Quantitative CT analysis in ILD and use of artificial intelligence on imaging of ILD
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ABSTRACT

Advances in computer technologyer the past decade, particularly in the field of medical image
analysishavepermitted the identification characterizatiorand quantitation of abnormalities that
can be used to diagnose disease, or determine disease severity. On CT imaging performed in
patients with interstitial lung diseag¢LD) deep learningcomputer algorithng now demonstrate
comparable performance with trained observers in the identification of a usual interstitial

pneumonia patternwhich isassociagd with a poor prognosis iseveralfibrosinglLDs

Computer tools that quantify individual voxielvel CTfeatures have also nhow come of age arath
predict mortality with greatepowerthan visual CT analysis scores. As these tools become more
established, they have the potential to improve the sensitivity with which minor degrees of
disease progression argdntified. Currentlypulmonaryfunction tests are the gold standard
measured used to assess clinical deterioration. However, the variation associatgulimitbnary
function measurements may mask the presence of small but genuine functional dedtichin

the future could be confirmed bgomputer tools The current review will describe the latest
advances in quantitative CT analysis and deep learning as related iloDkend suggest potential

future directions for this rapidly advancing field.
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3.1 Introduction

Highresolution computed tomography (CT) of the chest is central to the evaluation of patients
with interstitial lung disease (ILD)ne of the strengthof CTisits abilityto identify signs of

fibrosis This allowshe wide list of differential diagnoses ofLD,whichinclude over ahundred
differential entities to five fibrotic ILI3 (1). In the setting of fibrginglung disease (FL® key

initial assessment is the identification @tisual interstitial pneumonia (Ulpattern. A UlRpattern
classically presents withasal, subpleuradnd bilateral reticular opacitie®ronchiectasisand
honeycombingFigure 3.1)The identification of a UIP pattem the right dinical context allowa
diagnosis of idiopathic pulmonary fibrogl®F to be madewithout the need for a lung biops).
Thanks to its diagnostability, CThas been formallyntegrated into themultidisciplinaryteam

discussiorwhichhas becomeéhe reference standard for the diagnosis of (2BX4).

CT also has a prognostic role in év2luation Atypical UIP pattern on 03 associated with a
worse prognosi#n idiopathic diseasen chronic hypersensitivity pneumonitend connective
tissuediseaserelated ILD5). In addition tothe overall radiologig@attern, individual CBignsalso
demonstrateprognostic valueExtensivéhoneycombingincreasedseverity and extent of traction
bronchiectasisanda highfibrosis score (thsumof honeycombing and reticulatioextents have

beenassociated wittan increasedisk of deathacrossseveral fibrotic lung diseas€6-10).

Despiteits diagnostic and prognostic potentj@Tinterpretation has limitations Firsty, CT
evaluationis liable to significaninterobservervariability. For examplethe agreementbetween
radiologistsfor the identificationof honeycombings surprisingly poofl1). Furthermore, the
radiological classification of fibrotic interstitial lung daseaccording to pattersdefined bylLD

guidelineds subject to higlnterobservervariability (12). Importantly,subtle changes can be



challenging to capture in coarse visual scores (FigeAccurate asessment of disease exit
and severity on a patienisitial CT would enable improved patient stratification and
identification of individuals at higher risk of disease progression. This ircoutd facilitate earlier

intervention, for example selection for early lung transplant referral.

Whilstpulmonary functiortests PFT¥sremain the conventional method used to monitor ILD
progression, there are intrinsic disadvantages to assessing regional, heterogeneous lung changes
using global measures of lung damage. Normal PFT ranges are wide and may mask small
measurementeteriorations. A decline in patient health as evidenced by reduction of annual
forced vital capacityFVQ by 510% may not be accurately detected in the presence of variation

due to patient effort/posture etc.

Some staging systenmscorporatingvisualCT scaswith physiologic parameters have been
validated in ILD but due to limitations in observer agreement and low sensitivity areutotely

used in clinical practicer asdrug trialend-points (13, 14). Moreovervisual CT evaluation is not
sersitive enough to capture shoterm clinically useful changé8, 11, 15, 16). As antifibrotic
therapies improve, more sensitive biomarkers of disease progression will be required to capture
their addedtherapeutic effect.There isalsogrowingevidence thalC & may contain prognostic
information that is not visually detectable but is amenable to compin@sed quantificatior{17,

18). These limitations provide the rationale foomputerbasedCT analysis.

