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ABSTRACT
We present a generalization of our recently proposed machine-learning framework, aiming to
provide new physical insights into dark matter halo formation. We investigate the impact
of the initial density and tidal shear fields on the formation of haloes over the mass
range 11.4 ≤ log (M/M�) ≤ 13.4. The algorithm is trained on an N-body simulation to
infer the final mass of the halo to which each dark matter particle will later belong. We
then quantify the difference in the predictive accuracy between machine-learning models
using a metric based on the Kullback–Leibler divergence. We first train the algorithm with
information about the density contrast in the particles’ local environment. The addition of
tidal shear information does not yield an improved halo collapse model over one based on
density information alone; the difference in their predictive performance is consistent with
the statistical uncertainty of the density-only based model. This result is confirmed as we
verify the ability of the initial conditions-to-halo mass mapping learnt from one simulation to
generalize to independent simulations. Our work illustrates the broader potential of developing
interpretable machine-learning frameworks to gain physical understanding of non-linear large-
scale structure formation.

Key words: methods: statistical – galaxies: haloes – dark matter – large-scale structure of
Universe.

1 IN T RO D U C T I O N

In the Lambda cold dark matter (�CDM) paradigm of cosmological
structure formation, galaxy formation proceeds within the potential
wells of extended haloes of dark matter. The assembly history and
internal properties of the dark matter haloes directly impact the later
growth of the galaxies within their cores. An improved theoretical
understanding of dark matter halo formation is therefore essential
not only for constraining the fundamental properties of dark matter
but also for understanding the intricate connection between halo
and galaxy formation.

The evolution of dark matter haloes is determined by a series of
complex non-linear physical processes involving smooth mass ac-
cretion and violent mergers with smaller structures. For decades, N-
body simulations have been used to model the non-linear evolution
of haloes (e.g. Springel et al. 2005). Alongside these, simpler ap-
proximate analytic models of halo collapse can provide qualitative
understanding of the results of numerical simulations. For example,
extended Press–Schechter (EPS) theory and Sheth–Tormen (ST)
theory are two widely accepted analytic frameworks used to infer
statistical properties of dark matter haloes starting from an initial

� E-mail: luisa.lucie-smith.15@ucl.ac.uk

Gaussian random field. EPS theory is based on the assumption
that halo collapse occurs spherically, once the smoothed linear
density contrast exceeds a certain threshold (Press & Schechter
1974; Bond et al. 1991). The ST formalism is an extension of
EPS theory to an ellipsoidal collapse model which accounts for the
effect of tidal shear forces around initial peaks (Doroshkevich 1970;
Bond & Myers 1996). These models require restrictive assumptions
about the physical process of halo collapse; the haloes’ non-linear
evolution is approximated as spherical and ellipsoidal, respectively,
and formulated using excursion set theory.

Machine learning provides a tool that is well suited to modelling
cosmological structure formation, given its ability to learn non-
linear relationships. In fact, machine-learning tools have already
proved useful in the context of structure formation in, for example,
distinguishing between cosmological models (Merten et al. 2019)
or constructing mock dark matter halo catalogues (Berger & Stein
2019). However, understanding the inner workings of machine-
learning models remains a challenge. Developing tools to turn
‘black-box’ algorithms into interpretable ones is essential for
machine-learning applications to physics problems; it will allow
us to interpret results in terms of the underlying physics.

In Lucie-Smith et al. (2018), we proposed a machine-learning
approach which aims to provide new physical insights into the
physics of the early Universe responsible for halo collapse. A
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machine-learning algorithm is trained to learn the relationship
between the early Universe and late-time haloes from N-body
simulations. Unlike existing analytic theories, our machine-learning
approach does not require modelling halo collapse with an excursion
set theory; the haloes’ non-linear dynamics is learnt directly from
N-body simulations. The algorithm’s learning is based on properties
of the linear initial condition fields surrounding each dark matter
particle. Machine-learning algorithms are sufficiently flexible to
include a wide range of properties of the initial conditions which
may contain relevant information about halo formation, without
changing the training process of the algorithm. By comparing
the predictive performance of the algorithm when provided with
different types of inputs, one can gain insights into which aspects of
the early Universe impact the later formation of dark matter haloes.

In Lucie-Smith et al. (2018), we focused on the simplest case
of a binary classification problem; the algorithm classified dark
matter particles into two classes, depending on whether or not
they will form haloes above a specified mass threshold at z =
0. Contrary to existing interpretations of the ST ellipsoidal collapse
model, we found that the tidal shear field does not contain addi-
tional information over that contained in the density field about
whether haloes will form above and below a mass threshold Mth =
1.8 × 1012 M�. However, these conclusions were limited to this
single mass threshold.

The aim of this work is to extend our machine-learning
framework to investigate haloes across a wider range of final mass.
In practice, we train a machine-learning algorithm to predict the
value of the final mass of the halo to which each particle will
belong. This is now a regression problem since the algorithm’s
prediction consists of a continuous variable, rather than a class
label. We compare the halo mass predictions resulting from two
machine-learning models, trained on different sets of inputs: one
on information about the initial linear density field only, and the
other on both density and tidal shear information. The inputs to
the algorithm, known as features in machine-learning terms, are
the same as those adopted in Lucie-Smith et al. (2018). We are
able to quantify the relevance of the information contained in the
tidal shear relative to that in the density field by comparing the
predictions resulting from one model with the other. In this work,
we mainly focus on the formation of haloes at z = 0, but also verify
that our conclusions hold for haloes at higher redshifts.

The paper is organized as follows. We describe the method
in Section 2, starting with an overview of the pipeline. We then
introduce the machine-learning algorithm adopted in this work and
describe its training and testing procedure. We present the halo
mass predictions in Section 3, including a study of the algorithm’s
performance as a function of halo properties. We introduce a
metric to make a quantitative comparison of machine-learning
models in Section 4. We further test the generality of our results
on independent simulations in Section 6, and finally conclude in
Section 7.

2 ME T H O D

In this paper we used six dark-matter-only simulations produced
with P-GADGET-3 (Springel, Yoshida & White 2001; Springel 2005)
and a WMAP5 �CDM cosmological model1 (Dunkley et al. 2009).
Adopting an updated set of cosmological parameters (e.g. from

1The cosmological parameters are �� = 0.721, �m = 0.279, �b = 0.045,
σ 8 = 0.817, h = 0.701, and ns = 0.96.

