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Abstract Epithelial fusion underlies many vital organogenic processes during embryogenesis.

Disruptions to these cause a significant number of human birth defects, including ocular coloboma.

We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure

(OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling.

We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely

expressed in the chick fissure margin during fusion but is immediately downregulated after fusion.

We further provide a combination of protein localisation and phenotypic evidence in chick, humans,

mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for

OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a

strong candidate locus for human coloboma and other multi-system developmental fusion defects,

and show that chick OFC is a powerful model for epithelial fusion research.

DOI: https://doi.org/10.7554/eLife.43877.001

Introduction
Fusion of epithelia is an essential process during normal human development and its dysregulation

can result in birth defects affecting the eye, heart, palate, neural tube, and multiple other tissues

(Ray and Niswander, 2012). These can be highly disabling and are among the most common human

birth defects, with prevalence as high as 1 in 500 (Ray and Niswander, 2012; Morrison et al.,

2002; Nikolopoulou et al., 2017). Fusion in multiple embryonic contexts displays both confounding

differences and significant common mechanistic overlaps (Ray and Niswander, 2012). Most causa-

tive mutations have been identified in genes encoding transcription factors or signalling molecules

that regulate the early events that guide initial patterning and outgrowth of epithelial tissues

(Ray and Niswander, 2012; Nikolopoulou et al., 2017; Patel and Sowden, 2019; Kohli and Kohli,

2012). However, the true developmental basis of these disorders is more complex and a major chal-

lenge remains to fully understand the behaviours of epithelial cells directly involved in the fusion

process.

Ocular coloboma (OC) is a structural eye defect that presents as missing tissue or a gap in the

iris, ciliary body, choroid, retina and/or optic nerve. It arises from a failure of fusion at the optic fis-

sure (OF; also referred to as the choroid fissure) in the ventral region of the embryonic eye cup early

in development (Patel and Sowden, 2019; Onwochei et al., 2000; Gregory-Evans et al., 2004).
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OC is the most common human congenital eye malformation and is a leading cause of childhood

blindness that persists throughout life (Morrison et al., 2002; Williamson and FitzPatrick, 2014).

No treatments or preventative measures for coloboma are currently available.

The process of optic fissure closure (OFC) requires the coordinated contributions of various cell

types in the fusion environment along the proximal-distal (PD) axis of the ventral eye cup (reviewed

in Patel and Sowden, 2019; Onwochei et al., 2000). In all vertebrates studied so far, these include

epithelial cells of both the neural retina (NR) and retinal pigmented epithelium (RPE), and periocular

mesenchymal (POM) cells of neural crest origin (Patel and Sowden, 2019; O’Rahilly, 1966;

Hero, 1990; Hero, 1989; Gestri et al., 2018). As the eye cup grows, the fissure margins come into

apposition along the PD axis and POM cells are gradually excluded. Through unknown mechanisms,

the basal lamina that surround each opposing margin are either breached or dissolved and epithelial

cells from each side intercalate and then subsequently reorganise to form a continuum of NR and

RPE, complete with a continuous basal lamina. The function, requirement and behaviour of these

epithelial cells in the fusing tissue, and their fates after fusion, are not well understood.

Some limited epidemiological evidence suggests environmental factors may contribute to colo-

boma incidence (Gregory-Evans et al., 2004; Hornby et al., 2003). However, the disease is largely

of genetic origin, with as many 39 monogenic OC-linked loci so far identified in humans and the exis-

tence of further candidates is strongly supported by evidence in gene-specific animal models

(Patel and Sowden, 2019). Most known mutations cause syndromal coloboma, where the eye

defect is associated with multiple systemic defects. A common form of syndromal coloboma is

CHARGE syndrome (MIM 214800) for which coloboma, choanal atresia, vestibular (inner-ear) and

heart fusion defects are defining phenotypic criteria (Verloes, 2005). Palate fusion defects and oro-

facial-clefting are common additional features of CHARGE (~20% of cases) and in other monogenic

syndromal colobomas (e.g. from deleterious mutations in YAP1, MAB21L1, and TFAP2A

eLife digest Our bodies are made of many different groups of cells, which are arranged into

tissues that perform specific roles. As tissues form in the embryo they must adopt precise three-

dimensional structures, depending on their position in the body. In many cases this involves two

edges of tissue fusing together to prevent gaps being present in the final structure.

In individuals with a condition called ocular coloboma some of the tissues in the eyes fail to

merge together correctly, leading to wide gaps that can severely affect vision. There are currently

no treatments available for ocular coloboma and in over 70% of patients the cause of the defect is

not known. Identifying new genes that control how tissues fuse may help researchers to find what

causes this condition and multiple other tissue fusion defects, and establish whether these may be

preventable in the future.

Much of what is currently known about how tissues fuse has come from studying mice and

zebrafish embryos. Although the extensive genetic tools available in these ‘models’ have proved

very useful, both offer only a limited time window for observing tissues as they fuse, and the regions

involved are very small. Chick embryos, on the other hand, are much larger than mouse or zebrafish

embryos and are easier to access from within their eggs. This led Hardy et al. to investigate whether

the developing chick eye could be a more useful model for studying the precise details of how

tissues merge.

Examining chick embryos revealed that tissues in the base of their eyes fuse between five and

eight days after the egg had been fertilised, a comparatively long time compared to existing

models. Also, many of the genes that Hardy et al. found switched on in chick eyes as the tissues

merged had previously been identified as being essential for tissue fusion in humans. However,

several new genes were also shown to be involved in the fusing process. For example, Netrin-1 was

important for tissues to fuse in the eyes as well as in other regions of the developing embryo.

These findings demonstrate that the chick eye is an excellent new model system to study how

tissues fuse in animals. Furthermore, the genes identified by Hardy et al. may help researchers to

identify the genetic causes of ocular coloboma and other tissue fusion defects in humans.

DOI: https://doi.org/10.7554/eLife.43877.002
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[Rainger et al., 2014; Williamson et al., 2014; Lin et al., 1992]), suggestive of common genetic

mechanisms and aetiologies, and pleiotropic gene function.

Isolated (i.e. non-syndromal) OC may be associated with microphthalmia (small eye), and the

majority of these cases are caused by mutations in a limited number of transcription-factor encoding

genes that regulate early eye development (e.g. PAX6, VSX2 and MAF [Patel and Sowden, 2019;

Williamson and FitzPatrick, 2014]), implying that abnormal growth of the eye prevents correct OF

margin apposition and that fusion defects are a secondary or an indirect phenotype. Indeed, none of

these genes have yet been implicated with direct functional roles in epithelial fusion. However, many

isolated coloboma cases also exist without microphthalmia, suggesting that in these patients, eye

growth occurs normally but the fusion process itself is defective. These OCs are highly genetically

heterogeneous and known loci are not recurrent among non-related patients (Rainger et al., 2017).

Furthermore, despite large-scale sequencing projects, over 70% of all cases remain without a genetic

cause identified (Rainger et al., 2017).

The most effective and informative models for studying OFC so far have been mouse (Mus mus-

culus) and zebrafish (Danio rerio). Both have significant experimental advantages, including powerful

genetics and robust genomic data. In particular, live-cell imaging with fluorescent zebrafish embryos

has proven to be useful in revealing some intricate cell behaviours at the fissure margin during fusion

(Gestri et al., 2018). However, both models are restrictive for in-depth molecular investigations due

to their limited temporal windows of fusion progression and the number of cells actively mediating

fusion and subsequent epithelial remodelling.

Here, we present accurate staging and anatomical detail of the process of chick OFC. We show

the expansive developmental window of fusion, and the sizable fusion seam available for experimen-

tation and analysis. We take advantage of this to perform transcriptional profiling at key discrete

stages during fusion and show significant enrichment for known human OFC genes, and reveal multi-

ple genes not previously associated with OFC. Our analyses also identified specific cellular behav-

iours at the fusion plate and found that apoptosis was a prominent feature during chick OFC.