Our review wilinitially outline the CTacquisition techniques thatan enableoptimal performance
of computer analysis tool8Ve then mimic a clinical workflow to our review by first describing

computer analysis use in ILD diagnosis (where deep learning methods have been the mainstay)



before describing in turn the various quantitative tools that haverbemployed for measuring
disease severity/extent in individual FLDs. We conclude by summarising the dicomputer
analysis in FLEsd outlire the challenges that await on the journey towards regulatory agency

approval.



3.2 CT Acquisition Technique

A standardized CT acquisition protocol is essetdiahprovethe reproducibilityof computer

based image analysis. Volumetric acquissiafith contiguous or overlapped thisection
reconstruction is mandatory, with suggested slice thickness around inrf19). The adiation

dose rangeausedto acqure ILD CTs variegdelyandshouldbe standardized20). At present

mog CTs acquired clinically, and therefore analysed by computer tools, have utilized a dose of
>1mSv as recommended by consensus guideliffesstudy of the effecof Iterative
reconstructiontechniques on computerbased textural analysis still in its ifancy, and is
increasing in importance as CTs are increasingly acquired with dose reduction teci{iues
Indeed studies comparing the effects of computer analysis on CTs acquired using normal, low and
CXR equivalent radiation doses are keenly awaited to understand the dose range at which

computer analysis will be constrained.

For image reconstructigrselection ofa neutral kernels optimalto avoid edge enhancement or
image smoothin@gnd nost CT maniacturers providebespoke neutral kernel@1). A sharper
kernelcan beanalysed quantitively if prprocessing imageormalizationmethodsare used(22).
Thedepth of inpiration achieved during a scas a major source gfatient-relatedvariationin
lung attenuation measurementdwo possible approaches can be ugednitigate against
inspiratory vdume variability respiratory gating to determinehenthe patient isat total lung
capacity,or coachingf the patient to comply with standardized breathing instructidq@g). In
order to minimize differences between different scanners, as in case of trials where multiple
centers using different scanners are involved, calibration of the scanner with test objects

(phantoms) is suggested before and during data collec{i).



3.3 Artificial Intelligence

Artificial intelligence (Als ageneral definition which encompassseveral computer techniques
meant to perform tasks usually performed by humans. The subdiefd mest commonlyused in
medicine is machine learnir{ylL)in whichalgorithms produce outputdased on patterns and
features leared from input data(23, 24). Deep learning is a type BfL whose charateristic is its
capability to automaticallyidentify the most predictivéeaturesin a datasetand generate models
for tasksfrom the raw datawithout the need forhnuman programming25). Deep learningcan rely
on several algorithmbut those most commonly employed medical imagingre Convolutional
Neural Network (CNN).The computer architecture at the base @CNN is inspired kiyre human
nervous system witlelusters of artificial interconnectedaalesreplicating the interconnections of
humanbrain neurong23). The clusters of nodaes a CNNare usually orga@ed in multiple layers
a layer that takes the input, numerous hidden layers that process the data and anliaipér
generatesthe output. Increasing the number of hidden layers allow the algorithm to deal with
ever more complex task8vhen input data(i.e. imagesare converted ito digital data,a CNNcan
identify and extracimagingfeatures that can be used to classify the da&amajor advantages

the ability of a CNNo extract features that canndbe detected by human eye§23).

In the setting of ILD, machine learning has alrelaglgn usedn several areas. These include
detectingthe presence of ILD in patients with systemic sclerfasiswinganalysis ofPFB(26),
diaghosinglPF or a UIP pattern througlergpmicanalysig27, 28), quantifying lung fibrosis on CT

images(29) andin providingautomated classification of fibrotic ILgatternson CT image&30).

3.3.1 Al and ILD Diagnosis



There are several reasons for implementingnAhe study of ILD. Visueddiological evaluation
can be subject to low interobserver agreemevitenclassiyingHRCT sigrne disease extenor
severity Al systems may also mitigatee potentialy harmfulconsequencsof human error in

radiologic reporting31).

One of the first attempdto use neural networkin assessingadiologic images of ILD datkack

to 1990 when an artificial neural network was ugedyenerate aifferential diagnosisor ILD
subtypeson chest radiograp(32). In that study the neural network was designed to distinguish
between 9 ILBon the basis of radgraphic and clinical datdhe results showed a diagnostic
performance comparable to that afccreditedradiologists and superior to that of radiology
residents.In more recent years ML techniques have been applied s0€ILD patients to
recognize andlassify CTpatterns, to classify fibrotic lung diseasecording to diagnostic

guidelines ando quantify lung fibrosis.