Planck Collaboration VI 2018) is not necessary for the purpose of
this work. We call the simulations sim-#, where # ∈ [1, 6]. Each
simulation is based on a different realization of a Gaussian random
field drawn from the initial power spectrum of density fluctuations.
All simulations consist of a box of comoving size L = 50 h−1Mpc
and N = 2563 dark matter particles evolving from z = 99 to z = 0.2

Dark matter haloes were identified at z = 0 using the SUBFIND

halo finder (Springel, Yoshida & White 2001), a friends-of-friends
method with a linking length of 0.2, with the additional requirement
that particles in a halo be gravitationally bound. While SUBFIND

also identifies substructure within haloes, we considered the entire
set of bound particles that make up a halo and did not subdivide
them further. The resolution and volume of the simulation limit
the resulting range of halo masses; the lowest mass halo has M =
2.6 × 1010 M� and the highest mass one M = 4.1 × 1014 M�.

To train and test the machine-learning algorithm, we first es-
tablished the link between the initial and final state of each dark
matter particle in the simulations. We used the final snapshots (z =
0) to label each particle with the logarithmic mass of the halo to
which that particle belongs. Particles that do not collapse into haloes
make up ∼50 per cent of all particles in the simulations, implying
a strong class imbalance between particles not in resolved haloes
and those spread across haloes of different mass scales. Training the
algorithm to learn such an imbalanced mapping strongly degraded
the accuracy of the predictions for particles within resolved haloes.
Since our goal is to derive insight into resolved physics, we chose
to restrict our analysis to the subset of particles that collapse into
resolved haloes at z = 0. Out of these, each particle, with its
logarithmic halo mass label, was then traced back to the initial
conditions where we extracted features to be used as input to the
machine-learning algorithm.

The algorithm was trained and tested independently on the six
different simulations. This yielded six different machine-learning
models of the same underlying mapping, allowing us to estimate
the statistical significance of our results. For each simulation, the
algorithm was trained based on the input features to logarithmic
halo mass mapping of a training subset of particles. The remaining
dark matter particles in the simulation were then used to test the
algorithm’s predictions against their respective true logarithmic
halo mass. We will initially present the results from sim-1, but
we will draw the final conclusions based on the results from all six
simulations.

2.1 Gradient boosted trees

We used gradient boosted trees (Freund & Schapire 1997; Friedman
2001, 2002), a machine-learning algorithm combining multiple
regression decision trees into a single estimator.

A regression decision tree is a model for predicting the value
of a continuous target variable by following a simple set of
decision rules inferred from the input features. Since individual
trees generally overfit the training data, they are often combined
together to form a more robust ensemble estimator. The two main
approaches to combine decision trees are bagging and boosting.
The two approaches form ensembles that differ substantially in the
trade-off between the models’ ability to minimize bias and variance
in the predictions. Bagging estimators are effective at decreasing
variance, but have no effect on the bias; trees learn independently

2We used the PYTHON package PYNBODY (Pontzen et al. 2013) to analyse
the information contained in the simulation snapshots.
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on bootstrapped training samples and the final prediction of the
ensemble is given by the average over individual trees’ predictions.
On the other hand, boosting can reduce both the bias and the variance
contributions to the error in the predictions (Schapire et al. 1998)
by aggregating trees iteratively, such that subsequent trees learn to
correct the mistakes of the previous ones. We chose to use boosting
estimators, as the bias and variance of the predictions in our data
set both contribute to the predictive error.

We adopted gradient boosted trees, where the learning proceeds
as follows. At any given iteration m in the gradient boosted tree, a
new decision tree fm(x) is added to the existing ensemble Fm−1(x)
such that the prediction for a given training sample i, Fm(xi) is
updated as

Fm(xi) = Fm−1(xi) + fm(xi), (1)

where xi is the input vector for that training sample. The accuracy
of the gradient boosted tree is quantified by the loss function, a
measure of how well the model’s learnt parameters fit the data.
The aim is to build a sequence of M trees which minimizes the
loss function between the target value y and the predicted one ŷ =
FM (x). Gradient boosted trees solve this minimization problem
using gradient-descent optimization. The parameters of a decision
tree, consisting of both the decision rules and the target variable for
that tree, are chosen to point in the direction of the negative gradient
of the loss function with respect to the ensemble’s predictions. As
an example, consider the loss function to be the mean squared error
between the target value y and the prediction ŷ. At iteration m, the
loss function L is given by the mean squared error between the
target value y and the current prediction ŷ = Fm−1(x) for N training
samples,

L(y, Fm−1) =
N∑
i

(yi − Fm−1(xi))2

2
. (2)

The negative gradient of the loss function with respect to the
predictive model for each training sample i is given by

ri = −∂L(y, Fm−1)

∂Fm−1

∣∣∣∣
i

= yi − Fm−1(xi). (3)

Therefore, when choosing the mean squared error as the loss
function, the decision tree at iteration m is trained to predict the
residuals r of the current predictions with respect to the true target
values. This procedure is repeated until adding further trees does not
yield further changes in the loss. Gradient boosted trees are flexible
enough to minimize any loss function, as long as it is differentiable.

In addition to the predictive power of this algorithm, gradient
boosted trees also allow for interpretability of their learning pro-
cedure. This is a common feature amongst ensembles of decision
trees. We used a metric known as feature importances (Louppe et al.
2013) to measure the relevance of each input feature in training the
algorithm to predict the correct target variable. This is a crucial
aspect of our framework; it allows us to determine which features
are most informative in mapping particles to the correct final halo
masses. The importance of the j-th feature Xj from a single tree t of
the ensemble is given by

Impt (Xj ) =
∑

n

Nn

Nt

[
p − NnR

Nn

pR − NnL

Nn

pL

]
, (4)

where Nt, Nn, NnR
, NnL

are the total number of samples in the tree
t, at the node n, at the right-child node nR, and at the left-child node
nL, respectively. The sum in the equation is over all n nodes where
the feature Xj makes the split. The impurity p is given by the choice

of splitting criterion, which in our case is the mean squared error.
The final importance of feature Xj given by the ensemble of T trees
is the normalized sum over the importances from all trees,

Imp(Xj ) =
∑T

t=1 Impt (Xj )∑J

j Imp(Xj )
. (5)

We used the LightGBM (Ke et al. 2017) implementation of
gradient boosted trees released by Microsoft.

2.2 Machine-learning features

A feature extraction step is required amongst most machine-
learning algorithms, including gradient boosted trees, to extract
key properties of the dark matter particles and use them as input
to the algorithm. Following Lucie-Smith et al. (2018), we used
two properties of the linear density field in the local environment
around dark matter particles: the overdensity and the tidal shear
computed within spheres of different mass scales centred at each
dark matter particle’s initial position. These choices were motivated
by existing analytic frameworks which provide models to predict
the final mass of a halo based on similar properties of the linear
density field. EPS theory argues that a spherical patch will collapse
to form a halo at redshift z if its average linear density contrast
δL(z) exceeds a critical value δc(z), hence motivating our choice
of spherical overdensities. The final mass of the halo corresponds
to the matter enclosed in the largest possible spherical region
with density contrast δL = δc. The ST framework motivated our
choice of tidal shear information. In their approach, the collapse
time of a halo depends explicitly on the ellipticity and prolateness
of the tidal shear field, as well as on spherical overdensities.
Using these properties as machine-learning features will allow us
to compare the predictions to those from analytic theories based
on the same input properties and test the interpretation of these
models.