Furthermore, we reveal Netrin-1 as a mediator of OFC that is essential for normal eye development

in evolutionarily diverse vertebrates, and that has a specific requirement during fusion in multiple

developmental contexts. This study presents the chick as a powerful model system for further OFC

research, provides strong evidence for a novel candidate gene for ocular coloboma, and directly

links epithelial fusion processes in the eye with those in broader embryonic tissues.

Results

OFC in the chick occurred within a wide spatial and temporal window
The eye is the foremost observable feature in the chick embryo and grows exponentially through

development (Figure 1a, Figure 1—figure supplement 1). The optic fissure margin (OFM) was first

identifiable as a non-pigmented region at the ventral aspect of the eye that narrowed markedly in a

temporal sequence as the eye increased in size (Figure 1a). To gain a clearer overview of gross fis-

sure closure dynamics we first analysed a complete series of resected flat-mounted ventral eye tissue

from accurately staged embryos at Hamburger Hamilton stages (HH.St) 25 through to HH.St34

(n > 10 per stage; Figure 1—figure supplement 1). The OFM was positioned along the proximal-

distal (P-D) axis of the eye, from the pupillary (or collar) region of the iris to the optic nerve. Progres-

sive narrowing of the OFM was observed between HH.St27 to HH.St31, characterised by the appear-

ance of fused OFM in the midline that separated the non-pigmented iris from the posterior OFM

(Figure 1—figure supplement 1). Both these latter regions remained unpigmented throughout

development and we found they were associated, respectively, with the development of the optic

nerve and the pecten oculi - a homeostasis-mediating structure that extends out into the vitreous

from the optic nerve head and is embedded in the proximal OFM (Figure 1—figure supplements 1

and 2) (Wisely et al., 2017). The distal region of the pecten was attached to blood vessels that

invade the eye globe through the open region of the iris OFM. This iris region remained open

throughout development and well after hatching (Figure 1—figure supplement 2). A recent study

reported that the proximal chick OFM closes via the intercalation of incoming astrocytes and the

outgoing optic nerve (Bernstein et al., 2018), in a process that does not reflect the epithelial fusion

seen during human OFC (e.g. mediated by epithelial cells of the RPE and neural retina)
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Figure 1. Analysis of chick optic fissure closure. (a) Chicken embryos at HH.St25 and HH.St30 illustrated the optic

fissure (OF; arrows) as a non-pigmented region in the ventral aspect of the developing eye. (b) Left: Schematic

showing orientation of the developing chick optic fissure with respect to the whole embryonic eye. Dorsal-ventral

and proximal-distal axes are indicated. This study focused on the medial optic fissure (marked by white hatching)

distal to the developing pecten and optic nerve. Right: brightfield and fluorescent confocal microscopy using

memGFP cryosections illustrated the open (arrow) and fused seam (arrowhead) regions in chick OFM. The location

and planes of the cut sections along the D-P axis are indicated in the accompanying schematic. (c) Brightfield and

fluorescent confocal microscopy of memGFP OFM sections unambiguously defined the location of fusion plates

(arrowheads, top and middle panels) at all stages throughout OFC, combined with flat-mounted memGFPs.

Bottom panel: representative single plane confocal z-stack projection image clearly indicated FP2. (d) Brightfield

microscopy of flat-mounted ventral eyes revealed the tissue dynamics during closure and coinciding with location

of fusion plates (FPs). At HH.St29 the medial OFM had narrowed markedly along the P-D axis between the iris and

the proximal region, with FP1 and FP2 (arrowheads) closely positioned in the distal OF. At HH.St31 the medial

OFM had become fully pigmented in the fused seam, and the distance between FP1 and FP2 (arrowheads) had

lengthened in the P-D axis. An opening remained in the OFM at the iris region (asterisk). (e) Histogram to illustrate

fused seam length at each HH stage (error bars = s.d.). Quantitative data of OFM progression obtained from flat

mounts and cryosections are provided in Table 1. (f) Schematic representation of chick OFC progression in the

distal and medial retina. 1. Pre-fusion: A fully open OFM is evident in the ventral retina at stages HH.St25-27; 2.

Initiation: At HH.St27-28 the first fused region is observed in the distal-medial OFM; 3. Active fusion: fusion

extends briefly in the distal direction but then stops in the presumptive iris to leave an open region throughout

development. Fusion proceeds markedly proximally with FP2 extending towards the pecten. 4. Complete fusion:

Fusion stops proximally when FP2 meets the fused pecten region. The fusion seam is complete with a complete

continuum of both NR and RPE layers in the ventral eye. Abbreviations: L, lens; OC, optic cup, OF, optic fissure;

ON, optic nerve; FP, fusion plate; HH, Hamburger Hamilton staging; RPE, retinal pigmented epithelia; NR, neural

retina; POM, periocular mesenchyme.

DOI: https://doi.org/10.7554/eLife.43877.003

The following figure supplements are available for figure 1:

Figure supplement 1. Anatomical and histological survey of chick OFC.

DOI: https://doi.org/10.7554/eLife.43877.004

Figure supplement 2. Anatomical features of iris and pecten in relation to OFC in the chick eye.

DOI: https://doi.org/10.7554/eLife.43877.005
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(O’Rahilly, 1966; Bernstein et al., 2018). To assess the utility of the chick as a model for human

OFC and epithelial fusion, we therefore focused our study on OFC progression in the distal and

medial eye.

Using serial sections from memGFP (Rozbicki et al., 2015) and wild-type embryos, we then

unambiguously identified open fissure and fused seam regions of the medial-distal OFM

(Figure 1b). The fused seams were defined by epithelial continuum in both the developing retinal

pigmented epithelia (RPE) and neural retina (NR) layers. We also identified the fusion plates under-

going active fusion using sections and z-stack confocal microscopy (Figure 1c). Serial sectioning at

stages HH.St25-34 provided qualitative data for the identification of fusion plates during the pro-

gression of chick OFC (Table 1). We then combined these data with fusion seam length measure-

ments taken from flat mounted fissures to provide a robust quantitative framework of fusion

progression (Table 2). In all analyses, we observed no evidence for fusion in the medial or distal

OFM at stages before HH.St27 (Figure 1; Figure 1—figure supplement 1; Table 1). Fusion was first

initiated between HH.St27-28 as confirmed by the definitive appearance of joined epithelial margins

at a single fusion point (FP). By HH.St29, the fused area had expanded to generate a fused seam of

0.56 mm (SD: ± 0.12 mm; Figure 1d–e) with two fusion plates, FP1 and FP2 at the distal and proxi-

mal limits, respectively. The position of FP1 became fixed at approximately 0.5 mm (SD: ± 0.04 mm)

from the developing pupillary region of the iris in all subsequent developmental stages (Table 2,

n = 60 fissures analysed), and the region between FP1 and the iris remained fully open throughout

ocular development (Figure 1—figure supplement 2 and Table 1). In contrast, the location of FP2

became progressively more proximal until HH.St34 (Table 2), when FP2 was no longer distinguish-

able from the pecten (by flat mount or cryosections). This total expansion created a fused epithelial

seam of ~1.7 mm at its maximum length (SD: ± 0.07 mm, Figure 1e). In summary, we observed four

distinct phases of fusion (Figure 1f): (1) pre-fusion when the entire OFM is open (up to HH.St27); (2)

fusion initiation at HH.St27-28 in the medial OFM with the appearance of a single medial FP; (3)

active fusion as two FPs separate with the expansion of a fused seam along the P-D axis (HH.St29-

33); and (4) complete fusion as the entire OFM is fully fused in the medial OFM (by HH.St34). The

process is active between HH.St27-HH.St34 and proceeds over ~66 hr.