The first paper where a CNMasused for the classification dED patterson CTwas publishedn
2016 In that study the CNN showeth accuracy of 85% for classifying 6 different pattern of
disease (GGO, reticulation, consolidation, miagues, honeycombing and a combination of GGO
and reticulation) plus healthy tissue lead to 7 differentimagingclasses. Thesesults were
obtained using a dateset of 14696 image patcteerain and test the softwareThe data was
derived from 120 HRGWhere tworadiologists hadnanuallydrawnregions of interes{ROIs)
around every single patter(83). The paper by Kim et gB4) obtained an even higher accuracy for
a CNN in classifying ROIs of HRCT isnage.D patients. In this paper an accuracy of up to 96%
was achieved with eeduction inclassification error between similar pattes(i.e. normal case vs

emphysema and reticular opacity vs honeycombing) as the number of layers in the CNN ohcrease



Moreover, in this paperthe CNN was compared to a more conventional classifier based on a
support vector machinachievingan increase in accuraoy 6-9%. This is believed tesult from
the CNNbeing ableo automatically extract features from data insteatiusing predefined
engineered featuredn bothstudieshowever,the need formanual identification oROlgrior to

classificatiorlimited the clinicabpplicablity of the methods in realvorld clinical practice.

To overcome this limation and to obain a more comprehensive evaluation of CT images of ILD
patients, Gaoeta[35)LINP LI2 ASR |y GK2f AadAO0¢ | LILINRI OK dza A
slicesinstead of ROId~or comparison with previous studies the same CNN wasuabd for a ROI
basedclassification The accuracy of the CNN foe identification of 6 tissue classésormal,

emphysema, ground glaspacity (GGQY¥ibrosis, micronodules antbnsolidation)was higher for

the patchbased approach (87.9%dmparedto holistic image classification (68.6%).

Only onepaperhas beemublishedto date employinga deep learning algorithm to provide an
automatic classification of fibrotic lung disease on(8J) according to international guidelines

(36). Inthe study by Walsh et atlhe algorithm was trained, validated and tested using a database
of 1157 C%acquired in two institutionsThe algorithm showed an accuracy of 76.4% for the
classification of GSlinto three categories provided by th2011consensus IPF diagnosgigidelines
(UIP pattern, possible UIP pattern, inconsistent with 3B) One of the main limiationsof this
approach washe requirement oflabeling every CT used for algorithm trainingasingle
radiologistwhose interpretation bias would have potentially affectaidorithmperformance To
overcome this lim#tion, the software wagurther tested with a different populatiomf 150 C$
where the reference standard was a consengpmionof 91 expert thoracic radiologist$ierethe

softwareshowed an accuracy of 73.3% outperforming 60 of the 91 thoracic radiologists.
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Moreover,i KS AYGSNROASNIISNI I ANSSYSyld 6S0GsSSy GKS |
opinion (kw=0.69) was comparablettte median interobserver agreement between each thoracic

radiologistandhe NI RA2f 23A3a0GaQ YI22NRG& 2LIAYA2Y 6167 nad

3.4 Quantitative CT
Quantitative CT (QCT) describes the numerous comghdeed CT image analysis methods
developed to measure structural lung damage in ILD. QCT methods offer improved objectivity,
speed, reproducibility anthe ability to scale up analysis to hundreds orukands of CTQCT
derived metrics demonstrate potential as prognostic imaging biomarkers with reported utility in
evaluating:

1. Disease severity at a single timepoint on a CT

2. Disease progression, quantifying longitudinal change on sequential CTs

Novel QT imaging biomarkers are emerging through machine learning or deep learning
techniques that are not appreciated by the human efew biomarkersepresentfeatures that

have no morphological correlate cadiological descriptor. Quantification of overalhb

histogram features, regional CT density changes, parenchymal textural features andruthiary
assessments by advanced algorithms have the potential to standardise and enhance the role of CT

in ILDevaluation

3.4.1 Quantitative CT for assessing ILD severity

11



Most QCT methods employ denségd/or texture-based analysis of varying complexity. All
methods require initial segmentation of the whole lungs from surrounding chest wall structures,

which should ideally be an automated process requiringimmath manual correction.

Density mask techniques and evaluation of the haegsity histogram were amongst the fiQCT
methods developed to assess I&&rerity(37). Quantification of emphysema using a lo\ensity
Hounsfield unit (HU) threshold is wedicognised. Similarly, higlensity threshold$iave been

used todetect soft tissualensty in the lung replacing air densifs a result opulmonary

fibrosig38). For normal lung, the Cedsity histogram peaks at approximate800 HU and is left
skewed. The presence of fibrosis results in an increased mean lung density and decrease in the
lunghistogram kurtosis (peakedness) and skewness (asymn(@@yY et correlations between
suchdensity histogram metrics anglirvival in patients withLD have beegenerally poofd0-43).