We now briefly discuss how the machine-learning features were
constructed from the density and tidal shear fields, referring the
reader to Lucie-Smith et al. (2018) for further details. We smoothed
the density contrast δ(x) = [ρ(x) − ρm]/ρm, where ρm is the mean
matter density of the universe, on a smoothing scale R,

δ(x; R) =
∫

δ(x′)WTH(x − x′; R)d3x ′, (6)

where WTH(x − x
′
, R) is a real-space top-hat window function which

takes the form

WTH(x − x′, R) =
⎧⎨
⎩

3

4πR3
for |x − x′| ≤ R,

0 for |x − x′| > R.

(7)

We repeated the smoothing for 50 smoothing mass scales (which
are related to the smoothing scales R via Msmoothing = 4/3πρmR3),
evenly spaced in log M within the range 3 × 1010 ≤ Msmoothing/M�
≤ 1 × 1015.

From each smoothed density contrast field δ(x, R), we computed
the peculiar gravitational potential 
(x) via Poisson’s equation
∇2
 = δ and the tidal shear tensor,

T αβ =
[

∂2

∂xα∂xβ
− 1

3
δαβ∇2

]

. (8)

We assigned two shear features to each dark matter particle, the
ellipticity et and prolateness pt, following the definition of Bond &
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Myers (1996),3

et = t1 − t3, (9)

pt = 3(t1 + t3), (10)

where t1 and t3 are two of the ordered eigenvalues of the tidal shear
tensor (the third is not independent since t1 + t2 + t3 = 0). The
second term on the right-hand side of equation (8) removes the
density field from the tidal shear tensor since ∇2
 = δ, implying
minimal redundancy between the information contained in the
density features and that of the shear features.

In summary, we constructed two feature sets: the 50-dimensional
density feature set made of spherical overdensities, and the 150-
dimensional density and shear feature set made of spherical over-
densities, ellipticity, and prolateness features. By comparing the
predictive performance of the algorithm when trained on the two
feature sets, we were able to test whether the addition of tidal shear
information yields an improvement in predicting the formation of
the final haloes.

2.3 Training a gradient boosted tree

For training the gradient boosted trees, we randomly selected
500 000 particles from those that collapse into haloes at z = 0,
each carrying its own set of features and final halo mass label. No
improvement in the machine-learning predictions was found as we
increased the size of the training set to more than 500 000 particles,
implying that this was sufficient to yield a training set representative
of the whole simulation. The remaining particles in the simulation
were used as a test set; the gradient boosted trees were trained to
predict the final mass of the halo in which each test-set particle will
end up. The predictions were then compared to the particles’ true
halo masses to assess the algorithm’s performance.

Gradient boosted trees have hyperparameters which must be set
prior to training, and which need to be optimized for any given
machine-learning problem. The main hyperparameters to optimize
are the number of trees in the ensemble, a gradient regularization
parameter, and the maximum depth and number of leaf nodes in
a tree. A popular approach for hyperparameter optimization is to
grid-search over a specified subset of hyperparameters and select
the optimal ones using k-fold cross validation (Kohavi 1995). In
traditional k-fold cross validation, the training set is divided into
k equal-sized sets where k − 1 sets are used for training and one
is used as a validation set to test the algorithm’s performance. The
validation set returns a score based on a chosen scoring metric,
which can be the mean squared error or the mean absolute error
in the case of regression. The training/validation procedure is
repeated k times such that each time a different k set is used for
validation and the rest for training. Finally, the score for each set of
hyperparameters is given by the average score over the k validation
sets. There are two main benefits in using k-fold cross validation.
First, setting aside a subset of the training set for validation
ensures that the hyperparameters of the algorithm do not overfit
the training data. Secondly, averaging the score over k validation
sets also ensures that the hyperparameters do not overfit any single
validation set.

3We use the eigenvalues of the tidal shear tensor to define the ellipticity
and prolateness, rather than those of the deformation tensor like in Bond &
Myers (1996).

A disadvantage of this implementation of the method is that
training and validation sets are randomly selected subsets of the
same training data. Therefore, this procedure is insensitive to noise
present in the training data, as this will be shared amongst both
training and validation sets. In our problem, constructing validation
and training sets from the same simulation may lead to overfitting
the training simulation and as a result, the learned map would fail
to generalize to different simulations.

To prevent this, we constructed validation sets from the dark
matter particles of a different simulation to the one used for training.
All simulations were trained using five validation sets from sim-2,
except for sim-2 which used the same number of validation sets
from sim-1. Each set consists of 50 000 randomly chosen particles.
The hyperparameter optimization procedure then followed the
standard five-fold cross validation approach of choosing the set
of hyperparameters best performing on the validation data.

2.4 The test-set particles

In each simulation, the trained gradient boosted trees can be used
to predict the final halo mass of all particles in the simulation in the
test set. However, we restricted our analysis to a subset of test-set
particles satisfying two criteria.

First, we found that gradient boosted trees make biased predic-
tions when the true halo mass is near the limits of the mass range
probed by the simulation. The predicted masses of particles in the
lowest mass haloes are overestimated and those of particles in the
highest mass haloes are underestimated. The closer the true halo
mass to the hard cut-offs in mass, the larger the bias in the predicted
masses. Since we did not want to base our analysis on predictions
affected by algorithm-specific biases, we imposed a criterion to
exclude dark matter particles whose predictions are dominated by
this bias.

The second criterion excludes all particles that belong to the few
haloes found in the simulation at the high-mass end. The reason
for this will become apparent in Section 4, when we compare the
predicted and true number of particles within bins of halo mass.
At the high-mass end, there are only a few haloes and therefore
a few discrete masses in the training set. Therefore, we adopted
a second criterion that excludes particles with an associated mass
label in the range where the shot noise in the expected number
of haloes within bins of logarithmic mass is higher than a given
threshold.