Chick OFC was characterised by the breakdown of basement
membranes, loss of epithelial morphology and localised apoptosis
By defining fusion progression and the location of the fusion plates during chick OFC, we could then

accurately assess the cellular environment within these regions. Immunostaining for the basement

membrane (BM) (or basal lamina) marker Laminin-B1 on cryo-sectioned fissure margins (Figure 2a)

indicated that fusion occured between cells of the RPE and neural retinal, as observed in human

OFC (O’Rahilly, 1966). Fusion between opposing margins was defined by a reduction of Laminin-B1

Table 1. Qualitative analysis of fusion plates observed per developmental stage by cryosections and

H and E.

Fusion plates identified

HH stage 1x FP only Both FP1 and FP2 N per stage

25 0 0 4

26 0 0 4

27 1 0 3

28 3 1 4

29 1 4 5

30 0 4 4

31 0 3 3

32 0 5 5

33 1 2 3

34 3 0 3

DOI: https://doi.org/10.7554/eLife.43877.006
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at the edges of the directly apposed fissures, followed the appearance of a continuum of BM overly-

ing the basal aspect of the neural retina. Periocular mesenchymal cells were removed from between

the fissure margins as fusion progressed. Using a histological approach, we then provided evidence

that both the RPE and NR directly contribute cells to the fusion plate (Figure 2b). We also observed

that within the fusion plates there was marked epithelial remodelling of both cell types, beginning

after apposition of the OFM edges. In contrast, at the fused seam we observed NR and RPE cells

were realigned into apical-basal orientation and were indistinguishable from regions outside of the

OFM, indicating that the fusion process was complete.

To determine whether the expanding seam between FP1 and FP2 was a result of active direc-

tional fusion (e.g. ‘zippering’), or was driven by localised cell-proliferation within the OFM seam (e.g.

pushing forward static fusion plates), we used phospho-Histone-H3A (PH3A) as a marker for S-phase

nuclei in mitotic cells and revealed there was no significant enrichment within the fusion seam (Fig-

ure 2—figure supplement 1). These results suggested that localised cell-proliferation within the

seam was not a major mechanism for seam expansion during chick OFC, and further work is required

to elucidate the precise mechanisms that drive seam expansion. We then sought to establish

whether axonal ingression was a feature of chick OFC in the distal-medial OFM. Using Neurofila-

ment-145 immunofluorescence, we found a complete absence of axonal processes in open, fusing,

and fused regions of the distal-medial chick OFM (Figure 2—figure supplement 2). In contrast, at

the same stages we found marked enrichment for axons within the proximal OFM and pecten

region, providing further evidence that these regions of the chick optic fissure are distinct

(Bernstein et al., 2018).

Programmed-cell death has been previously associated with epithelial fusion in multiple develop-

mental contexts but the exact requirements for this process remain controversial (Ray and Niswan-

der, 2012). Even within the same tissues differences arise between species - for example, apoptotic

cells are clearly observed at the mouse fusion plate during OFC (Hero, 1990) but are not routinely

found in zebrafish (Gestri et al., 2018). We therefore asked whether apoptosis was a major feature

of chick OFC. Using HH.St30 eyes undergoing active fusion, we performed immunofluorescence

staining for the pro-apoptotic marker activated Caspase-3. We consistently identified apoptotic foci

within RPE and NR at both fusion plates, in the adjacent open fissure margin, and at the nascently

fused seam with both cryo-section and whole-mount samples (Figure 2c; Figure 2—figure supple-

ment 2). Foci were not found consistently in other regions of the eye or ventral retina (not shown).

By quantifying the number of positive A-Casp-3 foci at FP2, we found that apoptosis was specifically

enriched in the active fusion environment but was absent from fused seam >120 mm and from open

regions > 250 mm beyond FP2 (Figure 2d), indicating that apoptosis is a specific feature of OFC in

the chick eye.

Table 2. Quantitative measurements of key features during OFC progression using flat mounted WT

and mem-GFP fissures.

Total OFM length includes optic nerve and pecten. * Fused fissures observed were too small to mea-

sure accurately (<0.1 mm).

HH stage
Mean total
OFM length (mm) ± SD Mean length of fused seam (mm) ± SD

27 2.20 0.15 - -

28 2.92 0.33 * *

29 3.58 0.28 0.56 0.12

30 4.38 0.17 0.93 0.09

31 4.50 0.25 1.09 0.13

32 4.77 0.16 1.15 0.10

33 5.31 0.23 1.39 0.10

34 5.67 0.16 1.70 0.07

DOI: https://doi.org/10.7554/eLife.43877.007
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Figure 2. Basement membrane remodelling, loss of epithelial characteristics and apoptosis are defining features

of Chick OFC. (a) Immunostaining for the basement membrane (BM) component Laminin-B1 and nuclear staining

(DAPI) using confocal microscopy illustrated that fusion was preceded by the dissolution of BM (compare

arrowheads in boxes) as the fissure margins came into contact at the fusion plate, and that fusion was

Figure 2 continued on next page
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Transcriptional profiling revealed genetic conservation between chick
and human OFC
We took advantage of the size and accessibility of the embryonic chick eye to perform transcrip-

tomic profiling with the objectives of: (i) assessing the utility of the chick as a genetic model for

human OFC by expression of chick orthologues for known disease genes; and (ii) to identify novel

genes that are required for OFC. Using HH.st25-26 eyes (pre-fusion; approx. embryonic day E5),

segmental micro-dissection of the embryonic chick eye was first performed to obtain separate OFM,

ventral eye, dorsal eye and whole eye samples (Figure 3—figure supplement 1). We took care to

not extract tissue from the pecten or optic nerve region of the developing OFM to ensure we

obtained transcriptional data for the distal and medial OFM only. Cognate tissues were pooled,

RNA was extracted, and region-specific transcriptomes were determined using total RNAseq and

analysed to compare mean transcripts per million (TPM) values (Figure 3—source data 1). Pseudoa-

lignment to the Ensembl chicken transcriptome identified 30,265 expressed transcripts across all tis-

sue types. To test whether this approach was sensitive enough to reveal domain-specific expression

in the developing chick eye, we compared our RNAseq expression data for a panel of genes with

clear regional specific expression from a previous study of mRNA in situ analyses in the early devel-

oping chick eye cup (Peters and Cepko, 2002). Markers of the early dorsal retina (Efnb1, Efnb2,

Vsx2, Tbx5, Aldh1A1) clustered as dorsal-specific in our RNAseq data, whereas known ventral

markers (Crx, Maf1, Pax2, Aldh6 [Ald1a3], Vax1, and Rax1) were strongly expressed in our fissure

and ventral transcriptomes (Figure 3—figure supplement 1), which validated this approach to

reveal OFC candidate genes.

We then repeated the analysis, collecting OFM, ventral tissue and whole eye and included stages

HH.st27-28 (~E6; during initiation) and HH.st28-30 (~E7; during active fusion) as discrete time-points

(Figure 3—figure supplement 1). Dorsal tissue was not extracted for these stages. Correlation

matrices for total transcriptomes of each sample indicated one of the HH.st25-26 fissure samples as

an outlier, but otherwise that there was close correlation between all the other samples (Pearson’s

correlation coefficient >0.9; Figure 3—figure supplement 1). Quantitative analyses identified

14,262 upregulated genes and 14,125 downregulated genes in the fissure margin at the three time

points (Figure 3a; fissure versus whole eye. False discovery rate (FDR) adjusted p-value<0.05). The

largest proportion of these differential expressed genes (DEGs) were observed at HH.st25-27, most

likely reflecting the periocular tissue between the fissure margins. Remarkably few DEGs were

shared between stages. We used fold change (FC) analysis to identify biologically-relevant

Figure 2 continued

characterised by the generation of a BM continuum at the basal aspect of the neural retina (arrows). Nuclear

staining indicated that cells of the retinal pigmented epithelium (RPE) and neural retina (NR) contributed to the

fusion plate and that periocular mesenchymal cells were removed from the region between the apposed margins.

Images are from a single OFM and are representative of n � 3 samples. (b) H and E staining on paraffin sections

at FP2 showed apposed fissure margins with well organised epithelia in NR and RPE (�40 mm from FP2);

subsequent sections at the fusion plate showed loss of epithelial organisation in both cell types (within hatching);

at the fused seam (+200 mm from FP2) continuous organised layers were observed in both NR and RPE epithelia.