This reflects the challenge of capturing detailed regional information using a summary global
densitymeasure, often confounded by low density structures, for exarnaletion bronchiectasis

and honeycombing, as well ag trapping in hypersensitivity pneumonitis.

Newer QCT methods apply textubased analysis to characterise, model and process imaging
features at a voxel lev¢Table 3.1)These methods incorporate both morphological and density
features. By simulating human visual perceptual and learning processes, téesed algorithms
attempt to determine the type of abnormality (for example emphysema vs honeycombing vs
cysts), severity (fine vs course reticulation) and disease e@@r87, 40, 44-46). These complex
QCT methodoverlaying the QCT readout onto CT imagélswingregional ILD changés be

visualsedby clinicians and patien{40).
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3.4.2 Examples of QCT tools

3.4.2.1 Density histogram analysis

Various CT density thresholds haeen proposedor the assessment of ILD extemt¢cluding >
700 HWY47) anda rangebetween-750 HU and300 HU for thespecificdetection of GG(18).
Inherent advantages of the density mask technique include universal applicability and
convenience, since the method is basedeasily appreciate€ THounsfield unitvalues.CT
densityhistogram measureBave been found to be inferido visual fibrosis scores and PFTs for

survival prediction(43).

In astudy comparing histogram features to textural analysis @olaort of 95 patients with IPF,
significant density histogram changes between baseline angkar followup CT including mean

CT value of the whole lungs (P = 0.003), skewness (P < 0.001) and kurtosis (P < 0.001) were
consistent with disease progressidi). However CT texturederived totalquantitativelung

fibrosis (QLF) scores were reported to be better than CT density histogram measures for assessing
longitudinal change in IPF. Whilst both QLF and kurtosis scores correlated with FVC at baseline,

only QLF scores significantly correlated with longitatfVC change " I' n ®p T TAOLF ndnnnm

3.4.2.2 Computer Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER)

CALIPER was developed ughgracicradiologist consensus assessment of histopathologically
confirmed training imag€49). CALIPE&haracteriseyolumetricCT data using morphological and
3D histogram features within voxel volume urlabelledaccording tahe conventional
radiological lexicon: normal lung, GGO, reticulatsuytypes of lowattenuation and

honeycombingFigure 3.3)
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When CALIPER and visual CT scores were examined as predictors of survival in patients with IPF,
CALIPER variables were more accurate in survival prediction than equivalent visual CT scores
CALIPE honeycombing extent independently predidimortality (hazard ratio 1.18; p=0.002)

following adjustment for baseline disease severity using the composite physiologi¢liddex
Acknowledging that functional measures including DLco and CPI are stronger predictors of survival
in patients with severe IPHe greatest potential utility of QCT measures may be in patients with

less extensive or early stage dise@s.

A unique attribute of CALIPER is the ability to quantify vestatied structures (VRS). VRS,
previously termedoulmonary vessel volumé&y\, corresponds to pulmonary vesselsd

associated structures, for example perivascular fibrosis which has no visually scored equivalent
(Figure 3.4)CALIPER VRS wsdwwn to bean independent predictor of mortality in IPF (hazard
ratio 1.53; p<0.0001and an increase in VR&8as found to besuperior tovariousautomated and
visual CT scores predicting mortalityin IPEL7). Analysis ofongitudinal changes in CALIPER CT
parametersdemonstrated thatCALIPER VRS threshatlshangewere the strongest Cpredictor

of mortality in independent discovery and validation cohdf$). Thresholds of VRS change were
also shown to be able to adjudicate marginal FVC decline®&% in a composite staging system

in patients with IP{1).