In practice, these two criteria were implemented as follows. Let
us denote Mi

predicted and Mi
true as the predicted and true halo mass of

the i-th particle, respectively. We split the true halo masses of all
test particles in k evenly spaced intervals of logarithmic mass. In
each bin, we computed the bias bk and variance σ 2

k defined as

bk = 1

Jk

Jk∑
j=1

[
M

j

k,predicted − M
j

k,true

]
, (11)

σ 2
k = 1

Jk

Jk∑
j=1

∣∣∣Mj

k,predicted − M
j

k,predicted

∣∣∣2
, (12)

where M
j

k,predicted and M
j

k,true are the predicted and true halo mass of

particle j, M
j

k,predicted is the mean of the predicted halo masses, and
Jk is the total number of particles in the k-th bin. This yielded our
first criterion; we excluded from the analysis all particles in bins
where b2

k ≥ σ 2
k .
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For the second criterion, we first computed the expected number
of haloes in each mass bin k, Nk,

Nk = V

∫ Mk+1

Mk

dn

dM ′ dM ′, (13)

where V is the volume of the box and dn
dM

is the number of haloes
of mass M per unit volume per unit interval in M. The latter can be
parametrized by the universal functional form

dn

dM
= f (σ )

ρm

M

d ln σ−1

dM
, (14)

where ρm is the cosmic mean matter density and σ 2(M) is the mass
variance of the linear density field smoothed with a top-hat window
function on scale R(M). We adopted the function f(σ ) predicted by
Sheth & Tormen (1999) as it provides a good enough approximation
of our simulation’s mass function at z = 0 and is given by

f (σ ) = A

√
2a

π

[
1 +

(
σ 2

aδ2
c

)p]
δc

σ
exp

[
− aδ2

c

2σ 2

]
, (15)

where A = 0.3222, a = 0.707, p = 0.3, and δc = 1.686. Finally,
our second criterion imposed that all particles with halo mass label
within mass bins where the expected Poisson noise in Nk exceeds
30 per cent i.e. 1/

√
Nk > 0.3, were excluded from the analysis.

In summary, the subset of particles from the test set which we
retained for our analysis is given by those particles belonging to
haloes in k mass bins where the conditions 1/

√
Nk ≤ 0.3 and b2

k <

σ 2
k are simultaneously satisfied. Both criteria are subject to the

choice of bin width defining the k bins; we chose log (M/M�) =
0.2.4 The criteria were applied to all simulations, for the same
choice of bin width. In all simulations, this implied that we retained
particles in haloes of mass within the range 11.4 ≤ log (M/M�) ≤
13.4 for our analysis. Fig. 1 shows the sim-1 distribution of test-set
particles in haloes per logarithmic mass intervals, where the shaded
regions indicate the mass ranges excluded from the analysis.

3 H A L O MA S S PR E D I C T I O N S

Fig. 2 compares the machine-learning predictions with the true halo
masses of the test-set particles in sim-1. We show the distributions
obtained with the predicted halo masses of particles within bins
defined by their true logarithmic halo mass. These are shown as
violin plots i.e. box plots whose shapes indicate the distribution
of mass values. The dots represent the medians of the predicted
distributions as a function of the medians within each true mass
interval. We compare the distributions resulting from two distinct
machine-learning models: one trained on the density feature set
and the other on the density and shear feature set. We find near-
to-identical predicted distributions and overlapping medians across
the full mass range of haloes. We measure the fractional change
in the bias and variance (as defined in equations 11 and 12) of
the distributions returned by the density + shear model relative
to those of the density-only model for each mass bin; we find an
average change of 8 per cent in the variance and < 1 per cent in the
bias. We conclude that the addition of tidal shear does not provide
major qualitative changes to the predicted final mass of haloes in the
range 11.4 ≤ log (M/M�) ≤ 13.4, thus generalizing the conclusions
of Lucie-Smith et al. (2018) to regression over this mass range.

4The width is chosen in order to be left with at least 10 logarithmic mass
bins, after applying the criteria.

Figure 1. All particles in haloes, which were not used for training, were
split into k halo mass intervals of width log (M/M�) = 0.2. We excluded
from the analysis particles within the k-th mass bins where either of the
following criteria are satisfied: (1) the bias in the predictions exceeds the
variance i.e. b2

k > σ 2
k , (2) the theoretical number of haloes is smaller than

a given threshold i.e. 1/
√

Nk,haloes > 0.3. Criterion (1) is set to exclude
particles in mass bins near the mass limits imposed by the simulation, where
the gradient boosted tree makes biased predictions. Criterion (2) is set to
exclude mass ranges with small number of haloes. As a result, the particles
used for the analysis in all simulations are those in haloes in the range 11.4
≤ log (M/M�) ≤ 13.4.

Figure 2. Distributions (and their medians) obtained with the predicted halo
masses of particles within bins of width log (M/M�) = 0.2, defined by
their true logarithmic halo mass. The distributions are in the form of violin
plots i.e. box plots whose shapes indicate the distribution of mass values.
Within each bin, we compare the distributions predicted by the two machine-
learning models: one based on density features alone and the other based
on both density and shear features. These are near-identical, meaning that
there is no qualitative improvement resulting from providing the algorithm
with additional information about the tidal shear field.

We now quantify which features contain the most relevant
information on final halo masses, by calculating feature importances
(see Section 2.1) in the density + shear model. Fig. 3 shows that
spherical overdensities on smoothing scales 1013 ≤ Msmoothing/M�
≤ 1014 are most informative for predicting the mass of haloes in the
range 11.4 ≤ log (M/M�) ≤ 13.4. The importances of the density
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336 L. Lucie-Smith, H. V. Peiris and A. Pontzen

Figure 3. Feature importances for density (upper panel), ellipticity (middle
panel), and prolateness (lower panel) as a function of the top-hat window
function smoothing mass scale, when the gradient boosted trees are trained
on the shear and density feature set. The ellipticity and prolateness features
have very low importance scores, meaning that they are irrelevant compared
to the density features during the training process of the algorithm. The
density features are most relevant at high smoothing mass scales. This
confirms that the shear field contains very little useful information compared
to spherical overdensities.

Figure 4. Feature importances for density (upper panel), ellipticity (middle
panel), and prolateness (lower panel) as a function of the top-hat window
function smoothing mass scale, for the case where the algorithm is trained
to predict the mass of the halo to which each dark matter particle will belong
at z = 2.1. Similar to the z = 0 case, the ellipticity and prolateness features
have very little impact on the training process of the algorithm and the most
relevant information is contained within the density features. The peak of
the density feature importances shifts towards smaller smoothing scales, as
a result of larger scales still being in the linear regime at z = 2.1.

features in the density-only model also have a peak and a spread
at similar smoothing mass scales. The low importance of the shear
features indicates that these have very little impact on the training
process of the algorithm. This confirms that information about the
tidal shear is not useful compared to that of spherical overdensities.