Note that fusion occurred from contributions of both NR and RPE. (c) Immunostaining for the apoptosis marker

activated Caspase-3 (A-Casp3) on serial cryo-sectioned OFMs (HH.St30) using confocal microscopy (z-

stack projections) indicated that A-Casp3 positive foci (arrows) were enriched in epithelia at the OFM and in the

nascently fused seam. The midline OFM, including the fusion points, is indicated by yellow arrowheads in all

panels. OFMs were counterstained with DAPI. (d) Quantitation of A-Casp3 foci from serially-sectioned OFMs

confirmed significant enrichment at FP2, with a graded reduction in apoptotic cells in both directions away from

the fusion plate. Data shown are the mean of all measurements (n = 4); error bars = 95% Confidence intervals.

Scale bars = 25 mm in a and c, =20 mm in b.

DOI: https://doi.org/10.7554/eLife.43877.008

The following figure supplements are available for figure 2:

Figure supplement 1. Analysis of proliferation in the OF margin.

DOI: https://doi.org/10.7554/eLife.43877.009

Figure supplement 2. Analysis of axonal processes and apoptosis during chick OFC.

DOI: https://doi.org/10.7554/eLife.43877.010
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differential gene expression (Log2FC �1.5 or ��1) in the fissure compared to whole eye, we found

1613, 2971 and 1491 DEGs at pre-fusion, initiation, and active fusion, respectively (Figure 3—source

data 2). Refining our analysis to identify only those DEGs common across all stages revealed 12

genes with increased expression in the fissure and 26 with decreased expression (Figure 3b; Table 3

). Of these upregulated fissure-specific genes, causative mutations have previously been identified in

orthologues of PAX2, SMOC1, ALDH1A3, and VAX1 in human patients with coloboma or structural

eye malformations (Patel and Sowden, 2019; Williamson and FitzPatrick, 2014), and some of

these genes, such as PAX2 and inhibitors of BMP expression, induce coloboma phenotypes when

overexpressed in the developing ventral chick eye (Gregory-Evans et al., 2004; Sehgal et al.,

2008). In addition, targeted manipulations of orthologues of both CHRDL1 and CYP1B1 have

recently been shown to cause coloboma phenotypes in Xenopus and zebrafish, respectively

(Pfirrmann et al., 2015; Williams et al., 2017). The remaining fissure-specific genes (NTN1,

Figure 3. Transcriptional profiling in chick optic fissure closure. (a) Transcriptional profiling using microdissected

regions of the developing chick eye at E5 (HH.St25-27; pre-fusion), E6 (HH.St27-28; initiation), and E7 (HH.St28-30;

during active fusion) revealed multiple DEGs at each stage. (b) NTN1 was the highest expressing gene of 12

fissure-specific DEGs (fissure vs whole eye) throughout all stages of chick OFC (Log2 FC >1.5; FDR < 0.05). These

included the known human coloboma associated genes (indicated by #): SMOC1, PAX2, VAX1 and ALDH6, in

addition to the coloboma candidates from other animal studies CHRDL1 and CYP1B1 (indicated by .). (c)

Clustering for relative expression levels at active fusion stages (HH.St28-30) revealed three independent clusters (2,

3, and 5) where expression levels trended with Fissure >ventral > whole eye. (d) Analysis of normalised mean

expression values (TPM, n = 3 technical replicates; error bars = 1 x standard deviation) from clusters 2, 3, five at

HH.St28-30 for the Gene Ontology enriched pathways (p<0.0001; Biological fusion [GO:0022610], and Epithelial

fusion [GO:0022610]) revealed significant fissure-specific expression for highly expressed (TPM >100) genes -

NTN1, FLRT3, CYP1B1 and COL18A1 - in addition to other potential candidate genes for roles in OFC. NTN1

(TPM >200) was the highest expressed fissure-specific DEG identified during active fusion.

DOI: https://doi.org/10.7554/eLife.43877.011

The following source data and figure supplement are available for figure 3:

Source data 1. Kallisto analysis of RNAseq data from segmentally dissected HH.St25-26/E5 chick eyes.

DOI: https://doi.org/10.7554/eLife.43877.013

Source data 2. Limma analysis of RNAseq data from segmentally dissected chick eyes at all stages.

DOI: https://doi.org/10.7554/eLife.43877.014

Figure supplement 1. Schema and validation data for transcriptional profiling during OFC.

DOI: https://doi.org/10.7554/eLife.43877.012
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Table 3. Fissure-Specific Differentially expressed genes (q < 0.05; LogFC:�1.5 and ��1) at all stages analysed.

Genes with increased expression are depicted in grey.