Whilst the majority of research using QCT has been undertaken in IPF patients, several CALIPER
studies have examined other fibrosing lung diseases. Studies in connective tissue-thtaase
ILO52) and unclassifidle ILE¥53) have emphasised that thgrognostic signal from CALIPER

variables, particularly VRS is not confined to patients with IPF. In hypersensitivity pneumonitis

14



patientg54), and patients with rheumatoid arthritieelated IL55), simple binary VRS thresholds
have shown the ability to identify patients with an i€ outcome, regardless of a patients

starting baseline disease sever{figure 3.4)

3.4.2.3 Automated Quantification System (AQS)

AQSgdeveloped in SeouKoreaquantifies six regional patterns on Qibrmal, GGO, reticular

opacity (RO), honeycombing, emphysema and consolidation. An AQS fibrotic score is calculated
from the sum of RO and honeycombing extent. The texhased AQS model was trained using
multiple sampled regions from CT images acquusitig different CT scanners byleracic

radiologist with 10 years of thoracic CT experi€ibg

AQSiRG showedthed I NPy 3Said O2NNBt I GA2Y 6A0GK Cx/ ONIbLn
glra Y2a0G aidNpy3ate O2NNBfIFIGSR gA0GK 5[ 02 OoNITbno
the only independent predictor for FVC decline (p=0.021; adjusted odds ratio 1R&a@giver

operating characteristic curve analysis fouhdt anRO cutoff value of 22.05% (sensitivity 50.0%;
specificity 81.4%; negative predictive value 89.i8pyesents a level below which FVC is likely to

be stable at tyear follow up inPFpatients (45).

3.4.2.4 Adaptive multiple feature method (AMFM)

AMFM is a texturdasedanalysis tool designed to recognige followingCT patternsnormal

lung, GGO, groundlass reticulation (GGRImMphysema and honeycombing. The AMFM tool
employs 26 mathematical features to describe regional density patterns combined with a Bayesian
clasifier to quantify volumesf the various radiological patterns. The method was trained on

annotated volumes of interest from CTs by three expadiologist$46). Sensitivity and specificity

15



for automaticidentification by threedimensional AMFM was reported as 100% for emphysema

95% forconsolidation and 97% for honeycomb{&6).

Groundglass reticulation (GGR) was the AMFM feature that shawedtrongest correlation with
equivalent visualhscored CT features (#3-60; p<0.0001%6). Retrospective applicationf AMFM

to a large cohort of patients with IPF demonstrated that GGR was independently associated with
disease progressi@¢d6). In 105 patients with IPF with multiple follemp CE (medianinterval

between baseline andrfal CT was 63.9 weeks), increasing GGR measured by AMFM software
moderately correlatd with decreasing FVC (3:25; p=0.01%6). Similarly, a thre@xpert avzerage

of visuallyscored GGR also moderately correlated with FVC change30:=p=0.002). Visual and

AMFM change assessment for GGR was moderately correlated (r = 0.47, P < 0.0001).

3.4.2.5 Quantitative Lung Fibrosis

Quantitative Lung Fibrosis (QLFHa&puantitative Interstitial Lung Disease (QILD) are two scores
provided by an automated CAiased system developed for assessing ILD using texture features
(Figure 3.5 and 3.@7). A Support Vector Machine (SVM) was used to select features to classify
fibrotic reticulations, ground glasspacities, honeycombing and normal lung parenchyma. The
texture-based scores were obtained using a 5 step process: 1) denoising CT images, 2) sampling
each pixel from ax# grid within the segmented lung, 3) extracting texture features using
characteristts of grid intensities, 4) using a SVM to classify pixels, 5) expressing the scores as a
percentage of lung involvement or volume of affected lung tigg@® Denoising the CT images

allowed normalization of differences in acquisition parameters across longitudind@Ts
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The automated system was initially used to classify disease patterns in seiR0tg@8) but was
extended to quantifyungfibrosis across the entire lur(§7). The system produced objective and
reproducible quantification olung fibrosign patients withIPFand assessed changeesfibrosis

extentin scleroderma patients undergoing treatment. In IPF patients the QLF score demonstrated
significant correlations between change in QLF values atooggudinal CTs and change in
pulmonary function test¢40). Notably the improved detection of treatment effectvithin a given
sample size was shown to allow an approximately 50% reduction in the study sample size whilst

maintaining the same study pow¢€s9).

3.4.2.6 Data-Driven Textural Analysis

DataDriven Textural Analysis is a computer algorithm which uses an unsupervised feature
learning process, based orCAN to select features to train a SVM classi{@9). This

unsupervised process uses a huge number of image patches to produce a set of basic elements
(dictionary) which can be used to classify other image regions. The sy&®then trained as a
classifier using ROEbeled by a radiologist as normal or fibrotic lung. In this way the SVM is
trained to classify new image regions based on the established dictionary and categorize them as
either normal lung or fibrotic lung. This approach is differeom other more traditional methods
where features are manually defined. The main advantage of the system is its use of more
discriminative features for classifier training which makes automatic classification of lung patterns

on CT more effectivéFigue 37).