We now show that this result also holds when the algorithm is
trained to infer the formation of haloes at higher redshifts. Fig. 4
shows the density and shear feature importances, for the case of

training the algorithm to predict the mass of the halo to which
each dark matter particle will belong at z = 2.1. Similar to the
z = 0 case, the ellipticity and prolateness features have negligible
importance scores, meaning that the tidal shear field contains no
additional relevant information over that contained in the density
features about the formation of haloes at early times. The density
feature importances peak at smaller smoothing mass scales, i.e.
1012 � Msmoothing/M� � 1013, directly reflecting the fact that larger
scales are still linear at z = 2.1 and consequently, haloes of mass M
� 4 × 1013 M� have not yet formed.

To ensure our results capture at least as much information in
the features as existing approximations, we validate the z = 0
machine-learning models against existing analytic approximations.
We compare the accuracy of the machine-learning predictions
against those of analytic theories which also provide final halo
mass predictions based on the same initial conditions information.
We expect the machine-learning algorithm to perform (at least) as
well as analytic models. If this was not the case, it would indicate that
the features contain relevant information which the algorithm fails
to learn, and which would in turn invalidate our conclusions. The
results are shown in Appendix A; analytic and machine-learning-
based models yield qualitatively comparable predictions, but with
smaller scatter in the predictions of the machine-learning model.

3.1 Dependence on radial positions

We next investigated the dependence of the predictions on the radial
position of particles inside haloes. This analysis was done separately
for three different mass ranges of haloes. We first subdivided
particles into three equally spaced mass ranges based on the mass of
their host halo: particles in low-mass haloes (11.42 ≤ log (M/M�)
< 12.08), particles in mid-mass haloes (12.08 ≤ log (M/M�) <

12.75), and particles in high-mass haloes (12.75 ≤ log (M/M� ≤
13.4). For each halo mass range, we further split the particles into
three categories based on their radial position with respect to the
halo’s virial radius rvir: particles in the innermost region of a halo
(r/rvir ≤ 0.1), those in a shell of mid radial range (0.4 ≤ r/rvir ≤
0.6), and those in the outskirts of haloes (r/rvir > 0.8).

Fig. 5 shows the distributions of log (Mpredicted/Mtrue) values of
particles in each radial category predicted by the machine-learning
algorithm based on the density features. The three panels show
the predictions of particles in low-mass (left), mid-mass (centre),
and high-mass (right) haloes. For low-mass haloes, the comparison
between the distributions of the three radial categories shows very
little difference, indicating that the machine-learning algorithm
predicts the final halo mass irrespective of their final position inside
the haloes. On the other hand, we find a clear improvement in the
predictions for particles in the innermost regions of mid-mass and
high-mass haloes. The variance of the inner particles’ predictions
decreases by 35 per cent and 45 per cent for mid-mass and high-
mass haloes, respectively, compared to the variance of the mid-radial
particles’ predictions. In high-mass haloes, we also note a reduction
in the bias of the distributions as one approaches the haloes’ central
region; the medians of the log (Mpredicted/Mtrue) distributions are
−0.0006, −0.2527, and −0.4101 for inner, mid, and outer radial
categories, respectively. The density and shear model produces
similar distributions to those returned by the density-only model.

The correlation between the accuracy of the predictions and the
radial positions of particles inside their haloes is present in high-
mass haloes but not within low-mass ones. One possible reason for
this may be the inherent difference in their assembly history. Low-
mass haloes tend to accrete most of their mass at early times, while
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Figure 5. Distributions of log (Mpredicted/Mtrue) values for particles of different categories based on their radial position inside haloes. The panels show the
distributions for particles in low-mass haloes (left), 11.42 ≤ log (M/M�) < 12.08, mid-mass haloes (centre), 12.08 ≤ log (M/M�) < 12.75, and high-mass
haloes (right), 12.75 ≤ log (M/M�) ≤ 13.4. The predictions of particles in low-mass haloes are uncorrelated with the particles’ radial position inside the halo.
For mid-mass and high-mass haloes, particles in the innermost regions of haloes are those with highest accuracy in their predicted halo masses, compared to
mid-radial and outskirts particles.

more massive haloes show substantial late-time mass accumulation
(Wechsler et al. 2002). As high-mass haloes are thought to undergo
a larger number of merger events (Genel et al. 2009; Fakhouri,
Ma & Boylan-Kolchin 2010), the haloes may be characterized by
a more complicated assembly history. In particular, particles in the
outskirts of these haloes will be those that are particularly affected
by late-time mergers, thus making it more difficult for the machine-
learning algorithm to infer their final halo mass based on their initial
state.

4 A METRIC FOR MAC HINE-LEARNING
M O D E L C O M PA R I S O N

Up to this point, we have made conclusions based on visual
comparisons between the predictions based on the density feature
set and the density and shear one. Qualitatively, we find that the
addition of tidal shear information does not yield major changes in
the halo mass predictions across the whole mass range considered
here. However, we require a quantitative measure of the comparison
to assert whether the tidal shear contains any information that allows
for a better description of halo collapse, even if minimal.

To our knowledge, there exists no metric used in machine-
learning regression problems suitable for judging whether one
machine-learning model is preferred over another. Some of the most
popular metrics used to quantify the quality of the predictions are
the mean absolute error, the mean squared error, or the coefficient
of determination (r2). These are summary statistics which provide
a measure of the magnitude of the predictive error, but have no
principled statistical basis and are therefore not helpful for model
comparison. As one cannot construct a likelihood function from a
single generative model for making predictions, we seek a metric
which is (i) based on a motivated statistic and (ii) independent from
the loss function optimized by the algorithm during training.

We now describe the construction of a metric which allows us to
evaluate and compare the performance of machine-learning models

based on different feature sets. Given a set of particles and their
associated halo mass labels, one can compute the number density
of particles in haloes as a function of halo mass. Although the
number density of particles is directly related to the number density
of haloes, the resulting halo mass function cannot be meaningfully
compared to existing theoretical halo mass functions due to the
small range of halo masses probed by our simulations. Therefore, we
choose to work with the particle number density as it is more directly
related to the machine-learning predictions and to the purpose of our
work. The particles’ ground truth halo mass labels yield a true num-
ber density distribution, ntrue, and those predicted by the machine-
learning algorithm yield a predicted number density distribution,
nML. By comparing the two distributions, we can assess how well
the machine-learning approximation matches the ground truth given
by the simulation. To address this question, the performance of the
algorithm can be measured in terms of a difference between two
distributions. In order to quantify this, we adopt the widely used
Kullback–Leibler (KL) divergence (Kullback & Leibler 1951).