ENSEMBL ID HGNC ID

LogFC: Fissure vs
whole
(HH.St25-27) ~E5

FDR adjusted P
value

LogFC: Fissure vs
whole
(HH.St27-28) ~E6

FDR adjusted P
value

LogFC: Fissure vs
whole
(HH.St28-30) ~E7

FDR adjusted P
value

ENSGALG00000023626 NTN1 3.98 5.11E-05 4.34 8.16E-05 5.41 3.06E-07

ENSGALG00000005689 PAX2 3.48 9.36E-06 3.41 2.11E-05 3.18 4.14E-06

ENSGALG00000033365 ALDH6 2.97 1.00E-05 3.94 1.75E-04 3.00 4.91E-05

ENSGALG00000016875 novel
gene

2.21 4.57E-05 3.56 8.72E-07 3.55 2.62E-08

ENSGALG00000009415 SMOC1 3.49 1.46E-05 2.36 3.92E-03 2.60 8.93E-05

ENSGALG00000025822 CYP1B1 2.95 1.11E-05 2.03 1.34E-02 3.02 1.55E-05

ENSGALG00000021589 RTN4RL1 2.41 5.79E-03 2.43 8.00E-03 2.69 4.22E-04

ENSGALG00000040557 TFEC 1.93 8.70E-03 2.35 5.01E-03 2.90 9.86E-04

ENSGALG00000009261 VAX1 1.99 6.95E-04 1.96 3.15E-03 2.49 1.55E-05

ENSGALG00000041101 GALNT6 1.78 3.45E-04 2.07 6.97E-04 2.55 6.85E-06

ENSGALG00000008072 CHRDL1 1.79 3.85E-05 1.86 1.03E-03 1.94 2.49E-05

ENSGALG00000015284 RGMB 1.89 1.37E-02 1.73 2.43E-02 1.76 7.63E-03

ENSGALG00000011413 novel
gene

�1.53 1.13E-02 �1.34 3.34E-02 �1.69 1.60E-02

ENSGALG00000004270 ALDH1A2 �1.20 4.06E-02 �1.80 9.46E-03 �1.76 2.74E-03

ENSGALG00000010801 TMEM61 �2.07 8.63E-03 �1.49 3.77E-02 �1.93 5.90E-03

ENSGALG00000003842 GHRH �1.33 4.58E-02 �2.60 1.48E-02 �2.62 5.28E-03

ENSGALG00000012712 RBM24 �2.57 9.39E-04 �2.00 1.69E-02 �2.35 2.80E-03

ENSGALG00000012644 novel
gene

�1.85 4.91E-03 �2.58 1.38E-02 �3.18 9.33E-04

ENSGALG00000003324 PRRX1 �1.52 4.65E-02 �2.77 2.21E-02 �3.42 1.32E-03

ENSGALG00000007706 FGF8 �2.20 2.94E-03 �3.10 8.72E-04 �2.64 9.86E-04

ENSGALG00000010929 SPARCL1 �3.16 3.03E-03 �1.77 4.19E-02 �3.17 6.48E-04

ENSGALG00000034585 CP49 �3.65 6.32E-06 �1.93 1.55E-02 �2.59 3.60E-04

ENSGALG00000038848 MSX2 �2.19 4.15E-03 �3.35 1.15E-02 �2.92 5.01E-03

ENSGALG00000004279 GRIFIN �3.97 7.94E-04 �2.71 2.55E-02 �1.92 4.89E-02

ENSGALG00000004569 UNC5B �1.41 4.81E-03 �4.14 4.56E-08 �3.21 2.62E-08

ENSGALG00000019802 novel
gene

�2.24 1.56E-02 �3.43 4.36E-02 �3.59 9.52E-03

ENSGALG00000043175 novel
gene

�3.59 7.36E-03 �2.99 3.27E-02 �2.91 2.59E-02

ENSGALG00000005613 novel
gene

�2.96 6.50E-04 �2.21 1.99E-02 �4.40 2.06E-04

ENSGALG00000015015 CYTL1 �2.43 3.39E-02 �3.13 4.74E-02 �5.14 5.01E-03

ENSGALG00000004035 CRYBA1 �5.04 1.21E-04 �2.56 1.95E-02 �3.33 2.00E-03

ENSGALG00000006189 CRYGN �4.66 6.22E-04 �4.25 1.82E-02 �4.97 9.33E-04

ENSGALG00000012470 LYPD6 �2.49 1.20E-02 �4.64 6.97E-04 �7.13 5.09E-06

ENSGALG00000008253 TBX5 �3.50 3.48E-04 �6.73 5.98E-04 �4.39 6.02E-05

ENSGALG00000015147 ALDH1A1 �5.06 1.46E-05 �4.96 1.22E-04 �4.79 1.55E-05

ENSGALG00000042119 MIP �4.47 2.10E-03 �5.43 3.97E-02 �6.15 3.54E-03

ENSGALG00000005634 CRYBA4 �5.47 2.65E-04 �4.94 1.61E-02 �7.17 6.56E-04

ENSGALG00000005630 CRYBB1 �5.36 1.72E-04 �6.97 4.56E-03 �6.24 1.37E-04

ENSGALG00000008735 BFSP1 �6.48 5.53E-04 �6.23 1.76E-02 �8.63 1.97E-03

DOI: https://doi.org/10.7554/eLife.43877.015
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RTN4RL1, TFEC, GALNT6, CLYBL and RGMB) had not been previously associated with OFC defects

to the best of our knowledge.

Clustering analysis revealed NTN1 as a fusion-specific OFC gene
Clustering for relative expression levels of the RNAseq data at active fusion stages (HH.St28-30)

revealed three independent clusters (2, 3, and 5) where expression profiles matched

Fissure >ventral > whole eye (Figure 3c). We hypothesised that analysis of these clusters would

reveal genes with fusion-specific functions during OFC. Of the three clusters with this profile, ontol-

ogy analyses showed significant enrichment for sensory organ development and eye development

processes (FDR q < 0.001, 10 genes) and for adhesion processes (Figure 3—figure supplement 1;

FDR q < 0.05, 25 genes; Biological adhesion [GO:0022610] and cell adhesion [GO:0022610]), of

which 17 genes had mean TPM values > 10. Within this group, multiple candidates for roles during

OFC fusion were revealed, such as several transmembrane proteins, Integrin-A2, Cadherin-4, Colla-

gen 18A1 and FLRT3 (Figure 3d). However, of these NTN1 was the highest expressed and most fis-

sure-specific (mean TPM values: Fissure = 204; ventral = 35; and whole eye = 4).

Netrin-1 was specifically and dynamically expressed in the fusing OFM
We used RNAscope, colorimetric in situ hybridisation, and immunostaining with NTN1-specific anti-

bodies to determine the precise location of Netrin-1 in the chick eye (Figure 4 and Figure 4—figure

supplement 1). We observed highly specific expression in both neuroepithelial retina and RPE cells

at the fissure margins during active fusion at HH.St29-30 (Figure 4a). This was consistent at both

fusion plates (FP1 and FP2), and in both locations NTN1 expression was markedly reduced in the

fused seam compared to expression in the adjacent open margins. Immunofluorescence revealed

that, consistent with NTN1 mRNA, NTN1 protein was specifically localised to the basal lamina at the

opposing edges of the OFM, and to both RPE and neuroepithelial retina cells in this region

(Figure 4b–c, Figure 4—figure supplement 1). To test the significance of our findings to other ver-

tebrates, we first asked whether this localisation was conserved to the human OFM. Immunofluores-

cence analysis for NTN1 (hNTN1) in human embryonic fissures during fusion stages (Carnegie Stage

CS17) displayed remarkable overlap with our observations in chick, with protein signal localised spe-

cifically to open and fusion plate regions of OFM at the NR and RPE (Figure 4d), and an absence of

hNTN1 in fused seam. Consistent with the protein localisation, RNAseq analysis on laser-captured

human fissure tissue showed a 32x fold increase in hNTN1 expression compared to dorsal eye (Patel

and Sowden; manuscript in preparation). Microarray analyses had previously observed enrichment

for Ntn1 in the mouse fissure during closure stages (Brown et al., 2009), so we then analysed Ntn1

protein localisation in equivalent tissues in the mouse optic fissure (fusion occurs around embryonic

day E11.5 and is mostly complete by E12.5 (Hero, 1990). We observed consistency in both cell-type

and positional localisation of Ntn1 protein (Figure 4e), and that Ntn1 protein was not detected in

the fused seam at E12.5 (immunoreactivity for NTN1 was observed in the proximal optic nerve

region at this stage; Figure 4—figure supplement 2).

Complete loss of netrin caused coloboma and multisystem fusion
defects in vertebrates
Our results suggested that Netrin-1 has an evolutionarily conserved role in OFC and prompted us to

test if NTN1 is essential for this process. We therefore analysed mouse embryos of WT and Netrin-

null (Ntn1-/-; Yung et al., 2015) littermates at embryonic stages after OFC completion (E15.5-E16.5)

(Hero, 1990) and observed highly penetrant ocular coloboma in Ntn1-/- mutants (>90%; n = 10/11;

Figure 4f). Mutant eyes analysed at earlier stages of eye development (E11.5) when fusion is first ini-

tiated (Hero, 1990) were normal (n = 4 Ntn1-/- embryos; 8x eyes analysed in total), with fissure mar-

gins positioned directly in appositional contact each other (Figure 4—figure supplement 2). We

also observed variably penetrant orofacial and palate fusion defects in mutant mice

(Figure 4g;~36%; n = 4/11 Ntn1-/- embryos), indicating that NTN1 may also have an important role

in fusion during palatogenesis and craniofacial development.

Finally, we then tested whether Netrin deficiency would cause similar ocular defects in other ver-

tebrates and generated germline netrin-1 mutant zebrafish by creating a nonsense mutation in the

first exon of ntn1a using CRISPR/Cas9 gene editing (Figure 4—figure supplement 3). We inter-
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Figure 4. A conserved fusion-specific requirement for NTN1 in OFC and palate development. (a) RNAscope analysis of NTN1 mRNA (green, and grey

in insets) in HH.St29 OFMs revealed fissure-specific NTN1 expression (arrows) with strongest signal observed at open regions and in the fusion plate,

and reduced expression in the adjacently fused seam. NTN1 expression was localised to cells of both the NR and RPE. Fusion progression was

indicated using anti-laminin co-immunofluorescence (magenta). Images shown are maximum intensity projections of confocal Z-stacks. (b) Single-plane

Figure 4 continued on next page
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crossed heterozygote G0 fish (ntn1a+/-) and observed several G1 embryos displaying bilateral ocular

defects including coloboma and microphthalmia (Figure 4—figure supplement 3). DNA sequencing

of the targeted ntn1a locus confirmed 100% (n = 3) of the phenotypic embryos were homozygous,

whereas ocular defects or colobomas were not observed in any heterozygous (n = 6) or wild-type

(n = 12) embryos. A recent study applied morpholino (MO) translation-blocking knockdown

approaches to target ntn1a in zebrafish embryos and observed bilateral ocular colobomas in all fish

injectected (Richardson et al., 2019), with normal early eye development and appropriately

apposed fissure margins obvious prior to fusion. We were also able induce colobomas using MOs

designed to target the translational start site of ntn1a (Figure 4—figure supplement 3). Bilateral

colobomas were observed in 31/71 (43.7%) of MO injected embryos with no ocular phenotypes

observed in control injections (n = 40). In combination, these results are in agreement with our data

presented in chicken and mouse OFMs and that Netrin-1 is also essential for zebrafish eye develop-

ment and is likely to have a specific role in tissue fusion. It also confirms an evolutionarily essential

requirement for Netrin in ocular development, including OFC, in diverse vertebrate species.