The DTA approach has been used on a population of 280 IPF patients, with 72 of these undergoing
follow-up CT. DTA fibrosis score, calculated as the number of fibrotic ROIs divided by the total

number of ROIs sampled, showed significant correfetiwith semiquantitative visual scorés-
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0.50; p<0.001) and PFTs (FV@X(69, p<0.001), DLco (6:68, p<0.001)at baseline. In patients

with follow-up CT imagin@Figure 37), change in DTA fibrosis score showed moderate significant
correlationswihOK I y3S  AnydnowT LS T n 0wd0; pL0YR)THege Grlings ~ T
suggest that DTA can provide an objective measurement of baseline disease severity and disease
progression29). Further work comparing longitudinal DTA change to physiological and patient
reported outcome measures have shown that the minimal clinically important difference in DTA

fibrosis score is 3.4% of the |u(&p).

3.4.2.7 Functional Respiratory Imaging

Functional respiratory imaging (FRI) is a gosicessing application that uses volumetric CT

images acquired at functional respiratory capacity (FRC) and total lung capacity (TLC).
Computational fluid dynamics (CFD) are used to obtain structural anddaatparametersrom

CT imaging. Ghre acquired using respiratory gating to guarantee correct and repeatable lung
volumes. FRI calculates lobar volumes, airway and vessel volumes, airway resistance and airway
radius(61, 62). FRI is the only QCT tool to consider airway volumes as potential ptaynos
variables FRI has been validated in obstructive pulmonary diséB@eawith low variability in

airwayand vessel volume measurements and measures of airways resigg8)64).

In IPF patientssignificant correlations were found between declining FVC and declining lung
volumes, increasing fibrotic tissue (calculated as areashlitbetween-600 and 600) and

increases in specific airway radius as measured by FRI. The correlation between FVC decline and
an increase in airway volumes is likely to relate to the development of traction bronchiectasis,

with the correlation more pronounceth the lower lobes. The utility of measuring changes in

airway radius to predict disease severity and progression may be accentuated in patients with
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early disease where FVC measurements can still be normal. The ability to detect regional changes
in airway or lobar volumes might allow a reduction in sample sizes needed for IPF drug trials to

detect disease progression or treatment effe(@4).

3.5 Future Avenues and Challenges

Asour understanding of FLD amdmputerbased image analysis evolwegether, new areas of
research targeting unmet clinical needs are emergihg. well established that inases where a
diagnosis may ndte clear, observing the behavior ofdésseasecan provide a provisional working
diagnosis for a patien5). More recently he concept of the progressive fibrotic phenoty(tb)
has emerged to defina patientcohort that cuts amss diagnoses, where administrationasfti-
fibrotic medicationmay be beneficialdentifying this patient groupising automated meansould
be achieved bwnalysingime-series datamodelled on disease progression/survivelependent
of their actual dagnosisAlgorithms could then identify CT featurespatients with anon-
idiopathic fibrosing lung diseasleat suggestn IPFlike outcome Using the sameéiagnosis
agnosticapproach disease classification may be based on likely prognosis, which batjbt
inform management strategieé\ccurate determination of disease trajectasjundoubtedlyaided
by identifyingsensitive reproduciblebiomarkers of disease progressidnthisregard,
improvements in themeasurenents ofairwaymetrics such as aiwrayvolume and tortuosity

across thdibrosing lung diseasdw®ld great promise

The characterization of interstitial lung abnormalities which may represent an early stage of
fibrosing lung disease is another area where large volumes ofsifataldprovide opportunities
for deep learning algorithms. The advent of lung cancer screening programs in several countries is

generating imaging and outcome data in a populatgomiched in their propensity to develop
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fibrosing lung disease. It is here that patterdentified by a computerbut which have no visual
equivalent might have the most promise. Given the huge numbers of patients that are imaged in
lung cancer screening programs, some form of automated triage of chest CT imaginglsould
rationalize referals to interstitial lung disease units. Yet the sheer heterogeneity of the CT imaging
in screening programs will need to be addressed to avoid false positive and false negative
identification of disease-eterogeneity may result from technical parameteusls as differences

in scanner manufacturer, model, reconstruction algorithm and radiation dose between studies.
Additionally patient factors such as variation in inspiratory effort, concurrent illness, patient
weight and position (prone versus supineXeliencescanaffect automated CT interpretation.

Deep learning algorithms are now being employed to harmonize CTs acquired using different

techniques in an attempt to limit interscan measurement variability.