The KL divergence is a measure rooted in information theory of
the difference between two probability distributions. In general, the
KL divergence of distribution Q from P, DKL(P ‖‖ Q), describes the
loss of information when Q is used to approximate the reference
distribution P. This is not a symmetric function, as the information
content in Q about P is not equivalent to information content in P
about Q. Since we are interested in assessing how well the machine-
learnt distribution describes the true distribution in the simulation,
we consider the KL divergence DKL(ntrue ‖‖ nML). If ntrue(log M) and
nML(log M) are continuous density distributions, the KL divergence
takes the form

DKL(ntrue ‖‖ nML) =
∫ Mmax

Mmin

ntrue(log M) ln

[
ntrue(log M)

nML(log M)

]
d log M,

(16)

where Mmin and Mmax are given by the minimum and maximum
values of log M where ntruth(log M) �= 0. It is a non-negative quantity
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and takes the value DKL(ntrue ‖‖ nML) = 0 if and only if the two
distributions are identical i.e. ntrue(log M) = nML(log M).

The KL divergence yields a machine-learning model comparison
metric: given two models based on different input features, the
difference in the KL divergences of each model’s prediction from
the ground truth is a quantitative measure of the difference in the
amount of information contained in one feature set over the other
about final halo mass. The difference in the KL divergence for the
two models is computed for each of the six simulations, allowing
us to quantify its statistical significance. Our choice of metric will
capture some, but not all, differences between the predictions of
different models.

4.1 Kernel density estimation

To compute the KL divergence in equation (16), ntrue(log M) and
nML(log M) must be in the form of continuous probability density
distributions. Given the set of true and predicted mass labels
of the test-set particles, we can straightforwardly obtain discrete
distributions for the number density of particles in haloes within bins
of logarithmic mass. To then turn these into continuous ones, we
adopted a smoothing procedure known as kernel density estimation
(KDE, Rosenblatt 1956). A KDE is a non-parametric approach
to estimate the probability density distribution from a discrete
set of samples. Each data point is replaced with a kernel of a
set width and the density estimator is given by the sum over all
kernels.

For the case of the true number density, its kernel density estimate
was computed from the set of N ground truth logarithmic halo
masses, {log Mi

true}N
1 , and is given by

ntrue(log M) = 1

N

N∑
i=1

K

(
log M − log Mi

true

b

)
, (17)

where K is the kernel, which we take to be a Gaussian of the
form K(x) ∝ exp (−x2/2), and b is a smoothing parameter known
as the bandwidth, which determines the width of the kernel.
The bandwidth is a free parameter which strongly influences the
resulting estimate. If the bandwidth is too small, the density estimate
will be undersmoothed and fit too closely the small-scale structure
of the simulation’s distribution. If the bandwidth is too large, the
density estimate will be oversmoothed meaning that it will wash
out important features of the underlying structure.

We optimized the bandwidth following a five-fold cross valida-
tion procedure, similar to the one used to optimize the machine-
learning hyperparameters (see Section 2.3). For a set of bandwidth
values, the KDE was fitted on the simulation’s true number density
distribution and validated on the distribution of an independent
simulation with a different initial conditions realization. To avoid
undersmoothing, we split the range of log M covered by the
distribution into 10 sub-intervals of width log (M/M�) = 0.2 and
used different mass intervals to fit and validate the KDE; every other
mass bin is used for fitting and the remaining bins for validating.5

We retained the value of the bandwidth giving the highest total
log-likelihood for the validation set.

We smoothed each simulation’s own ground truth number density
of particles. For validation, all simulations used the ground truth
distribution of sim-2, except for sim-2 which used the ground truth

5Note that this is the same binwidth we adopted in Section 2.4. This choice
was made to yield at least 10 mass intervals for analysis, as this is the number
of bins required to carry out this bandwidth optimization procedure.

Figure 6. The distribution of test-set particles as a function of the loga-
rithmic mass of the halo to which they belong at z = 0. The distribution
is smoothed using a KDE method, where the bandwidth is optimized using
cross-validation. The upper and lower limits of the binned distribution are
given by log (M/M�) = 11.4 and log (M/M�) = 13.4, respectively.

Figure 7. Predicted distribution of the sim-1 test particles as a function
of logarithmic halo mass for the two machine-learning models, one trained
with density features and the other trained on density and shear features.
The ground truth distribution is also shown for comparison. We compute the
KL divergence of each model’s distribution with respect to the ground truth
in order to quantify and compare the model’s ability to approximate the true
distribution. The density and shear model yields a small improvement of
0.0029 in the KL divergence compared to the density-only model.

of sim-1. All six simulations returned an optimal bandwidth b =
0.23. The resulting kernel density estimate for sim-1 is shown in
Fig. 6, together with its discrete version for comparison. We then
constructed density estimates from the mass values predicted by the
two machine-learning models, using a KDE of the same bandwidth
as for the ground truth distribution. Fig. 7 shows the comparison
between the continuous number densities of particles in haloes
based on the ground truth and the two machine-learning models.
Finally, we computed the KL divergence (as in equation 16) for the
two machine-learning models with respect to the ground truth in all
six simulations.
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Table 1. KL divergences of a model’s predicted number density of particles
in haloes as a function of halo mass with respect to the ground truth distri-
bution. Results for the density-only model (D) and density and shear model
(S) of all six simulations are given in the first two numerical columns. The
difference in KL divergence between the two models (DS) is shown in the
third column. The algorithm was trained on each simulation independently
and tested on the remaining dark matter particles in that simulation not used
for training. The next three columns report the KL divergences obtained
with predictions made by a machine-learning algorithm trained on sim-1 and
validated on sim-2. The trained algorithm is tested on sim-3, −4, −5, −6
and the results are shown for the density-only model (DG), density and shear
model (SG), and the difference between the two (DSG). The last column
shows the KL divergence of each simulation’s own ground truth distribution
and that of sim-1, DKL(ntrue−1 ‖‖ ntrue−#), used to validate the comparison
between KL divergences of different simulations. For all columns, the last
three rows show the mean, X, the sample standard deviation, δX, and the
standard error on the mean, δX = δX/

√
N .