Discussion

NTN1 is a strong candidate gene for coloboma and multisystem fusion
defects
Our study provides strong evidence that Netrin-1 is essential for OFC in the developing vertebrate

eye and is required for normal orofacial development and palate fusion. The transient and specific

NTN1 expression at the fusion plate, and the subsequent reduction/loss in fused OFM, suggests

NTN1 has a direct role in the fusion process. Indeed, Netrin1-deficient mouse eyes displayed highly

penetrant colobomas but their fissure margins were normally apposed during fusion initiation, argu-

ing against a broad failure of early eye development. In further support for a direct role in epithelial

fusion was previously published work showing fusion failure during development of the vestibular

system of both chick and mice where NTN1-expression was manipulated (Yung et al., 2015;

Salminen et al., 2000; Nishitani et al., 2017). In this developmental context, otic epithelia must

fuse normally for the correct formation of the semicircular canal structures. Although we and others

(Richardson et al., 2019) found coloboma in zebrafish knockdown experiments of ntn1a, we

observed coloboma with microphthalmia in the context of complete knockout of ntn1a. This more

severe phenotype in the complete absence of ntn1a implies there could be a more general require-

ment for Netrin-1 during early eye development, or could reflect teleost-specific eye developmental

processes not shared among higher vertebrates (Martinez-Morales et al., 2017). Further work is

Figure 4 continued

confocal images of immunofluorescence analysis for NTN1 on flat-mounted distal (FP1) and proximal (FP2) OFM revealed enriched protein localisation

at the edges of the open fissure margins and reduced in the fused seam. (c) Immunostaining on cryosectioned OFM at the open and fusion plate at

HH.St29 revealed NTN1 was specifically localised to the basal lamina (arrowheads) and to the epithelia of the neural retina and RPE (arrows) at the

OFM. (d) Immunostaining on CS17 human foetal eye sections revealed human Netrin-1 (hNTN1) was localised to NR epithelia (arrows) and at the

overlying basal lamina (dented arrowheads) at the fissure margins. hNTN1 was absent from the fused seam epithelia. (e) Immunostaining for mouse

Netrin-1 (mNtn1) in during active fusion stages (E11.5) showed mNtn1 was localised at the open fissure margins (arrow) in the basal lamina and to cells

at the NR-RPE junction. mNtn1 was absent from this region in fused OFM seam at E12.5. (f) Ntn1-/- mice exhibited highly penetrant (~90%) bilateral

coloboma (arrows; n = 10/11 homozygous E15.5-E16.5 animals analysed). (g) Cleft secondary palate (arrows) was observed in ~36% of Ntn1-/- embryos

at E15.5-E16.5 (4/11 homozygous animals).

DOI: https://doi.org/10.7554/eLife.43877.016

The following figure supplements are available for figure 4:

Figure supplement 1. Developmental NTN1 expression profiling in chick eye and OF.

DOI: https://doi.org/10.7554/eLife.43877.017

Figure supplement 2. Analyses of mouse Ntn1 knockout fissures during fusion.

DOI: https://doi.org/10.7554/eLife.43877.018

Figure supplement 3. Gross ocular phenotype analyses of ntn1-deficient zebrafish.

DOI: https://doi.org/10.7554/eLife.43877.019

Figure supplement 4. Expression profiling for known interactors of NTN1.

DOI: https://doi.org/10.7554/eLife.43877.020
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required to elucidate the precise role of Netrin-1 during OFC and broader eye development among

different species.

Taken in combination, these findings strongly implicate NTN1 as a multipotent factor required for

tissue fusion in multiple distinct developmental contexts. In humans, variants near NTN1 have been

associated with cleft lip in human genome wide association studies (Leslie et al., 2016; Leslie et al.,

2015). While these are not monogenic disease mutations, this observation adds additional further

relevance for future genetic studies of patients with coloboma. It is also consistent with our observa-

tions in Netrin-1 knock-out animals having a high penetrance of both coloboma and cleft palate phe-

notypes. Therefore, we propose that NTN1 should be included as a candidate gene in diagnostic

sequencing of patients with human ocular coloboma, and should also be carefully considered for

those with other congenital malformations involving defective fusion.

NTN1 may have a role in CHARGE syndrome
Coloboma in association with additional fusion defects of the inner ear are two of the key clinical

classifications for a diagnosis of CHARGE syndrome (Verloes, 2005). Further phenotypes commonly

associated with the syndrome are septal heart defects and orofacial clefting, both with aetiologies

likely to involve fusion defects (Ray and Niswander, 2012). CHARGE syndrome cases are predomi-

nantly caused by heterozygous loss-of-function pathogenic variants in the chromodomain helicase

DNA-binding protein 7 (CHD7) gene (Vissers et al., 2004). Mice lacking Chd7 display CHARGE syn-

drome-like phenotypes and exhibit abnormal expression of Ntn1 (Hurd et al., 2007; Hurd et al.,

2012). In addition, ChIP-seq analyses have shown direct binding of Chd7 to the promoter region of

Ntn1 in mouse neural stem cells (Engelen et al., 2011). Given the amount of tissue available in the

chick model, it would be possible and intriguing to confirm whether CHD7 directly regulates NTN1

expression in ovo in the chick optic fissure. There is also emerging evidence that CHD7 and the vita-

min A derivative retinoic acid (RA) indirectly interact at the genetic level during inner ear develop-

ment (Yao et al., 2018). Defective RA signalling also leads to significant reduction of Ntn1

expression in the zebrafish OFM (Lupo et al., 2011), implicating a possible genetic network involv-

ing RA and CHD7, where NTN1 could directly mediate developmental fusion mechanisms from

these hierarchical influences.

How does Netrin-1 mediate fusion?
Netrin-1 is well-studied for its canonical roles in guidance of commissural and peripheral motor

axons and growth-cone dynamics, with attraction or repulsion mediated depending on the co-

expression of specific receptors (reviewed in Lai Wing Sun et al., 2011; Larrieu-Lahargue et al.,

2012). We found that axonal processes were absent from the chick fissure margin during fusion

stages, suggesting that the normal function of NTN1 may be to prevent axon ingression into the

OFM to permit fusion. However, the phenotypic evidence from both the palate and vestibular sys-

tem strongly support the argument that NTN1 has a non-guidance mechanistic role during OFC.

Netrin orthologues have been recently associated with the regulation of cell migration and epithelial

plasticity in the apparent absence of co-localised canonical Netrin-1 receptors (Manhire-

Heath et al., 2013; Lee et al., 2014; Yan et al., 2014). In contrast, netrin acting together with its

receptor neogenin combined to mediate close adhesion of cell layers in the developing terminal end

buds during lung branching morphogenesis (Srinivasan et al., 2003). Although we observed strong

NTN1 expression in cells lining the chick OFM, and similar localisation of Netrin-1 protein in chick,

human and mouse, we did not observe reciprocal expression of any canonical NTN1 receptors in our

RNAseq datasets (e.g. UNC5, DCC or Neogenin; Figure 4—figure supplement 4). Indeed, the

Netrin repulsive cue UNC5B was the most significantly downregulated DEG in fissure versus whole

eye in our data and was also downregulated in human OFM (Sowden and Patel; manuscript in prepa-

ration). Therefore, it will be vitally important for future studies to elucidate interaction partners of

Netrin in fusing tissues, or to reveal if Nerin-1 can act autonomously in these contexts and to provide

deeper insight into its mechanistic function during fusion.