Identifying and quantifyinghe complex imagindgeaturesseen on FLD C€suld potentially be
improved bycapturing volumetric information witlthree-dimensional deep neural networks
Though image interpretation could be improved when comparetiim-dimensionaheural
networks three-dimensional deemetworkstypicallyrequire farmore processing power and
muchlarger dataetsfor modeltraining. ILD databases todggnerallynumber hundreds of
patientswhich might be too small for robust imagtassification by threelimensional networks.
Though exishg limitations in computer hardware are likely to be overcome in the near future, the
constraint of limitedmagingdata in the field of FLD will be a harder challenge to overcdime.
also becoming apparent that evaluating imaging alone will not fully harness the power of
computational analysis. FLD datasets of the future are likely to be multimodal comprising
electronic health records, imaging, genetic and biomarker informatiwerpreting this

information will improve our understanding of disease pathogenesis but will require a new kind of
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clinical team where bioinformaticians, geneticists, statisticians and computer scientists might work

together in truly multidisciplinargollaborationsthat cut across scientific fields.

Finally the question of trust is becoming increasingly pertinent to the study of computer analysis.
As with seldriving cars, in the sphere of medical image analysis, we hold computers to a higher
standardthan we might expect of humanand this is becaushe potential implications of an
algorithm being blind to an imaging abnormality due to deficient training data is real and
concerning. Standards are now being proposed by which we should evaluate @rapatysis of
medical imagin@nd these will be our guide in the years to co(@@). A clear and fundamental
imperativeisthat algorithmsare rigorouslyvalidated across multiple diverse datasets prior to
widespread usgto rule out overfitting of an algorithm to its training datasefrthermore, a
algorithms are heavily influenced by the data used for training, it is important to ensure that
patients subgroupare adequately represented e.g. by actively considering the distribution of
demographics such as gender, ethnicity and socioeconomic status in training datasets. Similarly,
relation to FLDalgorithms trained on western European oofth American populations may not
transpose easily to developing world settings where bionrfastexposure and tuberculosis

related lung damage may affect image interpretation. This is before considering the well

documented regional variations in prevat@nof various FLDs around the wd@8).

3.6 Conclusions

Overarelativelyshort space of timecomputer analysis of ILD imaging has found an important
niche in the evaluation of patients with fibrosing lung disease. Thouigharily research toad at
present as the fieldevolvesand matures and agpiires approval byegulatory agenciesheir

incorporation intoclinicalradiologyworkflowscan be envisionedrhe main opportunities lie in

21



guantifying disease severity at baseline, disease progression over time and characterizing
interstitial lung abnomalities, particularly in lung cancer screening populatidies may herald a
change in thevocabularyused to describe lung fibrosis, which has remained quite consistent over
20 yearsChallenges remain, particularly in relation to the availabilityashpgrehensive datasets

for analysisYet given the complexities and challenges inherentisoialILD evaluation, the
integration of objective measures of disease subtype, severity and progression should be

embraced.
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Quantitative computer tool

CT pattern identification

CALIPER
(ComputerAidedLung Informatics for
Pathology Evaluation and Rating)

Measures low attenuation areas, ground glass opacities,
reticulation, honeycombing, normal lung and vessdated
structures. Features identified ttbx15x15 voxel volume units
volumetric noncontrast enhanced CT images.

AQS
(Automated Quantification System)

Measures low attenuation areas, ground glass opacities, reticul
opacity, honeycombing, normal lung, emphysema and
consolidation on nofcontiguous non-contrast enhancedT
images.

AMFM
(Adaptive Multiple Features Method)

Measuregground glass opacitiegroundglass reticulation,
honeycombingnormal lung anémphysemaon volumetric non
contrast enhanced CT images.

QLF
(Quantitative Lung Fibrosis)

Measures lung fibrosis (reticulation} interstitial lung disease
(sum ofground glass opacitieseticulationand honeycombim).
Evaluatesion-contiguous, norcontrast enhanced CT images.

DTA
(Datadriven Textural Analysis)

Discriminates tissue as either fibrotic or normal. Fibrotic tissue
includes reticulation, traction bronchiectasis and honeycombing
Evaluatesion-contiguous, norcontrast enhanced CT images.

FRI
(Functional Residual Imaging)

Measures lung, lobar, vessel and airway volumes and fibrotic a
emphysematous volumeg&valuatesolumetric, noncontrast and
contrast enhanced CT images.