Sim D S DS DG SG DSG T

1 0.0284 0.0255 0.0029 – – – –
2 0.043 0.0371 0.0059 – – – 0.0038
3 0.0419 0.0401 0.0018 0.0597 0.0616 − 0.0019 0.0055
4 0.0413 0.038 0.0032 0.0488 0.055 − 0.0062 0.0045
5 0.0387 0.0286 0.0101 0.0519 0.0577 − 0.0058 0.0127
6 0.0188 0.0136 0.0052 0.0361 0.0361 0 0.0027

X 0.0353 0.0305 0.0049 0.0491 0.0526 − 0.0035 0.0058
δX 0.004 0.0041 0.0012 0.0049 0.0057 0.0015 0.0018
δX 0.0097 0.0101 0.003 0.0098 0.0113 0.003 0.0039

4.2 Comparing KL divergences from different simulations

The final step consists of comparing the KL divergences returned
by the different simulations to estimate the statistical significance
of our results. To do this, we first tested the validity of comparing
KL divergences across different simulations. In general, a com-
parison between two KL divergences has a clear meaning only
if they measure differences with respect to the same reference
distribution. Here, the reference distributions are different; the
KL divergences we wish to compare are computed with respect
to each simulation’s own true number density of particles in
haloes. We checked whether the ground truth distributions from
different realizations are similar enough for the comparison between
KL divergences to be valid. We computed DKL(ntrue−1 ‖‖ ntrue−#),
which we denote as T for simplicity, to find the difference between
each simulation’s own ground truth distribution and that of sim-1.
The values of the KL divergences are reported in the last column
of Table 1. We find that T is at least five times smaller than
any DKL(ntrue ‖‖ nML). Therefore, the ground truth distributions are
similar enough to validate the use of the KL divergence metric in the
following.

5 R ESULTS

We present our results in Table 1. The first three columns
show the values of DKL(ntrue ‖‖ ndensity), DKL(ntrue ‖‖ ndensity + shear)
and the difference between the two, DKL(ntrue ‖‖ ndensity −
DKL(ntrue ‖‖ ndensity + shear) for all six simulations. We call these D,
S, and DS, respectively, to simplify the notation. For each column
X, we also compute the mean over the six realizations, X, the
sample standard deviation, δX, and the standard error on the mean,
δX = δX/

√
N , where N = 6 simulations.

The values of DS indicate the change in the KL divergence as
we add information about the tidal shear in all six simulations.

We measured the statistical significance of the deviation of DS

from 0 given its standard error δDS. We find an improvement in
the KL divergence (at the 4σ level) provided by the addition of
shear information relative to a model based on density information
alone. We quantify the practical utility of such an improvement by
comparing the value of DS with δD, the scatter in the density-only
model. We find that the improvement provided by shear information
is equivalent to a 0.5σ deviation from the mean KL divergence of the
density-only model. Therefore, we conclude that the improvement
provided by the tidal shear is not large enough to yield a useful
alternative model to one based on density information alone. These
conclusions are consistent with the results of the feature importance
analysis in Section 3.

6 A TEST O F G ENERALI ZABI LI TY

The results presented above are valid for the case where the dark
matter particles that make up the training set and the test set come
from the same simulation. To test the robustness of our results,
we verified the ability of the machine-learning algorithm trained
on one simulation to generalize to independent simulations based
on different initial conditions realizations. In particular, we tested
whether our main results about the significance and the utility of the
improvement provided by tidal shear information still holds when
generalizing to independent simulations.

We used the machine-learning algorithm trained on sim-1 and
tested it on all dark matter particles in sim-3, −4, −5, −6,
which are independent from the training process of sim-1. Since
the dark matter particles in sim-2 form the validation sets used
during training, we excluded the latter from this analysis. As
before, we computed the KL divergences DKL(ntrue ‖‖ ndensity),
DKL(ntrue ‖‖ ndensity + shear), and the difference between the two,
DKL(ntrue ‖‖ ndensity − DKL(ntrue ‖‖ ndensity + shear); the values of these
quantities for the four independent test simulations are reported in
the fourth, fifth, and sixth columns of Table 1. This time we call
these DG, SG, and DSG, respectively, to distinguish them from the
previous case where the test set and training set are constructed
from the same simulation.

First, we tested the generalizability of each machine-learning
model individually. For the density feature set, the mean KL diver-
gence computed from the independent test sets (DG) is consistent
(at the 2.2σ level) with that found when training and testing on
the same simulation (D), meaning that the model learnt on one
simulation can indeed generalize to independent simulations. This
confirms that the machine-learning algorithm was able to learn the
underlying physics relating the initial conditions to the final haloes.
On the other hand, the model based on density and shear features
shows evidence of poor generalizability, as the KL divergences SG
and S are in tension at the 3.2σ level.

We then moved on to test the generalizability of our results
regarding the improvement provided by the addition of tidal shear
information. We find that the difference in the KL divergence of the
two models (DSG) is in significant tension (at the 4.3σ level) with
that found when testing on the same simulation used for training
(DS). Moreover, as DSG was a negative value, the addition of tidal
shear information now yields a marginal loss in performance, rather
than an improvement.

These discrepancies provide some evidence that the algorithm
trained on density and shear features overfits the simulation during
training. This naturally yields better predictions when testing the
algorithm on the simulation used for training compared to testing
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on independent simulations. Consequently, the addition of tidal
shear information yields an improvement or a loss in performance
compared to the density-only model, depending on whether the
algorithm is tested on the same or a different simulation to that used
for training. In spite of this, the level of overfitting in the density and
shear model is small; for both cases, the change in KL divergence
between the two models (DS, or DSG) is consistent with the scatter
in the density-only model (δD, or δDG).

In summary, the algorithm trained on density information has
learnt the physical connection between the initial conditions and the
final haloes, as it is able to generalize to independent realizations of
the initial density field. On the other hand, the improvement in the
KL divergence provided by the addition of tidal shear features is lost
when applying the trained algorithm to independent simulations.
Therefore the improvement from including shear features in the
machine-learning process, which was anyway small, does not imply
any physical connection. This strengthens our conclusion that there
is no identifiable physical information pertinent to the final halo
mass in the tidal shear field.

These conclusions were made by testing the algorithm on
independent realizations with fixed cosmological parameters. The
parameters of the �CDM model are so tightly constrained from
current observations (e.g. Planck Collaboration VI 2018) that
the formation of haloes must proceed in a similar way at the
mass scales investigated in our analysis. Therefore, we expect no
significant change in our results when adopting simulations based
on different choices of cosmological parameters. Moreover, we
expect similar results for the mass range considered in this analysis
for observationally allowed cosmological models which suppress
small-scale power; in such models halo abundances differ from
�CDM only below M ∼ 1011 M�.

Our results for the halo mass range 11.4 ≤ log (M/M�) ≤ 13.4
are also expected to hold for simulations of different box sizes or
resolutions. In particular, a simulation with larger box size or higher
resolution yields the possibility of extracting additional features at
larger or smaller smoothing scales, respectively. Since the feature
importances (Fig. 3) show that the most relevant information is
contained within features on smoothing scales 1013 ≤ Msmoothing/M�
≤ 1014, the results do not change when the simulation contains
additional small- or large-scale information. Similarly, our results
should hold for simulations of smaller box sizes and/or lower
resolutions, as long as those scales which carry the most relevant
information are resolved.

7 C O N C L U S I O N S

We have presented a generalization of the work in Lucie-Smith et al.
(2018), which explored the impact of different initial linear fields
on the formation of dark matter haloes above or below a single mass
threshold. In this paper, we investigated a wider mass range of dark
matter haloes and their sensitivity to the initial density and tidal
shear fields.