The chick is a powerful model for OFC
The chick is one of the earliest established models for developmental biology and has provided

many key insights into human developmental processes (Stern, 2018). Despite this, and extensive
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historical study of eye development in chicken embryos, the process of chick OFC has not been well

analysed until now. Indeed, the first study appeared only recently and specifically defined aspects of

tissue fusion at the proximal (optic nerve and pecten) region of the OF (Bernstein et al., 2018), and

did not observe complete fusion of epithelia in these regions. Indeed, closure of the proximal OF

was characterised by intercalation of pecten and the lack of true epithelial continuum of neuroepi-

thelial retina and RPE. By focusing on the epithelial fusion events in the distal and medial eye, our

study complements the Bernstein et al study (Bernstein et al., 2018) to provide a comprehensive

framework of OFC progression in the chick. Indeed, taken together, our analyses clearly define three

distinct and separate anatomical regions in the developing chick OFM: the iris, the medial OFM, and

the pecten. In addition, we present the spatial and temporal sequence of chick OFC at the anatomi-

cal and molecular level, and provide strict criteria for staging the process - based on a combination

of broad embryonic anatomy, ocular, and fissure-specific features. Fusion initiated at the medial

OFM at HH.St27/28 and continued until HH.St34, with predominantly distal to proximal directional-

ity. In addition, we found that closure of the medial OFM is a true epithelial fusion process that

occurs over a large time window of approximately 60 hr, involving two fusion plates, and that closes

over 1.5 mm of complete fusion seam. This temporal window, the number of directly contributing

cells, and the accurate staging of its progression allows unique opportunities for further experimen-

tation. Importantly, one whole chick optic fissure (from HH.St29 onwards) can simultaneously provide

data for unfused, fusing, and post-fused contexts.

In addition, our transcriptional profiling, including the identification of OFM-specific genes in the

chick that include multiple human coloboma orthologues, builds on previous work that illustrate the

chick as an excellent model for human eye development and the basis of embryonic malformations

(Wisely et al., 2017; Vergara and Canto-Soler, 2012; Trejo-Reveles et al., 2018). These features,

in combination with recent advances in chick transgenics and genetic manipulations (Davey et al.,

2018), project the chick as a powerful to analyse cell behaviours during OFC and epithelial fusion.

For example, the stable multi-fluorescent Cre-inducible lineage tracing line (the Chameleon chicken

[Davey et al., 2018]) will be valuable to determine how the fissure-lining cells contribute to the fus-

ing epithelia, while the very-recent development of introducing gene-targeted or gene-edited pri-

mordial germ cells into sterile hosts for germ-line transmission (Taylor et al., 2017) provides a rapid

and cost-effective way to develop stable genetic lines to interrogate specific gene function

(Davey et al., 2018; Woodcock et al., 2017). Thus, our study illustrates the powerful utility of the

chick as a model for investigating OFC and for the discovery of novel candidate genes for coloboma,

and is perfectly timed to coincide with major new developmental biology techniques in avian sys-

tems to place the chick model as a powerful addition to OFC and fusion research.

Summary
This study provides the first detailed report of epithelial fusion during chick OFC and illustrates the

power of the embryonic chick eye to investigate the mechanisms guiding this important develop-

mental process further and to provide insights into human eye development and broader fusion con-

texts. We clearly define the temporal framework for OFC progression and reveal that fusion is

characterised by loss of epithelial cell types and a coincidental increase in apoptosis. We reveal the

specific expression of orthologues of known coloboma-associated genes during chick OFC, and pro-

vide a broad transcriptomic dataset that can be used to improve the identification of candidate

genes from human patient exome and whole-genome DNA sequencing datasets. Finally, we identify

that NTN1 is specifically and dynamically expressed in the fusing vertebrate fissure - consistent with

having a direct role in epithelial fusion, and is essential for OFC and palate development.

We propose that NTN1 should therefore now be considered as a new candidate for ocular colo-

boma and congenital malformations that feature defective epithelial tissue fusion.

Materials and methods

Key resources table

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent
(M. musculus)

Ntn1-/- PMID 26395479 MGI:5888900 Lisa Goodrich
(Harvard Medical
School, Boston MA).

Biological
sample
(G. gallus)

memGFP PMID 25812521 Rozbicki et al., 2015 Maintained at The
Greenwood Building,
Roslin Institute, UK.

Biological
sample
(G. gallus)

Chicken eye
and OFM
dissections

This paper Hy-Line Brown Maintained at The
Greenwood Building,
Roslin Institute, UK.

Antibody NTN1
(Mouse monoclonal)

R and D Systems MAB128 one in 100 dilution
for whole mount IF

Antibody NTN1
(Rabbit polyclonal)

Abcam ab126729 one in 300 dilution
for human and
mouse IF; 1 in 500
dilution for chick
cryosection IF

Antibody Laminin-B1
(Mouse monoclonal)

DSHB 3H11 one in 20 dilution
for all IF

Antibody NF145
(Rabbit polyclonal)

Merk AB1987 one in 100 dilution
for all IF

Antibody Phospho-Histone
H3A
(Rabbit
monoclonal)

Cell Signalling
Technologies

#3377 one in 200 for
cryosections, 1 in
1000 for flat-mount

Antibody Activated Caspase-3
(Rabbit polyclonal)

BD Pharminagen #559565 one in 400
dilution for all IF

Commercial
assay or kit

Alexa Fluor
Phalloidin
(488 nm)

Thermo-Fisher #A12379 one in 40 dilution
for all IF

Software,
algorithm

Kallisto PMID 27043002 NA NA

Software,
algorithm

Limma PMID 25605792 NA NA

Embryo processing
Hy-Line Eggs were incubated at 37˚C at day 0 (E0), with embryo collection as stated throughout the

text. Whole embryos were staged according to Hamburger Hamilton (Hamburger and Hamilton,

1992; Hamburger and Hamilton, 1951). Heads were removed and either ventral eye tissue was

resected and flat-mounted and imaged immediately, or whole heads were placed in ice cold 4%

paraformaldehyde (PFA) in pH 7.0 phosphate buffered saline (PBS), overnight and then rinsed twice

in PBS. OFMs used for fusion progression measurements (flat mounts) were mounted in glycerol

between a coverslip and glass slide, without fixation. Whole embryo, flat mounted OFMs, and dis-

sected eye images for were captured on a Leica MZ8 light microscope and measurements were

processed using FIJI (NCBI/NIH open source software [Schindelin et al., 2012]).

Immunofluorescence
For cryosections, resected ventral chick eyes were equilibrated in 15% Sucrose-PBS then placed at

37˚C in 7% gelatin:15% Sucrose, embedded and flash-frozen in isopentane at �80˚C. Sections were

cut at 20 mm. Immunofluorescence was performed on chick fissure sections as follows: 2 � 30 min

rinse in PBS, followed by 2 hr blocking in 1% BSA (Sigma) in PBS with 0.1% Triton-X-100 [IF Buffer 1].