Table3.1 Quantitativecomputer toolsthat evaluatelung damagen computed tomography imaging
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Figure 3.1 Aial CT images taken at the upper, middle and lower zones of the diemgsnstrating
ausual interstitial pneumonia pattern on @¥a 49yearold male 3-packyear exsmoker. The
usual interstitial pneumonia pattern characterized byroneycomb cysts and traction
bronchiectasis in a predominantly basal and peripheral digtigm within the lungs. In the
presence of idiopathic disease, the patient was diagnosed with idiopathic pulmonary fibrosis

following multidisciplinary team discussion.
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Figure3.2 Changes on longitudinal CT images performé&dribnths apart in a 7-yearold male,
neversmoker diagnosed with idiopathic pulmonary fibrosmages have been taken at
corresponding points in the upper, middle and lower zones of the Iudgisg traditional visual CT
scoring methodsgjuantifying total interstitiadiseasgILD)extent to the nearest 5%n each CT
timepoint, an increase in total ILD extent of more than 5% was not demonstratedh¥etatient
demonstrated clinical deterioratiarWhilstthere issubtle alterationin the character of the fibrotic

regions it did not equate to a measurable difference in total ILD extent for the whole lung
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Figure 3.3 Axial CT images in the upper, middle and lower zones of the lungs (top rowd in a 54
yearold female nevessmoker diagnosed witrheumatoidarthritis-related interstitial lung

disease. Corresponding images on the bottom row demonstrate parenchymal quantitation by
CALIPER. The images demonstrate fibissacterized by reticulation, traction bronchiectasis
and architectural distortion with fower zone predominancéDark green=normal lung, light

green and blue=reduced attenuation lung, yellow=ground glass opacity, orange=reticulation).
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Figure 3.4 Axial CT image of aygarold male exsmoker with rheumatoid arthritiselated

interstitial lung disease. Fibrosis with peripheral layered honeycombing cysts are visible in the
midzones of the lung. Vessedlated structures (pulmonary arteries and veins and related fibrosis)
guantified by CALIPER, a quantitative CT tool, are highlighted imnedtients with rheumatoid
arthritis-related interstitial lung disease, vessedlated structures comprising more than 4.4% of
the lung have been shown to predict an idiopathic pulmonary fibrllsessoutcome, regardless of

a patient€baseline diseasex¢ent or severity.
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Figure 3.5 A7-year-old male diagnosed with idiopathic pulmonary fibrosisho had a forced vital
capacity 069% percent predictedt baseline. AxialT images dhe middle (A) andower (B)

lungs are demonstrated witboronalreconstructions (C) show peripheral reticulation and traction
bronchiectasis in keeping with a probable usual interstitial pneumonia pattern. Corresponding
image overlays followinglassification of quantitative lung fibrosis (QLF) s@eealso shown (D

F) The sum of blue and red dots indicate the voxels taate beerclassified as fibrotic

reticulation. (Courtesy of Grace Hyun Ki@enter for Computer Vision and Imaging Biomarkers,

Department of Radiological Sciences, David Geffen School of Mediti& &t os Angeles, USA)
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Figure 3.6 A2-yearold man diagnosed with rheumatoid arthritieelated interstitial lung disease,
who had a forced vital capacity of 77% percent predicted at baseline. Axial CT images of the
middle (A) and lower (B) lungse demonstrated with coronal reconstructions (C) which highlight
peripheral reticulation and traction bronchiectasis. Corresponding image overlays following
classification ofuantitative interstitial lung disease (QILD) scare also shown ({B). The sm of
blue and red dots indicate the voxels that have been classified as fibrotic reticul@tiersum of
yellow dotsrepresentsquantitative ground glass (QGIahg The sum of pink dotepresents
guantitative honeycomi§QHC)ung. The total sum of QLFQGG and QHEbnstitutes theQILD
score.(Courtesy of Grace Hyun Ki@enter for Computer Vision and Imaging Biomarkers,

Department of Radiological Sciences, David Geffen School of Medicine atLld€BAgeles, USA)
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Figure 37 Sequential quantitative CT measurement of fibrosis Mi-gearold malepatient diagnosedwith
idiopathic pulmonary fibrosisAxial CT images are showrbaseline (left) and 14 montHater (right), using
DataDriven Texture Analysis (DTA). The extdriibwosis, shown in re(bottom row), increased from 39%
(bottom left) to 52% Bottom right), and the patient deteriorated physiologically, wéldecrease irforced
vital capacity from 66% predicted to 45% aadecrease irdiffusion capacity of carbon emoxidefrom

43% to 26%. (Courtesy of Stephen Humphf@santitative Imaging Laboratory, Department of Radiology,

National Jewish Hospital, Denver, Colorado, USA).
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