We find that the tidal shear field does not contain additional
information over that already contained in the linear density field
about the formation of dark matter haloes in the mass range 11.4
≤ log (M/M�) ≤ 13.4. We quantified this using a machine-learning
regression framework, showing that the results are physically inter-
pretable and generalizable to independent realizations of the initial
density field. Interpretability is achieved by comparing machine-
learning models based on different input properties of the initial
conditions; the addition of tidal shear information yields a halo
collapse model whose predictions are statistically consistent with

those of a model based on density information alone, according to
a metric based on the Kullback–Leibler divergence. By measuring
the feature importances of the different inputs during the training
process of the algorithm, we can establish a complementary measure
of which physical aspects contain the most information about halo
collapse. This analysis confirms that our machine-learning approach
suggests little role for the tidal shear field in establishing final
halo masses. This result holds also for the case of predicting
the mass of haloes at z = 2.1. Generalizability is verified by
applying the machine-learning algorithm trained on one simulation
to independent simulations based on different realizations of the
initial density field. This allows us to confirm the ability of the
machine-learning algorithm to learn physical connections between
the initial conditions and the final dark matter haloes.

Our work demonstrates the utility of machine-learning techniques
to gain physical understanding of large-scale structure formation.
The strength of this approach lies in its ability to establish a physical
interpretation of the machine-learning results. In future work, we
plan to extend our framework to develop interpretable deep-learning
algorithms, aiming to learn directly from the initial density field
which physical aspects are most relevant to cosmological structure
formation, beyond spherical overdensities and tidal shear forces.
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Genel S., Genzel R., Bouché N., Naab T., Sternberg A., 2009, ApJ, 701,

2002
Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-

Y., 2017, in Guyon I., Luxburg U. V., Bengio S., Wallach H., Fergus
R., Vishwanathan S., Garnett R., eds, Advances in Neural Information
Processing Systems 30. Curran Associates, Inc, Red Hook, NY, p. 3146

Kohavi R., 1995, Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2. IJCAI’95. Morgan Kaufmann
Publishers Inc., San Francisco, p. 1137

Kullback S., Leibler R. A., 1951, Ann. Math. Statist., 22, 79
Louppe G., Wehenkel L., Sutera A., Geurts P., 2013, in Burges C. J. C.,

Bottou L., Welling M., Ghahramani Z., Weinberger K. Q., eds, Advances
in Neural Information Processing Systems 26. Curran Associates, Inc.,
Red Hook, NY, p. 431

MNRAS 490, 331–342 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/1/331/5570617 by U
C

L (U
niversity C

ollege London) user on 29 O
ctober 2019

http://dx.doi.org/10.1093/mnras/sty2949
http://dx.doi.org/10.1086/192267
http://dx.doi.org/10.1086/170520
http://dx.doi.org/10.1088/0067-0049/180/2/306
http://dx.doi.org/10.1111/j.1365-2966.2010.16859.x
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1088/0004-637X/701/2/2002
http://dx.doi.org/10.1214/aoms/1177729694


Machine-learning haloes 341

Lucie-Smith L., Peiris H. V., Pontzen A., Lochner M., 2018, MNRAS, 479,
3405

Merten J., Giocoli C., Baldi M., Meneghetti M., Peel A., Lalande F., Starck
J.-L., Pettorino V., 2019, MNRAS, 487, 104

Planck Collaboration VI, 2018, preprint (arxiv:1807.06209)
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APPENDIX: A C OMPARISON W ITH ANALYTI C
T H E O R I E S

We validated the machine-learning findings by comparing the
accuracy of its predictions against those of analytic theories which
also provide final halo mass predictions based on the same initial
conditions information.

We compared the machine-learning predictions based on the
density features with EPS theory and those based on density and
tidal shear features with ST theory, for the test-set particles in sim-

1. According to EPS, the fraction of density trajectories with a
first upcrossing of a density threshold barrier δth is equivalent to
the fraction of haloes of mass M. The density threshold barrier δth

adopted by Bond et al. (1991) is that of spherical collapse: δth(z) =
(D(z)/D(0))δsc, where δsc ≈ 1.686. The predicted halo mass of each
test particle is given by the smoothing mass scale at which the
particle first upcrosses the density threshold barrier.

In the ST formalism, EPS theory is extended to account for the
effect of the tidal shear field by adopting a ‘moving’ collapse barrier
rather than the spherical collapse barrier. The ST collapse barrier
b(z) varies as a function of the mass variance σ 2(M) and is given by

b(z) = √
aδsc(z)

[
1 +

(
β

σ 2(M)

aδ2
sc(z)

)γ ]
, (A1)

where δsc(0) ≈ 1.686 and the best-fitting parameters found in Sheth,
Mo & Tormen (2001) are β = 0.485, γ = 0.615, and a = 0.707.
Similar to the EPS case, the predicted halo mass of each test particle
is given by the smoothing mass scale at which the particle first
upcrosses the threshold barrier given by equation (A1). In summary,
for each test particles we can compute the EPS- and ST-predicted
halo masses and compare those to the machine-learning density-
only and density combined with shear predictions, respectively.

Fig. A1 shows the predicted halo masses as a function of true
halo masses for the analytic and machine-learning models. We
show two-dimensional histograms and the contours containing
68 per cent, 95 per cent, and 99.7 per cent of the joint probability.
Machine-learning and analytic models show qualitatively similar

Figure A1. Two-dimensional histograms and contours containing 68 per cent, 95 per cent, and 99.7 per cent of the joint probability of the predicted versus
true halo masses for the analytic and machine-learning models. We compare the machine-learning predictions based on the density features with EPS theory
and those based on density and tidal shear features with ST theory. The predictions are qualitatively similar, but with tighter confidence regions in the machine-
learning case. This validates our machine-learning results as we find no evidence of any relevant information contained in the features that the algorithm fails
to learn.
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predictions, but with tighter confidence regions for the machine-
learning predictions. This is especially notable where the analytic
models’ predictions extend to much lower mass values than the
machine-learning predictions. Note also that the ST predictions are
shifted towards lower mass values compared to the PS predictions,
for fixed true halo mass. This directly reflects the fact that the ST
collapse barrier takes larger δ values than the PS barrier at fixed
smoothing mass scale; the same particle will therefore cross the
collapse barrier at lower smoothing mass scales for ST than PS,
which in turn results in a lower halo mass prediction.

This test validates our machine-learning results by ruling out
the possibility that the algorithm is not using all the information
contained in the features. Moreover, this also shows that the
machine-learning algorithm provides better predictions than the
analytic models on a particle-by-particle basis.
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