Sections were incubated overnight at 4˚C with primary antibodies diluted in 0.1% BSA in PBS with

0.1% Triton-X-100 [IF Buffer 2]. Slides were then washed in 3 � 20 min PBS, followed by incubation

Hardy et al. eLife 2019;8:e43877. DOI: https://doi.org/10.7554/eLife.43877 16 of 23

Research article Developmental Biology Human Biology and Medicine

https://www.ncbi.nlm.nih.gov/pubmed/26395479
https://www.ncbi.nlm.nih.gov/pubmed/25812521
https://www.ncbi.nlm.nih.gov/pubmed/27043002
https://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.7554/eLife.43877


for 1 hr with secondary antibodies (Alexa Fluor conjugated with 488 nm or 594 nm fluorophores;

1:800–1000 dilution, Thermo Fisher), and mounted with ProLong Antifade Gold (Thermo Fisher) with

DAPI. Alexa Fluor Phalloidin (488 nm; Thermo-Fisher #A12379) was added at the secondary antibody

incubation stages (1:50 dilution). Human foetal eyes were obtained from the Joint Medical Research

Council UK (grant # G0700089)/Wellcome Trust (grant # GR082557) Human Developmental Biology

Resource (http://www.hdbr.org/). For Netrin-1 immunostaining in human and mouse tissues, cryo-

sections were antigen retrieved using 10 mM Sodium Citrate Buffer, pH 6.0 and blocked in 10%

Goat serum +0.2% Triton-X100 in PBS, then incubated overnight at 4˚C with primary antibody

(Abcam #ab126729; 1: 300) in block. Secondary antibody staining and subsequent processing were

the same as for chick (above). For anti-NTN1 immunostaining in chick tissues, cryosections were

hydrated in phosphate buffer (PB) pH7.2, antigen retrieved using 1% SDS in PB and blocked 2%

bovine serum albumen +0.2% Tween-20 in PB (blocking buffer). Primary antibody was diluted in

blocking buffer and incubated at room temperature for 4 days. Secondary antibody staining and

subsequent processing were as stated above, but PB was used instead of PBS. For whole-mount

immunofluorescence we followed the protocol from Ahnfelt-Rønne et al (Ahnfelt-Rønne et al.,

2007), with the exception that we omitted the TNB stages and incubated instead with IF Buffer 1

(see above) overnight and then in IF Buffer two for subsequent antibody incubation stages, each for

24 hr at 4˚C. No signal amplification was used. Antibodies were used against Phospho-Histone H3A

and Netrin-1. Imaging was performed using a Leica DM-LB epifluorescence microscope, or a Nikon

C1 inverted confocal microscope and Nikon EZ-C1 Elements (version 3.90 Gold) software. All down-

stream analysis was performed using FIJI. Image analysis for proliferation in the OFM on flat-mounts

was performed by counting Phospho-Histone H3A positive foci using a region of interest grid with

fixed dimensions of 200 mm2 and throughout the entire confocal Z-stack. To quantitate apoptotic

foci at the OFM, we used Activated-Casp3 immunofluorescence on serial cryosections of HH.St29-30

OFMs and collected confocal images for each section along the P-D axis. Image analysis was per-

formed by counting A-Casp3 positive foci at the OFM in sequential sections using a region of inter-

est with fixed dimensions of 100 mm2. For histology and subsequent haematoxylin and eosin

staining, resected eyes processed and image captured according to Trejo-Reveles et al (Trejo-

Reveles et al., 2018).

In situ hybridization
RNAscope was performed on HH.St29 cryosections using a probe designed specific to chicken

NTN1 according to Nishitani et al (Nishitani et al., 2017). For colourimetric in situ hybridisation, a

ribprobe was for NTN1 was designed using PCR primers to amplify a 500 bp product from cDNA

prepared from chick whole embryos at HH.St28-32 (Oligonucleotide primers: Fwd 5’-ATTAACCC

TCACTAAAGGCTGCAAGGAGGGCTTCTACC-3’ and Rev 5’-TAATACGACTCACTATAGGCAC-

CAGGCTGCTCTTGTCC-3’). The PCR products were purified and transcribed into DIG-labelled RNA

using T7 polymerase (Sigma-Aldrich) and used for In Situ hybridization on cryosectioned chick fissure

margin tissue (prepared as described above for immunofluorescence) or whole embryos using stan-

dard protocols (described in J. Rainger’s doctoral thesis - available on request).

Transgenic animal work
To obtain Ntn1-/- mouse embryos (Ntn1tm1.1Good, RRID:MGI:5888900), we performed timed matings

with male and female heterozygotes and took the appearance of a vaginal plug in the morning to

indicate embryonic day (E)0.5. Embryos were collected at E11.5 and E16.6 and genotyped according

to Yung et al (Yung et al., 2015). As with this previous report we observed ratios within the

expected range for all three expected genotypes (28 total embryos: 13x Ntn1+/-; 10x Ntn1-/-; 5x WT

– 46%; 35%; 18%, respectively). Embryos were fixed in 4% paraformaldehyde overnight and then

rinsed in PBS and imaged using a Leica MZ8 light microscope. Ntn1-/- and C57Bl/6J animals were

maintained on a standard 12 hr light-dark cycle. Mice received food and water ad lib and were pro-

vided with fresh bedding and nesting daily. For zebrafish work, we designed gene-editing sgRNA

oligos alleles to target ntn1a: 5´-GGTCTGACGCGTCGCACGTG-3´. We then generated founder (G0)

animals by zygotic microinjection of CRISPR/Cas9 components according to previous work

(Dutta et al., 2015; Varshney et al., 2015; Jao et al., 2013). G0 animals were genotyped and used

for crosses to generate G1 embryos which were scored for coloboma phenotypes and genotyped
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individually (Figure 4—figure supplement 3). All experiments were conducted in agreement with

the Animals (Scientific Procedures) Act 1986 and the Association for Research in Vision and Ophthal-

mology Statement for the Use of Animals in Ophthalmic and Vision Research (USA). Morpholinos

were designed and generated by Gene Tools LLC (Oregon) to target the translation initiating site of

ntn1a: 50-CATCAGAGACTCTCAACATCCTCGC-30, and a Universal control MO sequence was used

as a control: 50-ATCCAGGAGGCAGTTCGCTCATCTG-30. One cell stage embryos were injected with

2.5 ng or 5.0 ng of ntn1a or control morpholino and allowed to develop to OFC stages (�48 hpf).

Oligos used for ntn1a genotyping by sanger sequencing were: 50-TTACGACGAGAACGGACACC-30

and 50-GGAGGTAATTGTCCGACTGC-30.

Transcriptional profiling
For RNA seq analysis, we carefully dissected regions of (i) fissure-margin, (ii) ventral eye, and (iii) dor-

sal eye, and (iv) whole eye tissue from �10 individual embryos for each HH stage range (Figure 3—

figure supplement 1). Samples were collected and pooled for each tissue type and stage to obtain

n = 3 technical replicate RNA pools per tissue type per stage. Total RNA was extracted using Trizol

(Thermo Scientific). Whole-transcriptome cDNA libraries were then prepared for each pool following

initial mRNA enrichment using the Ion RNA-Seq Core Kit v2, Ion Xpress RNA-Seq Barcodes, and the

Ion RNA-Seq Primer Set v2 (Thermo Scientific). cDNA quality was confirmed using an Agilent 2100

Bioanalyzer. Libraries were pooled, diluted, and templates were prepared for sequencing on the Ion

Proton System using Ion PI chips (Thermo Scientific). Quantitative transcriptomics was performed

using Kallisto psuedoalignment (Bray et al., 2016) to the Ensembl (release 89) chicken transcrip-

tome. Kallisto transcript counts were imported into R using tximport (Soneson et al., 2015) and dif-

ferentially expressed transcripts identified using Limma (Ritchie et al., 2015). Genes not expressed

in at least three samples were excluded. To identify the relationships between samples, Log2 trans-

formed counts per million were then calculated using edgeR (Robinson et al., 2010) and Spearman’s

rank correlation was used to identify the similarities in genome-wide expression levels between sam-

ples. All RNAseq data files are submitted to the NCBI Gene Expression Omnibus database (http://

www.ncbi.nlm.nih.gov/geo) with the accession number GSE84916.

Statistical analysis
Bar graphs display means ± SD or 95% confidence intervals as indicated. Sample sizes were n � 3,

unless stated otherwise. Statistical analyses were performed using Prism 8 (GraphPad Software Inc).

Data were assessed for normal distribution by Shapiro-Wilk test where appropriate. Significance was

evaluated by unpaired Student’s t-test, where p�0.05 was deemed significant. Asterisk indicate sig-

nificance in Figure 1 as *p�0.05. **p�0.01, ***p�0.001.
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