of Grace Hyun Kim, Center for Computer Vision and Imaging Biomarkers, 

Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA). 

  



 33 

 

Figure 3.6 A 62-year-old man diagnosed with rheumatoid arthritis-related interstitial lung disease, 

who had a forced vital capacity of 77% percent predicted at baseline. Axial CT images of the 

middle (A) and lower (B) lungs are demonstrated with coronal reconstructions (C) which highlight 

peripheral reticulation and traction bronchiectasis. Corresponding image overlays following 

classification of quantitative interstitial lung disease (QILD) score are also shown (D-F). The sum of 

blue and red dots indicate the voxels that have been classified as fibrotic reticulation. The sum of 

yellow dots represents quantitative ground glass (QGG) lung. The sum of pink dots represents 

quantitative honeycomb (QHC) lung. The total sum of QLF, QGG and QHC constitutes the QILD 

score. (Courtesy of Grace Hyun Kim, Center for Computer Vision and Imaging Biomarkers, 

Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA).  
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Figure 3.7 Sequential quantitative CT measurement of fibrosis in a 71-year-old male patient diagnosed with 

idiopathic pulmonary fibrosis. Axial CT images are shown at baseline (left) and 14 months later (right), using 

Data-Driven Texture Analysis (DTA). The extent of fibrosis, shown in red (bottom row), increased from 39% 

(bottom left) to 52% (bottom right), and the patient deteriorated physiologically, with a decrease in forced 

vital capacity from 66% predicted to 45% and a decrease in diffusion capacity of carbon monoxide from 

43% to 26%. (Courtesy of Stephen Humphries, Quantitative Imaging Laboratory, Department of Radiology, 

National Jewish Hospital, Denver, Colorado, USA). 

 


